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Abstract

This paper considers a situation in which a decision maker chooses between the safe
action and the uncertain action infinitely many times. The decision maker knows the
payofT for the safe action, but does not know the payoff for the uncertain action which
is determined by an unknown probability function. The decision may be influenced by
the payoff-irrelevant context in which the current decision problem is to be considered.
The context fluctuates according to another unknown probability function. The decision
maker is modeled by a Markov learning rule with reflecting barriers which determines
a state of mind in every period on the basis of past experiences.

We argue that the context-dependence of decision making plays an important role in
finding out the efficient action in the long run, because it causes the decision maker to
gather unbiased information at any time. We show that there exists a learning rule
according to which the decision maker succeeds to choose the efficient action in the
long run irrespective of how payoff-uncertainty and context-uncertainty are specified.
We also characterize the class of such efficient learning rules, and argue that it is
necessary that the upper reflecting barrier, regarded as the maximal strength of
confidence that the uncertain action is more profitable than the safe action, greatly
surpasses the negative of the lower reflecting barrier regarded as the minimal strength of
confidence.

JEL Classification Numbers: D80, D81, D83.
Key Words: Uncertainty, Context, Efficient Learning, Unbiased Information Gathering,
Strength of Confidence.



1. Introduction

This paper considers a situation in which a decision maker chooses between two
actions, i.e., the safe action and the wncertain action, infinitely many times. The
decision maker knows that she obtains payoff zero by choosing the safe action, whereas
she does not know the payoff she obtains by choosing the uncertain action. For example,
an entrepreneur repeatedly decides whether she should devote herself to only a routine
work, or do a new enterprise the consequence of which may be influenced by
unforeseen contingencies.

In such a situation, a real individual makes her decision dependent on the
surrounding circumstances, or the context, in which the current decision problem is to
be considered. For example, an entrepreneur’s decision may be influenced by an
atmosphere in the society which emerges from the mass psychology of other individuals
as being outside her control: A gloomy atmosphere may discourage the entrepreneur to
choose the uncertain action, whereas a merry atmosphere may encourage her to do it
positively. However, the context does nof necessarily contain some objective
information about the profitability of the uncertain action in the current decision
problem, and may fluctuate suddenly due to some payoff-irrelevant factors.'

The question to be answered is why a decision maker is willing to make her
decision dependent on the context, even though it may be payoﬁiirrelevam‘.2 We will
argue that the dependence of her decision on the context plays an important role in
leading the decision maker to gather unbiased information on the payoffs for the
uncertain action at any time, and to come to choose the efficient action in the long run.

! Keynes (1936) presented a related argument ——— “A conventional valuation which is
established as the outcome of the mass psychology of a large number of ignorant individuals is
liable to change violently as the result of a sudden fluctuation of opinion due to factors which do
not really make much difference to the prospective yield . . . the market will be subject to waves
of optimistic and pessimistic sentiment, which are unreasoning and yet in a sense legitimate
where no solid basis exists for a reasonable calculation” (1936, Chapter 12, p.154).

2 Several experimental results showed that a decision maker may be influenced by factors
irrelevant to the physical structure of the decision problem such as the difference of framing
(Tversky and Kahneman (1981)) and the difference of response mode (Tversky, Sattath and
Slovic (1988)). Schelling (1960) proposed a principle of equilibrium selection in game theory
that player's public knowledge about some contextual labels makes an action profile salient as a
focal point.



Uncertainty with which the decision maker is confronted is divided into two
categories, i.e., payoff-uncertainty and context-uncertainty. At the end of every period
after the choice of the uncertain action, the payoff is randomly determined according to
a probability function on a closed interval V =[v, v]. At the beginning of every period,
the context is also randomly determined according to another probability function on
the set of real numbers C = R. The larger the context in the current problem is, the
more gloomy the atmosphere in the society is. We assume that the decision maker does
not know both of these probability functions. The purpose of this paper is to clarify the
possibility that the decision maker succeeds to choose the efficient action in the long
run irrespective of how payoff-uncertainty and context-uncertainty, ie., these
probability functions, are specified.

