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A LIMIT THEOREM FOR THE PREDICTION PROCESS
UNDER ABSOLUTE CONTINUITY

BY HIDEATSU TSUKAHARA

University of Tokyo

Consider a stochastic process with two probability laws, one of which is absolutely continuous
with respect to the other. Under cach law, we look at a process consisting of the conditional
distributions of the future given the past. Blackwell and Dubins (1962) showed in discrete case
that those conditional distributions merge as we observe more and more; more precisely, the
total variation distance between them converges to 0 a.s. In this paper we prove its extension
to continuous time case using the prediction process of F. B. Knight.

1. Introduction. Let (E,,&,), n € N be measurable Lusin spaces and put (E, &) =
(By xEy x -+, & © &y © --+). Suppose that y and v are probability measures on (E, E)
satisfying v < pu. We then denote by ZK(xq,...,z,)(e) and Z/(z1,....2,)(e) the regular
conditional distributions for the future (E, 41 X - - -) given the past & ®@--- @&, under p and
v respectively. Blackwell and Dubins (1962) showed that those conditional distributions
merges as n becomes large; more precisely, the total variation distance between them
converges to 0 v-a.s. as n — oo. In what follows, we prove its extension to continuous time

case using the prediction process of F. B. Knight (1975, 1992).

We start with introducing the prediction process. which consists of suitable versions
of conditional distributions of the future given the past in continuous time setting. For our
purpose, it is unnecessary to make any topological assumption on the state space. Thus
we need only the prediction process in a measure-theoretic setting as developed in Chapter
1 of Knight (1992). Let (E, &) be a measurable Lusin space and Mg the space of By /&

measurable functions as before. Let us define the pseudo-path filtration (F})ser, by

T LS (/ flw(u))du, s <t, fe b&) .
0

and put 3" = . = \/,,,J}. Note that each Jj is countably generated and satisfies
F,_ =3} for t > 0. We denote by II the set of probability measures on (Mg, J"), and set
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= o(z(A), A€ 3"). The shift operator §; on Mg is defined by 6,w(s) = w(t + s) and is
Fi4s/F, measurable for all st ¢ Ry,

It is shown in Chapter 1 of Knight (1992) that the prediction process (Z7)ier, on
(Mg, 3") is P*-a.s. uniquely defined by the requirements:

(i) The mapping (z, s, w) > ZZ(e,w) on II x [0,1] x Mg is §& B0, t] & T}, /G measurable
for each t € Ry and each € > 0.

(i1) For any (), )-optional T and A € F', Z3(A) = P*( 67'A | F ) on {T < oc}.

Analogously, the left-limit prediction process (Z7_);>p on (Mg, F') is P*-a.s. uniquely

defined by the requirements:

(i) The mapping (2, s,w) = ZZ_(e,w) on Il x [0, 1] x M is §© B[0,t] © T, /G measurable
for each t > 0.

(ii) For any (F})-predictable T > 0 and A € F', Z3_(A) = P*(0;'A | F} ) on {T < oo}.

We note that even when the space E has been given the prescribed Lusin topology, the
processes (Z7) and (Z7_) are not related to each other through that topology of E (see
Knight (1992)).

Furthermore, employing the notation of Meyer (1976), we define the processes K and

K; by

Ki(fob)=2{(f). Ki(fob:)=2 (f)

for f € b3F". Hence the I*’s satisfy, besides measurability conditions,

Ri(A)=P*(A|Fp.) on{T < oo},

1

for any (3, )-optional T and 4 € F’', and
K7 (A)=P(A|3}p) on{T < =},

for any (JF})-predictable T > 0 and 4 € F,

Following Meyer (1976), we define the optional and predictable o-fields as follows.
The optional o-field O is generated by the cadlag processes adapted to (I}, ), and the
predictable o-field P is generated by the left continuous processes adapted to (F}_). The

utility of K7 and A7 lies in the following result due to Meyer (1976).

9
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PROPOSITION 1.1 For everv bounded measurable process X on (Mg, ¥") and for

every z € II,

(to) o [ Ki(dw.w) Xitu)

defines an optional projection of X for z, and

(t,w) — /Kfﬁ(dw,w)Xt(w)

defines a predictable projection of X for z.

