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1. Introduction

The theory of weak convergence has been well known to most probabilists since the publi-
cation of Billingsley (1968), and has been effectively applied to stochastic processes. The
main concept may be described in the following way. For each n € N = N U {oo}, let
X" = (X[)ier be a stochastic process defined on a probability space (Q", 37", P") with
parameter set T and state space E. Suppose that the paths of X™ lie in a subset X of
ET, and that X is endowed with a topology, so that we can consider the Borel o-field on
X. If the mapping w — X[ (w) from ©Q into X is measurable, then it induces a prob-
ability measure px» on X. We say that the sequence (X) converges in law to X°° if
the corresponding sequence of probability measures (px») converges weakly to pxe, i.e.,
J flz)pxn(dx) — [ f(a)pxe(dz) for each continuous and bounded function f on X. The
cases which have been extensively studied are when: X = Cg(R ), the space of E-valued
continuous functions on Ry with compact-open topology, and X = Dg(Ry). the space of
E-valued cadlag (right continuous with left limits) functions on Ry with Skorokhod’s J;
topology. Ethier and Kurtz (1986) and Jacod and Shiryaev (1987) are superb accounts of
the recent development in these cases. Less known is the case of the space LP(T,T,v) of
real-valued p-th integrable functions on a o-finite measure space (T, T, ) although some
papers deal with convergence of integral functionals. See Cremers and Kadelka (1986) and

the references therein.

In this paper, our primary interest is in the case where the path space X is the space
Mgz (T, T, v) of E-valued measurable functions on T. The measure space (T, T, v) is assumed
to be o-finite , and Mg(T, T, v) is equipped with the topology of convergence in v-measure
on each set of finite measure. To study weak convergence of probability measures on
Mg (T, T, v), we need to know the topological properties of the space Mg(T,T,v). The
purpose of Section 2 is thus to collect a number of facts on the space. It is well known
that Mg(T, 7, v) is metrizable, and we provide conditions under which the metric space
Mg(T,T,v) is complete or separable. Also we shall derive a characterization of compact
sets, assuming a topological group structure on T. A special attention is paid to the
particular case where (T,7,v) = (Ry, B(R4),m) and m is the Lebesgue measure. This is

important for our later development of the prediction processes and their convergence.

In Section 3, we study properties of probability measures on Mg(T, T, ») and conver-
gence in law of measurable processes. If a process X 1s measurable, then its paths lie in
Mg(T, T, v). It hence induces a law on Mg(T, T, v) provided that the mapping w — X(w)

is measurable, where X,(w) is the equivalence class containing X(w); this measurability
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is guaranteed if, for example, Mg(T,T,r) is separable. It is then natural to ask when
a given process has a measurable modification. The well known necessary and sufficient
condition for this problem, given for example in Dellacherie and Meyer (1975), remains
true for a general measurable space (T,T) and a metrizable Lusin space E. We then go
on to study the properties of probability measures on My(T,T, ). Since Mg(T,T,v) is
actually a pseudo-metric space and it becomes a metric space only when we identify two
functions which are v-a.e. equal, some complications arise; for instance, it is not obvious
that there exists a process having a given law on Mg(T,T,r). In this connection, the
notions of pseudo-path and pseudo-law are relevant. It is based on the viewpoint that we
do not have access to the random variables X, constituting the process X, but only to
functions of the form [ab f(X;)dt, where f is a measurable function on E. (see Dellacherie
and Meyer (1975), IV.5 and IV.35-45). This leads us to the concept of almost equiva-
lence, the precise definition of which will be given in Subsection 3.1. A consequence of
our theory is that two measurable processes are almost equivalent if they induce the same
law on Mg(T,T.v). In Subsection 3.2, we show that for measurable processes, only the
finite-dimensional convergence on a set of full measure is sufficient for weak convergence
in Mg(T,T,v). This result is a generalization of the previons work by Sadi (1988), and its

converse in a sense will also be established there.

Our primary motivation to work with measurable processes is its generality. Since
measurability of a process is a sort of minimum requirement and the parameter set can
be any o-finite measure space in a general setting, the class of processes to which our
approach is applicable is very large. It is also interesting to see what can be done only
with those minimum requirements. On the other hand, the practical importance of weak
convergence comes from the fact that if X™ converges in law to X, then h(X"™) converges in
law to h(X) for each continuous function ~ on the path space. And this allows us to derive
many limiting distributions of continuous functionals of processes once we establish the
convergence in law of the processes. The topology on Mg(T, T, v) is very coarse, however,
so that, as we shall see in Chapter 2, there do not seem to be many continuous functionals
on this space except for integral functionals. We hope that our approach is useful in
proving the existence of processes and closure propertics of various classes of processes as

discussed in Meyer and Zheng (1984) and Kurtz (1991).

In Section 4, we apply the results obtained in the preceding sections to the prediction
process: two books by Knight (1981, 1992) are excellent expositions of his theory. His orig-
inal prediction process can be defined for any measurable process X, and since our focus

is on measurable processes, it suits our approach to weak convergence. After introducing
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the prediction process of Knight, we study their convergence in law. Conditions for tight-
ness of conditional distributions and for finite-dimensional convergence of the prediction
processes are discussed. And we show that the convergence of (Z™) is stronger than that
of (X™). In the special case where the X" are all homogeneous Markov processes, it will
be shown that a simple condition on the resolvents of the X™ implies the convergence of

their prediction processes.

2. The Space of Measurable Functions

In this section, we collect a number of results on the space of measurable functions endowed
with the topology of convergence in measure. Much of the material here should be known,
but we provide proofs of some statements when we are unable to locate them in the

literature. They are essential in our later development.
2.1 General Case

Let (T,7,v) be a o-finite measure space and (E, d) a metric space. We set & = B4(E), the
Borel o-field on E generated by the d-open sets. Furthermore, we denote by Mg(T, T) the
space of all T/& measurable E-valued functions on T. We write @ ~ y for z, y € Mg(T,7)
if v(t:a(t) #y(t)) =0. ~is an equivalence relation. Let I\N’HE(T, T) = Mg(T,T)/ ~ be the

space of all equivalence classes of T/€ measurable functions.

Since (T,T,v) is o-finite, there is a sequence (A, ),en with 4, € I, A, T ©Q and
v(A,) < 400 for each n € N. Choose n,, > 0 such that 1, <27" and n,v(A,) < 27" Put
AMB) = Z;‘;l na{A, N B), B € 3. Then A(£2) <1, so A is finite. It is easy to see that v
and A are equivalent, i.e., v < A and A < v. In fact, a stronger statement A(B) < v(B) is
true for all B € T it is trivial if v(B) = co. If 0 < v(B) < oo, then

IA

MB) 5, M0 B) g

v(B) v(B)

=1 n=1

To sumimarize, we have shown that

2.1 Lemma If(T,J,v) is o-finite , then there exists a finite measure A such that v < A

and \(B) < v(B) for all B € 7.



Suppose now that E is separable. We say that a sequence (1w, )nen of measurable
E-valued functions on T converges in v-measure to a measurable E-valued function w on
T if for every € > 0, we have lim,, o v(t: d(w,(t),w(t)) > €) = 0. One must note that
the separability of E ensures that the mapping ¢ — d(w,(t).w(t)) is T measurable, so
the set {t:d(wn(t),w(t)) > €} is in T. Since A(B) < v(B) for all B € T, convergence in

v-measure implies convergence in A-measure. The following lemnma clarifies the meaning

of convergence in A-measure in terms of v.

2.2 Lemma A sequence (w,) converges in \-measure to w if and only if for every e > 0
and every A € F with v(A) < oo, we have lim, o v({d(w,(1),w(t)) > e} NA)=0.

PRroOOF. (if ) Let € > 0 be given. Since A is finite and there is a sequence (A, ) with 4, T Q
and v(A4,) < oo, for any n > 0, we can find an N such that & > N entails /\(AE) <.
Then

Nd(wa(t), (1)) = €) < A({d(wn(t),w(t)) = €} N Ap) + A({d(wa(t).w(t)) > e} 1 AL)
< v({d(wa(t),w(t)) > e} NAL) + 7

for all £ > N, and hence limsup,, _ . Md(w,(t),w(t)) > €) <.

(only of ) Let € > 0 be given, and fix A € F with v(A4) < co. The restriction v4 of
v to A is a finite measure. Clearly v4 < A4, and so for any n > 0 there exists a 6 > 0
such that A4(B) < ¢ implies v4(B) < 1. By the assumption, there is an N such that
Ald(w, (t),w(t)) > €) < ¢ for n > N, and we have A s(d(w,(t),w(t)) > €) < é for n > N.
Hence for all n > N, va(d(w,(t),w(t)) > €) < v({d(w,(t),w(t)) >e}NnA)y<n N

We shall be concerned only with the convergence in A-measure. The above lemma
shows that it really does not depend on a particular choice of A. Any finite measure

equivalent to v will define the same convergence.

We now define three metrics which metrize the topology of convergence in A-measure.

For v,w € Mg(T,TJ), let px(v,w) be any one of the following:

inf{e > 0:A(t:d(v(t),w(t)) > €) < €},

d("l}(t)v w(t)) v w ¢
/1p1+(il(v(f),w(f)) Aldt), /}FlAd(c(t)‘, (1)) A(dt).



It is well known that all of the above metrics define the same uniformity, so using the
same symbol px(v,w) will not be confusing. It is easy to see that the py are pseudo-
metrics on Mg(T, T), and py-convergence is convergence in A-measure. We write Mig(\) =
(Mg(T,T), pa) (pseudo-metric space). The corresponding metric space Mlh(/\) is defined in
an obvious way; for example, for v, w € ME(/\), define a metric p, (v, w) = pv(v,w), where
v and w are any representatives from the classes ¥ and @ respectively. Denote by 7y the
topology induced by py. At first glance, this topology appears to depend on the metric d

on E. But the following proposition shows that it does not.

2.3 Proposition Let w,, n € N and w be T/& measurable functions on T into E. Then

wy, converges to w in A-measure if and only if

/f(w,,,(:t‘),))\(dt)a/f'(z.u(f))/\(’(].t)
A JA

for every f € Cy(E) and every A € 7.

PRrROOF. (only if ) For any subsequence {n'), there exists a further subsequence {n') for
which w,» converges to w, A-a.e. Since f is continuous, we have f o w,» — fow, A-a.e.
and hence fow, 14 — fowla, A\a.e. By bounded convergence theorem, it follows that
J fwpn ()14 A(dt) — [ f(w(t))1a A(dt). This being true for any subsequence, we get
f 4 FQoa(E)A(E) = [, Fuo(t)) A(db).

