97-F-29

Some Superpopulation Models for Estimating
the Number of Population Uniques

Akimichi Takemura

University of Tokyo

September 1997

Discussion Papers are a series of manuscripts in their draft form. They are not intended for
circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.



Some superpopulation models for estimating the
number of population uniques

Akimichi Takemura
Faculty of Economics, University of Tokyo

September, 1997

Abstract

The number of the unique individuals in the population is of great importance
in evaluating the disclosure risk of a microdata set. We approach this problem
by considering some basic superpopulation models including the gamma-Poisson
model of Bethlehem et al. (1990). We introduce Dirichlet-multinomial model which
is closely related but more basic than the gamma-Poisson model, in the sense that
binomial distribution is more basic than Poisson distribution. We also discuss the
Ewens model and show that it can be obtained from the Dirichlet-multinomial
model by a limiting argument similar to the law of small numbers. The multivariate
Ewens distribution is a basic mathematical model used in genetics. Estimation of
the number of the population uniques is particularly simple under the Ewens model.

Although these models might not necessarily well fit actual populations, they
can be considered as basic mathematical models for our problem, as binomial and
Poisson distributions are considered as basic models for count data.

Key words: Dirichlet distribution, Ewens sampling formula, microdata, multi-
nomial distribution, statistical disclosure control

1 Introduction

The number of the population uniques is one of the key quantities in evaluating the
disclosure risk of a microdata set. For example Willenborg and de Waal (1996) discuss
the notion of the population uniques repeatedly throughout their monograph. In this
paper we adopt a parametric approach to this problem in the form of superpopulation
models. Although there may be some criticisms against superpopulation models as being
hypothetical, the models discussed in this paper have nice mathematical theory and give
many insights into the problem.

The plan of this paper is as follows. In this section we give a mathematical formulation
of our problem and set up appropriate notations. In Section 2 we propose Dirichlet-
multinomial model and investigate its properties. In Section 3 we discuss the gamma-
Poisson model by Bethlehem et al. (1990) and compare it with the Dirichlet-multinomial
model. We show that if we fix the population sample size N and consider the conditional
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model given N in the gamma-Poisson model, then we obtain our Dirichlet-multinomial
model. In section 4 we derive the multivariate Ewens distribution from the Dirichlet-
multinomial distribution by a limiting argument similar to the law of small numbers. We

also show that estimation of the number of population uniques is particularly simple in
the Ewens model.

1.1 Notation and formulation of our problem

Consider a finite population of N individuals

{v1,92,-. ., yn}

where y; is the value of the characteristic of interest of the i’s individual. In this paper we
only consider categorical variable y. Let K be the total number of categories or cells. For
simplicity let the cells be numbered as 1,..., K. y; = ¢ means that the j-th individual
falls in the i-th cell. Let F; denote the population frequency of the cell i

Fi=4{jly; =1}

and let F' denote the population frequency vector
F = (F17 . ,F]\").

If F; =1 then there exists a unique individual falling in the i-th cell. This individual is

called population unique. Qur problem is how to estimate the number of the population
uniques

0=5, =4t{i|F =1}

When a sample of size n is drawn from the population, 0 denotes the estimator of 8 based
on the sample.

In addition to the population uniques, it might be necessary to consider some more
rare individuals. For example we might consider “population doubles”, who fall in a cell
» with F; = 2. In general we consider the number of the cells of size [. Let

Si=t{i|Fi=1}

and

S = (SQ,S],...,SN).

S is called size index vector (Sibuya (1993b), Sibuya and Yamato (1995)) or frequencies
of frequencies (Good (1965)). In the classical occupancy problem (see Section IV.2 of
Feller (1968) or Korwar (1988)) the parameter of interest is n — Sp, which is the number

of occupied cells. On the other hand S, is of the primary interest in microdata disclosure
problem.

When a particular sample of size n has been drawn, it may be more relevant to
estimate the number of the population uniques included in the sample, rather than the
total number of the uniques in the population. However under simple random sampling,
an obvious estimator of the number of the population uniques included in the sample
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is given by Gn/N With this simple estimator in mind, we only discuss the problem of
estimating 6.

In microdata disclosure problem the total number of the cells K is usually very large
and the estimation of the whole frequency vector F' = (Fi,..., Fx) seems to be difficult.
One approach to cope with this difficulty is the superpopulation approach, where F is
considered as a realization of a random vector whose distribution (prior distribution)
is determined by a small number of hyperparameters. This prior distribution can be
interpreted as a hypothetical sampling from a larger superpopulation. Let T denote the
hyperparameter and let p(F | 7) denote the probability mass function of F. Under a
particular superpopulation model with given 7, the number of population uniques § = 5,
can be estimated by its expected value with respect to the prior distribution E,(S;) =

K P(F; = 1] 7). Therefore if we can estimate the hyperparameter 7 from the sample
by 7, then a natural estimator of 8 is given as

K
0=FE:(S) =3 P(F,=11]%).

i=1
Note that this whole approach is the empirical Bayes approach discussed extensively in
statistical literature (see e.g. Carlin and Louis (1996), Maritz and Lwin (1989)).

