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Abstract

McKay, Conover and Beckman (1979) introduced Latin hypercube sampling (LHS)
for reducing variance of Monte Carlo simulations. More recently Owen (1992a) and
Tang (1993) generalized LHS using orthogonal arrays. In the Owen’s class of generalized
LHS, we define extended Latin hypercube sampling of strength m (henceforth denoted as
ELHS(m)), such that ELHS(1) reduces to LHS. We first derive explicit formula for the
finite sample variance of ELHS(m) by detailed investigation of combinatorics involved
in ELHS(m).

Based on this formula, we give a sufficient condition for variance reduction by ELHS(m),
generalizing similar result of McKay, Conover and Beckman (1979) for m = 1. Actually
our sufficient condition for m = 1 contains the sufficient condition by McKay, Conover
and Beckman (1979) and thus strengthens their result.

1 INTRODUCTION

Monte Carlo simulation is often used to evaluate the expectation of a statistic W =
9(X1,..., Xk), which is not analytically tractable. In usual Monte Carlo simulations
simple random sampling (SRS) is used to generate sample points. SRS is widely appli-
cable because of its simplicity. However its sampling variance is often large and many
replications are needed to achieve desired precision. Therefore methods for reducing
sampling variance of SRS are of great importance.

One way of reducipg variance of SRS is to scatter the sample points more uniformly
over the sample space than SRS. This is the basic idea of various techniques known
as quasi-Monte Carlo methods. See Niederreiter (1992) for a review. Uniformity can
be achieved by stratifying the sample space. LHS can be interpreted as a method for
stratifying each univariate margin simultaneously. A natural extension is to stratify each
m-variate margins simultaneously, which can be achieved by the sampling design based
on orthogonal arrays. Owen (1992a) and independently Tang (1993) proposed orthogonal
array (OA) based sampling. They showed that OA based sampling can improve LHS
substantially. We will define a class of extended Latin hypercube sampling ELHS(m) of
strength m, m < K, such that ELHS(1) is equivalent to LHS.



The reduction of variance by LHS and ELHS is closely related to ANOVA (Analysis of
Variance) decomposition of the statistic W. Stein (1987) showed that LHS asymptotically
filters out main effects of W. Therefore LHS asymptotically achieves variance reduction
for any statistic W. Similarly, OA based sampling asymptotically filters some higher
order interactions as well, and hence asymptotically achieves further variance reduction
for any statistic. However for the finite sample case, LHS and its generalizations do not
necessarily lead to variance reduction due to combinatorial complications.

In order to investigate reduction of finite sample variance we first derive explicit ex-
pression of the finite sample variance of ELHS(m) in terms of the ANOVA decomposition
of the finite sample cell mean function of W = g(Xi,..., Xk ). Although Owen (1992a)
describes finite sample variance of OA based sampling with the aid of results by Patter-
son (1954), Patterson’s results are stated without proof. Using the expression of finite
sample variance of ELHS(m) we derive a sufficient condition for the reduction of the
variance of ELHS(m) over SRS. Our sufficient condition is given in terms of m-variate
monotonicity of the statistic g(Xy,...,Xg). For the case of m = 1, our sufficient condi-
tion requires that g is monotone in any K — 1 variables out of K variables X;,..., Xk.
The sufficient condition given by McKay, Conover and Beckman (1979) requires that g
is monotone in each X;,7 = 1,..., K. Thus our result for m = 1 strengthens the result
of McKay, Conover and Beckman (1979).

The organization of the paper is as follows. In Section 2 we define ELHS(m) and
introduce appropriate notational conventions. In Section 3 we derive explicit expression
for the finite sample variance of ELHS(m). Based on this expression, we give a sufficient
condition for reduction of finite sample variance of ELHS(m) over SRS in Section 4. In
Section 5 we perform some numerical simulations to confirm our theoretical results. In
Section 6 we make some additional comments on LHS and OA based sampling.

2 CONSTRUCTION OF EXTENDED LATIN HY-
PERCUBE SAMPLING

We consider evaluation of the expectation of a statistic W = g(X1,..., Xk ):
p=EW)=E[g(X1,...,Xk)],

where (X1,...,Xg) € R¥. We assume that Xi,..., Xk are independent continuous
random variables with known distribution functions F; with the density function f;,
i=1,...,K. X =(Xy,..., Xk) has the joint distribution function F = F; --- Fg with
the joint density function f = f;--- fx.

Suppose that the evaluation of this expectation is not analytically tractable and we
use Monte Carlo methods. In our extended Latin hypercube sampling defined below,
the sample points are generated in two steps. For the first step we partition the sample
space R¥ into N¥ cells of equal probability 1/N¥ and choose N™, m < K, cells out of
N¥ cells using random orthogonal array. For the second step the actual sample points
are generated according to the conditional distribution on the chosen cells.

We now describe the first step. A AN™ x K matrix D, with elements taken from a
set of N symbols, is called an orthogonal array of strength m (m < K), size AN™, K
constraints, NV levels, frequency A, if in any AN™ x m submatrix of D each of the all
possible 1 X m row vectors occurs the same number A of times. Such an array is denoted
by OA(AN™, K, N,m). Without essential loss of generality, we only consider the case
A =1 as in the original LHS of McKay, Conover and Beckman (1979).



Orthogonal array is a natural generalization of orthogonal Latin squares. Plackett
and Burman (1946) generate orthogonal arrays of strength 2 by combining mutually
orthogonal Latin squares. Rao (1947) formulates the concept of orthogonal arrays in
general form and gives the lower bound of N for fixed m, K. Bose and Bush (1952) give
sufficient condition for existence of orthogonal arrays, since they do not always exist.