(if ) The fow, and fow are bounded, so they are in IL?(T, T, \). Thus the assumption
means that (f o w,) converges weakly in L*(T,T,)) to fow. Also [[f(w,(t))]* A(dt) —
J1f(w(t))]? A(dt) since f2 € Cy(E). These two facts imply that (fow,) converges to fow
strongly in L*(T, T, \). In fact,

[ttt = sttt A
— /[f(w,,(t),)]2 A(dt) =2 /f('w.n(iz‘,))f(ju,v(t)) Adt) + /[f(u*(f))]z A(dt)
— 2 [ A — 2 [ flati) ) A = o

Thus there exists a subsequence (depending on f) (ng) such that fow,, — fow, A-a.e.
It is well known that we can find a countable family (f;);er of Cp(E) functions such that
d(z,,2) — 01if and only if fi(x,) — fi(x) for all i. By the diagonal argument, we can find

a single subsequence (1) such that f; ow,, — fiow for all i, A-a.c., i.e., wy, (1) = w(t)
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for A-a.c. t. Starting with an arbitrary subsequence and applying the above argument, we

easily obtain the required result. Wl

We now turn to the properties of the space Mg () and ME(/\). As seen above, Mg(\)
is a pseudo-metric space with the pseudo-metric py and ME(/\) is a metric space with the

metric py.

2.4 Proposition If(E,d) is a separable metric space and if T is countably generated up

to null sets, then Mg(\) is separable.

PROOF. Let {vy,vy,...} be a countable dense set in E. For a given e > 0, the open balls
B¢, n € N, centered at v, and with radius € cover E. Set C}, = B}, — U:L;ll B¢, Then
C¢ € & and {C¢ }hen covers E. Also the Cf, are mutually disjoint. We drop € and write

C,, since € > 0 is fixed throughout.

Next let f € Mg(T,T) be given. Put 4, = f~1(C,). We have Uff:] A, =T A, €T,
and the 4, are mutually disjoint. Since ) is finite, for any n > 0, we can find an N such that
A(T)— )\(Uﬁzl A,) < n. Note now that there is a field T; consisting of a countable number
of sets such that T = ¢(Ty) because T is countably generated. Thus for each n < N, there
exists an H, € T, such that A(4,AH,) < 27"+ (Billingsley(1986), Theorem 11.4). Put
Jp = H, — U7 Hi. We have

N N N N
A ( 4, - U J,,) <A (U (AnAHn)> <Y Q?N <.
1 n=1 i=1

n= n=1

Define

v, 1 te Ty
A
g(t) =

. N
vo, ifte (U, Tk
where vy is any fixed point in E. By writing out J, A A, explicitly, one finds
n—1

A JnDSAR) S MARAH,) + Y MA, N Hy)

=1

n—1 n
n i i 1
< S D s
A + ; NN [ (2) J ’




and hence

n=N-+1 n=1 n=1 n=1
7 N 1 n
) - -1 - < 3
SJH—N; [1 <2> < 3n.

It follows that inf{e > 0:Md(x(¢),y(t)) > €} < €} < eV 3n. We have proved that
for any f € Mg(T,7) and ¢ > 0, we can find a Ty-simple function ¢ with values in
{vg,v1,v2,...} such that pA(f,¢) < e. Thus the family of all Tp-simple functions with
values in {vg,v1, vz, ...} is dense in Mg(\), and it is obviously countable. Therefore Mg(\)

is separable. W

The proposition implies that R?I[E (A\) is a separable metric space. If in addition (E, d)

is complete, then we have

2.5 Proposition If (E, d) is complete and separable and if T is countably generated up
to null sets, then Mig(\) is complete and separable.

A proof of this proposition is given in Kurtz (1991), pp.1022-3 in the case where

(T,7,\) = (R4, By, e tdt), and it carries over to our case word for word.

When we discuss weak convergence of probability measures on Mg(A), it is important,
because of Prohorov theorem, to find a compactness criterion in Mg(X). For a general

measure space (T, T, A}, the following result is known.

2.6 Proposition Let (E,d) be a complete and separable metric space. A subset I' of
I\\7IIE( A) is relatively compact if and only if for every e > 0, there exist a finite partition
{A1,A49,.... An} of T, a compact subset K of E and, corresponding to each w € T', a set
Ay, with A A, ) < e such that

(1) w(s) € K for allw €T and s ¢ Ay

(2)  sup  dlw(s),w(t))<e, k=1,2,...,N.
svteAk”'Aw

See Dunford and Schwartz (1958), IV.11.1 for a proof. This criterion, however, is not

useful for our purpose because the resulting tightness criterion for processes would be hard
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to verify. And it does not seem likely that a useful condition can be obtained for a general
(T, T, \). Kurtz (1991) obtained a useful criterion for (T,T,v) = (R4, B4, m), where m is
the Lebesgue measure (see Proposition 2.12), and here we prove its generalization to the

case where T has a group structure.

Let T be a o-compact locally compact Hausdorff topological group. We use the mul-
tiplication as the group operation on T. We denote by T the Borel o-field B(T) on T. It is
known that a left invariant Haar measure v exists in this case, and by the o-compactness
assumption, it is o-finite {recall that a left invariant Haar measure v is a Radon measure
which is not identically zero and satisfies v(tA) = v(A) for each A € T, and that a Radon
measure is a regular measure on the Borel o-field which assigns a finite measure to each
compact set). We denote by A a finite measure which satisfies the conditions in Lemma 2.1.
We know that Mg(\) is complete, but it may not be separable as T here is not assumed to
be countably generated up to v-null sets. To obtain a compactness criterion, separability

is not necessary although we certainly need it when we study weak convergence in Mg(A).

The result we shall prove is the following.

2.7 Theorem Let (E,d) be a complete and separable metric space. A subset I’ of Mg()\)

is relatively compact if and only if the following conditions hold:

(1) For every ¢ > 0 and every compact set C' C T, there exists a compact I C E such
that

supv{t € Ciw(t) ¢ K} <e.
wel

(2) For every ¢ > 0 and every compact set C' C T, there exists a neighborhood U of the
identity of T such that v € U implies

sup / IAd(w(ut),w(t))v(dt) <e.
wel JC

REMARK. It is easy to show that (1) is equivalent to the following condition in terms of A:

(17) For every e > 0, there exists a compact K C E such that

sup Mt € Trw(t) ¢ N} <e.
wel



Similarly (2) i1s equivalent to

(2') For every ¢ > 0, there exists a neighborhood U of the identity of T such that v € U

implies

sup/ LA d{w(ut),w(t)) AM(dt) <e.
T

wel
For the proof of Theorem 2.7, we need the following lemma due to Kurtz (1991).

2.8 Lemma Suppose that T satisfies (1). Then T is relatively compact if and only if
{fow:w €T} is relatively compact in Mg () for every [ € Cy(E).

He proved the lemma for (T,T,v) = (R4, By, m), but a quick investigation of his

proof shows that it is true for any o-finite (T, 7, v).

ProOOF oF THrOREM 2.7. (i) By Lemma 2.8, it suffices to show that By £ {z €
Mp(A):z = fow, w € I'} is relatively compact in Mg(\) for each f &€ Cy(E) with
0 < f < 1. Since Mp(X) is complete, we only need to show that By is totally bounded.

Let € > 0 be given. Choose a compact €' C T such that /\(Cc) < €. Also choose any
compact neighborhood W of the identity of T. Since W' is compact, by (1), there is a
compact ' C [E such that

supv{t e WC:w(t) ¢ K} <e. (a)
wel

Then select a neighborhood U of the identity of T with I € W such that « € U implies

sup/ e (d(w(sTH),w(t)) v(dt) < e, (b)
wel' JC
where

VR (r) = sup |f(z) = fly)].

ryeK, d(z,y)<r

This is possible because 15 (r) is continuous at 0 with ¢ (0) = 0 ( f is uniformly continuous
on ') and by (2). Finally, pick up an h € C.(T) (the space of continuous functions on T
with compact support) satisfying h > 0, [hdv = 1 and supp(h) C U. Put

ha(t) = /:r(s“lt‘)h(ks)v(ds).,
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for z € By. Recalling that M(A) < v(A4) for A € T, we have

/1/\Ih,*;'c(t)—:zf(t){)\(dt)g/ TAJh*a(t)—x(t)| A(dt) + €
C

JT

< /(7 ITAh*x(t)—x(t)|v(dt) + e

and

/1/\]h*c (1) — ()| w(dt) < //l o(8)] v(dt)h(s) v(ds)

< / h(s) [/ |fow(s™) — fow(t) v(dt)
U Cn{t:w(s~1)eN, w(t)EK}

+v(CN{tw(s ') ¢ K or w(t) §é[x})} (ds)
< / h(s) [/ Dr(dw(s™ ) w(t) v(dt) +2v{t ¢ UC:w(t) ¢ K}} v(ds).
JuU Jo

It hence follows from (a) and (b) that

sup /1 Alhoxz(t) — z()| A(dt) < 4e. (c)
z€ By

Furthermore it is easy to see that the family {h * z: 2 € By} is equicontinuous; we have

lh *x(u"t) — hox x(t) | = I/r(s Dh(u sy v(ds) — / (s~ Yh(ts)v(ds)
< / |h(w™"ts) — h(ts)| v(ds) = / \h(u™rs) — h(s)| v(ds),

and this is small uniformly in « € I" if v is in a suitable neighborhood of the identity of T
(recall that h € C.(T)). Obviously,
Ascoli-Arzela theorem (Bourbaki (1974), X.2.5) that for each h € C(T), {h*x:2 € By} is

relatively compact in Cg(T) with the topology of compact convergence. Smce the topology

h+z| < 1. It thus follows from a ’ropological version of

of Mp(A) is coarser than that topology, {h * x:x € By} is relatively compact in Mg(A) as
well. This, together with (c), implies that By is relatively compact in M()), as required.

