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1 Introduction

Let us consider the multivariate linear regression model

y=AfB+e (1.1)

where ¥ is an N X p observed variable, A is an N X m known matrix with a full rank, @ is an
m X p unknown regression coefficient matrix, and e is an N X p error matrix. Assume that the
error e has an elliptical density

|Z|~N2f (tr 2”1ete) (1.2)

where ¥ is a p X p unknown positive-definite matrix, f(-) is a nonnegative unknown function
on the nonnegative real line, and e' denotes the transpose of the matrix e. The model (1.1)
with (1.2) is called Elliptically contoured model. It may be noted that the density f(-) depends
on N but for simplicity of notation this dependence is not shown.

In this paper, we consider the problem of estimating the coefficient matrix @ and the
scale matrix X for the elliptically contoured model (1.2) in a decision-theoretic set up. The
performance of every estimator is evaluated in terms of a matrix or a scalar risk function.
Beginning with the seminal work of Stein(1956) and James and Stein(1961), these problems have
been extensively investigated in the statistical literature for the normal model; see Robert(1994)



and Kubokawa(1997) for the vast literature in the normal model. The same, however, cannot
be said for the elliptically contoured distribution model (1.2), hereafter referred to as ECD
model. For example, no result exists in the literature in connection with the estimation of the
scalar matrix ¥. Thus, it is not known whether the minimax estimator given by James and
Stein(1961) and Dey and Srinivasan(1985) remain robust under the ECD model. We show in
this paper that they remain robust.

Similarly, only partial results are available in estimating the coefficient matrix 8. For
example, Srivastava and Bilodeau(1989) established the robustness of Stein estimator when
the error matrix has the distribution of a scale mixture (with signed measure) of multivariate
normal distribution and Cellier, Fourdrinier and Robert(1989) assumed that p = 1 and thus
considered only the spherically symmetric model (SSD); for a survey and recent results on SSD
models, see Brandwein and Strawderman(1990) and Cellier and Fourdrinier(1995a,b). In this
paper, we provide a complete analogue of the results obtained by Bilodeau and Kariya(1989)
and Konno(1990, 1991), for the ECD model. We also extend the results of Gleser(1987) and
Honda(1991) for non-invariant loss functions. The double shrinkage estimator in the growth
curve model given by Kariya, Konno and Strawderman(1996) is also shown to be robust for
the ECD model.

Most results in the normal model employ the integration by parts approach of Stein(1973,
1981), known as ‘Stein identity’ and a related identity for Wishart distribution derived by
Stein(1977a) and Haff(1979), known in the literature as the ‘Haff identity’. We extend these
identities to ECD models. Since our approach and proofs are based on Stein’s method, we shall
more appropriately call it Stein-Haff identity for the ECD model.

There are, however, some results which do not use the above two identities. This, for exam-
ple, arises in estimating the scale parameter with unknown location parameters. Stein(1964)
used the infinite series expansion of noncentral chi-square to prove the dominance result of his
truncated estimator over the usual unbiased estimator in the normal model. For the ECD model
we give a sufficient condition which, however, depends on f. Thus, we impose some conditions
and obtain dominance result in a restricted class which include multivariate ¢-distribution.

Finally, we treat a one-way mixed linear model with r replicates and two variance compo-
nents: ‘within component’ 02 and ‘between component’ 02. For 0*? = 0% + 102, 0% < 0*?, the
estimation of 02 and o*? are considered. In the normal model, unbiased estimators of 2 and o*?
are improved upon by truncated procedures. In ECD model, it has, however, a different story.
For estimation of o2, the robust improvement is established within a restricted class of ECD
models, while the dominance result for the estimation of o*? is not robust. But a modification

of a coefficient in the truncated procedure presents the robust improvement in the estimation
of o*2.

