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Abstract

The simultaneous switching autoregressive (SSAR) model is a non-linear Marko-
vian time series model, which was originally proposed by Kunitomo and Sato (1996)
in Structural Change and Economic Dynamics and some of its statistical properties
have been investigated by Sato and Kunitomo (1996) in Journal of Time Series
Analysis. Since these papers have omitted some derivations of their theoretical re-
sults, this note gives more detailed expositions on them with additional technical
remarks. We discuss some sufficient conditions for the geometric ergodicity of the
SSAR model and the existence of moments. Also we give some sufficient conditions
for the consistency and asymptotic normality of the maximum likelihood estimator
for the unknown parameters in the SSAR models. Some corrections in the previous
papers are given.
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1. Introduction

Recently Kunitomo and Sato (1996) have introduced a simple stationary simultaneous
switching autoregressive (SSAR) time series model. Let {y;} be a sequence of scalar time
series satisfying

Ay i+ o i g >y
(1.1) Yt = )
By 1+ oouy iy <y

where A, B,o; (0; > 0,i = 1,2) are unknown parameters, and {u;} are a sequence of
independently and identically distributed (i.i.d.) random variables with E(u;) = 0 and
E(u?) = 1. By imposing the condition given by

1-A 1-B

1.2 = =
(1.2 A

this time series model has the Markovian representation
(L.3) Yo = Y1 + (o (we > ry 1) + o2l (w < rye1)][=TYeor +w

where 7 is an unknown parameter and (-) is the indicator function. When oy = 0 = o,
then the SSAR model becomes the standard AR(1) model by re-parametrizing A = B =
1 — or . As we have shown (Kunitomo and Sato (1996)), even this simplest univariate
SSAR model (called SSAR(1)) gives us some explanations and descriptions on an impor-
tant aspect of the asymmetrical movement of time series in two different (up-ward and
down-ward) phases. The simple SSAR model has been introduced from an econometric
application and there are some intuitive reasons why the SSAR models are useful for
econometric applications. Also it should be noted that the SSAR time series models are
different from the threshold autoregressive (TAR) models, which have been extensively
discussed in the non-linear time series analysis. See Tong (1990) for the details of the
TAR models.

More generally, let y, be an m x 1 vector of the endogencus variables. The SSAR
model we consider in this note is represented by

p+ Ay, + Dy i €y, > ey,
(14) yt - i
B+ By, 1+ Douy if €y, <ey,

where €} = (1,0,---,0) and g, (¢ = 1,2) are 1 x m vectors of constants, and A, B and
D; (i = 1,2) are m x m matrices. We note that the condition ejy, > €jy, ; in (1.4)
has been used instead of the condition €/, y, > €, y, ; in Kunitomo and Sato (1996), for
instance. This change in our formulation does not harm any essential argument below.
The disturbance terms in (1.4) satisfy E(u;) = 0 and the variance-covariance matrix of
Dju, is denoted by X; (= D; D)1 = 1,2).
We assume either

(a) {w:} are absolutely continuous (mutually) independent random variables with the
density function g(u) which is continuous and everywhere positive in R™,
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or

(b) Dyu; = o,eiu; and {u;} are absolutely continuous (mutually) independent random
variables with the density function g(u) which is continuous and everywhere positive in
R.

In the first case the disturbance terms {u,} are distributed with E(u,u;) = I, and we
assume that ¥; (i = 1,2) are positive definite matrices. In the second case the distur-
bance terms {u;} are distributed with £(u?) = 1 and it corresponds to the Markovian
representation of the univariate SSAR(p) model given by

‘ 4
ag + Zajytmj +owy i oy Zya
J=1 :
(1.5) Yr = <
P
bo+ > b toou i g <y
\ J=1
where {a;} and {b;} (j =0,---,p) are unknown coefficients. This is because if we define

p x 1 vectors y, and p,; (i = 1,2) by

Yt ap bo
Ye-1 0 0
(1.6) Yy = . e . y Ho = . )
Yt-p+1 0 0
and p X p matrices
ag v e Gy bl bp
1 0 1 0
(17) A= .. b B = . )
0 1 0 0 1 0

then the resulting model can be regarded as a special case of (1.4) if we set D;uy = oi€1u
and m = p.