(only if ) Suppose that T' is relatively compact in Mg(A). We shall first prove (17),
which is equivalent to (1). For any sequence in T', there exists a subsequence (wy) con-
verging in A-measurc. Then the sequence of probability measures (w,(A)) on E converges

weakly (note that we have adopted the notation w,(A)(A) = A(w;'(4))). This means
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that the family {w(\):w € T'} is relatively compact. Since E is complete and separable,
the converse half of Prohorov theorem shows that {w(A):w € T'} is tight. Namely, for any

e > 0. there is a compact i C [E such that sup,,¢p w()\)(K'c) < e, which is exactly (17).
Next, we show the following assertion:

(#) For any w € Mg(A), € > 0 and compact C' C T, there exists a neighborhood U of the

identity of T such that if u € U, then [ 1A d(w(ut),w(t))v(dt) <.
Let f be an imbedding of E into [0, 1) and write f(x) = (fi(x), f2(x),...). Since f; o
wlce € LYT,T,v), by the standard result in Haar measure theory (Hewitt and Ross
(1979), Theorem (20.4)), there is a neighborhood U; of the identity of T such that jc |fio
w(ut) — fi ow(t)|v(dt) < €/2 for u € U;. We may assume that v(C') > 0 because the
claim is trivial if ¥(C') = 0. Choose N € N satisfying >~ ., 27" < ¢/2v(C) and put
U= ﬂl , Us. Then for u € U, we have

Z 2t /(: |fiow(ut) — f; ow(t) v(dt)

=1 g

< ZQ“i / |fi ow(ut) — fiow(t)|v(dt) + Z 27(C) < e
Je

i=1 i=N+1

Now choose any compact neighborhood W of the identity of T. It follows from Lusin
theorem (or (1)) that there is a compact K C E such that v{t € WC:w(t) ¢ K} < e
Moreover we can find an increasing functions ¢ on R, into R4 which is continuous at 0

and satisfies o x(0) = 0 and

dlz,y) < pr (Z 27 fi(w) — fz-(y)i> . ry €N
=1
Then we have
/ LA d(w(ut), w(t)) v(dt)
Jo

< /Ca,ohf (i 27 fiow(ut) — fi o w(t)l) vidt)+v(Cn{tiw(ut) ¢ K or w(t) ¢ K}).

=1

If we choose a suitable neighborhood U € W, we can make the first term less than e. The

second term is clearly less than 2e. Thus (#) is proved.
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Finally, we prove (2). Let € > 0 and a compact set ¢' C T be given. Also let W
be any compact neighborhood of the identity of T. Then, by the total boundedness of
I, we can find a finite subset {wy,...,wi} of I' such that for any w € I', there exists a

w; € {wy,...,wy} satisfying

/‘ TAd(w;(t),w(t)) v(dt) < %
wcC *

Hence for v € W,

/ 1A d(w;(t),w(t)) v(dt)
¢

< / IAd(w(ut), wi(ut)) v(dt) + / 1A d(w;(ut),wi(t)) v(dt) + / 1A d(w,(t),w(t)) v(dt)
c . -

C C

< 2€+ /( 1T A d(wi{ut),w;(t))v(dt).
By (#), we can find a neighborhood U € W such that v € U implies
/Cl A d(wi(ut), w;(t))v(dt) <e foralle=1,... k.
Consequently, [ 1A d(w(ut), w(t))v(dt) < 3e uniformly in w € T', and (2) is proved. |

NoOTE. This is an Mg(A) analogue of Weil’s compactness criterion in LP(T, T, v). For this
result, see Weil (1951), p.53.

2.2 A special case where (T, T, v) = (R4, By, m), m: Lebesgue measure

In this section, we shall investigate a special case of the preceding section where (T, T,v) =
(Ry, By, m). Most of the results here are taken from Knight (1992), sometimes with
extended proofs. Let E be a metrizable Lusin space and & = B(E). Also let Mg =
Mg(R4, By, A), where B = B(R,) and A(dt) = e~ 'dt. This space is of our main interest

1n Section 4.

We first consider Mg ;) and give it a topology which makes I\jﬂ[ol ;] & compact metrizable

space. Define

a
d'(wq,wy) = sup

t
/ e (wi(s) —wa(s))ds|, wi.wy € Mg ).
>0 |Jo

13



It is easy to see that d’ is a metric on M[O yj and d" < 1. The convergence for this metric is
the same as fot e Cwy(s)ds — jot e *w(s)ds uniformly in t, but in fact it is equivalent to
pointwise convergence since { fo e %w(s)ds is uniformly continnous, absolutely contin-
uous and increasing. To show that M[OJ] is compact under d', it is enough to prove that it
is sequentially compact. By Ascoli-Arzela theorem, any sequence (w;,) has a subsequence

(w,) for which

¢
lim / e *wy(s)ds =: F(t) (uniformly in t)
00 0

exists because { fu. e *wn(s)ds}yen is uniformly bounded by 1 and uniformly equicontin-

uous. Indeed,

ta

0< / e Twn(s)ds < e M (ty — ), 1 < ta.
131

and so 0 < F(ty) — F(t;) < e7'i(ty —t;). Hence F is Lipschitz, and 0 < F'(t) < e¢™* for

a.e. t. Set

e'F'(t), if F'(t) exists;
A ‘
Veo(t) =

0, otherwise.

Then wee € Mgy}, and clearly F(t) = fo Weo(s)ds, so d' (wnr, wae) — 0. Thus M[g’l] is
compact under d’. We also note that the d’-topology is generated by {w — fot e Sw(s)ds :
t > 0}, or by {w j(; w(s)ds :t > 0} (t > 0 may be replaced by t € Q4 ).

Next, let E be a compact metrizable space containing E as a Borel subspace (Lusin
property of E). We fix a metric dy which is compatible with the topology of E. Let
Cu(E,dy) be the space of bounded, uniformly continuous real-valued functions. Cy(E, do)
consists precisely of the restrictions to E of the functions in C'(IE); if f e C(I@), then
it 1s uniformly continuous on E and hence flg 1s uniformly continuous. Conversely, if

f € Cu(lE, dg). it can be extended to the completion of E (which is the closure of IE in

separable Wlth respect to the sup—metmc, so that there exists a sequence (f)) which is
dense in C(E)n {f : E — [0,1]}. Thus (fjlg) is dense in C(E.d,) with respect to the
sup-metric. Define a mapping f : E— 0, 1N by
N
£e) 2 (file), fole).. ).

14



Clearly f is continuous and 1-1 since the f; separate points of E. Also if filen) — fj(e) for
each j, then f(e,) — f(e) forall f € C'(I/Ii), which in turn implies that ¢, — e. Hence f|g is
an imbedding of E into [0, 1]V, i.c., f|z as a mapping from E onto f(E) is a homeomorphism.
It also follows from Lusin’s theorem that f(E) € B[0,1]". If we define

d(cr,e2) 23 27 fi(er) = filea)l, 1,02 €E (or E),
J=1

then obviously d is a metric compatible with the topology of E (and fF\l)

We now turn to the space Mg endowed with the topology of convergence in A-measure.

We can characterize the convergence in A\-measure as follows (Knight (1992), Theorem 2.3):

2.9 Proposition w, — w in A-measure if and only if we have

/fj(i,on(s))ds—+/ filw(s))ds,
Jo 0

for every r € Q4 and f;.

PrOOF. The only if part is immediate: w, — w in A-measure implies f; 0wy, — f; 0w in
A-measure by the continuity of f;, and then apply the bounded convergence theorem. To
prove the if part, note that fooo g(s)filwn(s))ds — fooo g(s)fj(w(s))ds for each continuous
g with compact support since such a ¢ can be uniformly approximated by a sequence
of step functions. This implies fooo g(8) fi(wn(s)) AMds) — jooc g(s)fi(w(s)) A(ds) for such
functions g. Take T > 0 such that A[T,00) < e. For g € Cy(Ry), let M be a number

satisfying |g| < M. For € > 0, define a function g, with compact support by
g(t), te0.T];
g 23 gTT+1-1), te(T.T+1]
0, te(T+1, ).
Then g — g.| < 2M and we have

o0

/\ | lg(s) — ge(8)|fi(wn(s)) Mds) < / 2M ANds) < 2Me.
0 T
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The same inequality holds with w(s) in place of w,(s). Hence

/ooo 9(s)fi(10n(s)) (dq)”/ooo (8)f;(w(s)) A(ds)

[ ot = aciftenton ) + [ Lot = sl ) s

IA

+

/0 () (1nls)) A(ds) — [ ge(s)f;(w(s)) A(ds)

JO

< 4Me + l/ ge(s)fi(wn(s)) A(ds) ——/0 ge(s)fi(w(s)) A(ds)]| .

Letting n — oo, 1t follows that

< 4Me.

lim sup
n-— o0

[ sistuaton s = [ aestutn )
0 0

Since € > 0 was arbitrary, we get [ g(s)f;(wa(s)) Mds) — fooo g(s)fi(w(s)) Alds) for
every g € Cy(R,). Noting that Cy(R; ) is dense in L%(\), we conclude that fjow, — fjow
weakly in L2()\). However we also have fo (w”( ) A(ds) — fooo f?(w('s‘):) Alds) since
fie C(E), and so Wfjownlla = || fj owlls. Henc(, letting n — oc in

Nf; 0w, — fjowllz =]f;0 w5 — 2(f; 0wn, fjow) +|fjo wHQ,

we obtain the strong convergence of f;ow, to fjow in L*(A), which implies fjow, — fjow
in A-measure. A distance between w, and w under the topology of convergence in A-

measure 1s given by

/ Z‘) Jlf](w,l — fi(w(s)) Alds),

and this can be made arbitrarily small if n is large. W

Consider the mapping F: My — MI[\(]“] defined by F(w) = (fiow, fa0w,...). We
remark that Mg is endowed with the topology of convergence in A-measure, while Mg g
is equipped with the topology defined earlier, which makes it a compact metrizable space.
And we give M[o 1] the product topology, so M?é,;] 15 also compact metrizable. We see from
the above proposition that the topology on Mg is generated by {w j(; filw(s))ds:r €
Q.,j € N}. Also the topology on M[ ) is generated by {v r Jy vils)dsir € Qq,i € N},
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N
(0,1]"
and 1-1, and F ™! restricted to the range of F' is continuous. Hence F' is an imbedding of

where we write v(s) = (v(3),v2(s),...) forv e M It is then clear that F is continuous
M into Mf\é,u' We are in fact talking about equivalence class here, but to avoid confusion,
note that if w € w, then fj ow € fjow and this equivalence class does not depend on
the choice of w € w. Now if v € I\Y/ﬁﬁg’l] is in F(ME), then v = ’(\E)) for some w, so that
Mt:v(t) € f(E)} =1 for every v € v. Conversely, if v(¢) € f(E), A-a.e. ¢, then there exists
a v* € v such that v*(t) € f(E) for all . Put w* = f7' ov*. Then v* = fow* and so
7=fow ¢ F(MF) Thus we have

F(M;z) = {:; € Mjj ,): / Lecsy(v(1)) A(dt) = 1} .
JO

The mapping o + [, f(v()) A(dt) is continuous for f € Cy([0, 1]%), thus it is B(M%J])
measurable, and this measurability can be extended to the functions f € bB([0,1]") by
the monotone class argument. Noting that f(E) € B([0,1]"), it follows that F(Mg) €

B( M ;). We have therefore shown the following proposition.
[0.1] g

2.10 Proposition IfE is a metrizable Lusin space, then so is M.

N

This particular compact metrizable space M[o 1]

is useful in obtaining convergence

determining classes for II = P(Mg). We have only to find a sequence of continuous
functions { gz ) which is dense in C(M%’l]) N{g: M‘fé’]] — [0,1]}. But we have seen that the
topology on MF(])-,I] is generated by {v — for vi(s)ds:r € Q.1 € N}. Let us denote g, ;(v) =
for vi(s)ds. The class {gr‘i}reQ_,,_’ieN consists of continuous functions and separates points
of Mf\é 1 Thus the algebra generated by the g¢,, and 1, which consists of the linear
combinations of products [[;—, ¢r, i, is dense in C(MI[\(J) ‘1.])‘ Hence translating this to Mg

by means of F'. one finds that
H/ Fi(w(s)dsim € Ny rip € Qp, f, €{f;}. 1<k <m
k=10

and

{H / .f)'k(w(s))/\(ds\):m eEN, rr €Qy, f, €{f;}. 1<k < m}
sy 0
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are convergence determining. Furthermore, since {g,;} separates points, it follows from
. v v ~ OO —_— s — -
the inversion for Laplace transforms that {v = [~ e *vi(s)ds: A € Qy, 7 € N} also

separates points of M[B i The functions are clearly continuous. Hence

{H /OO c‘)"“sfjk(w(s))ds:m eN, M €Qy. fj. € {fi}. 1<k < m}
k=170

1s convergence determining.

