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Abstract

In the first half of the paper, we shall investigate the relation of two models both of which
have been called a transformation model. One model is in terms of distribution functions
and the other is in terms of random variables. We shall show that the former class is
larger than the latter and we give an explicit relation between these models. The second
half deals with estimation procedures for the regression parameters in the transformation
model in terms of distribution functions. After reviewing and extending previously pro-
posed estimators for the model, we derive a new estimator based on ranks. Monte Carlo
simulation is performed to compare the empirical properties of several estimators for the

Cox model, which is a particular case of our transformation model.
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1. Introduction

In the literature the following two models have been studied under the name of “transfor-

mation model”. One is expressed in terms of distribution function(df):

(1.1) X ~ Gg=D(F(-);9),

where D( -;6) is a known continuous df on (0,1) and F is an arbitrary baseline df.
f is a parameter whose values are in some parameter space © C R . This model for the
two-sample problem is studied in Dabrowska, Doksum and Miura(1989) and, with censored
data, in Tsukahara(1991). The above two papers considered semiparametric estimation of

6 based on ranks.

The other is expressed in terms of random variable(rv):

(1.2) RMX)=uv(0)+e,

where h is an unknown strictly monotone increasing function and e is distributed ac-
cording to ¥ which is a known df. #(6) is a function of # such as log# and is often
connected by the linear model v(#) = B’z . With this linear form, various methods of es-
timation of regression parameters 3 are suggested. See Dabrowska and Doksum(1988b),

Doksum(1987), Pettitt(1982,1983,1987) and Cuzick(1988).

We call (1.1) Lehmann alternative transformation (abbreviated LAT) model and (1.2)
location transformation (LOT) model. The same word “transformation” is used, but in
LOT model, transformation acts on the sample space, while in LAT model it acts on the
space of probability distributions. So these models are essentially different in this point.
In Section 2, we consider the problem of relating these two models. It will be proved
that a LOT model is always rewritten as a LAT model. The family of the models of this

kind includes several important models such as the proportional hazards model. Moreover
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we derive a necessary condition and a sufficient condition for a given LAT model to be
re-expressible as a LOT model. Using this condition, it is shown that some of LAT models

cannot be re-expressible as LOT models.

In Section 3, we give a short review of previous work for LOT model and extend those
methods to LAT model framework. And we derive an estimator of regression parameter for
LAT model (1.1) with the form D(F;(3,2)) . In the model which satisfies the sufficient
condition mentioned above, this model includes a linear connection v(6) = F'z in (1.2).
Our estimator is a generalization of the rank approximate M(RAM) estimator obtained
in Dabrowska, Doksum and Miura(1989) for two-sample problem and in Cuzick(1988) for
LOT model.

2. Two models

First we state the precise definitions and assumptions of the models we consider in this

section.

(A.1) For LAT model (1.1), assume that D{#;6) is a df on (0,1) for each 6 € © C R and
is strictly increasing in t | strictly decreasing in 6 and continuous in both variables. Also

assume that F is an arbitrary strictly increasing df on A CR .

(A.2) For LOT model (1.2), assume that h is an unknown strictly increasing function on

A, and ¥ is a known strictly increasing df on the whole real line.
Next we define the following proportional model for later use:
N R
(2.1) a(G(z)) = aa(P (z)),

where F and G are df’s. « is a quantity determined by df such as cumulative hazard

and odds ratio.



(A.3) For the proportional model (2.1), assume that « is a strictly increasing function on

[0,1) into [0,00) which satisfies «(0) =0 and lm;_.; a(t) = oo .

We now show that a LOT model is always reexpressible as a LAT model. For a given

LOT model (1.2), set

D(t;0) = $(T1(t) — v(8)).
Then, if X ~ D(F(:);8), we find that
TUF(X)) = v(8) + 6,

where € has a df ¥ . Since F is an arbitrary df U7!'(F(z))is an unknown monotone
increasing function, so that we can regard this as h . This proves that a LOT model is

always reexpressible as a LAT model.

Here we illustrate some examples.