The decision maker is modeled as an adaptive learning rule which translates past
experiences, i.e., past histories of the contexts, her decisions, and the resulting payoffs,
into a set of contexts in which the decision maker will choose the uncertain action.” We
shall confine our attention to learning rules which are finite Markov chains with
reflecting barriers: The decision maker’s state of mind is represented by an integer x in
a finite set {x,...,x}, where x <0< x. A state of mind x has a boundary of context
4#(x) e C such that the decision maker chooses the uncertain action if and only if the
current context ¢ is more merry than this boundary, i.e., if and only if ¢ < u(x). We
assume that u(x) is increasing: The higher the state of mind is, the wider the set of

possible contexts in which the decision maker will choose the uncertain action is. Of
particular importance, we assume that whenever the decision maker chooses the safe
action, the state of mind remains unchanged in the next period. On the contrary, if she
chooses the uncertain action, the state of mind may change only slightly: Given that the
current state of mind is x , it changes from x into x +1 (into x —1) in the next period,
only if the resulting payeff is sufficiently high (low, respectively).

As the main result of this paper, we presents necessary and sufficient conditions on
learning rules according to which the decision maker succeeds to choose the efficient
action in the long run irrespective of how payoff-uncertainty and context-uncertainty are
specified. Especially, it is necessary that the negative of the ratio between the lower and

upper reflecting barriers, — ;Z , is close to zero. This necessary condition expresses the
x

following remarkable characteristic of psychological aspects about the strength of

3 A classical reference is the model of fictitious play by Brown (1951). Adaptive learning has

recently been receiving considerable attention (Fudenberg and Levine (1997), for example).



confidence: A state of mind expresses the degree to which the decision maker is
confident that the uncertain action is more profitable than the safe action. The higher
the state of mind is, the stronger this confidence is, and therefore, the less probable it is
that the decision maker changes her mind and comes to choose the safe action in a wide
class of contexts in the near future. The upper reflecting barrier x is regarded as the
maximal strength of confidence that the uncertain action is more profitable, because the
decision maker, once reaching x, no more strengthens this confidence. Similarly, the
negative of the lower reflecting barrier —x is regarded as the maximal strength of
confidence that the uncertain action is /ess profitable than the safe action. This
necessary condition implies that the latter maximal strength of confidence is surpassed
by the former. At the overwhelming majority of states of mind x, the decision maker
will choose the uncertain action with almost certainty.

The above necessary condition is very restrictive, but there do exist learning rules
which satisfy the necessary and sufficient conditions. The existence of such efficient
learning rules is in contrast to the previous works such as Sarin and Vahid (1997a) and
Matsushima (1997a, 1998a) which showed that the decision maker always comes to
choose only the safe action in the long run, maybe inefficiently, irrespective of how
payoff-uncertainty is specified: By assuming that there exists a possible state of mind at
which the decision maker is confident that the uncertain action is unprofitable enough
to stop choosing it, Sarin and Vahid, and Matsushima showed that the decision maker
always becomes stuck in some of these states of mind in the long run* 3 In the same
way as these works, the present paper allows that every context has a possible state of
mind at which the decision maker is confident that the uncertain action is unprofitable
enough to stop choosing it in this context. The distinction between these works and the
present paper is that Sarin and Vahid, and Matsushima assumed that the decision maker
meets only a single context, whereas the present paper assumes that she meets various
contexts and makes a decision according to reasoning by analogy in the following way:
At a state of mind, the decision maker may stop choosing the uncertain action in some

4 See also Sarin and Vahid (1997b), Sarin (1997), and Cattaraj (1997). Multi-armed bandit
models have been studied by several authors such as Rothschild (1974) and Gittins (1989) which
showed related properties in a situation when individuals are Bayesian.

5 Matsushima (1997a, 1998a) considered a decision maker who observes the state of the world
with some noise and estimates the subjective probability on the set of the state of the world.
Another paper by Matsushima (1998b) investigated a game-theoretic situation in which players
fails to equalize their subjective games to the objective game.



contexts but still be willing to choose it in the other contexts. The decision maker will
utilize the experiences of the latter contexts for her evaluation for the profitability of the
uncertain action in the former contexts, which leads the decision maker to gather
unbiased information at any time.

We argue that under the necessary and sufficient conditions, the difference of
strength of confidence may rot be translated into the difference of subjective expected
payoff for the uncertain action: The subjective expected payoff must be equal to zero at
almost every state of mind and in almost every context, provided the decision maker
always updates the subjective expected payoff in a coherent way. This point is in
contrast to the standard Bayesian approach by Savage (1954).