The following lemma, due basically to Knight (1992) and Kurtz (1991), gives us a way

of picking up a function from each equivalence class in a measurable fashion.

2.11 Lemma There exists a B(Mg) © B(Ry)/& measurable mapping G from Mg x R,
into E such that G(w,e) € w for all w € M.

Proor. For f € b€, the mapping T — fab fla(t))dt is well-defined since the value is
the same for any representative « € 7. Also, the mapping (7.1) — + [ LH’L flz(s))ds 1s
continuous for f € Cy(E) by the bounded convergence theorem. Since o(Cy(E)) = &€ for
any metric space E, by monotone class argument, the above mapping is CB(M]E) @ B(R4)

measurable for f € b€. Thus the mapping

++
(£,t) — ys(z,1) 2 lim supn/ fla(s))ds
¢

n—o00

1s ‘B(ME) ® B(R4) measurable for f € b€. By Lebesgue’'s density theorem, we have
ys(z,e) € f(7(e)).

Since [E 1s a metrizable Lusin space, there exists a 1-1 continuous mapping k : E —
(0,117 such that E and i(E) are homeomorphic and h(E) is a Borel subset of [0,1]" (see
Dellacherie-Meyer, 111.20). Let e¢q € E be arbitrary but fixed. and set

R (y), ifye h(E);
gly) =
€g. otherwise,

Then ¢ : [0,1]" — E is B([0, 1]")/& measurable. Write h(c) = (hi(e), ha(e),...) and define
Y Mg x Ry — [0,1] and G : Mg x Ry — E by

1 —>00

o
yi(x,t) =S lim sup n/ hi(z(s))ds, €N,
t

G(7,1) £ g(y1(3.1),12(T.,1),..).
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It is clear from the above argument that G is B(Mg) @ B(R, )/€ measurable, and G(7,8) €
Tforall7eMg. W

We state the following compactness criteria in Mg, which is mentioned earlier and is
due to Kurtz (1991),

2.12 Proposition Assume that E is Polish with a metric d with respect to which E is

complete. A subset I’ C My, is relatively compact if and only if the following two conditions

hold.
i) For every € > 0 and T > 0, there exists a compact subset K of E such that
p

supm(t <T:w(t) ¢ K) <e.
wel

(i) For every T > 0,

T
lim sup / IAd(w(t+ h),w(t))dt =0.
h—0 e 0

It is easy to see that the conditions (i) and (ii) are equivalent to the following in terms of

the measure A.
(1) For every e > 0, there exists a compact subset I{ of E such that

sup A(t:w(t) ¢ K) < e
wel

(i) lim sup / 1A d(w(t + h),w(t)) A(dt) = 0.
0

h—0 er

2.13 Functionals on M. Let us give a few examples of functionals on Mg.

(i) S(w) 2 ess sup, |w(t)], when E = R. The set {w:S{w) < ¢} is closed; if (w,)
satisfies [w,(t)] < ¢, a.e. for all n and w, — w, then take a subsequence (n') for which
wy — w, a.e. It is then clear that |w(t)] < ¢, a.e. Thus S 1s lower semicontinuous
(this also shows that S is measurable). S is, however, not continuous. For example, take

wy(t) = 19,1/n)(t). This converges to w(t) = 0, a.e. and S(w) = 0, while S{w,) =1 for
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all n. Hence S(w,) /4 S(w) although w, — w in measure. When E is a Banach space,

the same is truc with the absolute value replaced by the norm.

(ii) Tp(w) = inf{#: fot 1p(w(s))ds > 0}, B € €. This is the first time a function w
has spent strictly positive time in the set B, and if we replace w by a stochastic process
X, then it is called the essential debut, or essential entry time (see Dellacherie and Meyer
(1975), TV.39). Note that for every t > 0, {w:Tg(w) > t} = {wf(: 1p(w(s))ds = 0}.
w fot 1p(w(s))ds is measurable; w — fot f(w(s))ds is continuous for f € Cy(E) and
hence measurable. Then use the monotone class theorem. It B is open, then the equality
{w:Tg(w) > t} = {w:m{s < tiw(s) € Bc} = t} shows that this set is closed (use a
subsequence converging a.c.). Thus when B is open, T is upper semicontinuous. But it

is not continuous in general (even when B is open); for example, consider

—nt+1, f0<t<1/n;
wp(t) =
0, otherwise.

(wy) converges in measure to w(t) = 0. Take B = (4, 00). Obviously Tg(w,) = 0 for all

n, but Tg(w) = oc.

(1ii) I}(w) 2 _];; flw(s))ds, f € b€, t € Ry. This is clearly continuous when f €
Cy(E). As a matter of fact, we have seen (Proposition 2.9) that w, — w in measure if and
only if I}(wy) — Ij(w) for every r € Q and f € Cy(E). If we define, as in Knight (1992),

the sojourn measures of w by
A [
p(A,w) = / La(w(s))ds, Ae& t>0,
Jo

N . . . w
then the above means that w, — w in measure if and only if 1,(e,w,) — 1,.(e,w) for all
r e Q+.

(iv) Let t € Ry, and let 7:0 =5 < #; < --- < t, = 1 be a finite subdivision of [0,¢].
For two disjoint open sets G and Gy in E, define a positive integer N¢22(w) by the
following: N&1:%2(w) > k if and only if there exist 0 < ! < o<t <t < < i <
17 <t such that

2

t}j +1 "fj-i-l
/ 1, (w(s))ds >0 and / l1g,(w(s))ds >0, g=1,... k.
J il t

z

j K
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The set {w: NOUO2(w) > k} = {w: NFC2(w) > k — 1} is open; suppose that w is in this
set. Then there are 0 < #] <t <t <t <---< t < 17 < t satisfying the above

condition. Take € > 0 satisfying

¢
L

€< min / 1¢, (w(s))ds,
]S]Sk 02172 t‘?

i

and consider

4 ¢4
A J . J ) . .
=< / 1, (v(s))ds > / 1o, (w(s))ds—e £=1,21<)<k
J Jt
'Lj' lj
This set is an open neighborhood of w because the topology of Mg is the weak topology of
the sojourn measures. And by construction, every element v in ' satisfies NG1:G2(v) > k.
Hence {w: N&1:C2(w) > k) is open, so N¥1:%2(w) is lower semicontinuous. Therefore if

we define

G A eNNe?
NEVG2 () Z sup NEV92 (w),
T

) .o . GG . .

where the supremum is taken over all subdivision 7 of [0.7], then N/ "7*(w) is lower
. . Welke! . . )

semicontinuous. N, "7%(w) is the number of essential passages from G to Gy by w on

[0,] introduced in Rebolledo (1987).

3. Measurable Processes and Their Convergence in Law

In Section 3.1. we discuss conditions for the existence of measurable modifications, and
prove some properties of probability measures on Mg(T, T, ). Their connection with
almost equivalence is also mentioned. Necessary and sufficient conditions for convergence

in law of measurable processes arc established in Section 3.2.
3.1 Probability Measures on the Space of Measurable Functions

Let X = (X{)er be a stochastic process on (2, F, P) with values in (E,&). We assume
throughout this section that E is a metrizable Lusin space and that & = B([E). Suppose
also that to T is associated a o-field T, so that (T,J) is a measurable space. Recall that a

process X is said to be measurable if the mapping (t,w) — X (w) is T @ F/€ measurable.
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Our starting point is a measurable process, hence it is important to know when a given
process has a measurable modification. Chung and Doob (1965) obtained a necessary and
sufficient condition for the existence of measurable modification for T = R (their method of
proof is attributed to P.-A. Meyer), and Cohn (1972) generalized it slightly. The condition
is in fact valid for more general parameter sets and state spaces than they assumed. To
state the result we need a few definitions. Let MMQ,& P) be the space of equivalence
classes of E-valued random variables on (Q,J, P) with the topology of convergence in P-
probability and X ¢ the equivalence class containing X;. A function which takes at most
a countable number of values is called an elementary function. We consider the following

two conditions:
(1) The mapping t — Xy is T/ TB(ME(Q, F, P)) measurable and separably-valued;

(2) The mapping t — X, is the uniform limit of a sequence of Mz (2,3, P)-valued mea-

surable elementary functions on T.

It is quite easy to show that (1) and (2) are equivalent. The result can now be stated as

follows.

3.1 Theorem X has a measurable modification if and only if the condition (1), or

equivalently (2) holds.

PROOF. (if) For each n € N, we can choose a collection {C, ;. ¢ € N} of disjoint sets in
B(Mg(€2, F, P)) with diameter less than 27" that covers the range of the mapping t X,
where the diameter refers to the metric py(v,w) = inf{e > 0: A(t: d(v(t),w(t)) > €) < €}.
Then the sets B, ; = {t:X,g € C,.}, 1 € Nform a T-partition of T. For each n,7 € N,
select t,, ; € B, ; and define

X' (w) =Xy, () for t € By ;.

X" is clearly a measurable process. Note that if s, € B,;, we have P(d(X,,X;) >
27" < 27" where d is a metric compatible with the topology of E. It then follows that
Pd(X], X;) >27") <2 " foreach t € Tand n € N. By Borel-Cantelli lemma, we deduce
that

P < lim X' = X,,) =1 for every t € T.

n-—+00

The set D = {(t,w): X7'(w) converges as n — oo} belongs to T ¢ J since E is metrizable

Lusin (see Dellacherie and Meyer (1975), 1.16). Let ¢q be an arbitrary but fixed element
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of E. Then the process Y™ defined by

A X w), if (t,w) € Dy
Yi'w) =

o, otherwise,

. s , A . ..
is measurable, and Y,"(w) converges for every t and w. Put Yi(w) = lim, oo YM(w). ¥ is
measurable as the pointwise limnit of measurable processes Y™, and satisfies P(X, = Y;) =1

for every t € T.

