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Abstract

This paper proposes a new theory, which we call inductive game theory. In this
theory, the individual player does not have a priori knowledge of the structure of
the game which he plays repeatedly. Instead, he accumulates experiences induced
by occasional random trials in the repeated play. A stationary state is required to
be stable against intentional deviations based on his experiences, and then it turns
out to be a Nash equilibrium. The main part of the paper is the consideration of
possible individual views on the society based on individual experiences. This view
is defined to be a model of the society which the player builds from his experiences.
Two coherency conditions with active and passive experiences are required for a
model. As concrete objects of the theory, this paper analyzes the phenomena of
discrimination and prejudice. The development of the new theory is undertaken
by contrasting observational and behavioral aspects with mental and judgemental
aspects of the new theory. The relationship between discrimination and prejudice
will emerge in this dichotomous consideration.

1. Introduction

1.1. Motivation and Backgrounds

Societies consisting of several racial, religious, and cultural groups are often called multi-
ethnic. In these societies, the phenomena of discrimination and prejudices are typically
observed. These phenomena raise not only practical societal issues but also offer some
problems for economics and game theory. Among these problems is the treatment of

“Institute of Policy and Planning Sciences, University of Tsukuba, Ibaraki, 305, Japan (kaneko@
shako.sk.tsukuba.ac. jp)

'Institute of Policy and Planning Sciences, University of Tsukuba, Ibaraki, 305, Japan,
and Faculty of Economics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan (amat-
sui@shako.sk.tsukuba.ac.jp, amatsui@e.u-tokyo.ac.jp)



interactions between behavioral and mental attitudes. The purpose of this paper is to
present a theoretical framework which enables us to analyze the relationships between
these two components of the multiethnic societies. In this subsection, we look at the na-
ture of discrimination and prejudices, and argue that it is not captured in the standard
framework of economics and game theory.

Discrimination is an overt attitude toward some ethnic groups. It is a certain mode
of behavior which includes, as an example, denial of a minority’s access to political
power and economic opportunities. On the other hand, prejudices, which can be defined
as associations of a certain group of people or objects with some negative traits, are
covert in nature; they are beliefs or preferences as opposed to behavior. Unlike the
beliefs and preferences typically assumed in economics, prejudices have some notable
characteristics. They are categorical and generalized thoughts. They are usually caused
by the lack of sufficient knowledge on the targeted people or objects. If we carefully
listen to a negative opinion against a certain group of people, we would often find that
the person who expresses such an opinion has not met so many people of that group as
to make a logical claim. Generalization of limited knowledge to a categorical judgment
Is an lmportant characteristic of prejudices. Another related characteristic of prejudices
is that they contain fallacious elements to a significant degree.

In order to incorporate these characteristics in the scope of our research, we develop
an analytical framework called inductive game theory. As its name suggests, induction is
the key concept. In this theory, each player has little a priori knowledge on the structure
of the society, but the lack of such knowledge is partially compensated by his experiences
in a recurrent situation. Here he uses induction to derive an image of or a view on the
society from these experiences.! In this framework, we treat prejudice as a “fallacious”
image against some ethnic groups. By focussing on the problem of discrimination and
prejudices, we try to develop a theory of interactions between the thoughtsin the mind of
the player and his behavior in a social context. In the development, we do not discuss
the information processing of the mind of the player; instead, we focus on logically
possible images formed by induction in his mind.

An attempt to analyze fallacious beliefs and preferences in the existing frameworks of
game theory poses some difficulty. To see this, we look at some of the existing theories,
starting with the classical game theory of rational players, which is followed by learning
and evolutionary theories.?

'We use the term “induction” to mean the act of deriving a general law or a causal relationship from
limited experiences (observations) rather than the meaning used in the literature of game theory such
as backward induction.

On the one hand, dicrimination and prejudice have been studied extensively in sociology literature,
cf., Marger [14]. The weakpoint of such studies is a lack of analytical frameworks. On the other hand,
the concept of prejudice have appeared not to fit to the analytical tools built in the lietrnrature of
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In the classical game theory since Nash [17], it is, often implicitly and sometimes
explicitly, assumed that players are rational in the sense of having high abilities of logical
reasoning and the knowledge of the structure of the game. Based on such abilities and
a priori knowledge, the individual player makes a decision ez ante. We call this theory
deductive game theory since deduction is the main process of reasoning.®4 In this light,
deductive game theory is appropriate for the study of societies where players are well
informed, e.g., small games played by experts. Since the reasoning process of the rational
player is always “correct” and is based on a priori knowledge, there is no room for the
emergence of prejudices in deductive game theory. Moreover, the problem of prejudices
could be addressed in this approach only if players are assumed to have false beliefs a
prioTL. '

The other series of approaches we should look at is the literature on non-Bayesian
learning and evolution. In the models of non-Bayesian learning, some prespecified learn-
ing rules are used to adjust players’ beliefs and/or behavior. The players may learn some
parameters of the game and strategies of others as well as their own payoffs from their
behavior. In evolutionary game theory, the survival of the fittest is the main force of
selection of strategies.® These approaches focus on economic problems where adaptive
behavior and behavioral interactions are of prime importance. Although inductive de-
cision making is often their main focus, they pay little attention to the formation of
images or thoughts about the society in the mind of the player.

Figure 1.1 summarizes the major differences between these three types of theories.
Arrows indicate the causality lows between knowledge (view) on structure and behavior.

1.2. Development of Inductive Game Theory

With keeping the above discussions in mind, we describe our approach. We consider
a specific game called the festival game, which is a variant of the game discussed in
Kaneko-Kimura [10]. The festival game is a two-stage game in which the players are

economics and game theory. Consequently, the study of discrimination and prejudice in economics and
game theory is quite limited such as Arrow [1] and Becker [2].

3Refiniement literature (cf., van Damme [22]) is typically considered from the deducive point of view.
Bayesian game theory since Harsanyi [6] is along this line. Bayesian learning such as Kalai and Lehrer
[7] also falls into this category. A more explicit treatment of the sophisticated logical and mathematical
ability of each player is found in the game logic approach of Kaneko-Nagashima [13].

The concept of subjective equilibrium (cf., Kalai-Lahrer [8]) may be regarded as avoiding the assump-
tion that the players know the (extended) structure of the (Bayesian) game. However, this concept is
categorized into deductive game theory in the sense that its reasoning process is based deduction.

*Many papers have followed this view in their formal developments and applications of equilibrium
theory. Sometimes, however, interpretations from other views like evolutionary or inductive game theory
have been mixed with deductive interpretations {cf., Binmore [4]).

5See Selten [21] for some discussions on basic postulates of evolutionary game theory.
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divided into several ethnic groups. These groups differ from each other only in their
nominal ethnicities. In the first stage, each player simultaneously selects a festival
location to go. They observe which ethnic groups are present at their respective festival
locations, and then they simultaneously decide to take either a friendly action or an
unfriendly one. We consider the situation where the festival game is played repeatedly.

In the repeated situation of the festival game, we consider a stationary state subject
to occasional random trials. The probabilities of such trials are assumed to be sufficiently
small so that each player does not take into account the events of simultaneous deviations
of two or more players. In this environment, he accumulates his experiences from
various unilateral deviations as well as the experiences in the stationary states. Some
experiences are induced by the deviations of the individual player in question, which
we call the active ezperiences, while others are induced by other players’ unilateral
deviations, the passive ezperiences.

In the absence of a priori knowledge, induction is taken as a general principle for
the cognitive processes of the individual player. We consider two types of induction: (1)
inductive decision making; and (2) inductive construction of an individual tmage of the
society. The first is to choose a better strategy taught by experiences, and the second
is to derive an interpretational view on the society from his experiences. The first type
could be found in classical equilibrinm theory in economics and learning theory. The
second type of induction is the main focus of this paper.

An individual image of society constructed inductively is formulated as a model of
the society, or the game. A model of an individual player is a partial description of
the society including his utility and observation functions. We give three coherency
conditions on such a model, one with the stationary experiences, one with the active
and the other with the passive experiences. These coherency conditions require that the
utility and observation functions of the model generate the information corresponding
to these experiences.

We consider another condition, called rationalization, for a model to satisfy. It
requires that the individual player make a “rational” decision at each decision point
ever reached. However, the action not chosen at the decision point may lead to a social
state never experienced, or ignored as negligible, by him though this state is in the
scope of the individual player’s thinking. The rationalization condition requires that
he rationalize his choice. This goes beyond the coherency requirement, since it is a
restriction over states never experienced.

There are many models which are coherent with active and passive experiences
and satisfies the rationalization condition. Two obvious examples are the true-game
model and the mere-enumeration model. The first is essentially the same as the game
we consider from the objective point of view. The second model enumerates one’s



experiences without constructing any causal relationship.

The active experiences impose few restrictions on models other than utility max-
imization. Indeed, since each deviation of the individual player induces only a single
pair of a utility value and an observation, he can always construct a simplistic model
coherent with the active experiences in which the utility function depends only upon
his own actions. Such a model is called a naive hedonistic model. This model can rarely
explain the passive experiences in a satisfactory manmner.

In the festival game, the inductive construction of an individual view is associated
with the issue of prejudice when the passive experiences are taken into account. Since the
passive experiences are induced by other players’ deviations, they exhibit the effects of
the presence of other ethnic groups. A sophisticated hedonistic model uses the ethnicity
configurations as explanatory variables of one’s utility. We show that this model explains
the reality well in spite of its fallacy.