The organization of the paper is as follows. In Section 2, we present Stein and Stein-Haff
identities for the ECD model in two lemmas. Their proofs are also given. In Section 3, we
consider the estimation of the coefficient matrix 3. Special cases of this problem, such as when
m = 1 and the growth curve model, are given in subsections 3.1 and 3.4 respectively. Non-
invariant loss functions are considered in subsection 3.3. Robust improvement in the estimation
of the matrix X is considered in Section 4. Section 5 gives dominance results for the restricted
ECD model in estimating the scale parameter with unknown location parameters. This section
also includes the dominance results in a restricted ECD model for the estimation of variance
components in the two components one-way mixed linear model with replicates.



2 An Extension of the Stein and Haff Identities to an Elliptically
Contoured Distribution
We shall derive extended versions of Stein and Stein-Haff identities for the elliptically con-

toured distribution (ECD) model. These identities are heavily used in establishing the robust
improvements of shrinkage estimators of the coefficient matrix and the scale matrix.

We begin with providing a canonical form of (1.1). let H be an N x N orthogonal matrix

such that
(AtA)1/2 )
0

and let @ = (A*A)/28. Let « and 2 be, respectively, m x p and n x p matrices such that

- (

(m)zHy and n=N-m,

z
then the joint density of & and z has the form
21TV f (tr 27 (2 - 0)(z — 0) + tr Z712t2) (2.1)

Denote § = z'z and we treat the estimation issues of 8, X and their functions based on x and

S.
1 ptoo
=3 /x f(t)dt
and define

Ejsh(z,z) = //h(a:, 2)|Z| N2 f (tr S e - 0)(x—0) +tr E’Iztz) dxdz,

Let

Efsh(z,2z) = / / h(x, 2)| 2| V2F (tr 57z — 0)!(z - 0) + tr B 2'2) dadz,

where h(z, 2z) is an integrable function. When there is no confusion we shall drop 8, X from
the subscript in the above definitions. Let & = (z;;) = («f,...,z!,) and 8 = (65,...,6%))".
Then we get an identity corresponding to the Stein identity in the normal distribution.

Lemma 2.1. Let h = (hy,...,hy) : R — RP be a differentiable function and assume that
(a) the absolute value of each element of {h(zx)} (zx — 0) has a finite expectation,
(b) lim g ssochi(Thry - - - Tgy o oo Thp) F ik +0%) =0 fori=1,...,pand j=1,...,p.
Let (0{h(z)}'/0=});; = Ohi(xi)/Ozk; and (Vih)y; = Oh;j/Oxy:, where (C)i; designates the
(i,7) element of matriz C. Then

Efs[{h(m0)} (mk — 01)] = Ejy[0{h(zx)}/0zL]E = Ef5[(Vih)'Z].

Proof. Letting ¥, = (Y1, .- -, Ukp) = Zx(C) 7, & = (&1, .-, &kp) = Ox(C*) ™" and C = (g;5)
for ¥ = CC", we observe that

Eg,}:[{h(wk)}t(‘”k —0r)] = Eg,I[{h(kat)}t(yk - §k)Ct]:
and from Cellier et al. (1989),

E{ b s = &) = [+ [ hi(wiC")uhs — ) f (s — €)” + D)y 1 dyadz
i#k,j#L

Oh;( Ct
/ / ayk F(yrs — &)° + D)dyr; [] dyiedz,  (2.2)
Ykj i#k,j#L
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where

P m
D= Y (yi—&)*+ D (ye—&)(ye— &) +trztz.
i=1,i#j £=1,04k
Hence,
0
ng,l[hi(ykct)(ykj - &) = Ef, [a—mfhi(ykct)]
UYkj
Ohi(y,C") _ O(yxC")e
= Ef AL A
! [; Yy, C")e Oyk;
Ohi(y) }
EF [ % X cgil
bz zg: Oyxe “
giving the identity of Lemma 2.1. A