(only 1f ) Let H be the family of E-valued processes satisfying the condition (1). One
can verify without difficulty that 3 is closed under sequential pointwise convergence. Let
C be the family of mappings from T x € into E which take only finitely many values, each
value occuring on a finite union of measurable rectangles. Clearly we have € C H. Note
that any measurable function is the uniform limit of a sequence of elementary functions
(for separable and metrizable E; see Dellacherie and Meyer (1975), 1.17) and that an
elementary function is the pointwise limit of a sequence of simple functions. Using these
facts, it is fairly easy to show that the set of T@ F/& measurable functions coincides with
the smallest collection of functions on T x © into E that contains € and is closed under
sequential pointwise convergence (sce Lemma 2 of Cohn (1972)). It follows that H contains

all E-valued measurable processes. W

The next theorem, due to Hoffmann-Jgrgensen (1973). gives another necessary and

sufficient condition which depends only on two-dimensional distributions of the process.

3.2 Theorem Let Q(s,t)(4) = P[(X;,X¢) € Al fors,t € Tand A€ E@E. Then X has

a measurable modification if and only if the following two conditions holds.

(1) For every G,H € & and cvery s € T, the mapping t — Q(s.1,G x H) from T into
[0,1] is T/B[0, 1] measurable.

(2) There exists a countable set Ty C T such that for all t € T, we can find a sequence
(tn) C Ty with Q(tn,t) = Q(t,1), n — oc.

For a proof, see the above-mentioned paper. We also remark that Skorokhod (1980)
and Engelbert (1984) discuss similar conditions for the existence of measurable, progres-

sively measurable, optional and predictable modifications.

Now let X = (X});et be a measurable process on (2,3, P) with values in (E, £). We

assume that (T, T,v) is a o-finite measure space. A finite measure equivalent to v, whose
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existence is guaranteed by Lemma 2.1, is denoted by A. The notations defined in Section 2
will be used without mention. So, for example, Mig(\) is the space of E-valued measurable

functions on (T, T) equipped with the topology of convergence in A-measure, and I\N’[[F( A)

is the corresponding space of equivalence classes. Since X is measurable, the paths Xe(w)

belong to Mg(A) for each w € . Let us denote by “Aﬁi(bw) the equivalence class containing
Xo(w). We have

3.3 Lemma If 7 is countably generated up to v-null sets, then the mapping w — X’(w)
is F/B(Mz()\)) measurable.

Proor. By Proposition 2.4, ME()\) is separable. Thus we have only to show that the

inverse images of the balls under the mapping is in F. But we have

{w: / TAd(X(w),w(t)) A(dt) < c} cJ
T
by Fubini’s theorem. &

REMARK. The lemma remains true if we only assume that E is separable and metrizable.

Thus the mapping w X’(w) induces a probability law on I\N/JIE(/\,). Conversely, we

have the following,.

3.4 Lemma Suppose that T is countably generated up to v-null sets. Then for any

ME( A)-valued random variable f, there is a measurable process X such that X.(w) €

X(w).

PrOOF. We construct a mapping which selects a function (representative) from each equiv-
alence class in a measurable way. First let us assume E = [0, 1]. Consider My 4 = Mo 11(A)
as a subset of L*(T, T, \). Since F is countably generated, L*(T, T, \) is separable. Thus
there exists a countable orthonormal basis (gg j)jen for LA(T, T, \). Pick any representative

¢; for each 5j and fix them. If w € My ), then we have a representation

o0

wlt) = (. 6,)65(1).

J=1
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where the limit is in L?(T,T. ), the equality is A-a.e. and (w,¢;) = [w(t)d;(t)A(dt).
Note that the value of {w,¢;) will remain the same when w is replaced by any w' € w. So

it makes sense to write (w, ¢;). Put

n

j=1
W+ (W, ¢;) is B(Myy,;j) measurable since it is continuous. Hence (w,t) = vyo(w,t) is

B(Mg,1)) © T measurable. Define ng(w) to be the smallest positive integer n for which

U . 1
sup A {t € T: [ya(w, 1) — ym(w, 1) > —f} < —

m>n

holds. Then

_ =< - N 1 1
{w:ng(w) <n} = mQ+] {'w: A {t € T: |y (W0, 8) — ym(0.1)] > F} < _A—Z} ,

and note that @ — A{t € T:|v,(w,t) — vm(w, )] > 1/k*} is B(Mjp 1)) measurable by

Fubini’s theorem. This shows that w — ng(w) is B(Mj ;)) measurable. Now set

L limsup, ’ynk(;)({ﬁ, t), if imsupy,_ .. ynk(%(lﬂ, t) € [0,1];
g(w,t) =
0, otherwise.

It is evident from the construction that g(w,e) € w and (w,t) — g(w,t) is B(Mj 1)) ® T

measurable.

As a measurable space, (E, &) is of course a measurable Lusin space. Thus, by Kura-
towski’s theorem (see Dellacherie and Meyer (1975), I11.20), it is measurably isomorphic
to a Borel subset of [0, 1] endowed with its Borel o-field . So let h be an isomorphism of
(E, &) into [0, 1] with A(E) € B[0, 1]. Let ¢¢ € E be arbitrary but fixed. Define
h=Y(g(how,t)), if g(how,t)e h(E);

~ A

Glw,t) =

. €0 otherwise.

Then one can easily check that G(w,e) € w and (w,t) — G(w.t) is B(Mg(A)) @ T mea-
surable. Tt then follows that for any Mg-valued random variable X, X,(w) el X(w),t)

defines a measurable process and Xo(w) € X(w). M
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The above proof is inspired by Skorokhod (1980) and Engelbert (1984).

The notion of probability law on M (A) induced by X may not be easily understood,
but the following theorem clarifies its meaning in terms of the finite-dimensional distribu-
Uyt X))
and (Y%,,...,Y:, ) have the same law in Ef forallt; € S, 1 <1<k ke N

tions of the process. For processes X and Y and S C T, we write X

3.5 Theorem Let X and Y be E-valued measurable processes, and suppose that J is
countably generated up to v-null sets. Then X and Y induce the same laws on Mg(\) if

and only if there exists an S € T with A Sc) — 0 such that X "2 v

ProoF. (if) Let G = {g € H(T @ &):{g(t,-):t € T} is uniformly equicontinuous on E}.
Also set

Qi (w) = / g(t,w(t))A(dt), w e Mz, BeTand g € §.

Suppose that w, — w in A-measure. For any ¢, > 0, choose § > 0 such that |g(t,z) —
g(t,y)| < € whenever d(z,y) < é and t € T. We can find ng such that A(t: d(w,(t), w(t)) =
6) < nfor all n > ny. Then for all n > ny,

Mt lg(t0n(8)) — g(t, w(t))] > €)
< M\t d(wn (1), w(t)) = 8) + Mt [g(t, wa(t)) — g(t,w(t))| > €, dlwy(t),w(t)) <) <.

Hence ¢(t,w,(t)) converges in A\-measure to g(t,w(t)), and it follows from the dominated
convergence theorem that @5 ,(w,) — @5 ,(w). Since Mg(\) is a metric space, this implies
that ® 5 ,(w) is continuous. It is obviously bounded, so that we have ®p ,(w) € Cyp(Mz)).

Let A be the subalgebra in C(,(I\N/]Iw) generated by 1 and the ®p,, B € 7, g € §.
Suppose @ # @ be in Mg. Then A(#:d(w(t),v(t)) > 0) > 0 for any w € @ and v €
v. Put B = {t:d(w(t),v(t)) > 0} and g(t,x) = d(w(t),z) AN1. Clearly B € J. Since
\d(w(t), r) —d(w(t),y)| < d(z,y), {g(t,-):t € T} is uniformly equicontinuous. It is obvious

that ¢ i1s bounded and T & € measurable, so g € §. Moreover,
Qp ,(w) -—-/ d(w(t).w(t)) Mdt) =0, Sp4(v)= / d(w(t),o(t)) A(dt) >
B B

Thus @5 ,(w) # ®p (V). that is, A separates points. By a generalized version of Stone-
Weierstrass theoremn, A is dense in Cy(Mg) with respect to the strict topology (see Fremlin

et al.(1972) for this result). It then follows that A separates measures on M;. Thus we
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need to show that for each ® € A, it holds that [ ®(X)dP = [ ®(Y)dP. But by Fubini’s

fd(S
theorem and X ( ) Y.

k
lI:IIQB;)g;(X)} /}31 /Bk [g1(t1, X ) gr(te, X, Y A(dt) - A(dty)

N / / E[gl(’tluyftl)".gk(tkwy;k)] ’\(dtl) dtk
B, N Bk

Since cach element of A is a finite linear combination of finite products of some ®p ,’s,

the desired conclusion follows.

(only if ) We will use the function G constructed in the proof of Lemma 3.4. Denote as
earlier by ‘Z’( w) and EN’( w) the equivalence classes containing X.(w) and Y, (w) respectively.
Then for each w, G(}Z(w), o) = X.(w), A-a.e., so by an application of Fubini’s theorem,
there 1s an S, € J with )\(S ) = 0 such that X (w) = G(X X(w),t), was. foralltesS.
Similarly we can find such a set S, for Y. Put § = S, NS, so we have A Sc) = (. And for
allt € S, Xy(w) = G(X(w),1), w-a.s. and Yj(w) = = G(Y(w),t), w-a.s. By the assumption,

X and Y have the same law on Mg, so for any ty,...,t, € S,

(G(}?(w),tl) L G(X (w), fm)) (G(?(w),tl)7...,G(?(w),t,,ﬁ).

It therefore follows that (Xy,,..., X, ) and (Y;,,...,Y,,, ) have the same law on E™ for

any t1,...,t,m €S. W

The above theorem connects the notion of probability measure on Mg(\) with that
of almost equivalence. Let X and Y be two E-valued measurable processes defined on
possibly different probability spaces. Then X and Y are said to be v-almost equivalent
if for every finite system of pairs (¢;,¢;), 1 < ¢ < n, where ¢, is positive and integrable

function on T and g, is bounded &/B(R) measurable function on E. the random vectors

(Agl(fY!)¢l(t) v(dt),. .., /grz(4Yt)¢rt{t) VWU)
J1 Jr

and

( L g1 (Y61 () w(dt), . .. / G Ye)oult) u(dt))
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have the same law on R". Tt is then easy to see from the proof of Theorem 3.5 that X and

Y induce the same law on Miz(A) if and only if X and Y are v-almost equivalent.