Example 1. (proportional hazards model) The proportional hazards model 1s ex-
pressed in the form of a LAT model by taking D(t;6) =1 — (1 —¢)*/? . Thus, according

to the above argument, we see that this model is rewritten as
log Ap(X) =log + «,

where Ap is a cumulative hazard function corresponding to F' and ¢ has the extreme
value distribution whose df is 1 — exp{—e”*} . This model was introduced in Cox(1972).
It is shown that the maximum partial likelihood estimates is best for estimating 6 for
two-sample problem in the nonparametric sense in Begun and Wellner(1983). See also

Begun(1987) and Begun and Reid(1983) for another construction of the best estimate.

Ezample 2. (proportional odds model) Taking D(t;0) = t[(1 — )6 +¢]"! in LAT
model yields the proportional odds model and rewritten as

F(X)

o8 T Frx)

= log# + ¢,
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where € has the logistic distribution whose df is 1/(1+¢7%) . This model was introduced
and studied in McCullagh(1980,1984) for ordinal data. Benuett(1983) and Pettitt(1984)

studied this model in the survival analysis context.

Ezample 3. (proportional ~ -odds model) Taking

1/~
b(1—t)” o
1- {1—(1 — )7 +0(1—1)7 if v>0
L-(1—1) ify=0"

D(t;6) =

in LAT model yields the proportional + -odds model and rewritten as

(1- F(X))™" -1
-

log =logf + ¢,

where ¢ has the Parcto distribution whose df is 1 — (1 4 v2)~"/7 . Clayton and
Cuzick(1986) investigated this model for regression problems, and Dabrowska and Dok-

sum(1988a) for the two-sample problem.

Remark. These three examples are typical cases of the proportional model (2.1); for
instance, «(t) = —log(l —1t) gives the proportional hazards model and «(t) =1/(1 1)

gives the proportional odds model.

Now let a proportional model (2.1) be given. If for any df F we define

h(x) = log a(F(x)),

then letting X ~ G, we obtain

(2.2) h(X) =log +e,

where € ~ ¥ and ¥ is determined by the relation W ~1(#) = log«(t) . This is a special
case of a LOT model with v(8) =log6 .



Conversely, if (1.4) is given, then defining «{t) by
a(t) = exp[TT(1)]

yields the proportional model which is equivalent to (1.4). Moreover this becomes a form

of LAT model;

log a(G(z)) = log a(F(z)) — log 6

TTH(G(x)) = UTH(F(x)) — log#,

so that we have
(2.3) G(z) =¥ [q‘rl(F(x)) ~log 9}.

This is called the transformation shift model in Dabrowska, Doksum and Miura(1989),
and may be thought of as an extension of the power transformation model in Box and
Cox(1964). Hence we see that the proportional model (2.1), the special LOT model (2.2)

and the transformation shift model (2.3) are all equivalent.

Next we consider a necessary condition for a LAT model (1.1) to be re-expressible as
a LOT model. Let a LAT model be given, that is, a transformation D( -;6) in (1.1) is
given. The derivatives of the functions v, F, D, ¥ and h with respect to the appropriate

arguments are assumed to exist in what follows.

Proposition 1. A necessary condition for a given LAT model (1.1) to be re-expressible
as a LOT model (1.2) is that there exist a nonnegative function ¢(t) on [0,1] and a func-
tion n(6) such that
S d(t; 9)

J(t;6) = OO g(t) - (6)
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Proof. If (1.1) can be rewritten in the form of (1.2), we must have

D(F(z);0) = ¥(h(z) — v(8)),

and so D(t;0) = ¥(a(t) — v(6)), where a(t) = R(F~'(t)). Taking derivatives with

respect to t and 8 respectively and taking their ratio,

At9)

Do) o (t) - [=i(0)]

where o/(t) = (d/dt)a(t) and ©(8) = (d/d8)v(8). Since «(t) is nondecreasing, «'(t)

1s nonnegative. il

This condition enables us to show that the examples below cannot be re-expressible

as a LOT model.

Ezample 4. Let D(t;60) =6t + (1 —6)t?, 6 € [0,1] . Then we have

and we see that this model cannot be rewritten as a LOT model. This Lehmann alternative

was studied in Lehmann(1952).
Ezample 5. Set D(t;0) = (%" —1)/(e® — 1), # € [0,o¢) . Then

eeet(()(i
teft(ef — 1) — ( ‘9‘ —~1)e

J(t;0) =

This was considered in Ferguson(1967).