Lemma 1  Let N be a prime or prime power. An orthogonal array OA(N™, K, N, m)
exists if there exists a K x m matriz of elements from the Galois field GF(N ) such that
every m X m submatrix is of rank m.

Under Lemma 1 we arbitrarily choose and fix an orthogonal array and denote it by
Dg. The ij element of Dy is denoted by d;;. We call Dy a generator array. Actually we
will show that the selection of Dy does not affect the variance of ELHS(m). We generate
random orthogonal array by random permutations of elements of Dy. For simplicity of
notation we take the set of N symbols as

Zy ={1,2,3,...,N}.

Let Sy denote the symmetric group of Zy, i.e. the set of permutations of {1,...,N}.
Let m € Sy, then (7(1),...,7(N)) is a particular permutation of (1,...,n). Sy has N!
elements. Consider the uniform distribution on Sy, where each permutation of Sy has
the equal probability 1/N!. We choose A  permutations n;,j = 1,..., K, independently
and uniformly from Sy and we apply m; € Sy to the jth column of Dy, j =1,..., K.
The ij element of the resulting array is m;(d;;).

In addition to the above randomization of the elements of each column of Dy we also
consider permutation of the rows of Dg as in Tang (1993). This randomization is needed
only for the sake of clear argument and can be omitted in practice. Note that the above
columnwise randomization does not guarantee the exchangeability of the rows of the
resulting array. This lack of exchangeability of the rows can be overcome by randomly
permuting the rows of the array Dy. Let # € Sy= be a uniform random permutation of
1,2,...,N™. 7 is chosen independently of m;,...,7x. Let the ij element of II(Dg) be
defined by 7;(ds(iy;)-

Combining random permutations of the elements of each column of Dy and the rows
of Dy, we generate an orthogonal array II(Dy) stochastically. This constitutes the first
step of generating the sample points.

When 73,7 =1,..., K, and 7 are given we denote

zij = Tj(daeiy; ) z; = (21, Zige - ., 2iK) € ZN.
z; is the ith row of II{Dg). Let Fj“l(u) = inf{z|F;(z) > u} be the quantile function and
let
(7:5) 1 2is =1 z;; . -
P;* = F; ((”‘]j\?‘“’j(ri]) CR, j=1,...,K.
Let z; correspond to the following cell in the sample space R¥:

Pl(zil) % oee X P;‘_Zu\')‘

Note that these cells have the same probability 1/N¥ under the joint distribution F of
(X1,..., Xk).

For the second step we generate random vector (Xy,..., X;x) in the cell Pl(z“) X
e X P;f”") according to the conditional distribution of F' on the cell. Let 0 < U;; <



1,i=1,...,N™ j=1,..., K, be independent uniform random variables. Then X;; can
be generated as
Xij = F7 (25 = Uij) N}
We now define our estimator Ty of ¢ based on ELHS(m) by

N'Vn
1 .
TgL = W;g(-xnw - Xik)-

Obviously Tgy is an unbiased estimator of y. Note that Tgy, is invariant with respect
to the permutation of the rows of Dy. Therefore in practice we do not need the added
permutation 7 of the rows of Dy. Furthermore we denote the usual estimator of p based
on SRS by

Tp=W.

We are interested in the comparison of variances of Tz and Tg.

3 FINITE SAMPLE VARIANCE OF ELHS

3.1 ANOVA decomposition of the cell mean function

In order to investigate the variance of T'ry we introduce the cell mean function and its
ANOVA decomposition. The cell Pl(zl) XX PI(‘(ZK) is indexed by 2z = (21, 22,...,2K) €
Z]{f. Abusing the notation we simply denote the cell as 2 = (21,22,...,2K) € Zﬁ.
Suppose that a sample point X is obtained from a cell 2. We call the conditional
expectation F[g(X)|z] the cell mean function and denote it by

)
jz = Elg(X)|2] = / 9(X) T £ (X0)d X,

i=1

where -
(Z,;) — N M fl(x) if T e Pz 2
£ (@) { 0 otherwise.

Let F = | * 759 (u)du. We denote the random variable having the distribution func-

tion F{* by X{*? and the random vector having the distribution function F{**) ... F
by X 2,

‘We denote the usual ANOVA decomposition for the cell mean function by

K
Hzyzg.z2p — H = Zal(zi) + Z a?(zinziz)
i=1

i1 <ty

+ Z 013(2:1'1,21'2,273'3) +oe

11 <i2<ig
+(XK(Z,'1,. Cey Z,‘K),
where
N N N N
1
a1(z) = NET E E E (Hzyzgzi = 1),
zy=1 Ziw1=1 z541=1 zZr=1



N
Z ﬂzl zgezpg TH T al(zil) - (11(22'2)),

ay(ziy, 2i,) =
. zj:1

= >
:«&M

N
1
@3(2iys 2iy, 2ig) = NE=S E (Boyzgeg — 1= ar(zi,) = ai(z,) — o1 (zy)
1

= zj=
J#ll,tzﬂa

—ag(ziy, 2i,) — a2y, ziy) — a2(2iy, 2ig)),

and we continue this process to ax. Summation over z; is always taken from 1 to NV and

from now on we omit the range 1 < 2z; < N from the summation signs.
We denote the sum of squares of sth order interaction effects by

Z Z...Zas(zm---»zia)z : ]\1fs‘

i <<y 24y zi,

Then Var(Tg) can be written as

Var(Tr) ='%ﬁWMﬂX“m+EmmX@m}
1 K
= méwﬁvr,

where

1
V., = V. (2)
= nm Ez[ ar(X )]

See Section 5.2 of Serfling (1980).