In the estimation of the mean vector and the covariance matrix, the Haff identity in the
Wishart distribution is known to be very useful. This identity can be also extended to the ECD
model. Let G(S) be a p x p matrix such that the (¢, j) element g;;(S) is a function of S = (s;)

and denote
{DSG(S)}W = Ediagaj(s)a
where . 5
ia — 1 )
d 2( +9 )asia
with &, = 1 for ¢ = a and &;, = 0 for ¢ # a. Note that S = I, 2lz; for n = N —m,
z=(2%,...,2t) and zx = (2k1, - - -, 2kp)-

Lemma 2.2. Fork =1,...,n and j = 1,...,p, assume that G(}_, zl2;) is differentiable
with respect to zx; and that

(a) Ejs[ltr {G(S)Z7|] ds finite,

(b) im o, ao0l2i; |G (07 282:) (1, 202:) 7 F (28 + a*) = O for any real a. Then

Ejs [tr{G(S)E7'}] = By [(n - p— 1)tr {G(8)S7'} +2tr {D5G(S)}] .

Proof. Before Haff(1979) established his identity for the Wishart distribution, Stein(1977a)
had derived this identity by using Stein identity which is technically very different from Haff’s
derivation. Using Stein’s method, however, enables us to extend the so called Haff’s identity to
the ECD model. We shall, therefore, more appropriately call it Stein-Haff identity. A detailed
proof of this identity using Stein’s method for the normal model is given in Takemura(1991).
The proof of the lemma is now given in the following three steps, where without any loss of
generality, we shall assume that @ = 0 and thus write EL[] for Eg’z[-].

1st step. Let h(S) be a scalar valued function of S and let X = I,. Noting that S = 2z'z
with z = (z;) , the same arguments as in (2.2) gives that

Bl [s5h(8)] = 3" B [owsaash(S)]

- ZE | ah(S))

_ ;:1 EF {@jh(S) + zkiih(S)} :

azkj
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Since 08qab/02kj = 0ja2kp + Ojb2ka, We see that

9 sy = 3 D dH(S)
szj a>b szj 8sab
Oh(S)
= Giazikp + Oib2ha) ——"
aZ):b( ja<kb 7b<k ) aSab
= (szb—“+ Z o ) (S)
i>b a>j 95a;

= 2% 50485 fajh(S)
= 22 Zkadaih(S),
so that
E{[sijh(S)] =E} [néijh(S) +2>°%° ZkiZkadajh(S)] ,
which yields the matrix form k
EJ[Sh(S)) = Ef [nh(8)I, + 2S{Dh(S)}],
where {Dgh(S)}i; = dijh(S).

2nd step. Let X be a p x p positive definite matrix and X = AA’. Then,

E{[Sh(S)] = Ef[ASA'h(ASA")
= AE{[Sh(AsA")] A",

It is here noted that

di;h(ASAY = 31);( + ‘5”)0? hASA)
u«ij
o O(ASA") Oh(ASAY)
= ; ~2~(1 + 51]) 85ij a(ASAt)ab
- Oh(ASAY)

]
Ma

Am’Abj abh(ASAt)v

o

a

where A = (4;;) and
0

~ 1
dop = 5(1 + 5a,b)m-

(2.6) is rewritten in the matrix form as
Dsh(ASA") = A'{Dsh(ASA")} A
Combining (2.4), (2.5) and (2.7) gives
E{[Sh(S)] = AE] |nh
= Ef [nZh
= EL[nXh(S)+2S8{Dsh(S)}X].

N -

!

ASAYL,| A+ 2AE] [S{Dsh(ASA")}] A’
ASA")| +2E] [ASA'{Dsh(ASA")}AA']

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)



By multiplying X in (2.8) from the right, we get
E{ [SZ7'h(S)] = EE [nh(S)I, + 28{Dsh(S)}]. (2.9)

3rd step. Let H(S) be a p x p matrix with the (4,7) element hj;;(S) where for the function
h(S) = h;i(S) , (2.9) is written as