We note that in (1.4) there are two phases (or regimes) at time ¢ given 7, 1. Then
there is a basic question that the simultaneity among two phases and the values of the
endogenous variables do not cause any logical inconsistency as a statistical model. This
problem has been called the coherency problem and the condition for the logical con-
sistency has been called the coherency condition. The conditions of e}y, > ely, , and
ey, < e}y, , can be rewritten as

(1.8) e\ Dyuy > €\ (In — A)y, 1 — €141 ,
and
(19) ellD.’Z’U't < ell(]m - B)yt~1 - ‘3'1#2 )

respectively. A set of the coherency conditions for (1.4) can be summarized by a 1 x (m+1)
vector of unknown parameters

1 , 1.,
;I [ell(‘lm - A)’ "elﬂ'l] - ;2_ lell(['m - B)7 “6"'1#2]
- ['T',, TO] ’

(1.10)



where 17 is a 1 x m vector, rq is a scalar, and the scale parameters o; (j = 1,2) satisty
! -~ . .

012- = e} X e; = e;D;D e;. Yor the normalizaion of the scale parameters, we may use a

1 x m vector )

1
(111) ae;Dl = 0_—26,11)2 = d’

where we take d'd = 1. It is apparent from our formulation that the condition given by
(1.11) is automatically satisfied for the p—th order univariate SSAR model.

In this note we shall give some derivations omitted in Kunitomo and Sato (1996),
and Sato and Kunitomo (1996). We shall re-state some of their results and discuss some
related theoretical results on the SSAR model. Some useful lemmas will be given in the
Appendix.

2. Asymptotic Properties of the Maximum Likelihood Estima-
tor

Kunitomo and Sato (1996) have proposed to use the maximum likelihood (ML) esti-
mation for the SSAR models. Given the initial condition yg, the ML estimator is defined
by maximizing the log-likelihood equation

p m T 1 r 2 (%)
(2.1) logLrp(9) = ——log(2w)— —2—}:2] log(| X))
t=1 4=1
l&¢ i (¥
3 ZZ Ay, 1) Xy, — b — Ay )L
t=11i=1

where 11V = I(€}y, > €|y, ,) and 1 = I(ely, < €}y, ,) for the indicator function I(-).
We note that the above maximization should be done by using the coherency condition
given by (1.10). Sato and Kunitomo (1996) have stated that the ML estimator is consistent
and asymptotically normally distributed. We restate their Theorem 2 in a slightly different
way.

Theorem 1 : For the SSAR(1) model given by (1.4), suppose (i) the sufficient con-
ditions (1.10) for the coherency hold, (it) a set of sufficient conditions for the geometric
ergodicity hold as stated in one of the following lemmas (Lemma 1, 3, 4, or 6), (1) the
moments of initial conditions y, exist up to 3, and (iv) either (a) the disturbances terms
{u;} are independent normal random variables N (0, 1,,) with |X;| # 0 (i = 1,2), or (b)
the disturbances terms {u;} are independent normal random wvariables N(0,1). Also as-
sume (v) the true parameler vector O is an interior point of the parameter space ©.
Then the ML estimator 0y of unknown parameter 0 is consistent and asymptotically
normally distributed as

(2.2) \/T(éML“BO) 4N [O, 1(90)_1] )
where &10g Lr(6)
f gy 1| Olog Lr(0)



Since we have omitted many detailed derivations in Kunitomo and Sato (1996), and
Sato and Kunitomo (1996), this note covers the most essential issues omitted and could
help understanding our results already reported. The results reported in our earlier papers
hold with minor modifications.