There are many works treating inductive reasonings in social contexts. Here we
mention only two of them: the case-based decision theory of Gilboa-Schmeidler [5] and
the allegory of the cave in Book VII of Plato’s Republic [19].

The case-based decision theory emphasizes the information processing of the decision
maker. The decision maker evaluates alternative choices based on similarity between the
present problem and the past cases. It is the key assumption that similar experiences
lead to similar effects. As pointed out above, we do not explicitly discuss the information
processing of the decision maker. Instead, we focus on images and thoughts formed from
the past experiences in the mind of the player.

Discussions on the contents of beliefs formed and evolved by induction in the human
mind can be traced back to the allegory of the cave in Book VII of Plato’s Republic [19].
It goes as follows. In the cave, prisoners have been from childhood, chained by the leg
and also by the neck, so that they cannot move and can see only the wall of the cave.
On the wall, they see the shadows of various things moving outside the cave, like the
screen at a puppet-show. The only real things for them would be the shadows of the
puppets. Plato went on to discuss what might happen if one person is suddenly released
to see the outside world, and how he would be treated after coming back to the other
prisoners and telling them what he saw. The framework of the present work as well as
its spirit is similar to this story in that people with no a priori: knowledge form a view
on society from experiences. We will discuss this allegory more closely, however, in a
separate paper.

The rest of this paper is organized as follows. Section 2 considers a recurrent sit-
uation in which a festival game is played repeatedly. Section 3 defines and examines
players’ models constructed based on their experiences. Section 4 shows that utility
maximization is derived in a model coherent with the active experiences. Section 5



characterizes the set of Nash equilibria of the festival game. Section 6 discusses passive
experiences and rationalization. Section 7 examines naive and sophisticated hedonistic
models. Section 8 makes some discussions in a heuristic manner.

2. Inductive Decision Making and Nash Equilibria

We consider a recurrent situation where a game called the festival garne T’ has been and
will be played many times.

unilateral trials

past R NIRRT NS M future

In Subsection 2.1, we provide a description of the festival game and some concepts to
be used in the subsequent analysis. In Subsection 2.2, we describe the basic postulates
for our analysis of the entire recurrent situation. Then we give the definitions of active
and passive experiences for each individual player, and characterize Nash equilibrium
from our point of view.

2.1. Festival Game T

The festival game T' is a two-stage game.® The player set N = {1,...,n} is partitioned
mto ethnic groups Ny, ..., No, with #N, > 2 for e = 1, ..., ey, where gg is the number of
ethnic groups and # N. the number of players in ethnic group N.. Let e(i) denote the
ethnicity of player ¢, ie., i € Negiy- All the players are identical except their ethnicities.
There are £ locations for festivals. We may call the festival at location k (k = 1,...,)
festival k.

The game T' has two stages - the stage of choosing festival locations and the stage
of acting in festivals. In the first stage of the game, each player simultaneously chooses
a festival location. Player ¢’s choice in this stage is denoted by f; € {1,...,£}. We write

f = (fly "')fn)-

After the choice of a festival, each player observes the ethnicity configuration in
the festival he chose, i.e., which ethnic groups are present in his festival. Formally,
given [ = (f1,..., fn), player i observes the ethnicity configuration of festival f;, which
is defined to be the set E;(f) = {e(j): f; = f; and j # i}. Bach player can distinguish
neither the identity of each participant nor the number of the participants of each ethnic

®The festival game in normal form was discussed in Kaneko [9] and Kaneko-Kimura {10] in the
context of stable conventions. A festival game in extensive form was discussed in Kaneko-Raychoudhuri
[12]. The festival game of this paper is a modification of that in [12].



group in the festival he chose. This is assumed to simplify the subsequent analysis. Note
that in the definition of F;(f), player ¢’s ethnicity is not counted unless no other players
of the same ethnicity are in the festival.

In the second stage, after observing the ethnicity configuration E;(f) of festival f;,
player 1 chooses his attitude, either friendly or unfriendly, denoted by 1 and 0, respec-
tively. Following the standard game theory, a choice in the second stage is expressed
by a function r; : {1,...,£} x 2{Le0} 5 £0,1}. A value r;(k, E) is player i’s attitude at
festival & if he observes the ethnic configuration E.

A strategy for player ¢ is a pair (f;,r;), where f; € {1,...,£} and r; : {1,...,£} X
2{1e0} {01}, We write ri(f) = r fi, Ei(f)) and r(f) = (r1(f), .-, ma(f))- Let &;
be the set of strategies of player 7. For a strategy profile 0 = (f,7) € £ = &1 X -+ - X B,
the realization path is given by a pair (f,7(f)).

Given a strategy profile o = (f, 7}, each player’s payoff is determined by his attitude
and the mood of the festival he chose. The mood of festival f; for player ¢ is given by
the number of friendly people in festival f; other than player ¢ himself, i.c.,

plo) = > () (2.1)
fi=fia#e

We define the payoff function of player ¢ as ‘
Hi(o)= h(ui(o),r(f)), (2.2)

where A(-,-) is a real-valued function on {0,1,...}x{0,1}. We make the following as-
sumption on h(-,-).

Assumption H. A(m,0) = 0 for all m > 0, h(m, 1) is increasing in m, and there is a
critical value mg > 2 such that h(m,1) > 0 if m > mp and h(m,1) < 0 if m < my.

It states that the unfriendly action always induces the zero payoff, that the payoff from
the friendly action is increasing in the number of the friendly people in the same location,
and that there is a threshold mg beyond which the friendly action is preferred to the
unfriendly action.

A strategy profile 0™ = (07 )ieny € ¥ is said to be a Nash equilibrium iff for all
v € N and all 0; € Z;, Hi(o") > Hi(o~,;,0:), where (¢*,,0;) denotes the strategy
profile obtained from o* by replacing o7 with o;. For the game I', we have the following
equivalent definition of Nash equilibrium: forallz € N, H;(o*) > H;(0*;,(f:,6;)) for all
(fi,6:) € {1,...,£} x {0,1}, where 6; can be identified with a constant strategy taking
value é; in the second stage. Since the specific structure of the set of Nash equilibria for
I' is not relevant for our analysis until Section 4, we postpone to the characterization of

the set of Nash equilibria to Section 5.
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We have formulated the festival game I' and relevant game theoretic concepts in
the standard manner. However, since we do not follow the standard Ez Arnte view,
we should be careful about the interpretation of each concept. For example, the payoff
function h (p;(0), r:(f)) is not known to player 7 as a function; instead, only each value is
perceived by him. We should be careful also about the standard definition of a strategy
here, since it, a complete list of contingent actions, appears to presuppose the knowledge
of the extensive form of I'. However, we can avoid this interpretation, i.e., each player
can “play” the game without being aware of the full-fledged concept of a strategy.”

2.2. Stationary State, Individual Experiences and Inductive Stability

In the recurrent situation of the game I', we consider a stationary state (strategy profile)
o* = (f*,r*), subject to unilateral deviations of individual players from the stationary
state o*. Unilateral deviations give some knowledge about the society’s responses to
players, and under certain postulates, such knowledge enables each individual player to
“maximize” his payoff against the stationary state, i.e., it leads to a Nash equilibrium.
We first describe our basic postulates behind our mathematical formulation.

Postulate 1: After each game T, each player ¢ observes only his utility value, H;(o),
if the game is played according to o, in addition to the information he obtained during
the play of the game.

Postulate 2: Each player ¢ knows that there are festival locations 1, ..., £ for his first
choice, and that he has two options, friendly and unfriendly actions, 0,1 in the festival
he chose. (Other than this knowledge, each player is entirely ignorant of the structure
of the festival game including the player set N. We emphasize that he has the payoff
function H;(-) but does not know it.)

Postulate 3: Each player : behaves according to his behavior pattern o7, subject to
(stochastic) trial deviations with small probabilities once in a while, but after each trial,
he returns to his own behavior pattern o7 (unless his experiences tell that it might be

better to deviate).

Postulate 4: Fach player records the experiences induced by his and other players’
trials.

Postulate 5: Events of trials simultaneously made by two or more players have negli-
gible frequencies, and they are ignored by the players.

"In the following analysis, we can use a partial strategy, without loss of generality, which is defined
on the domain of nodes experienced with nonnegligible frequencies in the past. See Kaneko and Matsui

[11].



Under these postulates, the individual experiences in the past are formulated as fol-
lows. Let o* = (f*,r*) be a possible stationary state in question. Then the ezperiences
of player ¢ are categorized into stationary, active and passive ones. These experiences
are induced by either o™ itself or the strategy profiles attained by unilateral deviations
from o*, reflecting Postulates 3 and 5.

The stationary ezperience for player 1 under o* is the information given by o* =
(f*,r*) to him. It is expressed as '

(S): Ui (f), B £7); Hi(o™)],
which is denoted by s(z | ¢™).