Ef [Z swaajhj,-(S)] = Ef {naﬁhﬁ (8) + 23 siadaj (hji(S))] -
Taking the summation on ¢ and j in the above equation, we obtain
Ef [tr H(S)SZ™'| Ef [ntr H(S) + 2tr S[DsH(S)]].
Putting G(S) = H(S)S gives
EfitrG(8)27') = EEntr G(8)S™' + 2tr S|Ds{G(S)S7'}]]. (2.10)
Finally we evaluate the second term on the r.h.s. of (2.10). Note that

[Ds{G(5)S™1}], = ({DsG(S)}S™") . + 3 gur(8)dias”. (211)

ij

Since dS™! = —~871(dS)S ™!, dips¥ = —271(s%5Y + 5597, s0 that

Zgab(S)diasbj = -—% Zgab(S)sb“sij - -;— Zgab(S)sibs“j (2.12)
ab a,b ab
= Jisia'tr (G(s)s™) - -;- (s-lc;(sys—l)U (2.13)
Combing (2.11) and (2.12) gives
tr S[D{G(S)STY] = X sulDs{G($)S™ s
= trS[DsG(S)S~! - -;- (tr$87") tr (G(S)S7)
_%u (ss7'G(8)'s™) (2.14)
— [DsG(S)] - L i g(s)s.

From (2.10) and (2.14), the elliptically contoured version of the Haff identity follows. A

3 Robust Dominance Results for the Matrix Mean

3.1 Omne-dimensional case

We first discuss the case of m = 1 instructively. In the canonical form given by (2.1), we want
to estimate 1 x p vector @ based on & and z (or S) relative to the invariant loss function
(6 — 6)X71(8 — 8)t. Consider a class of shrinkage estimators

o= (1- 22520, (31)

xSzt
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for absolutely continuous function ¢(-).

Proposition 3.1. Form =1 and p > 3, assume that ¢(-) is a nondecreasing function to the
interval (0,2(p — 2)/(N — p+ 2)]. Then 84 dominates 8 = = uniformly for every unknown
function f(-).

Proof. The risk difference of two estimators §, and d4 is written by

Ay = Efs[(80-0)7" (80— 0)] - Ef5 [(6,— 0)S7 (8, — 0)]

_ f 29{’ 1 t ¢2 —1 .t
= E L’S‘ L (x— 0) - @5z X m]
-9 2
= QE;TE [(ps—l)(tb + 2¢} Eg,}: [Ti—é—?—l—a}—[)—iwz_lmt] , (32)

where Lemma 2.1 was used in the third equality in (3.2). For evaluating the second term of
the r.h.s. of the third equality, we make a scale transformation and get

Eg’z [¢2(msnlmt) mz—lmt} _ EgJ [¢2(m(ztz)_lmt) mmt] ’ (3.3)

(xS 'xt)? (x(ztz) lxt)?

where we use the same notations for  and 2z (or S) after the transformation. Let Q, be a
p X p orthogonal matrix such that Q,z' = (Vaa!,0,...,0)!, and let (y},yL)! = Q,2" with
1 x (N —1) vector ¥, and (p — 1) x (N — 1) matrix y,. Then,

z(z'z)"'a! = za! {ys (Iv-1 — ¥5(9:95) W)yt }-

Further, let Q, be an (N — 1) x (N — 1) orthogonal matrix such that Q,y% = (0, (y,y5)"/?)¢,
and let

(u1, ug) = ¥, Qs

with 1 x (N — p) vector u; and 1 x (p — 1) vector up. Then z(z2'z) 'z' = zz'/u;u! and
tr 2tz = wyub + upub + tr (y,y)), which gives that for &€ = X 71/2,

5, {qb?(m(ztz)*wt)mt}

@) @)
___//]/ulul (:c:ct)
zxt wiut
x f (tr (- €)'z — &) +uiul + ugul + tr (yzyé)) dzdu,du,dy,

4¢¢'] (34)

uu
= Ef:[(N p+2)——to

N-p+2 ,
= e [W¢2‘4¢¢]’

where Lemma 2.1 was used again with respect to u; in the second equality of (3.4). Combining
(3.2) and (3.4) shows that