The concepts of pseudo-path and pseudo-law have been introduced in Dellacherie and
Meyer (1975), IV.35-45 for the case T = R4, and they are closely related to the notions of
equivalence classes and probability laws on Mg(A). They could be extended to a general
parameter set T with a o-field T and a o-finite measure v although the choice of v, which
should play the canonical role, may not be evident. We do not go into details here, and

the interested reader is referred to the book mentioned above.

3.2 Convergence in Law

We continue to use the notations introduced in the preceding sections. Let again X =
(Xt)rer and X" = (X[)ser, n € N be measurable processes on (2,3, P) with state space
(E.&). Tt appears that we would need to show X" ) X for some § € T with A(S c) =0
and the tightness of (X"),ecny in order to get X7 5 Xin Mg(A). But the next theorem
shows that in fact it suffices to prove X" %) X for some § € T with )\(_Sc) = (. That 1s,
tightness is unnecessary although we must know that the limiting process X 1s measurable.

Our method of proof is quite similar to that of Cremers and Kadelka (1986).

3.6 Theorem Let E be a separable metrizable space and J be countably generated. Sup-
. _ fd(S
pose that (X™),eny and X are E-valued measurable processes on (2,3, P). If X" 419 x

for some S € T with /\(Sc) =0, then X" 5 X in Mg(A).

PROOF. Let ¢,(t,v) = d(v,y(t)) Al fort € T, v € E and y € Mg(}\), and define
fs, : Mg(A) — R by

fora) 2 / By (. (1)) M(dt) = / d(z(t), y(1)) A 1 A(dt).

Put &y = {fy, 1y € MIE(A)}. Since ML(/\) is separable, its topology is generated by
the balls, i.e. the balls constitute a base for the topology. Thus the family @3, generates
the topology of Mh()\) It is clear that for cach fixed y € Miz(A), fs, is continuous. By
Pollard’s theorem (see Pollard (1977)), it hence suffices to prove that for any yi,..., ¥y, €
Mg(A), k=1,

(Fo,, (X™)ooi fo,, (X)) £ (Fo,, (X)seofo, (X)) nR™.
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Wehave 0 < fo (XHw)) < AMT). Let ay,...,an € R™. BV Cramer-Wold device (Billings-
ley (1968)), it is enough to show that 3", a;fys, (X™) = Sy aife, (X)in R, ie., for

g € Co(R),
/q (Z sz(f)yz<X1l)) dP — /g (Z a,fd)M(X)> dP

=1 1=1

Note that 121’__1 i fo,. (X”)l < AT) Y. Jail =: K. Since the polynomials are uniformly
dense in C[~K, K] by Weierstrass theorem, we have only to consider g(u) = u! for I € N.

oL ‘ ol L
Moreover, considering a general form of (Z?;l a; f‘%i (X™)) . it is enough to prove

/[f¢y-1 (’Xﬁ,)}kl - [f(ﬁym (Xrl)}lcm dP — /[foy] (*X\)]h - [.fcf)ym (X)]km AP

We have, by Fubini’s theorem,

m

/H [fo,, (X)) dP = /H [/éy].(t‘{',)x”t’]i)A(dt'fy--/ () ;; JA(dt )| dP

- /~--/F.,,(t%,...,t}c];---;tgn,..,t;ﬁn)A(’dﬁ)--.A(dt;gjn),

where
1 1 Lqm m n
Fult], oo th st ) /HH% X7 ) dP.
Q2 J=11=1
N : i 1. 1 1 Tk;

The mapping (vy, ..., v ;.- 507,00 Hj . Hz L Oy, (H 0] 7 belongs to Cy(EZ*),
and we assumed that

S ¥l n o, .vn n L Xr Y . X X"

(4 tloe s t]""' tm"" tm)'ﬁ(‘ S O tm,~-~71tm)

1 k1 km 1 k1 1 km

fort},...,t}‘tl;...;f{’/’,.. ty €5, Thus

Fo(ti, oty ot )

771

m

k;
= F(t, .ttt /HH (], X,)dP



/.../Fn(tl,...,ﬂ T YA () ()

— /.../F(:t},..‘,t}cl;...;t{”,...,,7'7 A(dt]) - AdE ),

which equals fH;" . f% (X)]* dP by Fubini’s theorem as above. H

3.7 Remark Recalling the fact that X" ) X’ if and only if each subsequence (n') con-
tains a further subsequence (n'") such that X n' 5 X, we casily see that the condition of
the theorem can be replaced by:

for any subsequence (n'), there exists a further subsequence (n'') and an S € T with
3 1 {

)\(Sn) = 0 such that X" e X.

We now turn to the converse of Theorem 3.6 in a sense. The following result is an
extension of Meyer and Zheng (1984) and Sadi (1988).

3.8 Theorem Suppose that T is countably generated up to v-null sets and that E is
a metrizable Lusin space. Let (X™),en and X be E-valued measurable processes with
parameter set T on some (2, F, P). If X" 5 X in Mg, then there exist an S € J with

r 1d(S) -
)\(Sc) = 0 and a subsequence (n') such that X" 48 ¥

Proo¥. We have L(X™) 5 L(X) in ME, so by Skorohod-Dudley representation theorem
(see Ethier and Kurtz (1986), Theorem 3.1.8), we can find, on some probability space,
Mg -valued random variables Y™ and Y such that LX) = L Y, LX) = (17) in Mg
and ¥ — Y as. in Mg, By Lemma 3.4, there exist mea.m,u'able processes Y and Y
for which we have YJ)'(w) € ?"(w) and Yi(w) € i(w) for all w. Then Y*(w) — Yo(w) in

A-measure for almost all w

Since F is separable. there is a family {g;};er of continuous bounded functions on
E such that ¢; — ¢ in E if and only if g;(ex) — g¢i(¢) for every ¢ € N. For example,
we can take g;(e) = d(e;, ¢), where d is a metric compatible with the topology of E and
bounded by 1, and (¢;) is dense in E (this is just an imbedding of E in [0,1]"). Clearly

gi(Y(w)) — gi(Ye(w)) in A-measure for almost all w. and since the g; are bounded, we
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/ 19:(Y7 () = gi Y )| Aldt) - 0

boundedly for almost all w. Thus integrating with respect to P yields
/ 19:(Y () = gi(Ye(w))[ A @ P(dt, dw) — 0.

Then we can find a subsequence (nt ) such that gz-(_Ytn;c (w)) — ¢i(Yi(w)), A® P-a.e., and by
the diagonal method, there exists a single subsequence (n') so that we have g (Y7 (0)) —
gi(Yi(w)), A @ P-a.e. for all 7. It follows from Fubini’s theorem that there is an Sy € T
with /\(Slc) = 0 such that for every t € Sy, ¢i(Y;" (w)) — gi(Yi(w)), P-a.s. for all 7. Hence

, ofd(Sy) o,
for every t € 5, V)" (w) — Yi(w), P-a.s., and so ¥'" 5y Y.

Since Y and YV induce the same laws on Mg as X™ and X respectively, by Theorem

. L fd(S) oo
3.5, we can find an S, € T with /\(SE) — 0 such that X" “©” v" for all n € N and
- 1d(S2) . . _ FHA(S) o
X G2 Y. But then, setting S = 5; N Sy, we obtain X" a5 X. i

3.9 Corollary Let (X"), ey and X be E-valued measurable processes with parameter
set Ry on some (2,3, P). For X" % X in M, it is necessarv and sufficient that for any
subsequence (n'), there exist a further subsequence (n'') and an S € T with )\(‘Sc) =0
such that X" d(3) X.

For a proof, combine Theorem 3.8 and Remark 3.7. This corollary generalizes the
result of Sadi (1988).

4. Convergence of the Prediction Process

In Section 4.1, we shall present a short summary of the theory of prediction process fol-
lowing Knight (1992). Convergence in law of the prediction processes is the main topic of
Section 4.2. We first consider conditions for tightness and convergence in law of general
conditional distributions. A condition for finite-dimensional convergence of the prediction
processes is then derived, and we show that the convergence of the prediction processes
implies that of the given processes. A special case where the given processes are Markov

1s discussed in detail.
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4.1 Preliminaries

Let X = (X{)ier, be a measurable process with values in E. We assume that £ 1s a
metrizable Lusin space with & = B(E), and let My = Mg(R,, B4, m) where By = B(R, )
and m is the Lebesgue measure. Setting A(dt) = ¢7'dt, we give Mg the topology of
convergence in A-measure. The space Mz plays the role of canonical space for the process

X, on which the prediction process of X will be defined.

The prediction process is the process consisting of the conditional distributions of the
future of X given the past at each time ¢t € Ry. Our first task is then to define the past
and the future precisely. The problem here is that the natural filtration o(w(s),s < t) is
not meaningful since the coordinate projection w +— w(t) is not B(Mpg)/E measurable; the

atoms of B(Mg) are the equivalence classes. Instead, we define the pseudo-path filtration

I} by
F =0 (/ flw(u))du;s <t, f€ bS) \
0

and set T £ I = Viso Fi- Proposition 2.10 shows that ' = B(Mz). Moreover, the shift
operator §; on Mg is defined by #w(s) = w(t+s) for s,# € Ry and is 3, /T, measurable.
The past is now defined to be 31 and the future is given by 8; 'd", which is isomorphic to
J".

For the state space of the prediction process, let II = P(ME), the set of probability
measures on (Mg, 3’) endowed with the topology of weak convergence. This topology is
called the prediction topology in Knight (1992), with which II becomes a metrizable Lusin
space. Weset § = B(II). A generic element of II is usually denoted by z, and we sometimes

write P? for z; it is actually redundant but intuitively helpful.

We are now ready to state the precise definition of the prediction process. According
to Corollary 2.5 of Knight (1992), the prediction process Z° = (th>t€‘l~€+ for z € II is the
process with values in (II,G) that is P*-a.s. uniquely determined by the following two

requirements:

(1) ZX(A)=P*(07'A1F,. ), reQq, Ac T
(2) Z; is cadlag for the prediction topology on IT defined above.

Thus the prediction process is defined for the law = € II induced by X rather than for
the process X itself. A remarkable result of Knight (1975) states that for any z € I, Z~#

is a homogeneous strong Markov process (see also Knight (1981, 1992)). We are mainly
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concerned with the conditional probability aspect of the prediction process, so we do not

have occasion to use the Markov property of Z°.