The gamma-Poisson model® by Bethlehem et al. (1990) is a primary example of super-
population models proposed for the study of disclosure risk problem. We will clarify why
this model is of basic importance for our problem by introducing Dirichlet-multinomial
model, which is more basic than gamma-Poisson model in the sense that binomial distri-
bution is more basic than Poisson distribution. A slightly annoying and confusing nature
of the gamma-Poisson model is that the population size N is a random variable in the
prior distribution. In our Dirichlet-multinomial model N is fixed and the model is less
confusing.

By a limiting argument similar to the law of small numbers we obtain the multi-
variate Ewens distribution from the Dirichlet-multinomial distribution in Section 4. The
multivariate Ewens distribution (called the Ewens sampling formula in genetics) is a
basic mathematical model of random clustering. See e.g. Ewens (1990), Sibuya (1993b),
Sibuya and Yamato (1995), or Chapter 41 of Johnson et al. (1997). We show that estima-
tion of the number of the population uniques is particularly simple under the multivariate
Ewens distribution.

1.2 Sampling

Consider sampling of n (n < N) individuals from a finite population. The sampling
design we consider is the simple random sampling without replacement. In addition we
consider Bernoulli sampling (Section 2.2 of Sarndal et al. (1992)) in Appendix A in order
to clarify some properties of the gamma-Poisson model.

Let
f: (flv"'vf]f)

We use the term “gamma-Poisson model” instead of the term “Poisson-gamma model” used in mi-
crodata disclosure literature, because beta-binomial or Dirichlet-multinomial distributions are standard
terms used in Bayesian literature in general.




be the sample frequency vector of the cells and

33(80,31,...,.9”)

be its size index vector. Under simple random sampling without replacement the proba-
bility distribution of f = (fy,..., fx) given F = (Fy,..., Fx) is the multivariate hyper-
geometric distribution with the probability mass function

By, (Fx
p(flvvfk):p(fla,f]\lF):‘(—&)—-ﬁ*)‘Q‘—)"

(.

Consider a superpopulation model given in terms of the probability mass function
p(F1,..., Fx | 7) where 7 is the hyperparameter. Then the joint probability mass function
of f and F is given by

p(flv"‘aff\"|F]a"'>FK) XPF(FI,...,FKIT)- (1)

In the empirical Bayes approach the hyperparameter 7 is usually estimated based on the
marginal distribution of the sample. Summing up (1) with respect to Fy,..., Fk, the
marginal probability mass function of f = (f1,..., fx') is given as

pe(frs s Sl m) =Y p(fi,-., [k | F) - pp(F | 7). (2)
F

This marginal probability mass function serves as the likelihood function of 7. We are
interested in a convenient superpopulation model, where the summation on the right hand
side of (2) can be explicitly evaluated.

A conceptually very simple model is as follows. We draw n individuals from the
realized finite population of size N. Suppose that we can think of these n individuals as
directly generated from the superpopulation. Then as far as the marginal distribution is
concerned we can forget the intermediate finite population. In other words we look for a
sufficient condition such that the following equality holds:

Yp(fy fx | F)-pp(F | 7) =pr(fi,..., f& | 7).
F

A simple sufficient condition can be stated in terms of the exchangeability of the prior
distribution with respect to the individuals.

Suppose that the prior distribution of the values of the population y = (y1,...,yn) is
exchangeable with respect to the individuals, i.e.,

d
(yla"'vyN) - (yip"-ayiN)’

where (¢1,...,ix) is an arbitrary permutation of (1,...,N) and 4 denotes the equality
of the distributions. We draw n individuals from the realized finite population by simple
random sampling without replacement. Suppose that j;,...,7, are the labels of the
individuals drawn from the population. By the assumed exchangeability, the distribution
of y;,,...,y;, is the same as the distribution of y;,...,y,. Furthermore this equality does
not depend on the values of j,...,j,. Therefore we have the following basic lemma.
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Lemma 1  Suppose that the prior distribution of the values of N individuals is ex-
changeable with respect to the individuals. Let n individuals be drawn from the realized
population with simple random sampling without replacement. Then the marginal distri-
bution of the values of n individuals coincides with the prior distribution of values of n
individuals directly drawn from the superpopulation.