A simple monotone class argument proves the above theorem. We can actually improve

on this result, using a similar monotone class argument. This is also due to Meyer (1976).

PROPOSITION 1.2 Let X(t,w.t',w') be a bounded function that is O @ B(Ry) @ F”

measurable. Then an optional projection for z of the process X (t,w,t,w) is given by
(t,w) — /I\"f(dw,w)X(t,wtt,w).

Similarly, if X(t,w,t',w') is a bounded function that is P @ B(R4) ® I’ measurable, then

a predictable projection for z of the process X (t,w,t,w) is given by

(t,w) — /Kf_(dw,w)X(t,w,t,w).

REMARK 1.3 In Dellacherie and Meyer (1980), V1.43, optional and predictable pro-
jections are defined under the “usual conditions”. Here we are not assuming them, but in
view of Lemma 7 of Dellacherie and Meyer (1980), Appendix I, we can choose a version of
the optional projection which is optional relative to (7, ), and a version of the predictable
projection which is predictable relative to (F}). Thus according to our definition of the

optional and predictable o-fields , no complications on those projections arise.

2. Main result. For z, 2’ € II, the total variation distance pry(z,z') on II is defined
by

v

prv(z,2") = sup [2(A4) - 2 (4)].
AEF!
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Our main result are the following theorems.

THEOREM 2.1 Let z and ' be two probabilities on (Mg, F') satisfying z' <« z and
let (Z7) and (Z;") be their prediction processes. Then the total variation distance between

(Z7) and (Z;') converges to 0 ast — oo, P -a.s.

THEOREM 2.2 Let z and z' be two probabilities on (Mg, 3') satisfying 2’ < z and let
(Z;7_) and (Zfl) be their left-limit prediction processes. Then the total variation distance

between (Z{_) and (Zf;) converges to 0 as t — oo, P as.

To prove the theorems, we need some preliminary results. Let L(w) = %(w). We would
like to show first that K7 is P* -a.s. absolutely continuous with respect to K7 and find
a version of Radon-Nikodym derivative. The following general lemma is well known in the

filtering theory.

LEMMA 2.3 Let (2,5, P) be a probability space and § a sub-o-field of J. Suppose
that we have another probability measure QQ -which is absolutely continuous with respect
to P. Set L = Z—% Then for any @) integrable ¥ measurable V', we have

EF(LVS)
@ T 4.5,
It follows from the above lemma that for any f € bF_,
z !
EY(f19)) = M P as..

E*(L|3)

Let L; = K7 (L). Then Lj is a cadlag version of the martingale E*( L | J}) since it is an
optional projection of the process L constant in ¢ (L is not bounded. but it is positive).
And we put L;_ = limgyy, L: = K7 (L). By the same reasoning, Li_ is a predictable

projection of L.

PROPOSITION 2.4 For P* -almost all w, Kf’(dw,w) is absolutely continuous with
respect to K{(dw,w) with the Radon-Nikodym derivative L(w)/L;(w) for all t. Similarly,
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for P¥ -almost all w, I(f’_( dw,w) is absolutely continuous with respect to K_(dw,w) with
the Radon-Nikodym derivative L(w)/Li(w) for all t > 0.

PrROOF¥. We give a proof for K7 case since K7_ case can be proved analogously. As
in Chapter 1 of Knight (1992), we may assume that E = [0, 1]. There exists a metric on
My ) for which it is compact, and its Borel sets are J'. Since C (Mg q)) is separable, we
can find a sequence ( f;) in C'(Mg 1)) that is uniformly dense in {feC(Mp)0<f< 1}.
By Lemma 5.3, for each 7 € Q4 and j € N, there is a set A, ; with v(A4, ;) = 1 such that
fwe A, ;,

o Liw) . ,
(5.1) K5 (s = [ fi(0) Fob 3w,

-4
T

e
1

ﬂ ﬂ AN {Kzl(fj ). K*(f;L) and (L) are right continuous}
reQy jeli!