To express (1) in terms of processes and to get around the problem of nonmeasurability

of the coordinate projections mentioned above, we define a generalized coordinate process

X on Mg by
Xo(w) 2 G(i5, 1),

where @ is the equivalence class containing w and G is the function constructed in Lemma
2.12. From the lemma, it is clear that X,(w) is a measurable process with values in (E, &),
that is, the mapping (,w) — X¢(w) is " @ B(Ry)/E measurable and has the law z on

Mg. One can show further that

(i) X,(w)is B[0,t)2F, measurable on [0,#)x Mg and B0, ]2}, measurable on [0, t] x Mg
for cach t € R,.
(ii) For each w € Mg, X'g(u*) = w(s) for a.e s, and (7(5{:5, s < t) = F} up to P*-null sets.

See Knight (1992), Theorem 1.2 for a proof. (1) may then be written

ZHA)= P Xiya € AT, ).

There are some situations in which one wishes to have the prediction process defined
on a given probability space. If X = (X;)i>0 is a measurable process on a probability
space (Q,F, P) with values in (E, &) and if it induces the law = on Mg, then the prediction
process ZX of the given process X on (2,7, P) is defined by Z¥ (4,w) = Z7 (A4, Xo(w)),
t € Ry, A €3, and for I\ -stopping times T < oo, we have

P(Xrye € A|Fpy ) =Z7(A), AT,

where F;* = X~1(F}).

It is often useful to consider, together with Z°, the processes K* = (K[ )iep, defined

by Kf(fc )= Z;(f), for f € bF'. Hence K* satisfies,
K3(A)=P(A|Fry) on{T < oo},

for any (7}, )-optional T and A € F'. In terms of process, it means K7(A) = P*( X.e A l

Fi. ). Hence one may say that K is the “prediction” process of the whole path.
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Since we would like to discuss weak convergence of processes, it 1s necessary to as-
sume some topological properties on E. And we have defined the prediction process in a
topological setting, so that the topology for the state space of the prediction process can
 be introduced in a natural way. The prediction process could, however, be defined only in

a purcly measure-theoretic framework (see Knight (1992)).

4.2 Tightness

First we discuss tightness of conditional distributions. Let S be a metrizable Lusin space,
§ = B(S), and P(S) the set of all probability measures on (.5, §). We shall later apply it to
the case where S = Mg. Suppose that {P*},en is a subset of P(S) and € is a sub-o-field
of 8. Let K® be a conditional distribution given €, i.e., K“(A,s) = P*( A | C)(s). We
look at K@ as a P(S)-valued random variable on (5, 8).

4.1 Proposition If {P*} is tight, so is {I{*}.

PROOF. Let € > 0 be given. For each j € N, find a compact ('; C S such that P*(Cj) >

1- J—;; for all @ € A. We have

1
- ]% < PY(C,) = EXK*(C;)] = / POIK™(C}) > 1] da
JO

1 I=1/y
_ / PE(C;) > a]du + / PUE(C;) > o) da
1—1/j 0
1

<ipo [K(’(Cj) >1 - 1.] 1=
J ‘ J J

Hence ]7* <5 < %pa [KO‘(C]‘) > 1 — ﬂ , and so P? -K“(C’j) > 1 — ﬂ > 1— 5 for all a.
It follows that

i 1 Py
pPe [A’“(C’j) >1—~forallje N] = p® ﬂ {K“(Cj) >1 - 1}
J

> ol rees 1 Sy
21—L[1-~P (A (Cj)zl—;:>:i 21—2;27:1—6.
1=1 =1

Set H = {p € P(S):p(C})>1-1/j for all j € N}. If () is a sequence in H, then for any
n > 0, there exists a jo with 1/j9 < 1 and p,(Cj,) > 1—n for all n. Thus (1,,) is tight and
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by Prohorov’s theorem, it is relatively compact. Hence we can find a subsequence (fin, )
converging to some g € P(S). But since C; is closed, p(C;) > hmsupy, pn, (Cj) 21— 1/7
for all j and so g is in fact in H. This shows that H is sequentially compact and, being a

metric space, it is compact. Noting that
‘ 1 :
PYK“e Hy=P*|K*(C;)>1—~forall jc N| 2 1—¢
J
for all o € A, it follows that {I°} is tight. M

NoTe. If Sis Polish, then the above proposition is true with tightness replaced by relative

compactness because P(5) is also Polish if S is.

Now suppose that P* 5 P on S. Then (P") is tight by Theorem 8 in Appendix IIT of
Billingsley (1968). Also, by the above proposition, (™) is tight and hence relatively com-
pact by Prohorov’s theorem. Pick a convergent subsequence ( K™ ) so that K™ (f) 5K (f)
for some kernel I on § for every f € Cy(S). We want to find a condition under which
L& K, where K(A,s5) = P(A | C), or equivalently, I:(f) £ LK(f), f € Cy(S). Note
that K(f), K(f). and K"(f) are bounded random variables. So if E"[g(K"(f))] —
E"[g(K(f))] for every g in a family of continuous bounded functions which separates
measures on R, or a bounded interval, then we have Elg(K(f))] = E[g(K(f))] for all

f € Cy(S), which implies ]:’(f) = K(f). In summary, we obtained

4.2 Proposition IfP"™ 2 Pon S, then it is sufficient for K™ 5 K that E™g(K™(f))] —
E™g(K(f))] for every f € Cy(S) and ¢ in a family of continuous bounded functions which

separates measures on bounded intervals.

- . . w . ..
NoTE. If we do not assume P" - P, then ¢ must be in a convergence determining class.

Using Proposition 4.1, it follows that if a sequence (z,) in P(Mg) is tight, then for a
fixed t € Ry, (K;["),en is tight in II. Sinee Z;" is the image measure of A" under 6,
which is continuous, one can easily sce that for a fixed t € Ry, (Z;"),en is also tight in
this case. The consequence of Proposition 4.2 applied to the prediction process may not

. g . w . .
be very useful, but can be stated as follows: if z,, — z in Mg and if

E*n {g(Ezn( .f(“g't_'r.) | 3';+ ))] — E*n [.(](Ez"( f(’j\(:f—ko) ( 9;%— ))}
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for every f € Cp(Mg) and ¢ in a family of continuous bounded functions which separates

. o L .
measures on bounded intervals, then Z;" — Z7 in M.

4.3 Finite-dimensional convergence

Next we shall find a condition for finite-dimensional convergence of the prediction process.
Suppose that S and P(S) are as above, and for f € Cy(5), define f*:P(S) — R by
() = p(f) = [ fdu. Tt is clear that the family {f*: f € Cy(S5)} generates the weak
topology on ‘fP( S). Let (Z") be a sequence of P(S5)-valued random variables on some

probability spaces. By Pollard’s theorem, Z" -5 Z is equivalent to

(Z"(f1)s o 2 F)) S (Z(Fi ) Z(fa)) in RE

for any fi,..., fr € Cp(S) and k € N. By the Cramer-Wold device (see Billingsley (1968),

theorem 7.7), the above is in turn equivalent to

ar Z"(fi) 4+ a2 fk)_)al (fi)+ -+ arZ(fr)

for any ay,...,ar € R. But obviously a1 Z™(f1) + -+ ax Z"(fr) = Z™ (a1 fr + -+ - + ax fr)
and aif; + - + arpfr € Cy(S). Thus Z7" % 7 if and only if Z"(f) 5 Z(f) for each
f € Cy(S). Clearly we can replace Cy(S) by any family (f;) which is dense in C(§ ) where

S is a compact metric space containing S as a Borel subset.

If we have a sequence of vectors of P(5)-valued random variables (Z7,..., Z}), the

same reasoning shows that

(zr,.... 20 5 (20, )
if and only if
(ZPCF) o ZRF)) S Za(F) o Zal )
for any fi,..., fr € C3(S). We can use this to obtain a condition for convergence of finite-

dimensional distributions of the prediction process. Suppose that we have a sequence (z,)

in IT, and let Z;" be their prediction processes. According to what we have proved above,

Z Zn L z =4
(Zir,. . Zi) S (28, ZE)
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if and only if

(Z2 (1) ZE(gn)) = (ZE(g1)s - ZE(gr))

for every ¢;,.... gr € {g;}. where {g,} is dense in C(Mz). We know from the results in
Section 2 that the g;(w) of the form

H/Oifi(w(t))dt or H /000 e M fi(w(t)) dt,

=1

becomes

where {f;} is densc in C(I/Ei), may be used. So for the latter choice of {g;}, the condition
H/ N (w(s))ds o By, |T)
0

<EZ" )
1=1 =1,k

Note that, in view of Theorem 3.6, the above condition implies the convergence in law of

(Z%) to Z* in M.

m; 00 . )
H/ 6—)‘3~9fi7(w(3)) ds o6y,
=170

,,,,,

4.4 Convergence of given processes

We shall now go on to show that the convergence of the prediction processes implies that
of the given processes. Let X", n € N and X be measurable processes with values in E,
and let Z" and Z be the prediction processes of X™ and X respectively. Since Mg is a
metrizable Lusin space, so is I (Dellacherie and Meyer (1975), II1.60). Then the path
space My = M (Ry, B, \) of the prediction process is also a metrizable Lusin space by

Proposition 2.10.

4.3 Theorem If (Z"),en converges in law to Z in Myy, then (X"),en converges in law
to X in M.

Proo¥. By Corollary 3.9, for any subsequence (n'), there is a further subsequence (n')

and an S C Ry with /\(\Sc) — 0 such that 27" ) 7. Also for any ¢ € Cy(Mg), the
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mapping p +— p(¢) = [ ¢dp from II into R is continuous. It thus follows that for any
t€ S and any ¢ € C’b(ME)A/

~n'! n'ty L :
E[¢(X{ya) | T 1= E[¢(Xiye) | T ] R,
where SIH = {in” and Fy = 97\ . The sequence {E[d( ’t’;, )| St"” ]} is bounded, so it
is uniformly integrable. Hence we get E[@(Xt+.)] e E[¢(Xt+. )] for any ¢+ € S and any
¢ € Cp(Mg). In other words, Xt+, 5 Xiie in Mg for each ¢t € S. Using the translation

operator #;, we may write it as 6, X o't 5 8, X in Mg for each t € S.

It is clear that 6, is continuous since if w, — w in A-measure, then w,(t+e) — w(t+e)
in A-measure. Set A = {6, 'G: G open in Mg, t € S}.
(1) A 15 a base for the topology for Mg,
Let H be any open set in Mg and wq € H. Then there is a ball U centered at wy and con-
tained in H. Write U = {w: p(w,wy) < €}, where p(w,wq) = [ 1 A d(w(s),wo(s)) Mds)

and d is a metric compatible with the topology of E. Let V = {w: p(w,wy) < 6/2} with
t <e/2and t € S. The we have
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C {w: /OO T A d(w(s),we(s)) A(ds) < %} )

B {/ T A d(u() gl 5) A(ds) < 'S }

Since d(w(s),wg(s)) A1 <1, t < e/2and A[0,1] < €/2. we see that §, 'V C U.
(i1) A 1s closed under finite unions.