For example suppose that y;,...,yn are independent and identical (multivariate)
Bernoulli trials such that F = (F,...,Fx) has the multinomial distribution
Mult(N,my, ..., 7). Then the marginal distribution of the sample frequency vector

f=(f1,...,fk) is again the multinomial distribution Mult(n,7q,...,7K).

We can also consider mixture of multinomial distributions. Let x4 denote a probability
distribution on the simplex § = {(my,...,mx) | 1 > 0,57 = 1} and consider the
probability mass function of F of the form

N )
pr(F1,. .. Fr) = /S (Fl,...,FK)WfI o dp (T, TR, (3)

Then by Lemma 1 the marginal distribution of the sample frequency vector f is given by

pf(f17’~'afk'):/‘;(f1 n fK)ﬂ‘{l"'ﬁ{x’!\'dlj’(ﬁlaﬁ'v'frl{)

A convenient mixture distribution x for the multinomial distribution is the Dirichlet distri-
bution, which is the natural conjugate prior distribution for the multinomial distribution.
This is the Dirichlet-multinomial model discussed in the next section.

Here we note the implication of the well known de Finetti theorem to our problem.
The assumption of the exchangeability of y;,...,yy in Lemma 1 seems to be a natural
one. If we further assume that (y1,...,yn) is a part of an infinite sequence of exchangeable
random variables for any N, then the distribution of (y;,...,yx) has to be a mixture of
the multivariate Bernoulli trials, i.e., the prior distribution of F}, ..., Fi is necessarily of
the form (3). Diaconis and Freedman (1980) extends the de Finetti theorem and shows
that it holds approximately even for finite exchangeable sequences.

Finally we mention the distribution of the sample size index vector. We have discussed
distribution of the sample frequency vector f. The distribution of the sample size index
vector 8 = (sg, ..., $,) involves a combinatorial complication and can not be easily treated
in general. If the marginal distribution of f is exchangeable with respect to the cells, then
it is possible to write down the marginal distribution of s as discussed in Appendix B.
The result in Appendix B is used for discussing the multivariate Ewens distribution in
Section 4.

2 Dirichlet-multinomial model

We have already given the basic idea for the Dirichlet-multinomial model in the last
subsection. We here give more detailed definition of the model. Let

w = (Trl,...,ﬂ'[{)
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be a probability vector and let the prior distribution of F = (Fy,..., Fx) (given m) be
the multinomial distribution Mult(N, 7y, ..., 7). Furthermore assume that 7 follows the
Dirichlet distribution with parameter a,,...,ax with the probability density function

F(al + + aK)ﬂ_ou~1 ce 71'01,'1{_1
Plon) - Tlax) ! )

p(ﬂ-la"'vﬂ-K) =

on the simplex § = {(my,...,7x) | 7 > 0, m = 1}. It is well known that the un-
conditional prior distribution of F = (Fy,..., Fg) is given by the Dirichlet-multinomial
distribution with the probability mass function

p(Fy,. .., Fg)
_ ( N )F(al + -+ ak) / portFi-1 e +Fr-1
Fl,...,FK F(al)---l“(oq() S ! K
_( N )F(a1+---+ah')F(al+F1)"'F(04K+FK)
“\m. M(ey) - T(ag) T(ag+---+ag+N)
_ N+ tax) Dl +F) - Tlag + Fr) (4)
[y +--+ag+N) I'(ey)F;! ['(ag) Fr! '

medTR g

Note that o4,...,ax are the hyperparameters of the prior distribution of F.

The Dirichlet-multinomial distribution is studied by many researchers under different
names. Mosimann (1962) gave a systematic study of this distribution and called it com-
pound multinomial distribution. Janardan and Patil (1972) and Janardan (1973) gave
detailed study of family of distributions including the Dirichlet-multinomial distribution.
See Chapter 35 of Johnson et al. (1997) for further references.

Write A = 2% | ;. The first and the second order moments of the Dirichlet-multinomial
distribution are easily evaluated as

o
E(F)= N 5
(F) = N )
and
N o % a;. A+ N
Var(F;) = NA(l A) Axl
. a; o A+ N
. . - —_— e — . 6
Cov(F;, F;) NAA A5 (6)
Furthermore

o T(AT(A—a+ N =1
PUs = 1) = Neo o Rir (A = o)

and the expected value of the number of the population uniques is given as

K T(A-a;+N-1)
UA+m§}” T(A— o)

Now consider simple random sampling without replacement from the realized pop-
ulation. By Lemma 1 the marginal distribution of the sample frequency vector f =
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(f1,--., fx) is again the Dirichlet-multinomial with the same a4, ..., ax with the proba-
bility mass function
nlllay+ -+ ax) T+ fi)  Tlex + fx)
s fK Q. ak) = ) 7)

P dicb e oek) = F e ) Tah!  Mamid ¢
It is also straightforward to verify (7) by explicitly evaluating the sum in (2). The first
and second order moments of f = (fi,..., fx) are given by (5) and (6) with N replaced
by n.