Ag = EF 2(p—2) - (N—p+2)¢
6% xS ot

X ¢+ 4¢'(1+ ¢)|,
which is guaranteed to be nonnegative under the conditions of Proposition 3.1. VAN
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3.2 Multi-dimensional case

A major interest in this section is to show that the robustness of dominance results in the
shrinkage estimation is insured in the more general setting (1.1). Consider estimators of the
general form

§5(G)=xz+G(x,S)=x+G (3.5)
andlet x = (z;) = (x},...,2%) = (=!,...,z,) and G = (g5) = (G},...,G}) = (GY,..., G} ).

LT
Note that the (k, £) element of p x p matrix 0G;/0x; is 0gip/ Oz jx, while the (k,£) element of

mxm matrix 0G /0x} is 0g;x/0xje. Two types of criteria for comparing estimators are treated:
Rl(é’ (9’2)5f) = Eg,z:[(‘s - B)Ewl (5 - g)t]v mXxm
Ry(8,(6,%),f) = Ejsltr(6-0)Z7"(8-0)),

where R;(8,(0,X), f) is an m x m matrix and we say that &, is better than é, in terms of R;

if Ry(d2,(0,X), f) — R1(81,(0,X), f) is non-negative definite for every (8, X) and the positive
definiteness holds for some (0, X).

In this general setup, Bilodeau and Kariya(1989) derived a condition for 6(G) given by
(3.5) to dominate = through an unbiased estimator of the risk matrix R,(6(G), (8,), f) in
the normal distribution. Their general result can be extended to the ECD model based on
Lemmas 2.1 and 2.2.

Theorem 3.1. Assume that G(x, S) satisfies the conditions of Lemmas 2.1 and 2.2. Then the

(i,7) element of the R,-risk difference of the estimators  and §(G) given by (3.5) is evaluated
as

(Al)ij = (Rl (J(G)a (0$ 2)7 f) - Rl,(ma (07 2)1 f))lj
= E(;:E [tl‘ V,‘Gj + tr Vle -+ (Tl -p - 1)G’z-S_1G;- + 2tr DsGZGJ] .

Proof. Observe that
A =E[(2-0)27'G'+GE 7 (z - 0)' + GZT'GY.
Using Lemma 2.2, the (4, j) element of EY[G;X7'G%] is evaluated as
E'[Giz7'GY = E' GGz
= EF [(TL aly 1)G,S_]G; + 2tr [DscstH 5
which yields
(E7 [6z7'G")) = E" [(n—p-1)G:27'G} + 2tr D5GIG;] .

ij
Also from Lemma 2.1, the (3, 7) element of E[(x — )27 'G"] is rewritten as
B! [(z: - 0)27'GY] = 7B [Gl(x:i - 6))]
= rZ7E" [(ViG)) 3]
= E¥[trV,Gy],
so that
(B (& - 0)27'GY]) = E" [tr ViG],

iJ

8



and the proof of Theorem 3.1 is complete. A
The following result for the R,-risk difference is a direct consequence of Theorem 3.1.

Corollary 3.1. Under the same assumptions as in Theorem 3.1, the Ry-risk difference of the
estimators © and §(G) is evaluated as

Ay = Ro(8(G),(8,5), ) — Ral, (6,5), f) = tr Ay
= Ejy Zitr {(ViGi} + (n—p— Dtr {G'GS™'} + 2tr {DsGtG}} .

i=1

Bilodeau and Kariya(1989) derived several classes of improved estimators under very gen-
eral conditions. In particular, it includes Konno’s(1990) invariant class of estimators. These
estimators are invariant under the group of transformations (x,S) — (OzC, C'SC) where
O is an m x m orthogonal matrix and C is a p X p nonsingular matrix, and are obtained as
follows. Let F = (f1,..., fmin(pm))’ be a vector of ordered eigen values f1 > -+ > fuin(pm) Of
the matrix ‘S~ defined as