We argue also that the decision maker is liable to increase the subjective expected
payoff for the uncertain action even though she obtains a payoff which is strictly less
than the current subjective expected payoff, provided the decision maker may not
update the subjective expected payoff in a coherent way. This point is closely related to
the explanation by Keynes (1936) about the psychology of vital entrepreneurs.6

In the situation considered in the present paper, the decision maker may not reliably
estimate the probabilities of the possible payoffs, because, as Sarin and Vahid, and
Matsushima have explained, she might have failed to gather unbiased information up to
the present. According to Knight (1921), this situation is classified as “radical”
uncertainty which is distinguished from “risk” in cases of which probabilities are well-
estimated and insurance is possible. A real entrepreneur faces radical uncertainty when
she starts a new enterprise. Probably most of the situations which require decision
making of the entrepreneur fall in the category of radical uncertainty because the failure
of the enterprise is not insurable.

When this sort of uncertainty is present, the rational basis for action is greatly
weakened. Several experimental studies such as Ellsberg (1961) showed that ordinal
people prefer to act on a known rather than unknown probabilities. However, irrational,
psychological forces such as animal spirits, which Keynes (1936) conceived as “a
spontaneous urge to action rather than inaction” (Chapter 12, p.161), prevent
uncertainty from stopping positive action, even though the resulting payoffs are
disappointing. The characterization theorem of the present paper clarifies what kind of
learning rule brings about objective efficiency through adjustments of the animal spirits.

Several works have investigated decision makers who are so irrational to randomize,
or experiment with, undesirable actions. Cross (1983) and Borgers and Sarin (1996)

¢ See Footnote 7.



have studied models of reinforcement learning in which a decision maker chooses
according to the suggestions of randomly selected stimuli. Sarin and Vahid (1997a)
have studied a model of adaptive learning in which a decision maker's choice is
affected by a randomly determined “mood”. In these works, however, psychological
factors which cause a decision maker to experiment are left unmodelled. This point is
crucial to the distinction between these works and the present paper. The present paper
explicitly models how the animal spirits are adjusted in a way that the animal spirits are
dimmed when a state of mind is pessimistic and the current context has a gloomy
atmosphere, whereas the animal spirits are activated when a state of mind is optimistic
and the current context has a merry atmosphere.

The organization of this paper is as follows. Section 2 defines a long-run decision
problem, a learning rule, an infinite sequence of learning rules, and efficiency of a
sequence of learning rules with payoff-uncertainty and context-uncertainty. We assume
that a decision maker’s learning rule is approximated by the limit of a sequence of
learning rules. Section 3 gives the main theorem which characterizes the class of
sequences of learning rules which are efficient. Section 4 presents the proof of this
theorem. Finally, Section 5 gives concluding remarks.



2. The Model

2.1. Long-Run Decision Problems

We consider a long-run decision problem D =(A,C,V,H,p, f) which is defined in
the following way. 4 = {a®,a"} is the set of actions, a* is called the safe action, and

a" is called the uncertain action. A decision maker repeatedly chooses between the safe
action ¢° and the uncertain action a“ infinitely many times. The set of possible
contexts is defined by the set of real numbers C = R. The less context in the current
problem is, the more merry the atmosphere in the society is. The set of possible payoffs
is defined by a closed interval V =[v, v}, where v <0< Vv,

At the beginning of every period 21, the decision maker observes a context
¢(t) e C and then chooses an action a(t) € 4. At the end of this period, she obtains a
payoff v(r) eV . Let h° be the null history, H® = {1}, and let 4’ = (c(7),a(7), (7)),
denote a history up to period ¢. Let H(f) denote the set of possible h', and
H= O H(t).

t=0

Let p:V — R, be a probability function on V. When the decision maker chooses
the uncertain action in a period ¢, the payoff v(¢)=v is randomly determined
according to p. The payoff for the uncertain action is drawn independently of the

context in the current problem. The objective expected payoff for the uncertain action is
defined by

v(p)= va(v)dv .

ve/

We define the associated cumulative distribution function by P(v')= j V}J(v)dv .

When the decision maker chooses the safe action, she certainly obtains payoff zero.
The decision maker a priori knows that she obtains payoff zero by choosing the safe
action.

Let f:C — R, be a probability function on C. At the beginning of every period ¢,
the context c¢(t) = ¢ is randomly determined according to f the realization of which is

observed by the decision maker. We define the associated cumulative distribution
functionby F(c')= f f(c)de.

We assume payoff-uncertainty and context-uncertainty, that is, we assume that the
decision maker has no knowledge about these probability functions p and f. We



denoted by ® the set of all probability functions on V. We denoted by = the set of all
probability functionson C.

Throughout this paper, we will fix 4, C and V. Hence, a long-run decision
problem is simply denoted by D=(p, ).