Let us begin our discussions, first, by giving some technical comments including some
corrections on the Appendix of Sato and Kunitomo (1996). The proof of our main theorem
is a direct consequence of Lemmas stated in Section 3. For instance, the convergence in
L in Line 5 of Page 303 should be read as convergence a.s. because of the Ergodic
Theorem for the Markov chain with the general state space. (See Chapter 17 of Meyn
and Tweedie (1993), for instance.) Assuming the boundedness of second order moments
on vy, = (i) (i = 1,---,m) when m > 1, we have (A.7) by applying the following
Lemma 9 and the Ergodic Theorem. For instance, if we take Xy = v (v, > r@y, 1)
when m = 1, then gy = ¢(r@y,_1) (r© is the true value of r and ¢(-) is the density
function of the standard normal random variable) and JF; is the o—field generated by
{v1,+, v, Y0, Y1, - -, 4} in Lemma 9 below. This is possibly the simplest case (and
actually Lemma 9 is not even necessary), but the rest of our arguments for other terms
appeared in (A.6) are essentially the same. The sufficient conditions for the existence
of moments for the SSAR model in the general case can be the same as those for the
geometric ergodicity; some of them shall be given as the following Lemma 1, Lemma 3,
Lemma 4, and Lemma 7. (See Kunitomo and Sato (1996) for the related discussions.)
The existence of higher order moments and their boundedness can be fully examined when
m = p = 1. (See Lemma 1 in the following.)

Secondly, the parameter space @ should be restricted into a (sufficiently large) compact
subset @, C @. This can be easily done by taking small cgi) (¢ = 1,2) and large ('g’ (¢ =
1,2) such that 0 < cgi) <o < cg) (i = 1,2), for instance. Then we can apply Theorem
4.1.1 of Amemiya. Since both Q7(8) and Q(8) are concave functions with respect to 6
and the existence of second moments under the assumptions, we can take @, such that

P(Qr(6o) < sup Qr(8))
6:0,

is arbitrary small. (See the discussions on Condition D in Section 4 of Amemiya (1985),
for instance.) Hence we have the consistency of the maximum likelihood estimator if we
can show the positive definiteness of the information matrix.

Thirdly, for the asymptotic normality of the ML estimator we need an additional
condition that
(2.4) St‘;?E [|y5yuyul] < +o0

for y, = (y;;) when m > 1. Again this condition can be easily checked under the necessary
and sufficient conditions for the ergodicity when m = 1 and under a set of sufficient
conditions when m > 1 because of the normal disturbances. Under this condition the
asymptotic normality of 0111, can be easily established under the present situation. We
can expand the likelihood equation around the true parameter value 8 = 6y and

1 Olog Lr(8)
VT 00 0-0,,.

(2.5)



1 Olog Lr(0) L 0*log L1 (0) |
VT 06 g, T 0600 |g_g
= 0,

X \/T(QML - 90)

where 8* = (6}) = ¢ + 6, (Onr — 00) (0 < [&1] < 1).
We note that

l 32 10g LT(O)

T 0600 |g_g
1 & log Lr(6) N 1 K & log Lr(6)
T 0000 |gg, ' T2y 060000

(2.6)

X (9;: —_ 90;9)
0:0*t
where 8** = (6*) = 0g + 6,(0° — 0p) (0 < |82] < 1), Oy = (Box), and K is the number of
components of 8.
The expectation of third order derivatives

y[ 210 |

00; 80,00, g+
are bounded for j,k,1 = 1,---, K because of (i) the functional form of their components
in the integrands, and (ii) the boundedness of third order moments of (yu), where [,(6) =

log L:(0) — log Li_1(6). By using the Ergodic theorem for the Markov chain and @ —
6, <> 0, we have

(2.7

1 &*log Lr(0) P
T 0606 ’0:9*“"1(90)

as T — +4-00.

The rest of the proof is a standard routine. (See Basawa, Feigin, and Heyde (1976), or
Chapter 4 of Amemiya (1985), for instance.) The positive definiteness of the information
matrix can be proven for (a) the multivariate SSAR(1) model as stated in Lemma 5 and
for (b) the p-th order univariate SSAR model as stated in Lemma 8.

3. Technical Details

3.1 Useful Results

When m = p = 1, we have the necessary and sufficient condition on the geometric
erogodicity for the SSAR model. (See Theorem 5.2 in Kunitomo and Sato (1996).) It
is also a sufficient condition on the existence of moments if we assume the existence of
moments for the disturbance terms. For the sake of completeness and an illustration, we
state this result and its proof in a formal way, whose method will be repeatedly used in
more general cases.



tions, (ii) the necessary and sufficient conditions for the geometric ergodicity; that is
(3.1) A<1,B<1,AB <1,

(iii) sup,s; E[jw|¥] < +oo, for any positive integer k > 1, and (iv) Ellyol*] < 40 for
any positive integer k > 1. Then

(3.2) sup E[ly|¥] < +c0 .
t>1

Proof : When m = 1, we can take the criterion function

k’llcl’k + ¢ x>0
g(" o

3.3
(33 kElz|F + ¢ z <0

3

where k is any positive integer, and ki, k2, and ¢; are positive constants. Without loss
of generality, we assume (3.2) for k = 1 and try to show (3.2) for k£ = 2. We notice that
Eljuyy|] < c2E[2 + |ug||ys 1] for some constant ¢;. Then from our assumption (i) with
k=1 and (3.2) with k£ = 1, we have

(3.4) Sil\lll)E“utyt” < +00.