An active experience under o* induced by a trial (f;, 6;) for player ¢ is given as
(A): Uiy b0, Bil Sz, £i)s HiloZy, (fi,60)), where (fi,60) # (fF,mi(f7))-

It is the information given by making some trial deviation from o} to (f;,é:). The
first part, (fi,6;, Ei(f*;, fi)), is the observation during the game, and the second part,
Hi(o*;,(f:,6:)), is the payoff received after the game. From Postulate 1, only these
values are observable. Note that player ¢ is not aware of the expressions in the above
bracket, i.e., only the values described by these (meta-)expressions are observed by
player i. Let A(i | ¢~) denote the set of all active experiences of player . Note that the
stationary information [f*,r2(f*), E:(f*); Hi(c™)] is not contained in A(% | o™).

A passive ezperience, the information given by some other player’s trial, under ¢~
for player 7 is defined in a similar manner. There are two types of passive experiences
for player ¢ :

(POY: [f2ori (25, 50 BaS 25, 13 Hilo™ 5, (f5, 85))), where [ # f7 = i

(PY): [fr,ri(f2y, f3), Bi(F25, f) HioZy (5, 6500
where f]’-“ = frand (f;,6;) # (f]'-‘,T;(f*))-

A passive experience of type PO is induced by an outsider, a player in a different
festival coming to the festival f*, and that of type PI is induced by an insider, who
comes regularly to the festival f*. We denote the set of all passive experiences of player
i by P(i] o).

We denote the union A(i | o*) U P(i| o”) by (i | 0*). A generic element of £(1 | 07)
is denoted by [¢;; hi]. Postulate 4 implies that a player ¢ has recorded all the experiences
in £(¢ | 0*), and Postulate 5 ensures that £(i | o*) lists all experiences recorded by .
Note that the frequency of the stationary experience is much greater than all other
experiences combined.d

8We do not fully specify the time structure and timing of trials. Although such a specification is not
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Each player does not know his own utility function. However, he has experienced
various utility values in £(7 | ¢*). If he has found a higher utility value which can be
induced by his own trial, then he has an incentive to increase the frequency of this
deviation from his present stationary behavior o7. Therefore, we make a postulate on
his behavior in such a case, which defines the stability of o*.

Postulate 6.(1): If no active experience in A(7 | 6*) gives a higher payoff to player
¢ than his stationary payoff H;(c*), then he continues behaving according to of (still
subject to his occasional trials).

(2): If some active experience [p;; h;] in A(¢ | 0*) gives a higher payoff to player ¢ than
his stationary payoff H;(o*), then he would increase intentionally (maybe, slightly or
drastically) the frequency of the deviation inducing [¢;; k-

The following definition is based on this postulate. We say that a player z has an
incentive for an intentional deviation in o* iff there is an active experience [¢;; hi] €
A(i] o=) with h; > H;(0*). A strategy profile o is an inductively stable state iff no
player has an incentive for an intentional deviation.

Proposition 2.1. A strategy profile o* is inductively stable if and only if it is a Nash
equilibrium in T,

Proof. Inductive stability is equivalent to that for any player i, H;(0*) > h; for all
[:; hi] € A(4] 0*). This is equivalent to H;(o*) > H;(o™,;,0;) for all o; € ;. a

Inductive stability is simply a translation of the mathematical definition of Nash
equilibrium. However, it is important to evaluate the claim of Proposition 2.1 from the
viewpoint of inductive game theory.

The «f part means that if player ¢ has no experience with a utility value higher than

used in this paper, it would help understand the above argument to specify some possible specifications
of such time structure. .

One possible formulation is to have a discrete time structure {... — 2,—1,0,1,2,...}. Each player’s
behavior is subject to a stochastic disturbance and if such a disturbance occurs, then his behavior
(fi,6:) is randomly chosen. One possible assumption is that each disturbance occurs, with a small
probability ¢ in each period, independently across the players. Then the probability of two or more
players to make simultaneous trials is at most of the second order. It means that the frequency of such
trials is negligible relative to that of unilateral trials when ¢ is very small. Then player i collects the
experiences of the first order, e, £(i | 0") = A(1 | c*)UP(1 | o).

Another model can be regarded as the limit of the above discrete time structure as the time interval
tends to zero. The time structure is expressed as the real continuum {—oo, +00). The festival game is
played at each point in time. All players behave according to their stationary state o* at every point in
(--00, +00), except occasional disturbances, which make players try other actions. For each player, these
disturbances follow a Poisson process. The Poisson processes are assumed to be independent across the
players. Therefore, there is at most one trial made at each point in time with probability one, and
Postulate 5 is a consequence of this process. -

11



that in the stationary state, then he continues playing his strategy — Postulate 6.(1).
Hence if no player has actively experienced a higher utility value, then o= is stable in
the sense that all the players continue playing o*. This part involves a weak form of
induction: when he has experienced the same stationary information except for some
occasional changes, he expects that if he does not change his action, nothing will change,
either.

The only-if part, equivalently, its contrapositive, is more substantive. If a player has
an active experience with a higher utility value than that in the stationary state, then
he intentionally changes his behavior, slightly or drastically ~ Postulate 6.(2). In this
sense, ¢ is no longer staticnary. Here he does not know well possible consequences of
his intentional deviations. He is making an inductive decision: his decision is based on
a generalization of his active experiences — he expects to receive a higher utility more
frequently by making that deviation more often than before.

Finally, we should give one comment on subgame perfection (sequential rationality
according to the literature of refinements). The reason that subgame perfection is not
considered in the above argument may already be clear. Subgame perfection needs
experiences induced by trials of two or more players, but Postulate 5 assumes that
those events are negligible. Nevertheless, we will use subgame perfection to demarcate
between some notions. Subgame perfection is relevant only for passive experiences. We
say that o™ = (f*,r~) satisfies subgame perfection over | J;P(i | o) iff for all 1,5 € N
and all (f;,6;) € {1,....¢} x {0, 1} with f; # fr = f;,

-Hl(a:];(f_ﬂé])) 2 H{(U:{,“j}a(fi‘aéi))(fjvéj)) for 6; = 0,1,

where {ai{i‘j}, (f7,6:),(f5,6;)) is obtained from o~ by replacing o7 and o} with (f7,6;)
and (f;,6;). This means that if an outsider j comes to k = f*, then his prescribed
behavior r7(fZ, k) maximizes his payoff.

The above definition of subgame perfection ignores the deviations by an insider. For
example, if the festival £ = f7 has only one player of some ethnicity and if this player
goes out from k, player ¢ would observe a change in the ethnicity configuration of .
The above definition does not take this case into account. However, it will be proved in
Section § that we do not need to consider this case in equilibrium. The above definition
1s sufficient in our context.

3. Interpretations of Experiences — Individual Views on the Society
In an inductively stable state o™ = ( f*,r"), each player 7 has accumulated experiences

E(r)o™) = A(i] 0*)U P(¢ | o*) via occasional trials. By Postulate 2, he does not know
the structure of the game I', but may infer what have been occurring in the society

12



from his experiences £(z | 0*). Here we consider possible individual views on the society
formed by player ¢ from his experiences £(i | ™). Here we apply again an inductive
principle to this process, which is stronger than the inductions used in Section 2: he
generalizes his experiences into an explanatory causal relationship and builds a model
of the society. In this section, we provide general definitions of such models and of its
coherency requirements with his experiences.?

3.1. Individual Models Built by a Player

An individual model, My, of player ¢ is given by a sextuple M; = (]\/, 7,6, 13 2%, X),
where

(1): N is a finite set — — the set of imaginary players;

(2): Z is a set — — the set of potential social states;

(3): 6; is a function on Z ~ - the observation function;

(4): 4; is a real-valued function on Z - - the utility function;

(5): 2% is an element of Z - — the stationary social state;

(6): X is a subset of Z containing z° ~ - the set of relevant social states.

The first part of the explanation of each constituent (e.g., a finite set in (1)) is the
mathematical definition, and the second part (respectively, the set of imaginary players
in (1)) is what we intend to describe. The constituents are all imaginary in the sense
that they are constructed in the mind of player 1.

The first four constituents, (N, 7, 6;, 4}, are intended to describe the basic structure
of the society or game which player ¢ imagines. On the other hand, the last two, (z°, X),
describe the play of the game, that is, 2% is the imaginary stationary state, and X is the
set of relevant states of the imaginary society which are reachable from z% by unilateral
deviations of player ¢ himself and other players.

The game I’ and an individual model M; = (N, Z, 6;, @; 29 X') have a significant
difference in their cognitive bases. The former is the objective description of our object
situation, and the latter is a subjective description of it in the mind of player . We
should emphasize the following difference: In the former, player ¢ has the utility function
Hi(o) = h(ui(o),7:(f)), which means only that he receives each realized utility value,
but not that ke knows I1;(o) = h(pi(o),7:(f)) as a function. On the other hand, since
be builds M = (N,Z,éi,ﬂi;zD,X) in his mind, he perceives i; as a function. This
difference will be important particularly in Sections 6 and 7.

°In this paper, we define individual models particularly for the festival gamne. A definition of models
for general extensive form games is discussed in Kaneko-Matsui [11].
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We make the following assumptions on My = (N, Z, é;, 4;; 2%, X ):

(M1): N is a set expressed as the union of disjoint groups ]\:’1,...,]\730 with 7 € Ne(,-).
The player set N, may be empty if e # ().

(M2): Z is a subset of {1, ...,E}N x {0, l}"v x Y, where Y is some arbitrary set.

Since z° € Z, z0 can also be expressed as (g2, 69, y0). This notation will be used through-
out the following.