3.2 The Variance of Estimators Using ELHS
In this subsection we derive the following expression of the variance of T .

Theorem 1

1 = 2 1-s o u s—1
ValTo) = g 3 d- -3 X (L ev

g=m-1 u=0

Concerning the binomial coefficient, from now on we use the notation

(Z):o ifa<borb<O,

where a,b are integers. Then for 1 < s<m

Fow () - ST

u=0

Therefore (1) can alternatively be written as

3

1 X 2 1—s ~ u s—1
Var(Tew) = g7 Dbl = (1= NP0 3 -3 (T )y s

s=1 u=0

()



We will prove Theorem 1 in this form.

Note that in (3) interaction effects up to the order m, ie. g5 = 1,...,m, are
canceled out. This has to be the case for ELHS(m). In ELHS(m) we stratify m-variate
margin, such that for s < m all elements of Z3, appear in each combination of s axes
equal number of times. In view of Zzil 22, @s(zis o5 7, ) = 0, interaction effects
of cell mean function up to the order m vanish for each realization of Try,.

The rest of this section is devoted to the proof of Theorem 1. Our proof is given in
the form of Lemma 2 through Lemma 5.

If the cell selections are independent, the two step generation process of the last
subsection amounts to SRS. Therefore the difference in SRS and ELHS comes from the
restriction on selection of the cells. Let

(y,2) € Zfy x Zf;

be two cell indices corresponding to two rows of the random orthogonal array II{Dy).
For definiteness we let y be the first row and 2z be the second row of II(Dy). Because
of the restriction imposed by the property of the orthogonal array, y and z are not
independent.

Using the exchangeability of the rows of I[(Dg) we have

1 .
V&I'(TEL) = W V&f(Wl E WN'")
(. 1 (Nm
= szN V&I’(Wl)-f'm( 9 )2COV(W1,W?)
1 N™ -1
= 'N;,‘,,Vaf(Wl) + Cov(Wy,W2)
Nm -1
= Va’r(TR) + Nm . EyYZ[E(Wlwﬂ'y’z) - E(Wl !yv Z)E(W2ly7 Z)]
N™ -1
= Var(Tr) + —57— - (Elpysz] - ElnylElpnz])
. N™ -1 .
= Var(Tr) + —=— - (Eluynz] - 1)
N -1

where Cov,{py, pz) = E{(py — p)(pz — 1)} is the covariance of two cell mean functions
under the first step of ELHS{m).
Let

K
#{ya z} = Z 6yizi
i=1
denote the number of overlapping indices of ¥y and z, where

P L yi=az,
YiZ 71 0, otherwise.
Let
w(h) = P(#{y, 2} = h)
be the probability that y and z have h common indices under the first step of ELHS(m).
The probabilities w(h) is given in the following lemma.



Lemma 2 For0<h<m-1

WL T D e - ()

w(h)=( N T ¢

(5)
w(h)=0form <h< K.

Proof  We first show that w(h) = 0 for m < h < K. Note that in an orthogonal
array OA(N™, K, N, m), the rows of of each N™ x m submatrix are all distinct. This
implies two rows of CA(N™, K, N, m) can only have less than m elements in common.
Therefore w(h) =0 form < h < K.
Now let h < m. Fix the first row as y = (1,1,...,1) and consider the conditional
probability
P#{y,2} =h | y=(L1...,1)).

Let D be a particular orthogonal array whose first row is y = (1,1,...,1). With the
remaining N™ — 1 rows of D, we want to know the number of rows that have just h axes

indexed as 1. Let us count the number of rows z of D such that zy = 25 =++- = 2, = L.
There are N™~" — 1 rows of this form. Using an inclusion-exclusion formula, we can
count the number of rows that satisfy 2; = - = 25 = 1,241 # 1,..., 25 # 1 among

these. Note that the first row (1,1,...,1) has to be subtracted from the count. Therefore
the number is

o (K s 1y oy

m~—h

K-h
m—h-—1

(-rmr- (K1), (6)

JEESY

~1
t=0 ¢
This times (2) yields the total number of rows that have just h axes indexed as 1. Note
that the number in (6) is the same for all orthogonal arrays OA(N™, K, N,m) whose
first row is y = (1,1,...,1).

Because of the random permutation # of the rows of Dy, z is equally likely to be any
of the remaining N™ — 1 rows. Therefore this conditional probability is expressed

W T T ) N - ()

P(#{y,z}:h]'y=(1,1,...,1))=( Nm 1

Now this conditional probability does not depend on the fact that we have fixed y =
(1,1,...,1). Any other particular value of the vector ¥ leads to the same conditional
probability. Therefore the conditional probability is equal to the unconditional proba-
bility w(h). Q.E.D.
Define ’
Q(h) = {(y, 2) |#{y, 2z} = h} C Z{ x Z§.
w(h) of (5) gives the probability P((y,2) € Q(h)) = P(Q(h)). The number of elements
belonging to Q(h) is

@) = 5% (3 ) 0¥ = < 7



It is obvious that the conditional distribution of (y,2) given (y,2) € Q() is uniform
over Q(h). Furthermore by symmetry E(uy|@(h)) = E(uz|Q(h)) = p. Therefore

Covl ayopiz | Q) = e 3" (ny = )iz = ).
|

Q)| 2o
This conditional covariance of ptyy and pz is evaluated as follows.
Lemma 3
E 1
El (ny = w)rz — 1) | Q(R) ] = gsﬁ ~e(s,h) - NE(EY(N Z R
where

c(s,h) = Iih (h ;;]) (hff s—j]) NZE=h=3(_1)J,

Jj=0
Proof Forl=1,...,K we denote
(I) iy <<y {(z'y)’zil =Yiy v“yzilzyi(}

where z = (z1,22,...,2K), ¥ = (Y1.¥2,.--, YK ). We calculate E(l)(uz - u)(py — n).
First suppose that z; = y1,..., 2, = y;, then

Z ZZ ZE Zﬂz"u)uy 1)