In the above full formulation of the Dirichlet-multinomial model a4, ..., ax are free
hyperparameters. Since we are considering the situation where K is large, it is desirable
to introduce some simplifying assumption on the values of «;,...,ax. If we assume that
all o;’s are equal and put

oy = Qg =+ = Q, (8)

then we obtain a model which is exchangeable with respect to the cells. This exchange-
able case of the Dirichlet-multinomial model corresponds to the gamma-Poisson model
of Bethlehem et al. (1990) and to the multivariate Ewens distribution of Section 4. In
this paper we mainly consider this exchangeable case. However the exchangeability of the
cells might be an unrealistic assumption for microdata sets as discussed in Section 5.

We now consider estimation of the hyperparameters of the Dirichlet-multinomial model
based. Given the sample frequency vector f = (fi,..., fx) we can employ maximum
likelihood estimation using (7) as the likelihood function. Alternatively we can consider
moment estimators based on (5) and (6) with the population size N replaced by the
sample size n. Janardan (1976) and Levin and Reeds (1977) investigated the estimation
of the Dirichlet-multinomial distribution. In particular, Levin and Reeds (1977) gave a
detailed analysis of the likelihood function (7). Here we discuss only salient features of
the estimation of the Dirichlet-multinomial distribution based on Janardan (1976) and
Levin and Reeds (1977).

We make the following reparameterization. Let

Qy

K
yi=—, i=1,...,K, A= a.
A =1

Consider letting A — oo with v, « = 1,..., K, fixed. Then the Dirichlet-multinomial
distribution converges to the multinomial distribution Mult(N,v,,...,7vx). In this sense
A = 00 is a valid parameter value. As we will see below, this causes difficulty in estimation
of A, whereas the estimation of v;, 1 = 1,..., K, seems to be more straightforward.

We briefly discuss estimation of 7;’s, when they are free parameters subject only to
>~ = 1. Noting

a;
E(f) = n—y =0
an unbiased estimator of ~; is given as

Yi = L (9)

n

It can be easily seen that (9) is also approximately equal to the maximum likelihood
estimator of 4;. Therefore (9) seems to be a natural estimator of v;, when +;’s are free
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parameters. In the cell exchangeable model (8) v, = 1/K,1 = 1,..., K, and there is no
need to estimate ~;’s.

We now discuss estimation of A given the values (or estimated values) of v;, @ =
I,..., K. As already mentioned above, the difficulty lies in the possibility that A = oo.
We consider the behavior of the log likelihood function as A — co. When A is large it
can be easily shown that the logarithm of (7) is written as

1 -
logp(flv"'7ff\" i A3717"'77ﬁ') = const — -2—14[72(71— 1) —";QT_— A

Therefore the behavior of the log likelihood function as A — oo depends on the quantity
R’ . b —
B:n(n—l)—zé—(—f—i—y——ﬁ.
=1 4

Levin and Reeds (1977) solved a conjecture of Good (1965) and proved that the likelihood

function p(fi,...,fx | A,v1,...,7vk) has at most one local maximum in A for given
Yy...,7YK. Therefore the maximum likelihood estimator A is indeed Apnr = oo when
B > 0.

In the cell exchangeable case, v, = 1/K and B =n(n—1)— K Y% fi(fi—1). In this
case B can be simplified as

B=K(K-1)(f-s})=n(K-1-x?% (10)
where . ( 4)2
2 Zi:l fi - f
8§ = —/—/———— 11
1 K -1 (11)
is the sample variance of f = (f1,..., fx) and

K AV
X2:Z(fz f)

=

is the chi-square statistic for testing the equality of the probability of the cells for the
multinomial distribution. Therefore if f > s} or equivalently if y2 < K —1 then Ay, = oo.

In the cell exchangeable case we can also use moment estimator for A = Ka. Let &g
denote a moment estimator of «. In the cell exchangeable case

K a+1
E(;fz(fi - 1)) - n(n - l)l(a__i_ 1‘
Therefore +1
o
E(T) = Ko+ 1’
where
1 K
T = (f, —1
n(n — 1);120(z )



Solving

_ ag + 1
- Kag+1
we obtain a moment estimator
1 KT -1
6 1-T

It can be easily shown that 0 < 7' < 1 and the sign of & depends on the sign of KT — 1.
Note that KT — 1 and hence 1/&g can be negative with positive probability, which is
annoying. However in this case we should interpret 1/ag = 0 or g = co. Indeed B in
(10) can be written as

B=n(n-1)(1-KT)

and 1/&g < 0 corresponds to AML = Kapyr = oo.
In terms of 5% of (11) the moment estimator & can also be written as
=l = !—{32 -1
Kag+1 nl 7
If we approximate the left hand side by n/(Ké&g) then a modified moment estimator &g
is given by
1 K K ,
— =D ey, 12
— =2 (12)

This is the estimator proposed by Bethlehem et al. (1990) for the gamma-Poisson model.