Assumption M1 means that N is the set of imaginary players partitioned into the
ethnic groups Ny, ..., NCO, and player ¢ himself belongs to the group Ne(l-). Assumption
M2 expresses the idea that player 7 knows that every player in N has the same action
space as that of player ¢. The additional Y is the set of hidden parameters player 1
imagines. When Y is singleton, M2 is essentially equivalent to Z C {1, ...,£}"¥ x {0, 1} V.
We will use this notation as a convention.

Condition M2 allows to choose Z so that the players in the mind of player 7 may
not independently choose their actions in his model. If these players can choose their
actions independently, it would be natural to assume

Z={1,.., 07 x{0,1}" x Y. (3.1)

However, since we would like to have one specific model as a reference point which
violates this condition, we do not impose this condition on the general definition of
individual models. We call (3.1) the independence condition.

The additional space Y is the domain of an exogenous ezplanatory variable. The
introduction of this space gives some freedom to the possible models. For example, an
individual model does not necessarily assume that ethnicity is an attribute of a player:
ethnicities may be regarded as manifestations of some parameters in Y. We allow this
additional variable to simplify our consideration of possible models. Nevertheless, since
a model with a large domain Y gives up a fine causal explanation, it would be better
to be less dependent upon y.

For each ¢ = (gj)jel\‘/ e {1, ..,,!Z}N, the ethnicity configuration. F;(g) of festival g; is
defined in the same way as in Section 2, i.e.,

E‘i(g) ={e(1):9; =9i,7# ki and 7 € N}

In the model M; = (N, Z, &;, iu;; z°, X ), however, we allow the possibility of the ethnicity
configuration to depend upon the hidden parameter y. Thus we make the following
assumption on the observation function 9; :
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(M3): 6:(g,6,9) = (gi,6i, Ei(g,v)) for all (g,6,y) € Z, where E;(g,y) is a subset of
{1,...,£} with Ei(9) C Ei(g,v).

This means that player ¢ believes that he observes his own choice (g;, 6;) and the ethnicity
configuration E;(g,y) including E;(g).1°

3.2. Coherency of Models with Experiences

Given a strategy profile o* = (f*,r*), we now define the coherency of an individual

model M; = (N, Z,0;,1;;2% X) of player 7 with the experiences A(i | 0*) and P(i | 0*).

First, we require that it be coherent with the stationary experience, i.e.,

(CS): [6:(2°); 2i(2®)] = s(i ] o).

This means that the stationary state z° in an individual model M gives the stationary

information s(i | o*) = [fr,77(f*), E:(f~); Hi(c™)), which player ¢ has obtained in o*.
Second, the coherency of M; = (N,Z,O,’,U{;iEO,X) with the active experiences

A(z | o*) and passive experiences P(i | o) are formulated as follows:

(CA): for any [@;; hil, [¢s; ki) € A(i | o) if and only if there is a state z = (g,6,y) € X
such that (g;,6;) # (g7, ¢67), 9-i = 92; and [6i(2); ©i(z)] = [¢1; hal;

(CP): for any [¢i; hil, lpi; hi] € P(i| 0*) if and only if there exists a state z = (g,6,y) €
X such that (g;,6;,9) # (99,69,4°), 9-; = g2, forsome j # i and [6;(=); ©i(z)] = [pi; hil.

The first condition, CA, states that player ¢ interprets each active experience [¢;; by by
associating it with a state 2 = (g, 6, y) induced by his own deviation (g;, ;). The second
condition, CP, states that he interprets a passive experience [¢;; h;] by associating it
with a state z = (g,6,y) induced by a deviation (g;, 4;) of some other player j or by a
change in y. Coherency CP takes a weaker form than CA, since player ¢ cannot detect
who induced passive experiences, while he is certain that he has induced his active
experiences.

Since active and passive experiences are obtained through individual deviations from

the stationary state, conditions CA and CP would be meaningful only when they are
coupled with CS. Thus, we give the following definitions.

An individual model AM; describes only player i’s observation and utility functions. It is
natural to extend an individual model to include oiher players’ observation and utility func-
tions. Then the model becomes a soctal model imagined by player 1 which is given as Ms =
(N, Z, (61)36419" (%), en 1;0" {X5},ex)- A social r}nodel raises quite d.iffefent probl'ems than an individual
model. In this paper, we will consider only individual models: we will discuss social models in a separate
paper.



Definition 3.1. An individual model M; = (N, Z,6;, ;2% X) is coherent with the
active ezperiences A(i | o*) (respectively, with the passive ezperiences P(i | o)) of
player 7 iff CS and CA (CP) hold. We say that AM; is coherent with the ezperiences
E(ilo™) = A(i| o*)uU P(i] o*) iff CS,CA and CP hold.}!

In this paper, we focus on the coherency with the active experiences A(7 | o*) and the
coherency with the entire experiences £(i | o).

The following lemma will be used in the subsequent argument.

Lemma 3.2. Suppose that M;j is coherent with A(: | o). Let z = (g,4,y) and
' = (¢,8',y') in X satisfy g = ¢' = (¢2;,91), (90, 6:) # (90,67) and & = 6. Then
[6:(2); @i(@)] = [6:(a"); 2i("))-

Proof. By the if part of CA, both [6;(z); &:(z)] and [8;(c'); 2(z’)] belong to A(z | 0*).
If two experiences [¢;; h;] and [} k] in A(7 | o) are induced by the same the deviation
(9:,6;) from o= = (f*,7*), they coincide, since they are expressed as [g;, 6;, E:(f*;, 9:);
Hi(ox;,(fi,6:))]. Since the deviation part of player ¢ in z = (g,6,y) and z’ = (¢’,8',y')
are the same, so are [6;(z); %;(z)] and [é:(z'); wi(z")). O

3.3. Some Examples of Individual Models

This subsection presents two coherent models as reference points. The first is the model
which is the redescription of the game I' together with a given stationary state o™ =
(f7,7*) in the language of Subsection 3.1. The other simply enumerates observations —
no-causality model. These models are not particularly interesting, but help clarify some
definitions. More interesting models will be discussed in Section 6.

3.3.1. True-Game Model 7G;

Let o™ = (f*,r") be a strategy profile. The true-game model of individual ¢ is given as
TGr=(N,Z,6;,0i;2° X):

(TG1): Ny = N, forallt = 1,...,¢

(TG2): A’ is the set of all terminal nodes (paths) z = (f,6) in the game ' (ie., Z =
{1, 3N x {0, 1}7);

(TG3): 6:(x) = (fi,6:, Ei(f)) for any z = (f,8) € Z;

(TG4): 4i(z) = h(u:(f,6),6) for any = = (f,6) € Z;

"The reader may find some similarity between our consideration of models built from experiences
and model theory in mathematical Jogic. Model theory is a branch of deductive logic (cf., Mendelson
'[15]), while our theory is based on induction.
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(TG5): 22 = (f*,r=(f*));
(TG6): X = {z°}U X4 U Xp, UXp,, where

Xa={((f25 1), (rmi( 2 £, 80)) - (fiy 6) € {1, £} x {0, 1}},
Py = {((fijaf])a(ri](fijafj))é])) : f; = fi*7 J 7£ Z, (fj)éj) 7/’ (f;,'f';(f*))} :

The true game model is described by focusing on the terminal nodes in the game I'.
The observation function 6;(z) = (f;, &, E:(f)) gives the pieces of information obtained
in the course of the play of I', and the utility function @;(z) = h(ui(f,9),6;) is equal
to the payoff assigned to the corresponding terminal node in I'. The stationary state z0
corresponds to the realization path (f*,r*(f*)) of o = (f*,r™). The set X of relevant
social states contains the three types of states: a state in X4 is induced by a deviation
of player i himself; a state in Xp, is induced by a deviation of some outsider, who goes
to f; # fI in the stationary state; and a state in Xp, is induced by a deviation of an
insider, who goes to f* in the stationary state.

The first four constituents (IV, Z, 4;, 2;) are an alternative description of the extensive
form game I except for the absence of the other players’ payoffs. The last pair (2%, X)
corresponds to the stationary state o* and the terminal nodes induced by individual
deviations.

By the above specification, the modcl TQ'] sa‘risﬁps Assumptions M1-M3 and is
coherent with the experiences £(i ] ¢™) = YUP(GE ] om).

3.3.2. Mere-Enumeration Model (No-Causality Model) M¢&;

The model ME| enumerates the experiences of player ¢. Let o* = (f*,r ) be an induc-
tively stable state. We define the mere-enumeration model ME&; = (N, /J,(A){,ﬂ{; 29, X)
as follows:

(MEL): N = {i};

(ME2): Z = A(5 | 0™)U P(i | o*);

(ME3): 6:(z) = (fi,6;,E) for all z = [fi, 6, E; hi) € Z;
(ME4): 4;(z) = h; forall z = [f;, 6;,E; ] € Z;
(MEB): 20 = [f,7:(f*), £i(f*); Hilo™)];

(ME6): X =

N
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Here Z is a subset of {1,...,£} x {0,1} x ¥ and ¥ = 2{l.-e} x R. The model ME;
satisfies M1-M3, noting that E;(g,y) of M3 is given as Ei(f;,y) = E:(fi,E, h:) = E. By
associating each [¢@;; h;] in A(z | ¢*)U P(¢ | 07) with itself, the model ME; satisfies
CS,CA and CP. However, this model does not satisfy the independence condition (3.1).