ZK 1=21 Yi=2z1 Y4

2 AT2K 21
Z"-Zal(/’:l,...,zl)N
Z1 zy
, 2 A2 K —2141
LD DD DD DEEICHR

1< <<y KU Ziy 2Zi;_4

+ Z Z Z gz, 24, ) PN 12

1<i3<ia <l 2iy 24y

l
+ 30D aa (2N, (8)

i1=1 zi
Same argument applies for the case z;, = y;,,...,2;, = ¥;. There are (§) ways of
choosing 1 <4y < -+- <4 < K. Consider the sum over these cases:
22 X 2 2 ez - ey — )
<L 2 ZK Yip =7Zig Yi =i JHEU, 0 Y5

In each case, (8) shows that the tth order interaction terms appeat ( t) times. By sym-
metry the coefficient of {37, . ., >, - 3. a(zy,...,2,) NI s
t iy it

2 ()

t



Therefore

Z(Hz - 1)py — p)
U]

= Z Z---Zal(zil,...,z,-I)ZNQK_ﬂ

i1 <<y zig zq)
-1+1
2A72K —2141
D D SR S PSR S
i1 <<y 24y Zi1
+

+ Z ZZO‘Z (zi,, i, )EN2E =1 2(1'422)

11 <ip Ziy  Zig

+ 305 (s, NP 1(1;_—11)

11 Z,,l
1 -
= vy (V00 ©
— 8
s=1

Now we utilize an extended form of inclusion-exclusion principle. By Section 1.2 of
Galambos and Simonelli (1996)

>oe-(T) 2 () g e ()T

Qhy (k) (h+1) (h+2) (K)
Then by (9)
~ - 2K ~1 inf 1 [ oK —s
%)(le ~w)pz, —p) = ;N (=1 <z _ h) ;“"5(1—3 ) (10)

Let I = h + j. (10) equals

K—h ‘ ,
Z NzK—l(_l)j(h'i:'J) (pz( K —f )
7=0 J T\t s

By the notational convention (2) this can be written as

B rn()(1) fen o

3=0

min( K, h+j)

s=1

By (7) the number of elements belonging to Q(h) is N¥ (%)(NV — 1)X~%. Dividing (11)
by this yields the conditional covariance. Q.E.D.

Combining Lemma 2 and Lemma 3

m-—1
Covin(ny,pz) = Y w(h) Covm(uy, uz | Q(h))
h=1



can be written as
m—1m—h—1 K K-h

LYY e

h=0 =0 s=1 j=0
Nm~h-t -1

(e s -y (B h) (65
Then by (4)

1
Var(TEL) = Var(TR)+—A~,~T;;(

.
> ¥ AN x

(N = 1)f=K(Nm=ht - ”(Kt_ h) <h:j) (hl—(s—jf))'

To evaluate Var(Tgr ), we concentrate on the coefficient of ¢%,s = 1,..., K. That is to
say, our problem is to simplify

m-1m-h—-1K-h - . -

Z Z(——l)ﬁ'jNK_h_j(N—1)h_K(Nm"h—t—-—1)(A "'h') (h+])( K-s )
h=0 t=0 =0 t h h=s+j
Lemma 4

K—h . . .

N o L K-h\(h+) K-s
_1\t+i NK~h=j(n7 _ 1\h=K ( Nym—h—t _
oo () (M) (210)
K—R\Nm™t=h_p e WK =5\ (s

- () e a2 )

Proof  The left hand side equals
K—h . . .
St K —hej —k+1{h+] K—s \Nm~h=t _1 K —h

DI NE-h=J(N 1) K+L A I AN
Therefore it suffices to show

K—-h . .
3 (~1PNERI (N pyh R (h”)( K- )
= h h—s+j
h K ~s\ (s
_ _1)$§ _1\l-s _ u -
= (=1)*(N-1) ;(1 N) (h_u)(u> (12)

Consider the binomial coefficient on the left hand side of (12).

i\ K-s\ _ "“%s”” h+j—s><s K—s
h h—s+j) o h—u u)\h—s+7j

- (P00 w

10



Using the relation

h+j—s K-s\ (K-s K-s—ua
a h4j—s) a h+j3—5s—a
with @ = h — u, (13) can be written as

Zh: (3) (K—-s) (K—s—h+u>
\u)\h-u u+j~—s )
Now we take the sum over j. Then

Z( 1) NE-h=i(N = 1)k~ A+1(R'—sfh+u)

uU+)—8

g 5 e (K21 4)

uU+3)—8

j=s—u

i

(N - 1)’1—K+1(__1)S~‘u(N _ 1)1\’——3—h+u
(N . 1)1-s+u(_1)s-u_

i

Accordingly the left hand side of (12) is written as

h

S -vra-w-ne(2) (5 0)0)

u=0

and this proves the lemma. Q.E.D.

Since (—1)*(N — 1)1~% is the common term, we omit this term and expand the rest
of the terms. Expand (N™~'=F — 1}/(N — 1) as

Nm_t_h 1 m—t—h-1

N~1_ = Z N,

then )
S () e S (F7) ()
- EECE (e e () (o

By induction on ¢ it is easy to show

g—nb (&) =cor (") (15)

for nonnegative ¢. Then (14) is

Z_ Zho ( I‘_ fh >( pymotht) {Z 1—-’\’)“(’";)(2)}. (16)

h=0

11



By (1 - N)* =3 _o(=N)!(}) the second term of (16) can be written as

sa-w(579() ZO,Z () GoD6)

]

u=0

I
FM}
(=]

|

=2
IS

&P’F
e
N’
TN
> >
o
LN
N’
N
e ®»
N

Let v = u — I, then
(00 - S50
- i (sli ;—hv) (h , l) (K (-A;l;(z)f!mu

K-1\ (K-s)s
) (K = h)l(h — D!