2.2. Markov Learning Rules

A decision maker is modeled by a Markov learning rule with reflecting barriers, or
alearning rule, U'=(X,u,w,8). X ={x,. ..,x} is the set of states of mind, x <0< x,
Z is the set of all integers, £ Z —>C, 8V xZxC—>[0]1],and wZxC—>V. We
assume that u(x) is increasing with respectto x.

Suppose that the decision maker has a state of mind x € X' and observes a context

¢ € C in the current decision problem. Then, the decision maker chooses the uncertain
action if and only if ¢ < u(x), i.e., if and only if context ¢ is more merry than the

boundary of context p(x) associated with state of mind x .

The state of mind changes as time goes on in the following way. If she chooses the
safe action, the state of mind remains unchanged in the next period. If she chooses the
uncertain action and obtains payoff v €V, then she changes the state of mind only
slightly, 1.e.,
the state of mind remains unchanged with probability &(v,x,c),
it changes upwards from x into x+1 with probability 1-&v,x,c) if
v 2 w(x,c),

and
it changes downwards from x into x -1 with probability 1-&(v,x,c) if
v<w(x,c).

A state of mind expresses the degree to which the decision maker is confident that
the uncertain action is more profitable than the safe action. The higher the state of mind
is, the wider the set of contexts in which the decision maker will choose the uncertain
action is, and the less probable it is that the decision maker changes her mind and
comes to choose the safe action in a wide class of contexts in the near future.

The upper reflecting barrier x expresses the maximal strength of confidence that the
uncertain action is more profitable than the safe action. The decision maker never
strengthens this confidence more than x. On the other hand, the negative of the lower
reflecting barrier — x expresses the maximal strength of confidence that the uncertain

action is /ess profitable than the safe action. The decision maker never strengthens this



latter confidence more than — x . We define the relative maximal strength of confidence

by the negative of the ratio between the lower and upper reflecting barriers, 1.e., ~ % .

The probability that the state of mind changes from x into x+1 given that the

current state of mind is x # x , is defined by
Mxy ¢ -

oD =gws [ a-0mxopsas fiene.

00

The probability that the state of mind changes from x into x —1 given that the current

state of mind is x # x, is defined by
H(x)

E(,DT)=E)= | {Lw(m)(l—ﬂv,x,c))p(v)dv}f(c)dcn

—e0

The stationary probabilities of the occurrence of state of mind, g(x,D,TI") = g(x), are
defined by these inequalities:
E'(x)glx)= & (x+1)g(x+1),
£ (x)g(x)= & (x~Dgx -1,
and forevery x e{x+1,...,X -1}, (D
(& (x)+& (xNgx)=¢ (x-Dgx-D+ & (x+Dg(x+1).
Finally, the stationary probability that the decision maker chooses the uncertain action
is defined by

AD.) = A= 3 F(u(x)g(x).

X=X

Throughout this paper, we will fix (4, w,8). A leaming rule I' = (X, 4, w,0) is
simply denoted by T = (x,x). For convenience of the arguments, we assume the

following technical assumptions:

1) there exists @V x C — [0,]) such that lim &(v,x,c)= b—(v,c),
X300
2) there exists @V —[0,1) such that lim &(v,x,c)= & v),
3) there exists w:C — V such that lim w(x,¢)=w(c),
X~p$00
and
4) there exists w €V suchthat lim w(x,c)=w.

Cmr

2.3. Sequence of Learning Rules and Efficiency

We shall confine our attention to a learning rule whose upper reflecting barrier x

10



and lower reflecting barrier x are sufficiently large and sufficiently small respectively.
Such a learning rule will be approximated by the limit of a sequence of learning rules
defined by

=0,
where

I,=(XpXn), hm x, =-n,and lim Xm =+,

40

We define the limit relative maximal strength of confidence associated with T by

V= hm(—~—z—’f'» .

=% 400 X m
Define Z(u)c E by the set of all probability functions f on C such that
f(¢)>0 forall ceC,

and
im FHx-D))
= F(p(x))

REMARK 1: We must note that =(x) includes a wide variety of probability functions
on C,and, forevery b e(0,1), there exists f eZ(u) such that

F(px=1) _

We can construct such a f as follows. Choose a real number g €(0,1) arbitrarily.
There exists an increasing and differentiable function F' on C such that F(u(x))=b""
for all x<0, and lim F(x)=1. Let f(x)ang'(x). We must note that f(-) is
included in Z(u) because lim F(c)= lim F(u(x))=0.