In this model, player 7 simply enumerates his observations including utilities, without
considering other potential players and any structure of society - no causal relationship
between individual actions and observations/utility are considered. However, player ¢’s
consideration of this model means that he not only has his experiences but also becomes
conscious of them.

The model 7Gy is a full medel in the sense that the domain Y of the exogenous vari-
able is null, while in the mere-enumeration model ME&), all observation experiences of
ethnicity configurations and utilities are stored in Y, and nothing else plays an essential
role.

4. Knowledge from Active Experiences A(7 | 0*)

Player ¢ can infer some knowledge from his experiences, which should be reflected in an
individual model M; = (N, Z,(}g,'&i;:zto,X)h In this section, we give two propositions
on such knowledge from the active experiences A(¢ ] o”).

The first proposition states that when an inductively stable stationary state o~ is
given, he knows that he obtains the maximum utility at the stationary state over the
states he can induce by his own deviations.

Theorem 4.1 (Utility Maximization for Player 7). Let ¢* = (f*,7*) be an in-
ductively stable stationary state. If an individual model M; = (N, Z,é;, ;2% X) is
coherent with the active experiences A(7 | o*), then

v

1,{z%) > @;(z) for all = = (g,6,y) € X with g_; = ¢°;

and (gi, 6;) # (99, 69). (4.1)

Proof. First. 4;(z%) = H,(o") by CS. Consider (¢*;,(g:,8;)). This gives an active
experience o; = (g;,6;, £:(07;,(9:,6:))) and h; = Hi (0", (g:;,6:)). By CA, there is a
state 2’ = ((¢2,,4i),(62;,6:),7") € X such that 6,(z') = ¢; and u;(z') = h;. Now we
take an arbitrary z = ((¢%,,9:),(6-:,6:),y) € X. Lemma 3.2 implies h; = i:(z') = i;(z).
Since o is inductively stable, we have H;(s") > h; by Proposition 2.1. Hence #,;(z°) =
Hi(o™) > h; = w(z') = fL,(uL) O

Thus, an individual model coherent with the active experiences should satisfy utility
maximization for the player. This theorem has the same spirit as Proposition 2.1, that
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is, it is a manifestation of the postulate of inductive decision making — Postulate 6 -
in model M through active experiences. Notice that Theorem 4.1 holds even for the
mere-enumeration model ME. Mere-enumeration of experiences suffices to maximize
his utility, though it is silent on the structure of the society.

Conversely, if every player has developed a model which is coherent with the active
experiences and satisfies utility maximization, then the stationary state o~ is inductively
stable.

Theorem 4.2. Consider a stationary state o where every player 1 € N has a model
coherent with his active experiences A(i | ¢*). Then o~ is inductively stable if and only
if the model of each player satisfies utility maximization (4.1).

Proof. The only-if part is Theorem 4.1. Thus it suffices to show that if the model M| =

(1‘;’, 7, 6i, 0 10, X) of player 7 is coherent with A(7 | o) and satisfies (4.1), then his sta-
tionary actions maximize his objective payoff function. Consider an arbitrary (f;, ;) €
{1,...,£}x{0,1}. Then this induces an experience [@;; h;] = [fi, &, B f2;, fi); Hi(o=;, ( fi, 6i))] €
A(r | 0™). Since M7 is coherent with active experiences A(7 | o), there is a state z =

(ga 5, y) € X suchthat g ; = g(_)_{, 6i(z) = (fl'» bis Ei(fii’ fi)) and ﬁi(x) = Ili(():h (fﬁ 51))

Also, 4;(2%) = H;(0*) by CS. Then H;(c*) = i,(z°) > @i(z) = Hi(o=;,(fi,6:)). O

For the same reason as that for Theorem 4.1, player ¢ can infer the ethnicity config-
urations of all festivals in the stationary state from his active experiences.

Proposition 4.3. Let o™ = (f~,r") be astationary state, and let My = (N,Z, i, 15529, X))
be an individual model coherent with the active experiences A(: | o*). Then E;(¢%;,¢:,v) =
Ei(fr;,9:) for any state z = (g,6,y) € X with g_; = ¢°; and (g;,6;) # (g, 69).

Proof. Let (g;,6;) be a trial with (g:,68) # (g°,62) = (fr,r7(f*)). His active ex-
periences A(1 | o”) includes [¢;; hi] with o = (¢:,8:, Ei(f2;,9i))- By CA, there is a
state o’ = ((¢°,,4:),9,¢') € X such that oi(z') = (gi, 6, Ei(fr;,90)). By M3, 6:(2') is
also expressed as (g;, 6, £:(9%;, 96, v')). Thus B[, 9:) = E:(¢°;,9i,v). By Lemma 3.2,
0;(z) = 6;(z’) = ; holds for any = = (g,6,y) € X with g_; = g%, and (g, 6;) # (4%, 69).
Thus E;(¢%;,9:,y) = Eif=:,g;) for any state z = (g,6,y) € X with g_; = ¢°; and
(9:,6:) # (97, 67). 0

The above arguments can be applied only to player ’s own knowledge: from the
experiences of player ¢, he cannot directly infer the knowledge of other players. Hence
the above results do not hold when we generalize an individual model to a social model
including the observation and utility functions of other players. In such a generalized
model, he needs to assume utility maximization for other imaginary players. For the
same reason, he can tell nothing about the observation functions of other players. This
is the subject of a separate paper.
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5. Segregation Patterns and Discriminatory Behavior in Nash Equilib-
ria

For further investigations of individual models, we consider the structure of Nash equi-
libria in the festival game I'. In this section, we give a full characterization of Nash
equilibria. There are three types of equilibria, one of which exhibits segregation of some
ethnic groups and discriminatory behavior to support such segregation. The others are
degenerated ones.

x

Theorem 5.1. A strategy profile 0~ = (o7,...,0%) = ((f7,77), -, (fa.75)) is a Nash
equilibrium if and only if for any i € N, and e = 1, ..., eg,

(1):if pi(o*) = my, then fr = f7 for any j with e(j) = e and r3(f*) = 1 for any j with
ff =15

(2): 3 e(0™) = mo, then pi(0™) > o™, (fio 1)) for any f; € {1, €);

(4): if pi(o*) < myg, then mg > wi(o=;,(f;, 1)) for any f; € {1,...,£}.
i i J

Conditions (1)~-(4) state the following. If the number of friendly people at f reaches
the threshold mg, then (1) every player of the same ethnicity as player 1 goes to the
same festival, and every player in this festival takes a friendly action, and (2) if player
© chooses location f;, the number of friendly pecple at f; becomes not greater than the
number at f*. Note that (1) allows more than one ethnic groups to go to the same
festival (such as Figures 5.1 and 5.3). On the other hand, if the number of friendly
people at f7 is less than the threshold myg, then (3) no player at f* takes a friendly
action (such as festivals 2 and 3 in Figure 5.3), and (4) no matter where player i may
go, the number of friendly people would not exceed the threshold my.

Proof. (Only-If Part): Let o* = (7=, f*) be a Nash equilibrium. Suppose p;(c*) >
mg. It is better for each player in festival f* to behave in a friendly manner; hence
r7(f*) = 1 for any j with f; = fr, which is the second conclusion of (1). To prove the
first conclusion, we suppose, on the contrary, that some player j of ethnicity e chooses
[y # fr. Note that neither a move of 7 to f7 nor that of j to f7 affects the ethnicity
configuration of fr or of ff. This means that neither move induces a new response.
There are the two cases p;(0*) > pj{o*) and p;(¢*) < pj(o*) to be considered. In the
former case, player j would be better off by coming to f* and taking a friendly action
than being at f7 by Assumption H, since the mood at ff relevant to j is p:(0”) + 1. In
the latter case, player 1 would be better off by going to festival fr. In either case, we
have a contradiction. Thus we have the first conclusion of (1). Assertion (2) follows the
definition of Nash equilibrium.
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Suppose p;(0*) < mg. Then it is better for any player in festival f* to take an
unfriendly action by Assumption H. Thus we have (3). When player : moves to another
festival f;, then his payoff must be smaller than or equal to 0 at festival f; since o™ is
a Nash equilibrium. Hence the induced mood should not exceed the critical level myg.
Thus we have (4).

(If Part): Consider a strategy configuration o* = (f*,7*) which satisfies (1)—(4). First,
suppose p;(0”) > mg. Then he does not have an incentive to change his attitude to 0
at festival f* since from (1) he now obtains a positive payoff. Also it follows from (2)
that he does not have an incentive to move to any other festival with é; = 1. Second,
suppose f;(0™) < mg. Then it follows from (3) and (4) that there is no incentive for

player 4 to change his attitude at f* as well as to move to any other festival. o

1

The above proposition enables us to classify the set of equilibria into the following
three classes: »
(Fully Amalgamated Equilibrium): fr = frand r7(f*) = r;(f*) = 1 for all
1,7 € N: all players choose the same festival and behave in the friendly manner. The

players enjoy the highest mood. See Figure 5.1.

(Segregation equilibrium): fr # f; and pi(e*) > mo for some t,7 € N: some
players of different ethnicities go to different festivals and at least one festival is active.
Segregation occurs in this equilibrium. See Figures 5.2 and 5.3.

(No festival equilibrium): g;(c*) = O forall € N: all players take unfriendly actions
in their festivals. In this equilibrium, each player’s choice of a location is arbitrary.