s\ (K -1
l h—1)
Consequently (16) equals

S e e e () (S

h=0

il

At this point, we want to know the coefficient of N¥,u =0,...,m — 1.

m—1m—1 u -
K-h-1 s\ (K —1
_1\ym—(u—=l)—h~1+Ipru
ZZ 0<m-—(u—-l)—h—l>(l><h—-l)( b N

f u m-—1 - . -
- (.;) (I}: :;) (m B Zx:lhv-:'(i _ l)) (_1)mdh~1—(u~1)+lNu' (17)

u=0 [=0 h=0

Let g =1+ (u—1). (17) equals

1 u m—1 -
e
u= oz h=0 ! m—h-—q

0 e R

Lemma b5 Forl<m=—q,¢q>1,1>0, K>m

m—q - -
K-h-1\/K -1
_1\m—h~q —_
2.y (m—h-q)(h—l) -

h=l

12



Proof  Note that K ~1>0, K —m+q> 0. Then

(14 2)f~

. m—g—I
(14 z)E-mte ~ (1+2)™7e

The coefficient of 2™~ 97! on the right hand side is obviously 1. We expand the left hand

side. K1 K _—
~ (B0 (BE-mtg+ji-1Y
%( i )x( K-m+g-1 >( La’.

Consider the case i +j = m — ¢ — I. The coefficient of 2™~ 9! is

'"i“l K-N(K-m+qg-1+(m—-g—1-1) (—1)m-a-i=d
i K-m+g-1 .

=0
Let 1 = h — 1. This leads to

m-—q - '
~ \m-h-gq h -1
Using Lemma 5, (18) equals

515 (- S ()

u=0 (=0 u=0

Q.E.D.

by (15). Summarizing the above calculations we have

il

1 = 2 s 1-s — u s—1
VarTin) = VarlTa) + g ANV -0 D (M)

y=0

Nm2¢§{1+ —1)%(N - 1)t~ Z( N (ul)}Jrv,«.

u=0

i

This completes the proof of Theorem 1.

4 A SUFFICIENT CONDITION FOR VARIANCE
REDUCTION

In this section we obtain a sufficient condition for the variance reduction Var(Tgr) <
Var(Tg). McKay, Conover and Beckman (1979) shows that the monotonicity of g(Xi, ..., Xk)
in each argument X;,7 = 1,... K, is a sufficient condition for the variance reduction
at m = 1. In the following we clarify their condition using the results of Section 3 and
generalize the condition for m > 1. Our main result of this section is given in Theorem
3 of Section 4.2.

In view of (3) and (4) Var(Tgr) < Var(Tg) if and only if the covariance term is
nonpositive, i.e.,

K m—1 -
(V" = 1)Covn(iy z) = 3=V =110 S (N (T )y <00 9
s=1

u=0

13



We rewrite (19) as

m—1 K s —1
> Y e - (U <o (20)
u=0 s=14u

Our objective is to obtain a sufficient condition for (20). Here we prefer investigating
the case m =1 first and generalizing the result to m > 1 later.

4.1 LHS

For the case m = 1 the covariance term is

K K
YoRH-ANV - = =S S () NN 1)

=1 z

b 33T

11 <iy Zip Zig

- Y DD sl my, n) NN - 1)

l.1<2.2<l.3 Ziy Rig Zig
+..o
HDES TS ak a2k ENTR (V- 1)K,
zZ1 ZK

(21)

Let us consider a function with K arguments. We call it monotone in the ith argument,
if regarded as a function of the ith argument {with all other arguments held fixed ar-
bitrarily), it is monotone in the usual sense. Direction of the monotonicity (increasing
or decreasing) must not depend on the values of the other arguments. This is the same
monotonicity condition used in McKay, Conover and Beckman (1979). Their proof of the
variance reduction depends on results of Lehmann (1966). Our proof is completely dif-
ferent and we utilize the monotonicity in a different way. For example, “u2 is monotone
in z;” implies that
(Nzl.’.'g.nz;( - l‘z{zg‘,.zK)(,Uleyg...yK - ﬂz;yz.uy;\') >0,

for all 29,2, 22,. .., 2K, Y2, - > YK -

Lemma 6  If uz is monotone in z;, then

0 < Y a(z)* NN -1)°(-1)°

+3°3" 3 asla, m)? - NTHN - 1)} (=1)!

1<i zy oz
+ Z ZZZazs(zhzi”ziz)z.N—3(N__‘)—2(_1)2

1< <y 21 Ziy iy

+. ..
+ZM .ZQ/K(Zl, e ,ZK)2N_K(N - 1)1_K(—1)K_1.
21 ZK
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Proof By the monotonicity in z
(B2 2225 7 M2 ZZH»ZI\')(I“'/ZI ya2. YK #z{yz---yx) 20,
l a~ 7
V21,215 2250y 2K Y2 F 2250, YK F 2K

Therefore

ZZZ Z Z Z Nzlzz ZK #2{22-»-2K)(/‘31y2-~yx - Uz;yz»~.y1<) > 0.