We first consider the case when y; = 2 > M > 0. Then
(3.5) ElGy)lp-1= 2] < cs+cz+ kA Ply > ra}

+ KB P{(r — -;—):v <y <rr}
2
b KRB%P{u < (r — 51-)3:,} ,
2

where ¢;(i = 3,4) are positive constants. Because A < 1,B < 1, and AB < 1, we can
take k; > 0 and k; > O such that 1 > A > —kp/k; and 1 > B > —k/ky and then
kk > (—A)¥kr for A < 0 and k¥ > (—B)*k% for B < 0 . We note that the conditions
B < 0and 0 < B < 1 correspond to the cases when 1/0; < r < 1/0y + 1/0; and
0 < r < 1/09, respectively. When 0 < r < 1/09 (0 < B < 1), the coefficients of third
and fifth terms on the right-hand side of (3.5) can be small. Then by taking a sufficiently
large M, we have
(3.6) ElG ) |yi—1 = z] < e5(M) + &1k3z? |

where 0 < & < 1 and ¢5(M) is a positive constant depending M. When 1/0; < r <
1/os + 1/01 (B < 0), the coefficients of the third and fourth terms on the right-hand
side of (3.5) can be small. Because k2B? < k? in this case and we can take a sufficiently
large M, we also have E[G(y)lyi-1 = z] < c(M) + b2kiz?, where 0 < 6 < 1 and
c¢(M) depending on M is a positive constant. By taking max{é;, 62} < 63 < 1, we have
E[G(y)lyi—1 = 7] < er(M) + 863G (x), where ¢7(M) is a positive constant. We can also use
the similar arguments for the case when y;_1 = z < —M < 0. Then we can take positive
constants 0 < & < 1 and cg(M) depending on M for any y; 1 = z such that

(3.7) ElG(y)lyr1 = x| < (M) + 6G(z) -
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Because

ElGy)ly = x| = E{E[G(y)|y-]lyo}
< (M1 + 6+ +87+8Gw) ,
(3.8)

is bounded, we have the desired result for k¥ = 2. We can use the induction for any positive
integer k. (Q.E.D.)

Lemma 2 Under the assumptions we have made in Theorem 1,
(3.9) Cl = Eyayial” | 0=60] (=12
are positive definite matrices.

Proof : Take the case of i = 1. Suppose this is not the case. Then there exists an m x 1
non-zero vector A such that

2

(3.10) NE [y, JV) A= B[Ny, 17] =0

Then (th,fl)zlt(l) = 0 (a.s.). By taking the conditional expectation w.r.t. F; 1 and using
that the density function of f(a,) is positive everywhere, we have X'y,_; = 0 (a.s.). Also
by multiplying I” (i = 1,2),

2

(3.11) (’\,yt)z = E()\,Auiyt—x + XDi'U't)zfti) =0,

i=1

and thus we have N A;y, ; + ND;u; = 0 (a.s.), where A, = A and A, = B. This
condition contradicts that {u;} are i.i.d. N(o,I,,) random variables unless A = 0. For
the Markov representation for the univariate p—th order SSAR model, the above condition
also leads to a contradiction unless A = 0. (Q.E.D.)

We give some sufficient conditions for the existence of higher order moments and their
boundedness when m > 1. All of them are sufficient, but they are often too strong and we
do not necessarily need those conditions. (See the conditions in Lemma 1.) The proofs
of the following lemmas are straightforward and so brief.