The first class counsists of all equilibria in which everyone goes to the same festival
and takes a friendly action. They attain the best possible payoff. With respect to
realization, there are £ kinds of equilibria in this class, but they can be regarded as
identical. The third class consists of degenerate equilibria in which nobody behaves

friendly and the distribution of players is arbitrary. The second class is the one we will
focus on in the subsequent sections.

In an equilibrium in the second class, some players discriminate against the players
of some other ethnicities in the sense that they change their actions from friendly to
unfriendly if they observe a player whose ethnicity is different from theirs. The following
corollary states that in an equilibrium in the second class, some players at festival f*
respond to j’s appearance in the unfriendly manner if j comes from a smaller festival.
Corollary 5.2. Let 0* = (f*,r*) be a segregation equilibrium. Suppose fI # fI with
pi(0*) > pi(o™), and let f; = fr. Then
(1):if pj(o*) > mo, then p;(0=;, (f;,1)) < pi(07);

(2): if pj(o™) = 0, then p;(oz,,(f;,1)) < mo.
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In case (1), if player j whose festival is smaller than f* but still is active goes to f7,
the induced mood by his presence is not better than the regular mood of festival f5.
Thus discrimination is necessarily incurred by a player in the smaller festival when he
goes to a larger festival. The difference p;(c”)— ps (05, (f;, 1)) is the number of players
switching from friendly to unfriendly to the appearance of j at festival f7. Discrimination
may or may not be incurred when a player in a larger festival visits a smaller festival.
In case (2), festival f7 is inactive, and then the induced mood must be worse than the
threshold my.

To simplify the subsequent argument, we focus on the fully active equilibria o* =

(frr):
(FA): r*(f*) = 1 for any 1 € N.

Condition FA still allows segregation equilibria, but eliminates equilibria such as Figure
5.3.

When a Nash equilibrium o* to satisfies subgame perfection over | J, P(¢ | ¢*), dis-
criminators and nondiscriminators cannot coexist in one festival. Nevertheless, for each
Nash equilibrium, there is an equilibrium satisfying subgame perfection over | J; P(i | o)
such that their realization paths are identical.

6. Passive Experiences and Rationalization

The coherency with active experiences leads to utility maximization at the stationary
state £% in a model M; - Theorem 4.1. In contrast, the coherency with passive experi-
ences has no implication for utility maximization: it only reflects his observation when
an outsider visits his festival. Nevertheless, an individual model M typically contains a
decision phase after such an observation. Without a further requirement on the model,
we cannot guarantee that player ¢ maximizes utility in this phase of the model. An ad-
ditional requirement we consider in this section is that player ¢ maximizes utility in this
phase, which is called rationalization. This term is motivated by the fact that player 1
rationalizes his behavior by speculating the consequences of alternative choices without
any experiences.

We say that a model M of player 1 survives rationalization (or player i rationalizes
his behavior in M) iff for any z = (g,6,y) € X with [6;(z); @s(z)] € P(i ] o),

w;(x) > 4;(z") for any &’ = (¢',6',y') € Z with ¢’ = g and 6", = 6_;. (6.1)

This means that when a passive experience is observed at z = (g,6,y) € X, his reaction

prescribed in z enjoys utility maximization over the possible changes for him in the
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model M. The determination of the utility value @;(z') = 4:(g, (6—, 6!),¥’) 1s a specu-
lation in the sense that player ¢ has never experienced or has ignored %;(z’) in the past.
Therefore, player ¢ can manipulate his model so that it satisfies (6.1). Nevertheless, it
turns out that this requirement imposes a meaningful constraint on his thinking. **

Since the potential state space Z of the mere-enumeration model ME; contains
nothing other than the experiences £(i | ¢*), a candidate for 2’ in (6.1) is only z itself.
Thus, (6.1) holds in this trivial sense. Hence we have the following proposition.

Proposition 6.1. Let o* be an inductively stable stationary state. Then the mere-
enumeration model ME&; of player ¢ in o™ survives rationalization.

The mere-enumeration model ME; of player ¢ is coherent with the experiences
E(i | o*) and survives, in the trivial sense, rationalization. Other than his own actions,
he records all the experiences in Y. Thus, this model is not more than storing the
experiences £(¢ | 0~), and has no additional explanatory power. In this sense, this is
the start of the player’s thinking about the society.

It is a striking result that the true-game model 7G; often fails to survive rational-
ization.

Theorem 6.2 (Rationalization for the True-Game Model). Let 0* be an induc-
tively stable stationary state %atisfying FA. Then the true-game model 7§y of player ¢
in ¢* survives rationalization for all i € N if and only if o™ satisfies subgame perfection
over | J; P(1] o).

Theorem 6.2 states that rationalization corresponds to subgame perfection on o™ in
I'. As discussed in Section 2, subgame perfection cannot be assumed on ¢* under our
postulates, and also, Theorem 5.1 implies that there are many Nash equilibria which do
not satisfy subgame perfection. Therefore, rationalization often rejects the true-game
model.

Proof of Theorem 6.2. The if part is straightforward. We show the only-if part. By
FA, o* is a fully active equilibrium. If all players in each festival are all nondiscrimi-
nators or discriminators toward each ethnicity of an outsider, then o™ enjoys subgame
perfection over | J; P(¢ ] 0). Now we show the contrapositive of the only-if part. Sup-
pose that o™ does not enjoy subgame perfection over | J; P(z | 0*) Then some festlval
has nondiscriminators as well as discriminators toward some ethnicity.

Let k be a festival where some are discriminators and some are nondiscriminators
when an outsider j comes to k. Let 7 and ¢’ be a discriminator and a nondiscrimina-
tor, respectively, in k toward the ethnicity of j. There are two cases to consider: (a)

'2This notion should be distinguished from the rationalizability of Bernheim [3] and Pearce [18]. It is
to capture the notion of rationalization in sociology (cf., Marger [14], pp.98-102), and as will be seen,
it plays a crucial role in deriving prejudices.
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pi(0Z;, (K, 1)) 2 mo and (b) pi(oZ;, (k, 1)) < mo.
In case (a), let z be the path determmed by (o _*J,(/c 1)). Then #;(z) = H'(Uij, (k,1))
= 0. Let of = o} = (k,1), 0/, = 0% and z’ the path determined by o’. Then
0< Hi(co)) = u,(:z’) Hence TGy of player 7 does not survives rationalization.

Consider case (b). Then u, oz, (k1)) < p,(a»]—,(k 1)) < mg. Define o’ the strat-

egy profile by of, = (k,0),0% = (k,1) and ¢’ ;, ; = 07, ;, and let z' is the path deter-
mined by o’. Then i;(z) = H (025, (k, 1)) < 0: H (U’)_u,( ). Thus TG of player
i’ does not survive rationalization. =

We emphasize that coherency and rationalization express different reasoning pro-
cesses. On the one hand, the coherency of a model is attained through the process of
induction — the generalization of one’s experiences to a causal relationship. If the model
is incoherent with the experiences, it is the model that is wrong and should be altered
since one can change his interpretation but not the facts. On the other hand, rational-
ization has deductive nature. It is obtained through the introspection of consistency
between the model and the behavior. When the model fails to survive rationalization,
there are two scenarios on what might happen after the failure. The first scenario is
similar to what happens to an incoherent model: the player changes the model. In the
second scenario, the failure leads to a change in his behavior. This happens when the
player firmly believes in his model.

In the second scenario above, if every player happens to believe in the true-game
model 7Gy, the only state ¢ which is free from changes in behavior would be the
one satisfying subgame perfection over (J; P(i] o*). However, there is no guarantee, in
general, that the players reach the true-game model. Therefore we should not interpret
this result as a justification for subgame perfection.

7. Hedonistic Models

In this section, we introduce two other types of models for player ¢ which we call the
naive and sophisticated hedonistic models. In a naive hedonistic model, one’s utility is
essentially determined by his own actions. A model of this type may explain the active
experiences. To explain passive experiences, it needs to rely heavily upon an exogenous
variable y. If ¢ is a discriminator against some outside ethnicity, he fails to rationalize
his behavior in a naive hedonistic model. To have a rationalizable explanation of passive
experiences, it suffices to take observed ethnicities into account: a sophisticated hedonis-
tic model allows the utility function to depend upon observed ethnicity configurations.
There always exists a coherent and rationalizable sophisticated hedonistic model. It will
be argued that both types of models exhibit perceptual prejudices, but the latter does,
additionally, preferential prejudices in the sense that the player develops preferences
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over ethnicities (though his objective utility function is still neutral over ethnicities).

7.1. Naive Hedonistic Models NH;

We call an individual model N'H] = (N, Z, 6;, i;; 2%, X)) a naive hedonistic model iff Z
satisfies the independence condition (3.1) and the utility function 4; depends only upon
his actions and the exogenous variable y, i.e., it can be expressed as

(NH4): 4i(z) = (g, 6, y) for all z = (g,6,y) € 7.

This means that player 7 explains his observed utilities by his choices of a location and a
friendly or unfriendly action together with an exogenous variable y. Note that it would
be better for the utility function i; to be less dependent upon y for the same reason
that the mere-enumeration model M¢& is unsatisfactory.

For the coherency with active experiences, the following proposition states that
player ¢ does not need an exogenous variable for his explanation, whose proof will be
suggested in the end of this subsection.