ZK Yo#22 YKFZK
(22)
The left hand side of this inequality can be written as

RDRDIP NP>

ZK Yy2#z2 YK FZK

{(a1(z1) = an(2]))?
+ Z(az(zh zi) — aa(zy, z0) ) (21, 4i) — (21, 9i)

+ Z (as(21, 2iy, 2iy) = @s(2), 205 20 )@ (21, Yir ¥i ) — @321, 961, 93,))
iy <ip
ek (21,22, 2K) — 0k (21, 22,y 2 ) )k (21, Y2, . YK) — ak (2], Y2, -, UK )}
Cross terms sum up to zero. For2 <t < s

Z (as(zlayza' . '7y8) - as(zLy?)' -»,ys))

Yr#£ 2
= (=D (as(z1, Y2y s 2ty ey Us) — @s( 215 Y2se vy 2ty e vy Ys))e

ZZ(as(zl,. L) = as(2y,. )R = 2N Z(as(zl, )2

Therefore (22) divided by 2N is
0 < NK—-l(N_ K-~ lzal 21)2

FNE=2( K2 ST STV ay (e, 7)A(-1)

2<i<K z1 oz

FNVESN - S 3 DY an(en m ) (1)

2<ih1 <2 <K 21z Ziy

Further

.+. ses
ANON = 1> ) ak(a,. .. 2k E(=1)E T (23)
21 2K
Multiplying by N~ (N — 1)!~¥ proves the lemma. Q.E.D.

By Lemma 6, under the monotonicity of uz in z; our new sufficient condition for the
variance reduction of LHS is given as

0 < Y a(z)? NN - 1)°(-1)°

1< 2z
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2 T el m)t NN = )7 (1)

I<in<iy Zip  Zig

+ Z Zzzaa(:‘/iwziwzisy ']V“S(IV"' 1)_2("1)2

1<i; <ig<ig Ziy Zig Zig

+...

+3 Y agoa(zm. zk)? NNV - 12K ()RR (24)
Zg ZK

Note that —1 times the right hand side of this inequality corresponds to the covariance
of partially averaged cell mean function:

1 N
Hozgzz..25 = 77 Hzizg..2pc-
N

ZIZ].

Ib-2525..25c Can be regarded as a function with A — 1 arguments and the ANOVA decom-
position for p.,,,, . ., is given as

K
HPozgzge —H = Zal(z‘i)

=2
+ }: op(ziy s 2iy)

2<iy <iy
.+....
+ax_1(22,...,2K)-
Let
27 = (22,.-52K), Y = (Y2, 2 YK)-

Then (24) is equivalent to Cov(uz-, py-) < 0 under LHS.

Therefore by assuming the monotonicity in any one axis, we have reduced our problem
from K arguments to K — 1 arguments. Now we focus on the covariance of the partially
averaged cell mean function pz-. Applying the monotonicity in 29, we can further reduce
the number of arguments. To complete this inductive argument we need the following
initial condition.

Lemma 7 Let m = 1, K = 2. Then monotonicity in one axis implies
Cov{pz, py) < 0.
Proof '
Cov(pz,py) = —N—I{Z ar(z)? + Z ay(2)%}
21 22

FNTHN =17 an(a, )

2z 22

As in (23) the monotonicity in z; implies

0 Z “Nﬁl{za1(21)2}
+N"3N -1)7! ZZQZ(Z1,32)2.

21 %2
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Now the lemma follows from 3 a;(22)* > 0. Q.E.D.

Summarizing the above arguments, we have established the following theorem.

Theorem 2  If the cell mean function pz is monotone in any K ~ 1 out of the K
azes, then Var(Tr) < Var(TR).

Note that the ranges of Xl(z"),i = 1,..., K, are monotone in z;’s. Therefore, if g is
monotone in the ¢th argument then the cell mean function is also monotone in the ith
axis. Hence the following corollary is an immediate consequence of Theorem 2.

Corollary 1 Ifg(X,,...,Xk) is monotone in K ~1 arguments, then Var(T,) < Var(Tg).

The sufficient condition given by McKay, Conover and Beckman (1979) for LHS
requires that g is monotone in all A" arguments for variance reduction. We have shown
that actually K — 1 monotonicities are sufficient.

4.2 ELHS

To show the variance reduction for m > 1, we employ induction on m. Let us begin with
m = 2. The covariance term is :

K

3 en(z)? - NTHN - 1)°(=1)!

i=1 z;

+ 30 5SS an(zi,, 54,) NTEHN = 1)7H(-1)?

i1 <iy 2i) Ziy

+ Z ZZZaa(zmziz,zim-N*(N_1)—2(_1)3

i1 <12 <ig iy Zip Zig

+...
+Z---ZaK(z1,...,zK)ZN“K(N— ISRt G L
21 ZK

BT

1 <ip Zip Ziy

S S St a1

i1 <ig<iz Ziy Ziy Zig

b )
- - - (K -1
+Z...ZQK(zl,...,zK)zN*’*“(N - 1)1""(-1)"-1( ) ) (25)
zZy ZK
Subtracting (21) from (25), the remainder is
K s 1
Seinw - em (1), (26)
s=2

Supposing that the reduction of variance under LHS holds, the reduction under m = 2
is assured if (26) is nonpositive. As in our argument for LHS, we reduce the number of

17



arguments via induction. We formulate an extension of the monotonicity at m = 2 as

follows. pz is monotone in (21,29) fVay,..., 25,21, 25, Y3, . -, YK
(”zlzg---zx = HBarzgzn T Mayzgesak +ﬂziz;zamz;\')
X (B zaysoyr = Bovizays-yr = Pazhysyx T Halzhyayn) 2 0- (27)

The reason why we call it “monotone” is that the monotonicity in two axes is related to
the sign of the mixed partial derivative. By

2 - - ,
o* () = lim fle+Ag,y+Ay) - flz,y+4Ay) f(x+Am,y)+f(T,y)’
0z0y ALA,

the monotonicity means that for differentiable functions the sign of the partial mixed
derivative remains the same regardless of the values of the variables.
We sum up (27) for all 2q,..., 2k, 2], 25, Y3 # 23,..., Yk # zk. This results in

0 < Zzaz(zhzz)z(N(N”l))wl

21 zZ2

’ZZZZQS(ZM 29, 2)2(N(N = 1))

2<i 21 23 %

+ Z ZZZZ%(%Zzazmzz'z)z(N(N—1))’3

2<i1<iz 21 22 %iy 2
+(=1X> "N ak a2k (NV = 1) 7D, (28)
Zy ZK

In order to use induction on z;, we utilize the (1‘1"1) monotonicities in (21, 22), .. -, (21, 2K )-
If the cell mean function is monotone in each (z1,22),...,(21, 2K ), we call it quadratic
monotonicity in z;. We obtain an inequality like (28) for each pair and sum them up.