It is enough to consider unions of two sets in A. Let G and Gy be open sets in Mg and
f],fg € S with tl < fg We have 6 lGl U9 1(7) = 9 lG U8t1 9“ t GQ = Ht—ll(Gl U

()t‘;l,thg). 9;21,_“(;2 is open because (Jt is continuous for t € R

It follows from (i) and (i) that the family {0;}ies qahsfles the conditions of Pollard’s
theorem (see Corollary A2.3). Consequently we obtain X" 5 X in M.

We have shown that for any subsequence (n'), there exists a further subsequence (n'")
. V7R SR . . . . . .
for which X™ = X in Mg, which obviously implies that the sequence (X") of the given

processes converges in law to X in Mz. Wl
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REMARK. The assertion of Theorem 4.3 is in fact equivalent to that of Lemma 2.21 (1)
of Knight (1992). Our proof here is different from his, and the point of our proof is that
the result can be shown without using the Markov property of the prediction process; only

the defining property of the prediction process is necessary.

4.5 Case of Markov process

In this subsection, we assume that E is Polish. Let p(t,z,B), t ¢ Ry, c € E, B € € be a

Markov transition function which satisfies
(4.1) (t,a) > p(t,z,B) is B(0,00) @ & measurable for each B € &;
(4.2) {zw— p(t,x,B):t >0, B € £} separates points of E.

From Lemma 2.8 in Knight (1992), for each = € E, there is a measurable Markov process
X = (X)ier, with finite-dimensional distributions determined by p(t, z, B). Namely, for
0 <t <--+ <tp, we have

(4.3) P*(X,, € By,..., X, € By)

= / / p(ty,x,dey) - pltp—1 — tp—z, wp—2, deg_1)p(th — tho1, Tx—1, Br).
By -1 B

Note that we do not assume p(0,z,e) = 6,(e). Thus the process X may not start at
z under P*. We call the above process X the measurable Markov process having the
P*®law with transition function p(t,z,B). This process induces a law on Mg, which
we denote by p(z). This is uniquely determined by p(t,z,B) (see Knight (1992), p.
53). We look at ¢ as a mapping from E into II. Lemma 2.9 of Knight (1992) shows
that ¢ is &/B(Il) measurable. Furthermore, Theorem 2.36 of Knight (1992) states that
oz — p(t,z,B):t >0, B e &) =oc(x — Ryflz): A >0, f € bE), where Ry is the

resolvent defined as

Ryf(z) £ /OO e"’\tth(‘:L’)dt

JO

and T, f(z) = fp(t,a,dy)f(y) is the semigroup associated with p(t,z, B). Thus (4.2)
amounts to assuming that {z + Rxf(z): A > 0, f € b€} separates points of E. Noting
that Ryf(z) = E* ”030 e)‘t_f(Xt)dt} by Fubini’s theorem, we see that o is 1-1. For, if
x # y, then clearly

E® [ / ooe”\tf(Xt)dt} + EY [ / b c)"f(;X})dt}
0 0
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for some A > 0 because those functionals separates measures on Mg (see Chapter 2). This
simply means that @(x) # o(y). The key result is Theorem 2.10 of Knight (1992), which

says that for each » € E, we have
o(z) | vy 7o) - —
P o(Xy) =27 forae t| =1

This tells us that the process o(X) = (p(X¢))ter, and Z#%) induce the same law on M.

Now consider a sequence of Markov transition functions (p, (¢, z, B))nen and (p(t, z, B)
satisfying (4.1) and (4.2) above, and denote by (X") and X the measurable Markov pro-
cesses having the P*-law with p,(¢,z, B). Our problem is to find under which conditions
on (pn(t,z,B)), X" 5 X in Mg implies ZX" 57X i My (note that the dependence
on z is suppressed here). More precisely, if X7 5 X in Mz for each z € E, then what
additional conditions are necessary for ZX  to converge in law to ZX in My for each
2 7 The assumption amounts to ¢"(z) — ¢(z) for each « € E, where ¢"(z) and ¢(z)
arc the laws on Mg induced by X™ and X with (4.3), as defined above. From the above
observation, we know that ©"(X™) and ZX" = 7% jnduce the same distribution on My,
so what we need is (X ") o ©(X) in My for cach # € E. Thus the problem is reduced
to a familiar one of preservation of convergence in law under mappings. This is discussed
in Section 5 of Billingsley (1968) and a necessary and sufficient condition was obtained in
Topsge (1967). Here we use a simple condition, which is an easy consequence of H. Rubin’s

theorem (Billingsley (1968), Theorem 5.5).

4.4 Proposition Let X" and X be S-valued random variables with S separable met-
ric, and let h, and h be measurable mappings from S into a metric space S'. If h is

. . . wn L . .
continuous and if h, converges to h uniformly on compact sets, then X" = X implies

ha(X™) 5 R(X).

To apply this proposition to our problem, let us define ®: Mg — My by ®(w)(t) =
e(w(t)), w € Mz, and similarly define ®". The processes (" (X{"))ien,, n € N are then
written as ®"(X"), n € N. It is clear that if  is continuous, so is ®. Denote the metrics

on II and My by d' and p' so that we have

pH(®" (), ®(x)) = /o LA (o™ (w(t)), o(w(t))) A(dt).

Let I" be a compact subset on Mg and € > 0 be given. Choose T > 0 satisfying A(T, 00) < e.

It follows from Proposition 2.12 (this is the only place where the Polish assumption is used)
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that we can find a compact ¥ C E such that sup,,ep At < T:w(t) € A') < e. Now assume

n

for the moment that " — ¢ uniformly on compact sets. Then

(8" w) < [ LA (9" (), p(w(h)) A(dt)
[0,T]n{w(HEK}
«f LA (2" (), p(w(t)) A(dt) + ¢
[0, 7)n{w(t)g K}

< LA (" (w(t)),e(w(t))) A(dt) + 2e.

/[O,TJﬂ{w(t)GK}
The integral converges to 0 uniformly in w € T by the bounded convergence theorem.

Hence, as n — oo,

sup p' (®"(w), ®(w)) — 0.
wel

In view of Proposition 4.4, Z¥" £ 7N will follow.

We would like to express the assumed compact convergence of ¢™ to ¢ in terms of
resolvents R} and Ry of X" and X respectively. First, by Lemma 2.15 of Knight (1992),
0 1s continuous if and only if Ry f is continuous on E for f € Cy(E). Compact convergence

of ™ to ¢ means

sup |E¥" ) (g) — E¥®(g)| — 0
rERN '

for each compact K C E and each ¢ € Cy(Mg). We may replace ¢ by a member of a

convergence determining class. We use the following class obtained in Section 2:

{H/o e"““’fjk('w(s))ds:m eN, M, €Qu, fj, €{fi}. 1<k< m},
k=1

where (f;) is dense in C(IE) N{f: E — [0,1]}. So we need to find a condition for

(4.4) E#" (@) {H / ML (X)) dt| — B9 {H / (z“)‘"tf]-k(ft)dt}
k=10 k=170

uniformly in € K for a compact K and m € N, A\ € Q4 and f;, € (f;). Let us look at

the case m = 1. The left-hand side is

g0 | [T K] = o),
0
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Hence we need the uniform convergence on compact sets of the resolvents, that is,
(4.5) Ry f(x) — Rxf(x) wuniformly in x € IX

for each A and f € C( IF) For a general m, we use the argument given in the proof of
Lemma 2.15 of Knight (1992). Write the left-hand side of (4.4) as

E@"(x) [/ . / e Z:;l Ak Sk fjl (j{'sl) C e fjm (')z—sm)dsl . dsm:l .
0 0

Express this multiple integral as a sum of m! integrals according to m! possible orderings

of s1,....8m. Then it is enough to look at, for instance, the case s; < -+ <sp:

(46) ELP”(JJ) [/ / v "/k e—‘ Z:l:l /\kbkfn (.‘fXVYSI) T f‘]‘m (;"S(V-~9m)d81 e dsm} .
4] $1 Sm—1

Using the Markov property, this is equal to

/ e~ M8 E‘Pn(l) {fh(‘%sl ‘)Eso"’(z) (/ C—A'Z”fjg(}ir.gz)
Jo

J sy
!
3‘51+)

oC o0 —
/ / et o (X sy - dsy
8o v 8m -1
[e@)

:/ hEn [fh(:‘fiﬂ)E“””(‘”(/ et f ()
0

0
-l91+>:| dsl

dSl

oo oo
/ . / e Um0 £ (X, g Vb o dts
t2 trn—1
OO
o ’ X, Je— A )8
:/ e~ s pet(e) {f]&(xm)é (Ao 4Am)s1
0

. o0 oo >
ESOH(XH) (/ 6—)\2t2‘f72 ("‘X-tg) / .. ./ CMAmtm fj‘rn(“Ytrn ) dt7n T dt?’)] d81
Jo b fr=

/ 6—>\Slfj1(‘§51 )gn(‘?ﬁ)dsl}?

0

— g (=)

where X 2 A A+ oo+ Ay, and

o o >0 o0 -
/ C‘_Athsz(JXPtz) / . / 6“A7ntm f‘]‘mv(Ath ) (]tm . (th .
JO Jta ton—1
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Note that ¢" is of the form (4.6) with m — 1 in place of m. Thus if we assume that
(4.4) holds for m — 1 as the induction hypothesis, ¢"(s) will converge to g(z), defined
similarly, uniformly in # € K. Writing h"(2) = f},(z)¢™(z). the above expectation is equal
to REh™(x). Assuming the induction hypothesis, h"(z) converges to h(z) = fj, (z)g(x)

uniformly in # € K. So the condition we need is the following:

Ryh™(z) — Ryh(x) uniformly in ¢ € K for each A > 0, whenever 2" — h uniformly

on compact sets.

As is seen by the above argument, the sequence (h™) may be restricted to be uniformly

bounded and we may assume that h is continuous and bounded.

We have therefore obtained the following theorem.

4.5 Theorem Let (p,(t,z, B))nen and p(t,z, B) be Markov transition functions satisfy-
ing (4.1) and (4.2) above, and let (X™) and X be the measurable Markov processes having
the P*-laws with p,(t,z, B) and p(t,z, B) respectively. Suppose that RYh™ converges to
Ryh uniformly on compact sets for cach A > 0 whenever a uniformly bounded sequence
(h™) converges to a continuous bounded h uniformly on compact sets, and that R\f is

continuous for f € Cy(E). Then ZX" converges in law to ZX in My for each z € E.
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