Lemma 3 In the SSAR model when m > 1, assume (i) the coherency conditions, (i)
a sufficient condition for the geometric ergodicity 0 < py < 1, where

P11 = Iﬂ&X{)\max(.A,A), )\max(BlB)}v

and Apax (C) s the mazimum characteristic root of C' in its absolute value,
(ii5) supys1 Efflud||¥] < +oco for any positive integer k > 1, and (iv) E| Yoll¥] < +o0 for
any positive integer k > 1. Then

(3.12) sup Bllly,[|*] < +co.
t>1



Proof : When m > 1, we can take the criterion function
(3.13) Glz) = ||lz|*,

where x = (;). Without loss of generality, we only show (13.12) for k= 1. When k = 1,
we have

(3.14) EGy)ly,a =2 < ElAOI| + E[lD()wll]
< ¢+ mG(x),

where A(t) = Alt(l) + BItZ) and ¢ is a positive constant. The rest of arguments and those
for k > 2 are essentially the same as the proof of Lemma 1. (Q.E.D.)

Lemma 4 In the SSAR model when m > 1, assume (i) the coherency conditions, (it)
a sufficient condition for the geometric ergodicity 0 < py < 1 or 0 < p3 < 1, where

m m
p2 = 1{%%)5”{; |az'jlai; biz|}s

and

1<i<m

m m
ps = max {3 lail, > bil},

Yoll*] < +oo for

(it3) sup,>1 E||lul|¥] < +oo, for any positive integer k > 1, and () b]
any positive integer k > 1. Then

(3.15) sup Bllly.[I"] < +oo.

Proof : For = (x;), we take the criterion function

(3.16) Gz) = (3 |=l)*
=1

for the first condition in (ii) and

(3.17) Gla) = ( max |z:))*

for the second condition in (ii), respectively. Then we use the same arguments as the
proofs of Lemma 1 and Lemma 3. (Q.E.D.)

For the proof of consistency and asymptotic normality of the ML estimator, we need
the condition that the information matrix evaluated at the true parameter values is non-
singular. We first give the result for the multivariate SSAR model.

Lemma 5  Suppose the assumptions we made in Theorem 1 hold for the SSAR model
giwen by (1.4) with X; (i = 1,2) being positive definite. Then the information matrix
1(6¢) in (2.3) is non-singular.



Proof : We define a function

2

_ NI i
(3.18) Q(6) = 3 }%ﬂof;izl log (| Xs)

) 1 T 2 . .
T SNy — i — Ay 1) X Yy — ps — Aiyt__,l)l‘ )

- =2 i=

—

|
N —
JaR

Eu@hguzo

i)
A

f
RO K\Dlﬁ-—-‘ [NREe
Mw

07

-
°
il
-

El(y, = 1 — Ay, ) 27 (Y — 1 — Ay i,

where the expectations are taken at 8 = 6y. We note that we have the above expression
due to the Ergodic theorem for the Markov chain and the existence of moments under
the assumptions of Theorem 1. Then the information matrix for 8¢ can be partitioned as

82Q 82Q
D590 59 5@’
(3.19) 1(8o) = o0 6%9 08 8%9 ’

00906 50@ 00

My An
0(1) = yec ”12 A12 5

Ty T

9-0,

where

with p£,; and i, being (rm — 1) x 1 lower sub-vectors of g; (¢ = 1,2), Ay and Ay, being
(m — 1) x m lower sub-matrices of Ay; (¢ = 1,2), and 0® = (vech(E ), vech(Xs))'.
Let us re-parametrize the variance-covariance matrices ; (¢ = 1,2) such that

oo O 1 o O
== (5 1 )2 (8 0l,)

—1 —1
1| oy 0] | o (@)
Zi B < O I'm——l )nz< O Im«—l ) '

By a result of straightforward calculations, we have a representation of the upper-left
corner of the information matrix as

Then we have

Wy 1 1Y
(320) 1(6%) ma®<Awd)(A%4)u
where

(21)2 1V 0 —(2)n 1V
(3.21) C,= 0 (22) 213 —(2)n I

—(01)121(1) —(02)12152) (91)11]z(l)+(ﬂ2)11]t(2)
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and we have partitioned m x m matrices £2;(i = 1,2) into [1 + (m — 1)] x [1 + (m — 1)]
submatrices )
2, = ()1 (2912
’ (2:)21 ()22 )~

By taking the conditional expectation of the first term of (3.20) given F;_1, its determinant
can be written as