By symmetry and
K~—-1\ (/K -2 / K-1\ (s-1
1 52 s—-1/) " 1
this yields

0= ZZ Zaz(zl,zi)%]v(N —1)) (ZI 1)

i#1 21 oz

-3 ZZZQS(Zlgziuziz)z(N(N_1))—2(311)

1<ii<iy 21 Zip Ziy

+ Y LSS Ym0 ()

1<y <ig<iz 21 24y 24y Zig

+(=DEY "D ak(a, e zx) (NN = 1)) KD (I‘l‘ 1). (29)

Z

Therefore the reduction on z; is achieved. Applying this process for each axis leads us
to the case K = 3. Then (26) is

—D°> ez, ) + DD an(a,z) + Y Y as(z,2)* ) NTHNV = 1)~

Z1 22 2 Z2 23
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+ZZZO¢3(»Z1,Z2723)2N_2(N —-1)7 (i) (30)

Z1 22 z3

(29) for K =3 is

0 2 (X D arlen ) + ¥ Yt ¥ =07 -0 ()

z21 22 Z1 %3

+ 30D (e, 72, 25) PN AN = 1) 72 (=1 @

Z1 Z2 23

By 3., 2., @2(22,23) > 0, (29) implies that (30) is nonpositive for K = 3. By induc-
tion we have proved the following proposition for m = 2.

Proposition 1  Let m = 2. If the cell mean function is monotone in any K — 1 out

of the K axes and quadratic monotonicity holds in any K — 2 azes, then Var(Tpy) <
Var(Tg).

For general m we consider ¢-th order monotonicity. We define monotonicity of uz in
(2150 2¢) @8 VUL, U}, U2, Uhy o oo Uy Vs Z4d1se ooy 2K Ytdls - ooy YK
0 S {lu'vln-v,z
+(—1)(/~4v; vavg-ve 2 T Mo vlugvgz T ey vzvgmvgz)
+("1)2(Mv{v;u;;~-vtz T Holvgvg vzt /lvlvzvg--vv;ﬁlvgz)

+(”'1)3(/‘v{vévé'-~vez + 4 lﬁ"vy--v;m?v;_lv;z)

+4ee-
+(_1)t(/‘v;vévgmv;z)}
x{fhur ey

F(=1) (Bl w50y + Hoyvjvs vy + 7+ Boyvgogvly)
F(=1)? (for vy vgvey F Bt vgvvnyy 0 F Hogvyvgev]_ viy)
H(=1 (o wgot veyy F* F Hogeow vt oiy)

+ e

+(=1) (Bt vy -vigg) }s

where z = (2441,...,2k),¥ = (Ye+1,...,Yk ). Then we define t-th order of the mono-

tonicity of pz in 2y if z is monotone in (z1,2;,...,%;,) for all (1:._—-11) combinations

(1,45,...,8),1 <4y < --+ < ¢; < K. The monotonicity in other axes is similarly defined.

Theorem 3  Suppose that for all 1 < t < m, t-th order of the monotonicities concern-
ing K —t azes hold, then Var(Tgr) < Var(Tg).

Proof We show the nonpositiveness of the covariance. The covariance term equals
Y ie, ¢ where

= (NS G- - 1y ( ) l).

prt t—-1
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We claim that ¢-th order monotonicity in any K —¢ axes implies ¢; < 0. The monotonicity
in (21,29,...,2) yields

ZZ---Z@: (21,2200, 22 (N(N = 1))}

zy  z3

—-ZZ ZZaH.l Z1yeeey 2, 2) 2 (N(N = 1))72
t<i =z Zt zi

+ Z Z"'ZZZO(H.Q(Zl,...,Zt,Zil,Ziz)z(N(N—1))73
t<i;<iz =1 zt ziy Ziy,

+...
+(_1)KZ”'ZaK(zl""’zK)(N(N _ 1))—(1{—1).

GGG =600

t-th order of the monotonicity in z; implies

JENED S D) D DETCIENSNEAN L Sl iy

1< < <igny 21 Ziy iy

- Y Yy Zatﬂzl,z,l,.,z,-t)Z(N(N—l))"Z(tjl)

1<i1 < <8y 21 Ziy

+ Z ZZ Z at+2(zl’zi15"‘sziz+l) ( (JV 1)) 3(:1-1)

1<y < <dggr 21 2y Ziggq

By

+ .-

KZ...ZaK(zl,...,ZK)(N( _1)) - 1)<I1§{:11).

We see that the monotonicity leads to the reduction of one argument. By induction
K — (t+ 1) t-th order monotonicities lead to the initial condition

0 S Z Z"‘ZC“t(ziw""zit)z(N(N_1))—1(i:i)

i <<y Z4y Zigoq
Lt
__Z Zozhu (2150005 2e41) (N(N = 1)) 2<t— 1)’
2t41

which is implied by t-th order monotonicity in z;. This proves the theorem.  Q.E.D.

If we define the ¢-th order monotonicity of g(X1,..., X ) in an obvious manner, then
as in Corollary 1, the following corollary is an immediate consequence of Theorem 3.

Corollary 2 If t-th order of monotonicity holds in K — t arguments of g(X1,...,Xk)
for 1 <t < m, then Var(Tgr) < Var(TR).