3 Gamma-Poisson model

In this section we investigate the relation between the gamma-Poisson model proposed
by Bethlehem et al. (1990) and the Dirichlet-multinomial model of the previous section.
We shall show that the Dirichlet-multinomial model is the conditional model when the
random population size N is fixed in the gamma-Poisson model. Conversely the gamma-
Poisson model is obtained by randomizing N of the Dirichlet-multinomial model with
negative binomial distribution.

LetII;, 2 = 1,..., K, bei.i.d. random variables from the gamma distribution Gamma(e, 3)
with the density

1 a—1_—z/8
e,
[(a)pe
Given the realized value of m; = II;, let F; be distributed according to the Poisson distri-
bution with mean parameter Nom;. F}, 1 =1,..., K, are mutually independent.

In the gamma-Poisson model a and 3 are assumed to satisfy the following restriction
af =1/K.

The population size N = F+-- -+ Fk is a random variable in this model and Ny = E(N)
in the model specification is the expected population size?.

*We make the notational distinction between N and its expectation Ny for clarity.



By integrating out with respect to the gamma density, we see that F;, i = 1,..., K
are i.i.d. random variables having the following negative binomial distribution.

P(F =z) = /0 ( ;:T) e—zvm[‘(awﬂa_le_w/adﬁ
Mla+z) (Nof)*
D(a)z! (1 + NpB)ete’

In Bethlehem et al. (1990) the parameters of the gamma distribution are taken as
(Noor, B/No) instead of (o, 3) and the parameters of the negative binomial distribu-
tion in (13) have to be changed accordingly. We think that the parameterization of
Bethlehem et al. (1990) is somewhat confusing and we prefer to use the parameterization
in (13).

In summary the gamma-Poisson model is written as

r=0,1,.... (13)

o tr Dlet F)  (NeB)"
p(Fb...;FK |/8)__z.__]:[1 I‘(Q’)E‘ (1—+—]VOB)Fi+O’7

where K, Ny are constants and o = 1/(8K).
Note that the negative binomial distribution is closed under convolution. Therefore
N is again a negative binomial random variable with probability mass function

I'NKa+ z) (NoB)*
[(Ka)z! (1 + NoB)=tke

Now we show that this model can be obtained by randomizing N of the Dirichlet-
multinomial model with the negative binomial distribution in (14). Consider the cell
exchangeable model (8). In (4) N is a constant and hence (4) can be regarded as the
conditional probability mass function given N. Multiplying (4) by (14) we obtain the

P(N =2) =

(14)

unconditional probability mass function of F = (F},..., Fg) as
(F Fio) NI'(Ka) D(a+ F)  TDla+ Fk)
P TR [(Ka+N) L(a)F! [(a)Fg!

[(Ka+ N)  (NoB)N
“T(Ka)N! (1 + NoB)N+Ka
I'(a+ Fy) _ ['(a + Fg) (NoB)N

['(a)Fy! h [(a)Fr! (14 NoB)N+Ee
I'a+ Fy) I'(a+ Fk) (No,@)Fl’{""""FK
o) By [(a)Fg! (14 Nop)f1t +FxtKa
= ﬁ : + ) _ (Nop)" (15)
o T(@)FY (14 NoB)Fter
Therefore Fj, i =1,..., K, are i.i.d. random variables with the negative binomial distri-

bution given in (13).
Conversely, if we divide (15) by (14) we immediately obtain the Dirichlet-multinomial

model as a conditional model from the gamma-Poisson model with N fixed. We summarize
our result in the following theorem.
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Theorem 1  Let N = F, + --- + Fx be fized in the gamma-Poisson model, then the
conditional model is the Dirichlet-multinomial model with o = o;, ¢+ = 1,...,K. Con-
versely the gamma-Poisson model is obtained from the Dirichlet-multinomial model with
a=qa; 1=1,...,K, by randomizing N with the negative binomial distribution in (14).