(3.22) ECll = [(920221]1(22)21] | Bea [V B s [ 1)
X|Z(Oi)11Et~1[lt(i)” )

where F; (-) is the conditional expectation given F;_; and
(2)221 = (2i)22 — (£2:)21(82:) 17 ($2:) 12

for i = 1,2. Since (3.22) is positive a.s., the matrix C, is positive definite a.s.. Hence
(3.20) is positive definite because the matrix

BlEIC|F ] @ ( Aves ) ( Aves )]

is positive definite. (If it were not the case, then we can lead to a contradition because
there exists a non-zero vector A such that (1, Ay, ;)X = 0 a.s..) Then by using Lemma 10
and by applying Lemma 11 to -2, log [£2;]0; 21 for 8" = (6",8®), the informatiom
matrix 1(0y) is positive definite. (Q.E.D.)

3.2 The SSAR(p) Model

We give some sufficient conditions for the geometric ergodicity and existence of higher
order moments for the p—th order SSAR model. We need some special consideration
because the disturbance term in the Markovian representation is degenerate in a sense.
The conditions we give are sufficient, but often too strong and we do not necessarily need
those conditions.

Lemma 6 In the p—th order SSAR model when m — 1

p
ag + Zajyt"j + ouy Yt = Y1
J=1
(3.23) Ye = P ’
bo+ Y by + o2y Yo < Yt
=1

assume (i) the coherency conditions

ao bo
rg = —— = ——,
[ox} 09
1- 1—-b
(3.24) O
a1 02
aj bj R
o (=9
Tj o o (J ) D) s



(it) a sufficient condition 0 < py < 1, where

p p
pa=max{}_ |a;], 3 b5[},
J=1 7=1

(iii) u; has an absolutely continuous distribution with respect to the Lebesgue measure on
R, and its density function f(u) is continuous and strictly positive almost everywhere,
and (W) sup,»1 Ellu|] < +00. Then {y:} is geometrically ergodic.

Proof :

(Step 1) We apply the method used in Chan and Tong (1985) for the threshold autore-
gressive models with minor modifications. Under the assumptions (0 < pg < 1) we can
take £ > & > -+ > &y > 0 (m = p) and 6 such that

(3.25) 1>0> max{z |a3| Z |b; l 2=

and 6 > &;,1/& (= 1,---,p—1). We take the criterion function

(3.26) Ga) =1+ max |a;§; -

Let a vector process ¥; = (Ys,Ye-1, -, Yt p+1) and consider a Markovian representation
for {y,}. Then it is straightforward to show

(3.27) ElG(y)|y,, = =|
14
< o+ Bmax{d 140y 1€ [enlé, -+ lop1 G Y1 = ]
Jj=1
14
< e+ Elmax{d" [A;(O1lye— 561, Olz11&r, - -, Olzp1l&p1 Yy 1 = 2]
7j=1

IA

3 + max{ max{z |a1| Zlb |'51
j=1 J=1

x [max{|z1/€1,- - -, lﬂﬁpl&p}], 9l$1|§1,- w5 Olzpa &y}
< e+ 60G(2),

where A;(t) = a;l; 4y b,1; ® and (i = 1,---,4) are some positive constants.
(Step 2) Without loss of generality, we only consider p = m = 2 and take a set
A = (a1,b) x (ag,b) € R® with a; < b;(i = 1,2). Define a function
1 1
(3.28) oz —y) = (== Y[—l{z-y20) + —Hzy<o}]
(051 (o))

for  — y . Then for &’ = (21, z2)

1
o(by—xy)
(3.29) Pz, A) = / o Flu— (ro,r1,m2)( 21 )]du .
ol{a1—x1
Ty

12



Also we have

. o(ba-a1)  potbi—e) 1
(330 Pa,a) — [ e = (o) (2]
o(ag—z1) Jo(ar—y2) Ty
1
xflyr — (ro,71,m2)( 92 )]dyi}dy: .
Iy

By using the assumptions in (iii), we have

3.31 inf P"™(z, A) >0
(3.31) e (z, A)

for m = 2 and a compact set K in R

(Step 3) From Step 1, we can take d > 0,B > 0, and 0 < 6 < 1 such that

(i) ElG(y) |y, = @] < B < oo for [|z| <d

and

(i) E[G(y) Y,y = 2] < 6G(x) for [|z|| > d.