REMARK 2: We must note also that Z( u) is independent of u in the following sense:
Consider g and 72 such that

xl_i)xgg(;t(x) - u(x =1)) < +o0 and xlimﬁ(ﬁ(x) - u(x—=1) < +w.
We can show that [/ eZ(u)]= [[f €E(1)] below: Define zZ—>Z and zZ - Z
such that for every x € Z

M(E(x)) 2 fi(x) 2 p(Z(x)~ 1) and  p(z(x)+1) 2 p(x) Z p(z(x)).
We must note that z(x) > z(x), and there exists p > 0 such that

lim (2(x)~ 2(x)) = p < +eo.

Let f eZ(u). Since there exists & €(0,1) such that b= lim P(F‘(l (:( )1)) one gets

11



>0

2

lim F(u(x-1) > lim ﬁ Fu(z -1) bP
e F(u(x)) o mn F((2))
which implies f e E(x).

The main purpose of this paper is to characterize sequences of learning rules which
induce the decision maker to choose the efficient action in the long run, irrespective of
how payoff-uncertainty and context-uncertainty are specified, i.e., irrespective of which
vector of probability functions (p, /) e ® x E(x) is given. In other words, the main
purpose is to characterize sequences of leaming rules which are efficient in the
following sense.

DEFINITION: A sequence of learning rules T is efficient if for every p e® and

every [ e=(u),
[V(p)>0]=[A” =1] and [v(p)<0]=[A" =0].

12



3. Main Theorem
The main theorem of this paper is presented as follows.

THEOREM: 4 sequence of learning rules T is efficient, if and only if
(1) lim pf(x) = ~o0 and lim p(x)= -+,
(i) 7 =0,
(i)  w(c)=0 forall ceC,and w20,
(iv) there exists ;: C - (0,) such that
0(v,c)=1-F(c)V,
and
W) there exists  y €(0,1) such that
Ov)y=z1-yv forall v e(0,v], and
ov) <1+ yv forall ve[0).

Properties (i) through (v) are very restrictive, but there do exist sequences of
learning rules which satisfy these properties, i.e., which are efficient.

Property (i) implies that the probability that the decision maker chooses the
uncertain action converges to zero as a state of mind decreases, whereas this probability
converges to unity as a state of mind increases.

Property (ii) is the most important necessary condition, which implies that the limit
relative maximal strength of confidence is zero. That is, the upper reflecting barrier Xm,
regarded as the maximal strength of confidence that the uncertain action is more

profitable than the safe action, greatly surpasses the negative of the lower reflecting
barrier - x,,, regarded as the minimal strength of confidence.

REMARK 3: Property (ii) implies that at the overwhelming majority of states of mind,
the decision maker will choose the uncertain action with almost certainty. It is only
exceptional states of mind that make the decision maker choose the safe action with
almost certainty. The Theorem says that if the uncertain action is less profitable than
the safe action, then the decision maker eventually sticks to these exceptional states of
mind with almost certainty.

Property (iii) implies that, at almost every state of mind and in almost every context,
the state of mind changes upwards only if the realized payoff for the uncertain action is

13



positive, whereas it changes downwards only if the realized payoff is negative.

REMARK 4: Suppose that w(x,c¢) is regarded as the subjective expected payofT for the

uncertain action. Then, by choosing the uncertain action, the decision maker changes
the state of mind upwards (downwards), if the realized payoff is more than (less than)
w(x,c). Property (iii), together with property (ii), says that at the overwhelming
majority of states of mind, this subjective expected payoff is almost always equal to
zero. Neither the difference of state of mind nor the difference of context is reflected in
the difference of subjective expected payoff, ie., the difference of strength of
confidence can not be translated into the difference of subjective expected payoff. This
point is in contrast to the Bayesian approach by Savage (1954) in which a decision
maker determines which action to be chosen only by maximizing her subjective
expected payoff.