We can give an alternative explanation of this theorem as follows. Let G;, i = 1,..., K,
be independently distributed according to the the Poisson distribution Poisson(Ngm;). It
is well known that given N = G + - - - + G the conditional distribution of (Gy,...,Gk)
is the multinomial distribution Mult(N, py,...,px), where

Nom; ; . .
IO LiL L i=1,...,K.
Zj 1’\[071']' Zj ™5
Nowlet m;, i = 1,..., K, be distributed according to gamma distribution Gamma(c;, 8), 1 =
l,...,K. Then (py,...,px) = (m/ ¥, 7j,...,mk/3¥; 7;) has the Dirichlet distribution
with parameter (ay,...,ag). From this consideration it becomes almost obvious that

Theorem 1 holds.

Note that in the above explanation the scale parameter 3 of the gamma distribution
is irrelevant because the distribution of G;, 7 = 1,..., K, depends only on the ratios
T/ 37, i = 1,..., K. In the gamma-Poisson model 1/8 = Ka actually represents
>; «; for the cell exchangeable case.

We now consider simple random sampling of size n (n fixed) without replacement from
the finite population generated by the gamma-Poisson model. Concerning the marginal
distribution of the sample frequency vector f = (f1,..., fx) the following corollary follows
immediately from Theorem 1.

Corollary 1 Let f = (fi,..., fx) be the sample frequency vector obtained by simple
random sampling of size n without replacement taken from the finite population generated
by the gamma-Poisson model. Then f has the Dirichlet-multinomial distribution with
parameter o = oy, t = 1,..., K, i.e., its probability mass function is

_ nll'(Ke) I'(e+ fi) Tla+t fx)
 T(Ka+n) I'(a)f! o) fx!

p(fi, s fx) (16)

Proof. By Theorem 1 for each realized value of N the conditional model of the gamma-
Poisson model is the Dirichlet-multinomial model. Now the sample frequency vector
from the Dirichlet-multinomial population has the Dirichlet-multinomial distribution (16).
Note that (16) does not depend on the value of N. Therefore the unconditional distribu-
tion of the sample frequency vector is given by (16). Q.E.D.

By this corollary we see that the estimation of the gamma-Poisson model is exactly
the same as the cell exchangeable Dirichlet-multinomial model. In particular the moment
estimator (12) of Bethlehem et al. (1990) can be used to estimate the hyperparameter a.

Remark 1 In Section 6 of Bethlehem et al. (1990) it is claimed that the sample vari-
ance s% of (12) has to be calculated using only nonempty cells (i.e. non-zero f; ’s). This
does not seem to be correct.
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4 Ewens model

In this section we investigate the relation between the Dirichlet-multinomial distribution
and the multivariate Ewens distribution frequently used in genetics. The multivariate
Ewens distribution has been investigated in detail by M. Sibuya. See Sibuya (1992),
Sibuya (1993a), Sibuya (1993b), Sibuya and Yamato (1995). A related model was already
given by Taga and Isii (1959).

The Ewens model is a stochastic clustering model which describes how N (distin-
guishable) individuals form random clusters of various sizes. The description and the
notation of the model here follow that of Sibuya (1993b) and the reader is referred to
Sibuya (1993b) for more detailed description.

Let U, = {1,... N} and let A denote a partition of i:

A={i gk, 3 lm. Y.}, 1<ijk,...<N

Let S(A) = (S1,...,Sxn) denote the size index vector of the partition A. Unlike the
multinomial model, empty cells do not make sense in stochastic clustering models and S
is not defined. Let u be the total number of clusters

u:S1++SN

The multivariate Ewens distribution has one-dimensional parameter o > 0 and the prob-
ability of the partition A is given by

’LL

f[ (G- (17)

where /¥ = a(a +1)---(a + N — 1). Note that p(A) depends only on the size index
vector S(A). ot is the normalizing constant of the distribution and does not depend on
A. Furthermore H;\-’;l((] — 1))% does not involve the parameter a. Therefore u is the
sufficient statistic of the distribution. Writing

" = exp(ulog )

we see that the multivariate Ewens distributions form a one-parameter exponential family.
In particular maximum likelihood estimation is straightforward in the multivariate Ewens
distribution as discussed in Sibuya (1992).

(17) gives the probability of partition A of N distinguishable individuals. If N in-
dividuals are indistinguishable, then we can only observe the size index of A and the
probability of (Si,...,Sn) is shown to be

at N!

Siroo Sn) = A

(18)

Concerning the sampling, the idea of Lemma 1 holds for the Ewens model as well. Note
that the individuals are exchangeable in the Ewens model. Therefore if we sample from
the multivariate Ewens distribution using simple random sampling without replacement,
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the marginal distribution of the sample is again the multivariate Ewens distribution with
N replaced by n and the same parameter a.