The above two examples, as alternatives for the two-sample problem, are Lehmann

alternatives for which locally most powerful rank test is Wilcoxon.
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Ezample 6. 1f weset D(t;6) =3 c;(#)t', then

- Cy ) i1

where ¢;(0) satisfies ) ¢;(f#) = 1. This model was considered in Miura(1985) and may
be regarded as mixtures of extremals. Taking ¢;(6) from Bin (1,6) yields Example 4,

and taking ¢;(f) from positive Poisson distribution, i.e.,

67?

6 >0,

we obtain Example 5. Also if we take ¢;(#) = (1 —6)""'4 | i.e, geometric distribution,

then by easy calculation we get the proportional odds model in Example 2.

Finally we give a sufficient condition by using the translation equation in the functional

equation theory (see Aczél(1966)).

Proposition 2. Assume that (A.1) and (A.2) hold and put v(8) = log8, @ €
(0,00) . Then a sufficient condition for a given LAT model to be reexpressible as a LOT

model (2.2) is that D(t;6) satisfies

(24) D[D(t;el);{%} = D(t;(glgg), t e (0,1)7 9],92 € (0700)

Proof. For any ty , put
U(z) = ﬁ(t(,; x), x€R, l~)(t; p)=D(t;0) = D(t;e™"),
where g = —log# . Note that D satisfies

D[D(t; 1 ); pa} = D[D(t;e 1 )72 = D(t;e~ 042y = Dt py + pra)
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because of (2.4). It then follows that
U(e + ) = Dlto;x + p) = D(D(to; 2); p) = D(¥(x); )

Thus D(#;p) = ¥(¥~'(t) 4+ ), which is equivalent to D(t;6) = $(¥~'(1) — logh),
because W is strictly increasing and continuous by (A.1). It remains to show that
limy oo ¥(2) = 0 and lim, .o ¥(2) = 1. Let us show the latter statement. Sup-
pose, to the contrary, that lim, .., ¥(z) = v € (0,1) . Then there would exist p; and

{3 such that D(u; 1) # D(u: py) , and D(#; ) being continuous in
w= lim O(z + py) = lm D(T(z); 1) = D(u;py)
L—r00
# D(u, p2) = lim D(‘If(,r), p2) = lImW(r -+ pg) = u,

which is a contradiction. lim, .., ¥(2) = 0 may be proved similarly. §

Remarks.
(1) This proof shows that ¥ is not uniquely determined by D satisfying (2.4).

(ii) If a LAT model is reexpressible as a LOT model (2.2), then for some strictly

increasing h and df ¥ | we have
D(F(z);8) = U(h(z) —log¥).

If we can change baseline df F appropriately, we may write h(z) = U7 (F(z)), and
then we have D(#;68) = U(¥1(¢) ~log8) . This clearly satisfies (2.4). Thus the condition
(2.4) is also necessary in the sense above. We call a LAT model with the property (2.4) a

multiplicative LAT model.

From the above argument, we now see that the multiplicative LAT model, the trans-
formation shift model (2.3), the LOT model (2.2) and the proportional model (2.1) are all

equivalent. A diagram summarizing the relations between those models are given below.



Figure 1. Relations between models

Also we note that LAT model is the most general among the models discussed above.
Thus it is natural to consider the inference based on LAT models. In the next section, we

consider the estimation of a parameter in general regression problems for the LAT model.

3. Estimation based on Ranks

In this section we consider the following model: the X;, z =1..-- n are independent ran-
dom variables, each of which has df G(z) = D(F(z); \(B,2;)) where B = (01, --,5p)
: . : ;o ] . .

is a regression parameter and z; = (2;1, -+, 2,) is a vector of covariates. We assume

that this LAT model satisfies the condition (A.1) and
(A.4) There exists a 6y € © such that D(#;60) =1t forall t € (0,1),

and also assume that the regression function A(3,z) takes values in © and satisfies

A0, z) = 6, . We sometimes denote 6; = A(3,2;) and 6 = (6;,---,60,) for simplicity.

10



The most popular form of A is A8, z) = exp{3'z} , which gives a LOT model h(X) =

Bz + ¢ if D is multiplicative.