20



5 SOME SIMULATION RESULTS

In this section we confirm our theoretical results by simulation. We choose a rather
simple situation where exact variance of ELHS(m) can be computed and compared to
the simulated variance. Note that this is not a realistic situation in which simulations
are actually used.

Let K =4,N = 5,m = 2, and consider

W = exp(X7 + X2 + X5 + X4),

where X;,i =1,...,4,~ U[0,1] i. i. d. In this example all mixed derivatives are positive
and hence monotonicities of all orders hold.

We obtained simulation variance with 1000000 replications. The sample size in SRS
and ELHS equals N™ = 52 = 25. The simulated sampling distributions of SRS and
ELHS are plotted in Figure 1 and Figure 2. In Figure 1 the histograms of T and Tk
are compared on a same scale. Figure 2 gives the histogram of Ty in more detail. From
Figure 1 we see that Ty is much more concentrated around the true value u. The
numerical results of our simulation are summarized in Table 1. Observe that the true
values and the simulated values in Table 1 are in close agreements and this confirms our
theoretical results.

Table 1. Simulation Results (1000000 replications)

[ l SRS | ELHS(2) )
True E[W] 8.717212 8.717212
Sample mean 8.716336 8.717124
True Variance of pz 1.071051 0.009239
True V. 0.055047 0.055047
True Variance of T' 1.126098 0.064286
Sample Variance of T' 1.123594 0.064175
Minimum T 4.991916 7.613056
Maximum T 15.304256 10.060986

In this example W is the product of marginal functions and it can be expected that
the higher order interaction effects are not so large. As a matter of fact, p? = 23.825679,
0% = 2.801345, 3 = 0.146388, p? = 0.002869. m = 2 seems to be a good choice in this
example.

6 SOME FURTHER DISCUSSION

Method to map z;; into X;; is a controversial point. Although it produces bias, we can
make V, = 0 by obtaining z;; deterministically given z;;. Hence one should consider
the tradeoff between bias and variance. Owen (1992a) discusses midpoint rule and rect-
angular rule. Tang (1993) introduces Latin hypercube structure to the cells, i.e. the
sample points in the given cells are generated by using a method like LHS. Under this
stratification, V, is reduced when W is additive.

To achieve specific objectives, some authors add restriction on the Latin hypercube
design. Handcock (1991) proposes “cascading” Latin hypercube design. Sample points
are obtained by using modified LHS with midpoint rule, and a few points from the
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Figure 1: Comparison between T and Tgy, of Section 5.
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Figure 2: Histogram of Ty, of Scction 5.
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same cells are added with LHS. In the literature of experimental design, optimality of
permuted generator arrays is discussed. Uniformity of the sample points is improved by
restricting permutations. Tang (1994) introduces a criterion to compare design arrays.
Shaw (1988) reviews criteria of unifermity.

In our assumption, each axis is independently distributed. Iman and Conover (1982)
treat dependency in LHS, and Owen (1994) proposes another algorithm for controlling
correlations. Stein (1987) discusses central limit theorem for LHS and Owen (1992b)
gives a proof of the central limit theorem using the method of moments. It is natural
to expect that the central limit theorem holds for Ty under appropriate regularity
conditions. See Figure 2.

References

[1] Bose, R. C. and Bush, K. A. (1952). Orthogonal Arrays of Strength Two and Three.
Annals of Mathematical Statistics, 23, 508-524.

[2] Galambos, J. and Simonelli, I. (1996). Bonferroni-type Inequalities with Applications.
Springer.

[3] Handcock, M. S. (1991). On Cascading Latin Hypercube Designs. Commun. Statist.
-Theory Meth., 20, 2, 417-439.

[4] Iman, R. L. and Conover, W. J. (1982). A Distribution-Free Approach to Inducing
Rank Correlation Among Input Variables. Communications in Statistics, Part B,
Simulation and Computation, 11, 311-334.

[5] Lehmann, E. L. (1966). Some Concepts of Dependence. Annals of Mathematical
Statistics, 35, 1137-1153.

[6] McKay, M. D., Conover, W. J. and Beckman, R. J. (1979). A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code. Technometrics, 21, 239-245.

[7] Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Meth-
ods. SIAM.

[8] Owen, A. B. (1992a). Orthogonal Arrays for Computer Experiments, Integration and
Visualization. Statistica Sinica, 2, 439-452.

[9] Owen, A. B. (1992b). A Central Limit Theorem for Latin Hypercube Sampling. J.
R. Statist. Soc. B, 54, 2, 541-551.

[10] Owen, A. B. (1994). Controlling Correlations in Latin Hypercube Samples. Journal
of the American Statistical Association, 89, 1517-1522.

[11] Patterson, H. D. (1954). The Errors of Lattice Sampling. J. R. Statist. Soc. Ser.B,
16, 140-149.

[12] Plackett, R. L. and Burman, J. P. (1946). The Design of Optimum Multifactorial
Experiments. Biometrika, 33, 305-325.

[13] Rao, C. R. (1947). Factorial Experiments Derivable from Combinatorial Arrange-
ments of Arrays. J. R. Statist. Soc., Suppl., 9, 128-139.

[14] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley.

[15] Shaw, J. E. H. (1988). A Quasirandom Approach to Integration in Bayesian Statis-
tics. Annals of Statistics, 16, 2, 895-914.

23



[16] Stein, M. (1987). Large Sample Properties of Simulations Using Latin Hypercube
Sampling. Technometrics, 29, 143~151.

[17] Tang, B. (1993). Orthogonal Array-based Latin Hypercubes. Journal of the Ameri-
can Statistical Association, 88, 1392-1397.

[18] Tang, B. (1994). A Theorem for Selecting OA-based Latin Hypercubes Using a
Distance Criterion. Commun. Statist. -Theory Meth., 23, 7, 2047-2058.

24