REMARK 5: Suppose that the subjective expected payoffs for the uncertain action
increase as the state of mind increases. The decision maker chooses the uncertain action
if and only if this subjective expected payoff is more than zero. Property (iit) implies
that the decision maker fails to update the subjective expected payoff in some coherent
way: By choosing the uncertain action, the decision maker increases the subjective
expected payoff whenever the realized payoff is more than zero. Since the subjective
expected payoff must be strictly more than zero when the decision maker will choose
the uncertain action, one concludes that she may increase the state of mind, and
therefore, increase the subjective expected payoff, even through the realized payoff is
strictly less than the current subjective expected payoff.7

Property (iv) implies that, at almost every state of mind and in almost every context,
the transition probability of state of mind is proportional to the realized payoff. Hence,
the probability that the state of mind changes upwards is greater than (smaller than) the

7 Keynes (1936) has argued a related point that a vital entrepreneur has a psychological tendency
to invest in spite of past disappointments. Keynes thought that investments generally fail to

€«

deliver the expected returns ———— . . it is probable that the actual average results of
investments . . . have disappointed the hopes that prompted them . . . If human nature felt no
temptation to take a chance, no satisfaction (profit apart) in constructing a factory, a railway, a
mine, or a farm, there might not be much investment as a result of cold calculation” (Chapter 12,

p.150).

14



probability that the state of mind changes downwards, only if the objective expected
payoff for the uncertain action is more than (less than) zero, i.e., only if v(p)>0

(v(p)<0).
Property (v) implies that when the state of mind is sufficiently small, the probability
that the state of mind changes upwards may be smaller than the probability that it

changes downwards even if the objective expected payoff for the uncertain action is
more than zero, i.e., evenif v(p)>0.

EXAMPLE: Consider a situation in which v = —v = 1. Specify a sequence of learning

rules ' as follows:
x)=x forall xeZ,

w(x,c)=0 forall (x,c)eZxC,
Ov,x,c)=1-v| forall (v,x,c)elV xZxC,
x, =-mand xm=m" forall mz1.
It is easy to check that this specified I'” satisfies properties (i) through (v), and
therefore, is efficient.

We will prove the theorem in the next section.

15



4. Proof of the Theorem

Define
F =8 =[] a-B0.cnpmb | rexe.

o )=E = [{f[0-00.cnpsriexe.

£ p)=& = [ (- APy,
and
Ewp)=¢ = L“”(l- B(v)p(v)dv.

We must note that

and

im £G-D_ ) Fua-n)| ¢

_ Fu(x-1))
S SN ] IV CO N A C )

m .
»e F(u(x))

ot
oyl

=

F(x)
These equations and the definition of y imply

tim ([T £E2 Dy _ g FTEEDyieon (T £E Dy

o 5(‘)‘7) x=0 5‘()‘) x=x,,+1 é:—(x)
S g P15 2
(3) (ﬁ" o Fx) | @)

Consider a sequence of learning rules ' =(T',,),,.,. We denote
gn(x)=g(x,D,T,).
From equalities (1),

gm(x):mgm(xwl) forall m>1andall xe{x, +1,...,xm},
& (x)
that 1s,
FACIINE & T )
Eul(Xp) e £ (X)

From equality (2), one gets

Xm) o Er g ol x— 1)) 2
lim (-g—-”-'-(-fi"l);‘""*m = (é_..)r“'l (i. lim Flpx-1) e

o g (Xm) & & o F(ul(x))

16



We present the following useful propositions.

PROPOSITION 1: For every (p, f)e®xE(u),

, E E & Fu(x-1)
1-1 A =1 >land = lim 22y >
(-1 [ 1::4g an (5 )(5 lim =25 y 21],
and
& ym Flux-D) £\ 8 i Flux-1)
1-2 [A®=0 r <1l.
. 1= ey S )

PROOF: See Appendix A.

PROPOSITION 2: For every (p,f)e®xE(u),

£t g & F(u(x-1)
2-1 1 and = 7 >1 AN =1
@2-1) [é: >lan (5 X{w ) 22y s = A =1,
and
& Flu(x=1) _ Er & F(u(x— D)y
2-2 = and = lim <1 A” =01.
G2 e A R ) N My ) <M= =0

PROOF: See Appendix B.

First of all, we show that properties (i) through (v) are necessary.

Property (i): Suppose that lim z(x)# —co. Then, for every (p,f) € ® x E(u), there

exists &> 0 suchthat F(u(x))= ¢, and therefore, it must hold that A” > &> 0. This is
a contradiction. Similarly we can prove lim z(x)= +o0.

Property (ii): Suppose that y =0, i.e, y > 0. Let p € ® be chosen such that v(p)>0.
From Remark 1 in Section 2.3, one gets that for every b €(0,1), there exists [ e E(u)
such that

lim F(px-1)

= F(u(x))

Hence, we can choose f €ZE(4) such that lim —==— Fpx=1)
> F((x)

is so close to zero that

£ Fluxe=1),
& )(5‘ ) )

17



This is a contradiction of property (1-1) in Proposition 1.