$.1. Previous methods.

We give extensions of the estimation methods proposed in the literature. The first two
methods are based on the rank likelihood. Define R; = rank(X;) = rank(F(X;)) and
R=(Ry,---.R,) . Alsolet r=(ry,---,r,) be the vector of observed ranks. Then the

rank likelihood is given by
L.(8) = PR =r].
It follows from Hoeffding’s formula (Hoeffding(1951)) that

(31) Lr(g) = ;}[E i:H d(‘/(fi);gi)} ;

where V(y) < -+ < V{,) are the order statistics of a sample of size n from the uniform
distribution on (0,1) . In most cases this cannot be evaluated explicitly [a notable excep-
tion is the proportional hazards model], so that some kinds of approximation have been

proposed.

(1)Pettitt(1982)’s quadratic approximation. By Taylor series expansion about 8 =0 up
to quadratic term (note that A(0,z) = 6, ), we have
log d(v; \(B, 2)) & log d(v; 6o) + @(v; 60)A(0, 2)3

+ 58060830, 2Y A0, 2)]8 + So(v:60)8'3(0, ),

= o(v:6) |AM0,2)8 + %ﬂ’i(q 23| + é@@; 80)8' (M0, z)'\(0, 2)]8,

where )\([)',z) = (0/0B)A(B,z) is a 1 x p vector, /‘\(ﬂ,z) = (0%/0BOBHN(B.2) is a

p X p matrix, and

d(v;6) : 7]

, o0
p(v;6) = d(0;0) d(v;8) = z5d(v;8),  @(v:8) = 50(v;0).
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Here we assume that all required derivatives exist. Furthermore let

€ = (99(1/(7‘1)5 90)» T 99(‘/(1‘”)7 60)),7 n= dlag{gﬁ(Vi“), 60)7 B @(Virn% 90)}7

and A be a n X p matrix whose ¢ th row is given by )'\(O,zii) . Then by (3.1), we can

write

L(8)~ —F

exp {B’A’& + %ﬂ’ (Z fl&(mzz')) B+ —;ﬂ’A’nAﬂH :
- $=1

ignoring the terms more than quadraticin 3 . Assuming that £ and 5 are approximately

multivariate normal, we find
1 1
Le(B) ~ — exp [ﬁ’/\’a + 58 (MCA T ,3] ,
n!

where a = E(§), A= Cov(¢), B=E(n), C=A+B and ' =31, a;\0,2;) . This

expression suggests the estimate
Bo=[-NCA+T]'Na

provided that A'CA + T' is nonsingular. This is essentially the first step approximate

estimate of the Newton-Raphson maximization procedure.

(i1)Doksum(1987)’s likelihood sampler. The expectation in (3.1) can be estimated by

M n
Eua(B) = 37 STVt 60,

k=1 1=1
where V(ﬁl) < e < V('ﬁn) are independent orderd samples generated on the computer
(k=1,---,M ), each of which is the order statistics of a sample of size n from the uniform

distribution on (0,1) . Then the procedure is to maximize j}M(ﬂ) for M = 100,200, -
and to stop when the change in the resulting estimates 8,, , M = 100,200, -- from one

M to the next is within prescribed precision.
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The estimates B and @), are asymptoticaly normal for 3 in neighborhood of
3 = 0, but are not consistent for fixed @ # 0. This is natural because the approximation

is local (near B =10).
(i11) Pettitt(1987)’s least rank mean square. Let

n

S(8) :} i — B(R))%,

and define the estimate B r as the solution to minimizing S(B3) with respect to 8. For

our model, we have

E(Ri)=1+ZP[' - X; >0—1+Z/Dt6’)dD(t9)
i i
and if we assume that D is multiplicative, this reduces to
1+ ) / tdD (c —)
J#1

For the proportional hazards and proportional odds model, we easily get

E(R;) =1+ E 7. ijé" , (proportional hazards),
j#i ot
06, 0; 0; i
E(R;) =1+ j;i (—057:%7)—2- [(—9—]— —1—log (—9;} (proportional odds).

By the Monte Carlo simulation, Pettitt reports that B 5 has some good properties even

for B not near 0, but its theoretical properties are not clear.