Proposition 7.1. Let o* = (f*,r*) be an inductively stable state satisfying condition
FA. Then there is a naive hedonistic model N'H; = (N, Z, é;, %;; 2%, X ) coherent with
the active experiences A(i | ¢*) such that 6; and 4; are independent of y.

Thus, he succeeds in explaining his active experiences by ascribing his observed
utilities to his actions. It is important to notice that this explanation is fallacious from
the objective point of view. That is, player ¢ finds an explanation of his observations
based an incorrect causal relationship, but it is still consistent with his observations. In
this sense, the naive hedonistic model exhibits perceptual prejudices.

In contrast with the above result, a naive hedonistic model would not work well in
explaining passive experiences. On the one hand, a discriminator cannot rationalize his
behavior in a naive hedonistic model. On the other hand, a nondiscriminator needs to
rely heavily upon the exogenous variable to explain his passive experiences.

Proposition 7.2. Let o> = (f*,7*) be an inductively stable stationary state satisfying
FA.

(1)(Failure of Rationalization): Let player 7 be a discriminator against some eth-
nicity. If a naive hedonistic model A'HJ is coherent with his experiences £(z | 0*), then
it does not survive rationalization.

(2)(Heavy Dependence upon y): Let player ¢ be a nondiscriminator toward any
ethnicity. If a naive hedonistic model A'H is coherent with the experiences £(i | o)
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and survives rationalization, then

ﬁ;(g?,O,yD) < ﬁ;(g?,é?,y) < grg]{[l H;(o™) for some y. (7.1)

In (1), it also follows from coherency with £(i | o) that 4;(¢?,0,y) < minjen H;(0")
for some y. The point of (2) is, however, that the utility decrease in (7.1) is caused by
a change in y, while in (1), it may be regarded as caused by the change in §;.

Let us exemplify this proposition in the Figure 5.2. When player j in group A in
festival 1 comes to festival 3, the mood of 3 should not be higher than the stationary
mood of 1, for otherwise player j would stay in 3. Consider a naive hedonistic model
for player, say, 4, in C in festival 3.

Let ¢ be a discriminator against A. Then he takes the unfriendly action to the
presence of 7, but his imaginary utility function i; does not depend upon ethnicities.
Hence 4;(¢?,0,y) = 0 for some y by CP, and then, by CS,

4:(g,0,y) = 0 < 4;(g?, 1,9°) = Hi(o™).

This means that he fails to rationalize his discriminatory behavior.

Let 7 be a nondiscriminator toward any ethnicities. Then he could explain his
observed change in utility in a rationalizable way if he allows his utility function ; to
depend heavily upon an exogenous variable y. Proposition 7.2.(2) is an evaluation of
this dependence. Player i needs some y to explain the decreased utility when player
J comes to festival 3. Hence the utility value, min;epn H;(0*), of the smallest festival
becomes the reference point.

The following is an example of a naive hedonistic model: Let o™ = (f*,7*) be an
inductive stable stationary state satisfying FA.

(NH1): N isan arbitrary i 1mag1ndry pldyer set partitioned into nonempty disjoint ethnic
groups Ny, ...,Neo with 1 € Ne( and #Ne( > 2;

(NH2): Z = {1, 0} % {0,137V x {~1,0,1};
(NH3): 0,(z) = (gg,éi,Ei(g)) forall z = (g,6,y) € Z;
(NHAYY: ;(z) = 4(g:, 6, y) = h(pi(om,, (g, 1)) + v, 6) for all z = (g,6,v) € Z;

(NH5): 20 = (g°,6°,0), where 6° = 1V and ¢° = (97);ex is defined by: for each j € N,
(e =1,...,ep), 99 = 7 for some j' € Ne;

(NH6): X = {29} U X4U Xp, U Xp,, where
Xa={((92:,9:),(82:,6),0) : (95,6:) € {1,...,6} x {0, 1} and (g, 6:) # (47, 1)};
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o = Ugor {((92,,8), (6%, 73k, Bi(0%;, k), w) v € {0, 1} };
PI = {(govéoa_l)}a

where & is the festival chosen by 1, i.e., k = f7. There is some freedom in the choice of
the space X; here we chose a possible one. This is a naive hedonistic model, which is
coherent with £(7 | ¢*) and is rationalizing for player ¢ in the smallest festival where at
most one member is a discriminator against each outside ethnicity. ’

Also, Proposition 7.1 can be proved by modifying (NH4°) as follows:
(NH44): () = 4(g:, &) = h(pi(o™;, (9:,1)),6) for all z = (g,6,y) € 2.

Then neither 6; nor 4; depend upon y.

Proof of Proposition 7.2. (1): Let j come to festival k with the friendly action.
Suppose that player ¢ in festival k& takes the unfriendly action to j’s presence. Then
Hi(oz;,(k,1)) = 0 < Hi(o*). By CP, #4:(g,6,y) = %:(g2,0,y) = 0 for some (g,8,y).
However, since u,(gl,l y%) = Hy(c*) > 0 by CS, it holds that i;(g,6,v) = %:(g%,0,y) =

0 < d(g2,1,4%) = @:(g,(8-5,1),4°). This violates rationalization.

(2): Let j be a player in the smallest (active) festival. Then his payoff H;(o*) is
the lowest. When j comes taking the friendly action to the festival & of player 1,
it holds that H;(o wJ,(k 1)) < H( *), since otherwise 7 would stay in k. By CP,
then is (g,6,v) such that g; = g?, 6 = (/2 k) = 1 = 6% and (g% 1,y) =

Hi(oZ;, (k1)) = Hj(o7;,(k,1)). Thus #:(g?,60,y) < Hj(o ) :rr}i/n Hj(0*). By ra-

tionalization, ;(g?,0,7°) < 4;(¢?, 6%, y) < H;(0*) =min H; (o). o
Jl

7.2. Sophisticated Hedonistic Models SH;

A naive hedonistic model may capture active experiences, but if player i in a large festival
takes passive experiences into account, then, either it is not rationalizing or it would
rely heavily upon an exogenous variable. Utility changes caused by passive experiences
are associated always with the presence of a different ethnicity, except when they are
caused by an insider of the festival. If such an additional observation is allowed to
be an explanatory variable, the utility changes could be explained by the additional
observation. A sophisticated hedonistic model allows this explanation. This addition is
enough to guarantee an application of a hedonistic model to any player in an inductively
stable stationary state.

We call an individual model SH; = (N, Z,é;,ﬁi;zo,X) a sophisticated hedonistic
model iff Z satisfies the independence condition (3.1) and 4; depends upon his actions,
observations and an exogenous variable y, that is, it is expressed as
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(SH4): 4i(z) = 4:(gs, 6;,E{(g),y) for all z = (g,6,y) € Z.

A sophisticated hedonistic model SH; differs frorn N'H; in that in SH, the observations
from the experiences may be fully used to define the imaginary utility function @, while
in N'H;, only the observations (equivalently, his own choices) from the active experiences
are used.

Nevertheless, a change in utility may occur without an associated change in the
ethnicity configuration when an insider in the festival of player i changes his action. In
this case, the mood decreases by at most 1. In SH, we allow player ¢ to use an exogenous
variable to explain only this change. Thus, we require the following inequality:

|2:(92, 82, Ei(g°),y) — w(g?, 69, Ei(g°), v')|

< A(ui(07),1) = A(pui(e™) - 1,1) for all y and ¢/

(7.2)

In SHj, it is also possible to manipulate the imaginary function #; in the unobserved
domain in order to make SHj rationalizable. The following theorem is a consequence
of this argument, which will be proved in the end of this subsection.

Theorem 7.3 (Hedonistic Sophistication). Let o* be an inductively stable station-
ary state satisfying FA. Then any player 7 has a coherent and rationalizing sophisticated
hedonistic model SH; satisfying (7.2).

Perceptual prejudices are involved in a sophisticated hedonistic model SH; as in a
naive hedonistic model K. In SHj, the utility function 4; of player ¢ further depends
upon the ethnicity configuration. In fact, we can regard this dependence as exhibiting
that player 7 develops preferences against the ethnicities of outsiders. To look closely at
this dependence, let SH; be a coherent and rationalizable hedonistic model satisfying
(7.2).

Let 7 be in the smallest festival, and ¢ in a larger festival £. In Figure 5.2, for
example, j is in A and 7 is in C. Suppose that player j goes to festival & with the
friendly action. Then j’s induced utility must be equal to or less than the original
utility level enjoyed by 7, i.e.,

Hy(o%;,(k, 1)) < Hj(0%) = min Hy(o”).
Player ¢ takes the nondiscriminatory action, r7(f* j»k) = 1, or the discriminatory

action, 77(fx;, k) = 0. Consider each case:

(N): Nondiscriminator ¢: His induced utility must satisfy H;(o=;,(k,1)) =

Hj(ox;,(k,1)), that is, his utility decreases significantly. In this case, his imaginary
utility function #; satisfies %;(¢%, 1, E(o*) U {e(4)},y) = H,'(a:j,(k, 1)) for some y by
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CP. By rationalization, %;(g?, 1, Ei(c*)U{e(7)},y) > w:(g?,0, E:(o*)U{e(4)}, v") for any
y'. In sum, we have

1

(97,1, E(0”),y°) = Hi(o*) >min Hj(c*) > Hi(o2;,(k, 1)) =
" J' .