The processes Kz’(fj), K*(f;L) and I{*(L) are all right continuous P#_a.s. since they are
optional projections of the processes which are constant in ¢. Thus we have PZ'(A) = 1.
Since (f;) is uniformly dense in {f € C(My,1}):0 < f < 1} and both sides of (5.1) are

right continuous for w € A, we conclude that if w € A,

- K7 (dw,w),

L(
t(w)

o U w)
K7 () = [ fluw) 7
for all f € C(Myp,1)) and all + € Ry. In view of the fact that the continuous bounded
functions separate the measures on a metric space, we see that the above is true for all

f € bF" and all t € R, which implies our assertion. Ml

To get a similar result for the Z*, we need the splicing operator on Mg x Ry x Mg
onto Mg defined by

Jay

(w/t/w)s =

The mapping (w,t,w) — w/t/w is continuous, so it is F' @ B(Ry ) @ F'/JF’ measurable. Tt
follows from Lemma 4 of Meyer (1976) that for P*-almost every w and all t, K7(dw,w)

)



and K7 (dw,w) is concentrated on the atom of F} containing w. which is the set of w € Mg
such that w(s) = w(s) for A-a.e. s <t. Morcover, denoting the mapping w + w/t/w by

Yw.t(w), we have

Ki(f,0) = /f(w/t/gtw)v[&'tz((]uy’w) = /f(w/t/ﬁtw)](f(dw,w)
= [ St 7o) = 25 7).

and similarly for K7 and Z7_. Thus K{(dw,w) and K{_(dw,w) are the image measures

of Zi(dw,w) and Z;_(dw,w) respectively under v, . It then follows that P as.,

2 (51 = [ ftw L(“fff;“) Hdww), febd

for all t € R4, and

/f( )L(zu/(z‘/)u,) Z (dw,w), febI,

for all £ > 0.

PROOF OF THEOREM 2.1. It is easy to see that if ' < z, then, with ¢ = dz'/dz,
prv(s,2) = / (€~ 1)ds.
{£>1}

. . . . N - -
Using this, we can evaluate the total variation distance between Z; and Z7 . We have, for

any € > 0,

R L(w/t/w) .
N2, 27 ) = [ A A :
PTY ( ts 4t ) /{w bojere 1>0} ( Ti(w) 1) Z[ (dw,w)

(w/t/w) .
§€+/ ———— Z; (dw,w)
{ NACYITETINN ]>€} Li(w) ‘

L77e)

o Lwft/o) } )
=€+ 7 w: — P W
e <{ L)
:6—%[({’1 ({w:g(z—/le/g)izﬂ—l>e},w>.



Note that for P* -almost all w and all ¢, we have w/t/8;0 = w/t/6w = w, K7 (8, w)-a.e.

Thus we get

N " . L{w
(5.2) PTYV (Zf,Z[ ) <e+ Kj ({w: LZ((;})) —-1> 6} w) .
t

Now let f(x,y) = 1{(z y)y/a—1>¢}(2,y) for (z,y) € R?. Clearly this is B(R*) measurable.
Put X(t,w,w) = f(Lj(w), L{w)), so that we have

(t,w,w)ﬁm—1>(

X(t,w,w) = 1{ ) }(l‘,u), w).

(t,w)— Li(w) is O measurable since Lj(w) = K/ (L,w) is the optional projection of L for
P?. Also L is 3" measurable. Thus (¢,w,w) + (Li(w), L(1)) is O @ F'/B(R?) measurable,

and hence X(t,w,w) is O ® F' measurable. It follows from Proposition 1.2 that

, o i L L{w)
(5.3 /I&‘ w, dw) X(t,w,w) = K] ({u: — —1>e},w)
53) { o) Xtoos) = B ({2

is the optional projection of the process X(t,w,w).

By the martingale convergence theorem, as t — oo, L} converges to L, P*-a.s. and
hence P*-a.s. Since L > 0, P -as., L/L? converges to 1, P*-a.s. as t — oo. This
implies that X(t.w,w) — 0, P*-a.s. Finally, by Dellacherie and Meyer (1980), VI.50
¢}, the optional projection of X(t,w,w), i.e. (5.3) converges to 0, P# -a.s. Therefore the

right-hand side of (5.3) converges to 0 as ¢ — oo, Pas. W

By an entirely analogous argument using the predictable counterparts, one can prove

Theorem 2.2.
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