Clayton and Cuzick(1985,1986) developed an approximate MLE by applying the EM
algorithm (Dempster, Laird and Rubin(1977)). The method involves very complicated
computation, and the asymptotic properties of the estimator seem difficult to establish.

We also expect that it is possible to use the rank inversion idea, which is basically based
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on Hodges and Lehmann(1963), along the line in Dabrowska et al.(1989) and Miura and
Tsukahara(1992) and to get an estimate of 3.

3.2. Rank approzimate M estimate.

In this subsection, we use the idea of Dabrowska et al.(1989) and Cuzick(1988) and derive

a RAM (Rank Approximate M) estimate for 3 .

Suppose first that F' is known and consider the full likelihood L(3) of the X,; . Let
gi(xi) be the density of X, . It follows that ¢,(z;) = d(F(z;); M8, 2z:))f(z:), L(B) =
[, gi(z:) and (B) = log L(B) = i loggi(x;) . Hence

l(ﬂ 23 ;" th(fz)

where §;(z;) = (8/08)gi(x;) = d(F(z;); \(B; 2:))A(B; 2.) f(x;) . The likelihood equation
is then given by

e NB.z))
EW F( VAB.z)

Replacing cz/d by any estimating function ¢ satisfying Eg[é¢(Vi; AM(8,2z:))] = 0 where
Vi ~ D(-;MB,zi)), an M-estimate (Huber(1981)) is defined by the solution to

Z A(B, zi)¢(F(e:); (B, zi) = O

In the case of unknown F | we shall replace F by its estimate F? given as follows:

define

:Ir—*

n( )—“‘_‘““‘fo<£ Gﬂ(l‘)é

] ZD(F( ) A(B, 1)),

Dg(t) = - Z D(t; M8, 2:))-
=1
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Then we have Gg(z) = Dg(F(z)) . This indicates that F may be estimated by
Fi(x) 2 D5 (Ga(z))-

Set Vi 2 F3(X;) = D;l(Rl/('n +1)). Then a RAM estimate Bran is defined by the

solution to
ST AB, )6V (B, 21)) = .
=1

Note that G,(X;) = 1/(n+1)R; , so that the estimate may be viewed as an M-estimate

based on ranks.

4. Monte Carlo Results.

We consider the proportional hazards model with n = 25 . The regression function A(3, z)
is exp{B'z} , which yields the Cox’s regression model for survival data. To simplify
the situation, we will take the simple regression case without intercept, i.c., B'z = Bz, .
Then, to obtain the formula for BQ we have X(O, zi) = z, .).\(O,z,‘) = z?, so that
A= (2, ,z,) . After some calculations we get

i

1 ! !
,__.E —_— I' = A — B)A
a; k:1n~k+1 1, ANCA+ A(A A,

—‘T'i/\rj

where B = diag{a,+1,---,a,+1} andthe (7,7) elementof A isgivenby > )’ 1/(n—
k + 1) . To calculate By , we only need to know d(t;0) = 671 (1 — )1/~ | We fix
M =100 for simplicity of the procedure, which, however, may make the performance of

the estimate. For B g , as already mentioned before,




The number of Monte Carlo runs is 200, z; = (:—13)/12 , and 4 = 0,0.5,1,1.5,2,3,4,5.
We generated uniform random numbers and transformed them by D~ (u; e#*) =1~ (1~
u)eﬁz’: to get the Monte Carlo samples Vi,---,V, , where V; has df D(u;e®*) . Then
F~Y(V;) has df G; = D(F;e’%) | but we do not have to specify F because we use
only ranks of the observations, i.e. rank(V;) = rank(F~1(V;)) (assuming that F is

continuous).