(99,1, Ei(o™) U {e(i)}, v) 2 4i(9?,0, Ei(o™) U {e(5)},¥’) for all .

Thus, i; decreases with the presence of e(7). Player ¢ still behaves in the friendly manner
to ethnicity e(7), but he himself attaches a significant disutility to e(4).

(D): Discriminator i: His induced payoff must be zero, i.e., Hi(o~;,(k,1)) = 0. In
this case, 4;(g?,0, Ei(c*) U {e(j)},¥) = 0 for some y by CP, and 0 > u;(g?,1, Ei(c™) U

{e(7)},y’) for all ¥ by rationalization. Thus, we have
(g9, 1, Bi(07),4%) > 0 = (!, 0, E(a™) U {e(1)}, ¥)
2 (g7, 1, Ei(o™) U{e(5)}, ) for all .

Here player ¢ behaves in the unfriendly manner in the response to ethnicity e(j) and
receives zero utility, but this is still better than taking the friendly action.

In either case, a coherent and rationalizing SH; exhibits prejudices against some
ethnicities. This means that player 1 develops preferential prejudices against these
ethnicities. This argument does not rely upon the assumption that player j comes from
the smallest festival, but only upon that some players in festival k are discriminators
against e(7). Theorem 5.1 guarantees that this occurs necessarily when j comes from a
smaller festival than k.

We emphasize that rationalization plays a significant role in the above argument.
Rationalization is a pure mental process to keep consistency with the very nature of a
utility function. This process is not bounded by experiences. Therefore the development
of prejudices against outsiders enables him to keep this consistency.

Proof Theorem 7.3. Let k = fr. We prepare N and Z defined by NH1 and
(SH2): Z = {1,...0}" x {0,1}" x {~1,0}.

Then define 6; by NH3. Also, let the stationary state z0 and the set X of relevant
states be given by NH5 and NH6. The utility function 4; is remaining to be defined.
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We define £ : {1,...,£} x {0,1} x 2{1-e0} x {~1,0} — R by
h(pi(o;,(gi,6:)) + y,6;) i E = E;(f;,9:) for some g; € {1,...,£}

h(ui(o;,(k,0)) +y,6:) if E = Ei(fZ;, k) for some j with f7 # k

) and §; = r7(fx;, k)

h(gi, 6:,E,y) =

h=(g:,6:,E,y) HE= E;(f*;,k) for some j with f~ #k
and & # r7(fZ;, k),

arbitrary otherwise

where h~(g;, 6;,E,y) is a real number less than ff,‘(d:j,(k,ﬂ)) in the third case. The
well-definedness of each case is guaranteed by FA and Proposition 5.1. Let 4;(g,6,y) =
h(gi,6:, Ei(g),y) for all z = (g,6,y) € Z. The first case gives utility values to i’s own
deviations, which together with 6; implies coherency with active experiences. The second
case gives utility values to the cases where outsiders come to festival k, which together
with 6; implies coherency with passive experiences. The third case gives utility values
to the unexperienced cases where an outsider come to festival & but he took the action
not prescribed by rf. In fact, we set h=(g;, 8;,E, y) so that the sophisticated hedonistic
model survives rationalization. 0

8. Discussions

8.1. Interactions between Models and Behavior

Coherency and rationalization express different reasoning processes. While the co-
herency of a model is attained through the process of induction based on experiences,
rationalization is obtained through the introspection of consistency between the model
and behavior. When the model fails to survive rationalization, it may be the case that
the player alters the model (interpretation) but another possibility is to change his be-
havior. In this way, models and behavior interact with each other. This subsection
considers their evolution in a dynamic context, discussing some possible scenarios.

The mere-enumeration model M&; and true-game model 7 G are not natural can-
didates for models built for an explanatory purpose. The mere-enumeration model does
not go much beyond the state of collecting the experiences £(z | 0*) since it gives no
causal relationship between his observations and satisfaction. In this sense, it represents
the state of the mind of the player having had experiences and being conscious of them,
without further deliberations. In contrast, the true-game model could be regarded as
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the ultimate goal from the objective point of view. The problem is whether an individ-
ual player needs to or is able to consider the true-game model after the full deliberation
of experiences.

Suppose that player ¢ has experiences £(i | 0*) and is conscious of them. If he wants
to have a better explanation of his observations including utility values, he may start
thinking about hedonistic models.

First, consider naive hedonistic models. It follows from Proposition 7.1 that if player
i cares only about active experiences or if he is in the smallest festival where every
player is a nondiscriminator, then a naive hedonistic model could work and he need not
think about the society any further. Let player ¢ be in a larger festival, and suppose
that he takes passive experiences as well as active ones into account and introspects his
explanation of experiences. Proposition 7.2.(1) states that if he is a discriminator against
some ethnicities, he cannot rationalize his behavior in a naive hedonistic model. Hence
a discriminator would sophisticate his explanation, and may come to a sophisticated
hedonistic model. Proposition 7.2.(2) states that if he is a nondiscriminator toward
any ethnicities, he can succeed in explaining his behavior in a naive hedonistic model
by using an exogenous variable. However, if he wants a better explanation to avoid a
heavy use of an exogenous variable, he may sophisticate his model. In either case, a
natural candidate for a modification would be a sophisticated hedonistic model.

When the players reach sophisticated hedonistic models which are coherent with ex-
periences and are rationalizing, no further change will be induced. Then the inductively
stationary state is truly stable. In this process, models have got deviated from the naive
hedonistic models to the ones whose utility functions involve ethnicities as a fallacious
explanatory variable. This may be regarded as the emergence of preferential prejudices
against ethnicities. '

Yet, there is another logical possibility that the discriminators change their actions
to the friendly ones at the same time, though it could be rather accidental and hardly
occur. However, if this happens, their utility values would not decrease even when an
outsider from a smaller festival visits their festival. Since such an outsider receives a
higher utility value, he would stay in the larger festival. It is then followed by the
dissolution of segregation.

Finally, let us look at what happens if player ¢ starts seeking the true-game model
TG in the process of deviating from A or finding a better explanation of his experi-
ences than SH;. Suppose that he thinks about 7G;. Nevertheless, he must be uncertain
about the correctness of his true-game model, since he has no further evidences than his
experiences in our context (therefore, it must be very difficult for him to think about
TGr). From Theorem 5.1, a segregated equilibrium does not typically satisfy subgame
perfection, and Theorem 6.2 then implies that the true-game models of players in the
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larger festival are not rationalizable. Since he is uncertain about his model, he modifies
it so as to rationalize his behavior. One possibility is to go to or to return to a sophis-
ticated hedonistic model. Thus, a sophisticated hedonistic model is regarded as stable
in this sense.

When players have reached coherent and rationalizable sophisticated hedonistic
models, they cannot reject such prejudicial models unless the players have new experi-
ences, e.g., by going to another society with a different stationary state. In a separate
paper, we will consider effects of such new experiences on individual models.

An additional remark is made on the way we present the inductive decision making
first and then the inductive construction of an individual model. This decomposition is
for an expository purpose. As discussed above, they interact with each other and have
no clear-cut demarcation line.

8.2. Comparisons with Merton’s Classification

One mention has to be made of Merton [16], who suggested four ideal types by combining
the prejudicial attitudes with the propensity either to engage in discriminatory actions
or to refrain {rom them.

Unprejudiced Prejudiced
Nondiscriminators All-weather liberals Timid bigots
Discriminators Fair-weather liberals Active bigots

These types have counterparts in our theory. First, “all-weather liberals” are unprej-
udiced nondiscriminators. We interpret them as the nondiscriminators whose utility
functions 4; in their models are independent of ethnicity configurations such as naive
hedonistic models. Second, “active bigots” are prejudiced discriminators. We interpret
them as the discriminators whose utility functions in their models depend upon ethnici-
ties such as player 1 with a sophisticated hedonistic model SH; in case (D) of Subsection
7.2. Third, “timid bigots” are prejudiced nondiscriminators. They are the nondiscrimi-
nators, but their utility functions in their models are based on negative images of other
ethnic groups, such as player ¢ in case (N) of Subsection 7.2. Fourth, “fair-weather
liberals” are unprejudiced discriminators, who are the discriminators but explain their
utilities without referring to ethnicities. In our context, those are interpreted as players
either with the mere-enumeration models or with the true-game models.

Merton [16] introduced those four types to examine the causal relationship between
prejudices and discrimination. If prejudices induced discrimination, then people could
be categorized only into all-weather liberals and active bigots. However, it was argued
in [16] (also see Marger [14], Chap.3 for recent assessments of this view) that since those
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four types of people are observed in our society, the causal relationship from prejudices
to discriminatory behavior is questionable. In our theory, as discussed above, prejudices
may emerge in evolutions of the behavior of players together with their views on the
society, and those four types of people seem to appear. In this sense, our theory supports
Merton’s view, though our theory goes beyond his.

In neoclassical economics, it has been assumed that behavioral attitudes are deter-
mined by mental attitudes. Thus, the above view looks contradictory to neoclassical
economics. It should be noticed, however, that our theory is about a long-run situation,
and that if we take a snapshot of this long-run situation, the causal relation would be
the opposite, that is, prejudices induce discriminatory behavior. In this sense, the neo-
classical economics approach to discrimination and prejudices looks at the same problem
from a different point of view.
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