Now consider moment estimation of a. The expected value of the number of the
sample uniques s, is obtained as

n
E =q—.
(s1) aa +n—-1
If n is large compared to « then
E(Sl = a.
Therefore a simple estimator of « is given by the number of the sample uniques

(o3
il

S1.

With this & the number of the population uniques is estimated as
N

Sl:dmd—{»N—«l idzsl.
Namely the estimate of the number of the population uniques is basically given by the
number of the sample uniques. This is a remarkable feature of the Ewens model. Note
that this simplicity might suggest the limitation of this model being one-parameter model.
A simple diagnostic check of the Ewens model can be given as follows. Sibuya (1993b)
and Arratia et al. (1992) derived the asymptotic distribution of S1,5,,..., S, as N —= 0o
in the following form.

Lemma 2 Fix m and let N = oo. Then S;, @ = 1,...,m, converge in distribution
to independent Poisson variables with mean /i, i = 1,...,m.

Lemma 2 is stated in terms of the population size indices. However clearly it holds
also for the sample size indices sy,...,s, as n — co. Therefore if the Ewens model holds,
then the sample size indices (s, sy, 83,...) should decrease roughly in the proportion
(1,1/2,1/3,...).

Now we will show that the Ewens model can be obtained from the Dirichlet-multinomial
model by a limiting argument similar to the law of small numbers. Consider the cell ex-
changeable case and let a; = @, 7 =1,..., K, in (4). Then as shown in Appendix B the

probability mass function of the size index vector (S, ..., Sy) is given by
( K ) NIT(A) ﬁ (F(a +j))5’ _ NIKIT(A) ﬁ (F(a +j)>SJ 1
Sos---, SN)T(A+ N) 2\ T(a)j! - T(A+ N)Sy! io \ Tla)s! St

We now perform the following limiting operation. Let A = Ko be fixed and let
K — oo, o — 0. Ignoring Sy we consider the limit of the marginal probability mass
function of (Sy,...,Sn). So = K — (S; + -+ + Sy) = K — u diverges to infinity as
K — oo. Now as K — oo

T(a+7) CAJK(AJK +1) - (A/K + 5 —1)
K—e——— = K -
['(a)j! 7!
_ AWK+ D (AR 45—
- j!
y !
— A'(]——l)— = é
J! J
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Furthermore

K!
K —wiie -
Therefore
NIKIT(A) Nl Te+)\Y 1 zwmAAuN
> [ KF———=*] — II . (19)
A+ N)(K —u)lK* = [(a)j! St T(A+N) 53 5% S !

Comparing (19) and (18) we see that the right hand side of (19) is the probability mass
function of the multivariate Ewens distribution with parameter A. Hence we have proved
the following theorem.

Theorem 2 Consider the Dirichlet-multinomial model with interchangeable cells o; =
a, 1=1,...,K. Let Ka = A be fixzed and let K — oo, a — 0. Then the marginal dis-
tribution of (Sy,...,SN) converges in distribution to the multivariate Ewens distribution
with parameter A.

In genetics this theorem is known in a different context. See Watterson (1976) and
Section 5 of Ewens (1990).

The motivation behind Theorem 2 can be given using a version of Polya’s urn model
with continuous parameter. Let «y,...,ax be nonnegative real numbers and let A =
oy -+ -+ ag. Suppose that a ball of “color i” is observed (or a ball falls in the i-th cell)
with probability o;/A, ¢ =1,..., K. Having observed color 7, we replace a; and A by

a; — o; + 1, A— A+1.

With these replaced values of «;’s we observe the color of the second ball. We repeat the
procedure until we observe N balls with colors yy,...,yn. Here y; = i means that j’th
ball has color 7. Consider the probability of the particular vector (yi,...,yyx) which has
the frequency vector of the colors (Fy,..., Fx). It can be easily seen that this probability
depends only on (F},..., Fx) and is given by

NE o+ 1)+ (o + F; — 1)
AATLD - (AT N-1)

Therefore the distribution of (y1,...,yn) is exchangeable with respect to the order of the
balls and the probability of the frequency vector is given by

N e, ai(ai + 1) (as + Fi = 1)
Fi,... Fg) = =
P, Fio) (H, E)X AA+D)---(A+N 1)
AA+D) - (A+N-1) 12 F!
NI'I'(A) ﬁrmHJQ
P(A+N) 5 Tle)Fi!

p(y1,.. . yN) =

(20)

We see that this form of Polya’s urn model is equivalent to the Dirichlet-multinomial
distribution. Now consider the limiting case K — oo,a — 0 with A = Ko fixed.
We see that the urn model above corresponds exactly to the Ewens model described in

Sibuya (1993b).
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5 Some discussions

We have discussed mathematical properties of the Dirichlet-multinomial and the related
models. The theory of these models are beautiful and these models are used in many
fields. However these models might be too simple to fit the real populations. In fact
Skinner and Holmes (1993) report that the gamma-Poisson model does not fit actual pop-
ulations very well.