Table 1 shows the Monte Carlo results, presenting the bias and MSE of cach estimate.
[; mpr 18 the maximum partial likelihood estimate, which is known to be the asymptotically
best nonparametric estimate in this case (Splus function coxreg provides this estimate).
Also the histograms of each estimate based on 200 simulations for each value of 3 are
displayed at the end. When S is near zero, all estimates have similar nice performance.
But for large values of f [;’Q , ,@R am and ﬁ} »m have large negative bias. It seems
natural for g, BQ . Ba because these methods are based on local approximation to
L,(B) near $ = 0. On the other hand, although the RAM estimate is not derived from
local approximation to the rank likelihood, its behavior is not good for large values of 8
in this experiment. We are urged to find out the reason for this bad behavior. Sg looks
better than [;’Q and Sy since it somehow follows up the large values of . However, its
behavior is less stable than the others in terms of dispersion as will be seen by looking at
the histograms. Bup; has fairly good performance for all values of 3 though the MSE
tends to be larger as § increases (this is actually expected according to its asymptotic

theory). All Splus codes for the estimates are available on request.
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APPENDIX: Results in Parametric Analysis

Here we state the results in parametric analysis for the purpose of comparison. Let
Xy,-+, X, beiid rv’s with df D(F(z);6) . Its density is obviously f(z)d(F(x);6). The
log-likelihood () is then given by >°"_ log f(a;)+ > 5 logd(F(z;);6) , so that we get
the efficient score

o . a’(F(J:Z),())
=2 Gy

1=1

and the Fisher information

E[(i(6))%] = n/o {;’ig:g} d(t;0)dt = nlI(0), say.

Typically, the MLE 6 is obtained by solving l(()) = 0, and under the usual regularity
conditions on d(t:6) , we have /n(f — 6) 4, N(o, 1/1(6)) .
We now give these quantities in the following particular models.

(i)Proportional hazards model. For D(t;8) =1 — (1 —t)1/% |

d(t;ﬁ)“ 1 log(l—1) 1
awe -8 e o 0=

For the reparametrization p =log8 , we have I(p)=1.
(ii) Proportional odds model. For D(t;0) =t/[(1 — 1) + 1] ,

d.(t;H)“

1 1t 1
d(t;6) 6

I ) — —
(1-t)0+ ¢t 1®) 362’
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and I(p)=1/3.

(iii) Proportional + -odds model. For

61 —t)
1—(1—6)(1—t

1/~
D(t;H):l—[ )7] ) ~v >0,

we have

d(;6) 1 (1 1) (1—1)
ane) 6 \5 ) iTaen-n

I(6) can be simplified only for v such that 1/ is an integer, say k. For such v we

get

ok RE+DO L R (<) 1
-5 ()T (o)

=

e

62

d(t;0) 14" (T7Yt) —logh) Lo (@) o
d(t:6) 6 (T1(1) —logh)’ \ /oo[ } e

In terms of p we have

I(p) = / [ﬂ@-}“d‘l’@?%

o L9

which 1s the Fisher information of location family (- — u) .
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X ~ ((r) = D(F(x);0) with (2.4)

Y(z) = D(tg;e™ 1) D(1;60) = ¥(¥~1(t) ~ log 8)

X ~ Ga) = U(¥~1(F(z)) — log 0)

gl =log o h=¥"1lo[ YloF = h
=¥ \\
h=v¥"loF
a(G(x)) = fa(F(2)), X ~ G WMX)=logh+e e~V

h=logwol
¥l = log o

Figure 1: Relations between models.
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Monte Carlo results for the proportional hazards model with n =25, p =1,
z; = (1—138)/12 and 200 Monte Carlo trials

0

-0.0158

0.1522

-0.0144

0.1487

0.0301

0.1866

-0.0155

0.1495

-0.0236

0.1201

0.5

0.0905

0.1651

0.0652

0.1360

0.1123

0.1941

0.0881

0.1669

-0.0732

0.1208

1 1.5
0.1255 0.0042
0.1925 0.1281

-0.0012  -0.2233
0.1008 0.1046
0.1872 0.1090
0.3135 0.2848
0.1317 0.0526
0.2238 0.1889

-0.1882  -0.4243
0.2084 0.3756

TABLE 1

2

-0.0869

0.1686

-0.4955

0.3069

0.1543

0.5760

0.0864

0.3201

-0.6354

0.6793

3

-0.4372

0.3096

-1.1807

1.4400

(0.3483

0.9519

0.2869

0.7917

-0.9137

1.2603

4

-1.1283

1.3816

-2.0742

4.3504

0.3055

1.6477

0.1504

0.7919

-1.5103

2.6259

5

-1.7680

3.3366

-2.9908

§.9892

0.4075
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0.0299

1.2578

-2.0614
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