Property (iii): Suppose that there exists ¢ € C such that w(c)> 0. Then, there exist
f e® and p eZE(y) such that

.5__<1,

v(p)>0,

the probability of occurrence of contexts in the neighborhood of ¢ is very
large,
and
the probability of occurrence of payoffs in the interval (0, w(c)) is very
large.
Since property (ii) is necessary, 1.€., since y = 0, one gets
ENE fim Pl 13
5 P F (#(x)) 5
This is a contradiction of property (1-1) in Proposition 1. Similarly we can check that
there exists no ¢ € C such that w(c)<0.
Next, suppose that w < 0. Then, there exist f € ® and p e E(u) such that
§ i FluG=1)
& e Fu(x))

2

and
the probability of occurrence of payoffs in the interval (w,0) is large enough
to satisfy v(p)<0.

Clearly, this is a contradiction of property (1-2) in Proposition 1.

Property (iv): Suppose that property (iv) does not hold. Then, there exist c € C, y >0,
v e(0,v],and v’ €[v,0) such that either

&Av,c)>1—yv and ‘é(v',c)< 1+ v,
or

&v,c)<1-yv and Av',c)>1+ '
Consider the former case. From property (iii), we must note that there exist f € ® and
p € Z(u) such that

v(p)>0 and —i;d,

S

where

the probability of occurrence of contexts in the neighborhood of ¢ is very

18



large,
the probability of occurrence of payoffs in the neighborhood of v is more

e v'
than ,
v-v'

and
the probability of occurrence of payoffs in the neighborhood of v’ is less

than

v—v'
Since property (ii) is necessary, i.¢., since y = 0, one gets
EE i Py B
é’ oo F(p(x)) &
This is a contradiction of property (1-1) in Proposition 1. Similarly we can check the
latter case also.

Property (v): Suppose that property (v) does not hold. Then, there exist y>0,
v e(O,;], and v' €[v,0) such that

&v)<l-yv and Gv')>1+pv'".
From property (iii), we must note that there exist /' e ® and p € E(u) such that

s F(u(x 1))
v(p)<0 and §xlim Fla) >

where
the probability of occurrence of payoffs in the neighborhood of v is less
than —— -,
v—v
and

the probability of occurrence of payoffs in the neighborhood of v’ is more

than d

v-v'’
This is a contradiction of property (1-2) in Proposition 1.

Hence, we have proven that properties (i) through (v) are necessary.
Next, we show that properties (i) through (v) are sufficient. Suppose that I'*
satisfies properties (i) through (v). Properties (i), (1ii) and (iv) say that

[v(p)>0]= [—i—-—>l] and [v(p)<0]= [—?<1}

which together with property (it), implies
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é 5 P(,u(x 1)) §+
01> [(2— =2 ,
[V(P)> ] [(-»- )(5_ i F( ( )) ) -2 ]

and
[v(p)<01:>{(2_ X 5 i ) y = = <1].
Properties (1), (iii) and (v) say that
& . F(u(x=1)
0 = Jim —fs < ]
e T

Hence, one gets that for every (f, p) e ® x E(u),

[v(p>>01:>[§ >1and<§ SN i FH =)y gy

s A F(u(x))

and

& i Flx-1) £\ i Flux-1)
0 = <land r<1],
M) <0= G Iy, < G Ry )
which , together with Proposition 2, imply that '™ is efficient.

From these observations, we have completed the proof of the theorem.
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5. Concluding Remarks

This paper characterized efficient sequences of learning rules under payoft-
uncertainty and context-uncertainty. An ordinal decision maker, who is motivated by
looking after her own interest and never experiments with undesirable actions, may fail
to gather unbiased information through daily decision making, and therefore, fail to
choose the efficient action in the long run. This paper showed that we can construct a
sequence of learning rules according to which even such a self-interested decision
maker can succeed to gather unbiased information at any time, and eventually choose
the efficient action.

The future research may be required to generalize our analysis to several cases such
as a case in which a decision maker chooses among multiple uncertain actions and a
case in which the other individuals’ experiences are available.> We would like to
emphasize that, in any case, it is important for the understanding of choice under
uncertainty that how several psychological, motivational factors are adjusted is
explicitly modeled in an appropriate way.