One problem is the exchangeability of the cells. The actual classifications used in
microdata sets are determined based on their relevances in the population and exchange-
ability assumption seems to be a mathematical convenience. In the Dirichlet-multinomial
model o;’s need not be all equal and we may be able to construct a better fitting model
by allowing some variability in «;’s.

Other problem we have to consider is that the cells in the microdata sets are actually
determined by cross classifications of many categories, whereas the theory developed in
this paper treats the cells as essentially one-dimensional. If we consider cross-classified
cells, we face the problem of modeling correlations among categories. This seems to be a
very challenging topic for further investigation.

Appendix

A Bernoulli sampling for the gamma-Poisson model

We have so far considered the simple random sampling without replacement. Here we
consider the Bernoulli sampling for the gamma-Poisson model because of its simplicity.

The Bernoulli sampling is defined in Section 2.2 and Section 3.2 of Sarndal et al. (1992)
as follows. Let a frame of N individuals of the population be given. Let 0 < p < 1 be fixed
and consider a coin with the probability of heads p. For each individual of the population
we toss the coin and draw the individual if and only if the coin results in heads. In the
Bernoulli sampling the sample size n is a random variable having the binomial distribution
Bin(N, p). Given a value of n, Bernoulli sampling reduces to the simple random sampling
without replacement.

Consider the Bernoulli sampling from a discrete population with the population fre-
quency vector F' = (Fy,..., Fx). Then the sample frequencies f;, i = 1,..., K, are
independent and have the Binomial distribution Bin(F;,p), i = 1,..., K. This indepen-
dence of f;’s is the simplicity gained by using the Bernoulli sampling.

In the gamma-Poisson model F;’s are i.i.d. random variables having the negative bino-
mial distribution in (13). Combined with the Bernoulli sampling we see that (F;, f;), 1 =
I,..., K, are i.i.d random vectors. Hence f;, i = 1,..., K, are marginally i.i.d. random
variables.

Let the sampling probability p in the Bernoulli sampling be determined by p = ng/No,
where ng is a predetermined expected sample size. Then it can be easily shown that the
marginal distribution of f; is the negative binomial distribution (13) with Ny replaced by
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Ng, i.e.,

[a+z) (neB)”
[{a)z! (14 ngB)ete’

where o8 = 1 /K. The first and the second order moments of f; are given by

P(fif—x):

z=10,1,...,

o

B(f)=32.  Var(fi) = E(f)- (L +no8) = Z2(1 + nof) (21)

In this i.i.d. case it is easy to estimate 3. In particular from (21) a moment estimator of
nof = no/(Ka) based on the variance is given by

. Ks?r
nofB = —= — 1,
Ng

where s7 is the sample variance of f = (f1,..., fx) given in (11). Replacing Ny and no by
the actual values N and n, we again obtain the estimator (12) by Bethlehem et al. (1990)

B Probability distribution of size index vector for
cell exchangeable case

Suppose that we have an explicit expression pf(fi, ..., fx) of the probability mass function
of the sample frequency vector f = (fi,..., fx). Then the probability mass function of
the sample size index vector s can be obtained by summing up ps(fi,..., fx) for f’s

which have the same size index vector s. However in general this summation can not be
evaluated explicitly.

One simple case is when the probability distribution of f is exchangeable with respect
to the cells, i.e.,

pf(flﬁ"'vff\") :pf(fzn?fl}\)

for any permutation (iy,...,1x) of (1,...,K). In this case p;(fi,..., fx) only depends
on the size index vector s = (so, $1,...,5,) and it remains to count the number of sample
frequency vectors f which has the same size index vector. Consider a particular case

fl == fso = 07 f30+1 == f80+31 = 1? f30+sl+1 == fso+s1+52 :27

The number of ways to place s; i’s, 7 = 1,...,n, into K positions is

K
S0y 5Sn .

Therefore the probability mass function of the size index vector for the cell exchangeable
case is given by

K
ps(so,...,sn)———( )pf(O,...,0,1,...,1,2,...72,...,)
S0y -y Sy D i 2

30 S1 $2
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For example in the case of the multinomial distribution with equal cell probability

(1/K) we have

(000 0,1, 1,2, 2 )—(1)n n
Py U Ly b4 o4l ) = - .

N e Nt e K H:;l(?')s'
50 51 s2
Therefore
( ) K ( 1 )” n!
Ps yeresSn) = = i a.
Pelso 80y-+ySn) \K my(alys
_ K'n!
ORI (DS
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