Because the Markov chain for {y,} is aperiodic and ¢—irreducible, we apply Theorem 4
in Tweedie (1983) and we can establish that {y;} is geometrically ergodic.  (Q.E.D.)

Lemma 7 In the p—th order univariate SSAR model (3.23) assume (i) the coherency
conditions (2.24), (i) a sufficient condition for the geometric ergodicity py < 1, (i)
sup,; Ellug|¥] < +oo for any positive integer k > 1, and (iv) Ef|yo|*] < +oo for any
positive integer k > 1. Then
(3.32) sup E[|y|f] < +co .

t>1
Proof : The method of proof is similar to the first part of the proof of Lemma 6. We
take the criterion function

€ — . . k
(3.33) G(z) =1+ (112?%@1'53)
for £ = (z;), where & (j = 1,---,p) are defined as in the proof of Lemma 6. Then we
consider the Markovian representation for ¥, = (Y, Y1, -, ¥s—p+1). For k> 1, we have
(3.34) ElG(y)ly,y = 2] < e+ 0G(2),

for some positive ¢ and 0 < 8 < 1. The rest of our arguments is the same as the proof of
Lemma 1. (Q.E.D.)

We should mention again that the above conditions given in this note are quite strong
and sufficient, but they are not necessary and could be improved. Some of the results can
be extended to more general cases easily. For an illustration, we will show the existence
of moments for the SSAR(p) model with the MA error.

Let {v;} be the i.i.d disturbance terms satisfying the condition (iii) with & = 1 in
Lemma 7 and

q
(3.35) u =Y v g,
=0
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Where {c;} are constants with ¢o = 1 for normalization. If we use a vector process
Y, = W Y157 »Yt—p+1,Uts Ut—1, " -, Vt_q+1), then we have a Markovian representation
for {y,}. By taking the criterion function

(3.36) Glz) =1+ max |zl¢;,
where &; (j = 1,---,m) are defined as in the proof of Lemma 6 and m = p+ ¢. Then we
have an 1nequal1ty
q
(3.37) EGy) |y =2 < cfl + ) |ul] + 0G(w),
J=1

where 0 < § < 1 and c is some constant.
By repeating the above procedure and taking the conditional expectations, we have

t—1

(3.38) E[G(y)|ye = z] < CZHkEll + Z lve—k—jllyo = x| + 8'G(z) .
Jj=

Then by taking the expectation with respect to the initial distribution, we finally have
(3.39) sup Elly]] < +o0,
t>1

provided that we assume the condition (iv) with & = 1 in Lemma 7 and the condition
E[vs|] < co for s < 0. We can use the similar arguments to obtain

(3.40) sup B[|y.|*] < +co
t>1

for an arbitrary integer k > 1.

Finally, we shall give the result that the information matrix evaluated at the true
parameter values is non-singular for the p—th order univariate SSAR model. The following
lemma is equivalent to Lemma 5 when m = p = 1. We can confirm this by noticing
(£21)11 = (£22)1; = 1 in (3.21) for this particular case.

Lemma 8 In the p—th order univariate SSAR model (3.23), assume the coherency
condition (3.24), the sufficient condition for the geometric ergodicity in Lemma 6, and
the normal distributions for mutually independent disturbances. Then the information

matrix
1. 8%log Lr(6)

(3.41) 1(6,) = lim 7:["“—'5‘9‘55,'—“9_—.90
is positive definite for the parameter vector @' = (0y,02,70,T1,*,Tp)-
Proof : Given the initial conditions ¥} = (y_p+1," - -, Yo), the log-likelihood function for

{y:} is proportional to

(342) logLr(8) = 4(0)

= —ZZIz)IOgO',,“"ZZIt(z)["—Ayt'FTO -+ 'ryt 1]

t=1 4==1 =1 ¢=1
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where we defined the vectors by ' = (ry,---,rp) and ¥,_; = (Y—1, -, ¥1—p). Then by
direct calculations, we have 8%,(8)/00180, = 0,

(3.43) It((”’),("")) - p— WO
o(%)o(7)
1 Y
E[( Y ) ( Y )]7

!