8 There is a growing literature of cognitive dissonance in economic psychology such as Rabin
(1995) and Carrillo and Mariotti (1997) in which an individual is apt to exclude information
which contradicts her subjective belief. We may strengthen the result of the present paper by
taking cognitive dissonance into account. Especially, cognitive dissonance may interrupt a
decision maker from gathering information about the other decision makers’ experiences,

because these may be inconsistent with her belief.
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Appendix A: Proof of Proposition 1

We will prove only property (1-1), because property (1-2) can be proved in the same
way.
51-

Suppose 2— < 1. Then, there exists a positive integer x and a positive real number

less than unity, ¢ €(0,1), such that

wﬁs<] forall x'>2x.
& (x")
Since
gn(x")= {H Gt - )}g,,,(x) forall x'>x,
x"=x+1 5 ( )
one gets

xzmgm(x')* xz {H & (x ,,)1)}g,,,( x)

Xm*X

Ze" g (x)= s(

x'=x+]

This implies that the probability that the state of mind is higher than x is at most

)g,,,(X) (w)gm(x)-

(-l—f——) times as large as the probability that the state of mind is equal to x. Hence, the
-&

probability that the state of mind is higher than x never converges to unity as m — +o,
and therefore, A® <1. This is a contradiction.

Suppose (f )(é‘ i f-(f-l—(—J—‘:———]-)—)-)’ <1. Then, there exist a positive integer x, a
£ ¢ TR (u(x))

negative integer X , and positive real numbers ¢£#1 and £ # 1 such that

wsg forall x'>x,
&(x')
,wgg forall x'<x,
&(x')
and
gy <1.
Hence,
ng(x )= z {H & (x ")1)} m(X) S ‘9( : )g’”(x)’
and
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-1

)= FACERDN
Zg,,, )= Z{H Fery e )

> @ g (%)= (*’)” ——)g,,,(x>

X =x+]

and therefore:
xzn gm('x ) x,,,-x 173 -
x=x+1 (g(g 1))( 1-¢ )( H é (.X 1))

Zg (xr) S l-¢ 1- ( ) - x"=x'+1 ")

X=X

We can check that the right hand side of this inequality never converges to zero as
m—» +o0: Suppose ¢ >1. We must note
£ - £ x" -1
(S( ) — )( H 5 ( - )
I-¢ 1 (8 ) X=x'+] é (x )
£-1 1- g™ F'(x"-1)

~ ~<35‘;*"><“m—x> ot EGT)

1-(g) **
£-1 1- g ) 1
2(6‘(1* )y 5, X H 5( "))
’ (5(5) T )‘(x”"x) *(xm-»x) x"=x+1
which converges to zero as m— +wo, because lim ¢ “Ge) 20 lim —xpytF .
m—y+0 Pimr-40 o — %

and lim (&) )% = 4. This is a contradiction of A” =1, because the stationary
P> +o0

probability that the state of mind is more than x is zero. Similarly we can check the
case of £ <1. Hence, we have proven property (1-1).
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Appendix B: Proof of Proposition 2

We will prove only property (2-1), because property (2-2) can be proved in the same
way.
We must note that there exist a positive integer x, a negative integer ¥, and
positive real numbers £>1 and £ # 1 such that
&' -b
& (x')
&'(x'-1)
& (x")

>¢ forall x"2x,

>¢ forall x'<x,
and
&Y 21.

Hence, one gets

Xm'"x

Zg,,,(x'>-—2{n‘5 2D, ()2 A g (),
X'm=x4] x'=x4] x"=x+1 g( )
and
fgm<x> Z{I‘I‘f‘(""j’)} %)
PR AP0
Z(a)“““* g, (7) = (U (“’) x) ()
= (8)””' ST ;( ) ') D8 (),
and thf:refore3
D PG W K[TEE2D)
o e O A EW)
“—3(5-4) 1— gm0 £ -1
= (S )(H e ,,)

PRSP e 1
(g(g) x )(xm ) _ g Comx) S

The right hand side of thls inequality diverges to +o as m-—> +oo, because

- ~ Xy + X
lim & =0, lim —==%—-—=y, and lim (g(g)’) =¥ = (. Moreover, we must

m—r+t N3 +c0 xm - X

note
> a(x)= Z(H ;((,, D e, (),
and therefore,
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Y gu(x")

s ol S (T 8
ng(xr) X=X x"=¥+1

x'=X

The right hand side of this inequality diverges to infinity as m—> +w because
lim £ =+,

m—r»+e0

The above observations imply that the stationary probability that the state of mind is

more than x is unity. Since we can choose x as large as possible, we have proved
A* =1, i.e., property (2-1).
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