(3.44) 14('2?),01,) _ g T
a( "o >aa,.
T
_ Lgfl 1 ®
= g ! ) sui),
and
64 hiowo) = £-T0)

[

1 < i . ;
- ;‘IE{B(A%)Q + 20 Ay0; — a1V} (= 1,2),

i

where ¢; = rg + 7'y, .
Because we assume the normal distribution for mutually independent disturbances {u,},
we can utilize the relation

(3.46) El(u? — 1~ uwe) IV Fa] = 0.

Then by applying (3.46) and using the identity Aytlt(i) = [uy — ct]lt(i) (¢t = 1,2), we can
re-write (3.45) as

1 o (i 1 a
(347) It(Uiao'i) fay ?E[(Ayt)zlt(z)] -+ ?E[It )] .
Hence we can write
! !
a1 Ay g%lt(l;Ayt N ok
172 1 7@ 17(2 1 g2
(3.48) L(6) = E[| a2k Bu || zhTAu |y gl =l =2
-1 -1 0 0
—Yi1 —Yia 0 0

The positive definiteness of the information matrix 1(8g) can be established by using
Lemma 10 and the Ergodic theorem for the Markov chain.  (Q.E.D.)

4. Appendix

In this Appendix, we give some lemmas useful for the derivations of our results in
Section 3. The first lemma (Lemma 9) is useful to justify the procedure of (A.7) and
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(A.9) in Sato and Kunitomo (1996) as stated in Section 2, which was omitted in the
eariler papers mainly because of the space limitation. Since the last lemma (Lemma
11) has been known (Theorem 7.6.7 in Horn and Johnson(1985), for instance), we have
omitted its proof.

Lemma 9 Let F; be the o—algebra generated by a sequence of random vectors (Xo, X1,
o, Xy) fort = 0,1,--- and X, = (Xu). Let p, = E[X|Fa] for t = 1,2,--- and
w; = (p). Assume that (i)

1 &
(4.1) T S u - poas,
t=1
and (ii)
(4.2) S 2B X~ pll?] < +oo
t=1

Then limp_, 10o(1/T) Sr X, = p with probability one.

Proof : We write
1 & 1 & 1 &

(4.3) =3 XK= b5 (Xe—my)
PR DM DL

The sum zr = 3L, t"}(X; — i) is a martingale because £t (X — p,)|Fi1] = 0 with
probability one. The variance of zr is given by

(4.4) Blllzr|*] = t}_;t”QE[HXt ~mll]

which is bounded by Assumption (ii). Hence the second term in (4.3) converges to zero
with probability one by the martingale convergence theorem and Kronecker’s lemma.
Then we have the desired result by using Assumption (i). (Q.E.D.)

Lemma 10 Let an (m + n) x (m + n) non-negative matriz A be partitioned as
An Ap
A= ,
( Ay Axn |
where Ay, is a positive definite matriz. Then for any m x m positive definite matriz By,

A+ By Ap
4.5 C =
(4.5) ( Ay Ay, )

1s positive definite.
Proof : Because Ay, is a positive definite matrix, then we have
(4.6) |IC| = |A|| A1 + B — A12A§21A21! .

Then because A5 = Ay — A12A§21A21 is non-negative definite and By is positive
definite, |C| # 0 and we have the result. (Q.E.D.)
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Lemma 11 Let A and B be m x m positive definite matrices. Then for any 0 < a <1,
4.7 log|aA + (1 —a)B| > alog|A|+ (1 — a)log|B|,

with the equality holds if and only if A = B.

5. Concluding Remarks

In this note we have given some derivations omitted in Kunitomo and Sato (1996),
and Sato and Kunitomo (1996). Also we have given the related sufficient conditions on
the geometric ergodicity and the existence of moments for the simultaneous switching
autoregressive (SSAR) models. Many of our derivations and discussions in this note are
rather straightforward and may be redundant for some well-trained econometricians as
well as statisticians. However, we hope that this note could help convincing some readers
that the results stated in our eariler papers are technically valid under mild additional
conditions.

Finally, we should mention that the standard SSAR models discussed in this note have
been recently extended to a class of non-stationary SSAR models by Kunitomo and Sato
(1997a,b). They are useful for some econometric applications including the analyses of
financial time series data.
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