R!SR, =1, diag(F)= Riz'zR,, if m>p,
RixS 'a'R, = diag (F) if m<np,

where diag (F) is a diagonal matrix with diagonal elements as the ordered eigen values f; >
-+« > fmin (pm), and Ry, Ry are, respectively, p X p, m x m nonsingular matrices. Let h(F') be an
absolutely continuous positive scalar function of the vector F. Then Konno’s(1990) estimator
for the scalar loss function is given by

§*N(h) == (I, + RRH\(F)R{')  if m>p,
= (Im + R2H2(F)R2_1) xz if m<p,

where H,(F) = diag (hi(F),...,h,(F)), h;y(F) = 0h(F)/0f;, i = 1,...,p, and Hy(F) =
diag (hy(F), ..., hn(F)) . For example, if we choose h(F) = c¢ilog (m¢ fi) + c2log (Xk fi), then
we obtain Efron-Morris’(1976) type of estimators given by Konno(1990):

5EM(C],(32) = Ccl:Ipﬁ'Cl(mt:E)ﬁlS"'CQt for mZp—}—Q,

1
S
r(zix)S™! p]

= [Im +c (xS et + cztr—mgl_—l;Im} x for p>m+2,

where ¢; and ¢ are given by ¢; = ~(m—p—1)/(n+p+1), ¢ = =(p* + p—2)/(n — p+ 3) for
m >p+2,and ¢; = —(p—m—1)/(n+2m—p+1), ca = —(m?*+m—2)/(n—p+3) for p > m+2.
Another possible estimator 6%"* is given by putting H, (F) = diag (d1/ f1,...,dp/ fp) form > p
and H,(F) = diag (dy/ f1,-- -, dm/fm) for m < p where dy = (m+p—2k —1)/(n—p+2k+1).
Our Corollary 3.1 implies that these estimators 8™ (cy, ;) and §%* have robust improvements
over the crude Efron-Morris estimator 8% (c;, 0), being better than the least squares estimator
x. Similarly, other classes of estimators with respect to both kinds of loss functions given by
Bilodeau and Kariya(1989) are also robust from our Theorem 3.1 and Corollary 3.1.



3.3 Developments under a non-invariant loss
It is of another great interest to investigate whether the robust improvements of shrinkage pro-

cedures remain true still for noninvariant loss functions. Suppose that estimator § is cvaluated
in terms of the following risk functions relative to the noninvariant loss functions:

Ryi(8,(0,%),f) = E[;[(6-6)5-0)] : mxm
Ry»(8,(0,%),f) = Els[tr(6-0)(5-0)].

Gleser(1986) successfully developed improved shrinkage estimators for m = 1 in the normal
distribution, and Honda(1991) extended it to the multivariate regression model. When we
want to address their robustness, the essential part of it is to evaluate the cross term between x
and the shrinkage function, in which Gleser(1986) utilized both of the Stein and Haff identities.
For the purpose, we use the notation

E{h(z, )] = / / h(z, 2)| 2|72 {=2f (r 27\ (x - 0)'(x — 0) + tr ¥7'2"2) } dwdz. (3.6)

Following Gleser(1986) and Honda(1991), let H = (h!,..., h!,)! be an m x p matrix function
of  and S and define R = (r;;) = (r},...,rL)" (m x p) from H by
%, 1 0
rij = &;(hi(m, S)S);+5 2.

9 (hi(@,8)S), i=1,....m j=1,..p,
k7 Osk;

where for vector a, (a); designates the kth element of @. Then the estimator we consider is of
the form

6t =2-T (3.7)
where 5
T=(t,. .. tt)YY=H+ ——R.
(1’ 7m) +n~p~1

The Rp-risk difference of  and 6§L is written by

Ant = Rni(z,(0,X), f) — Rni(x, (8, %), f)
= Ejx [z - 0)T'+ T(z - 0)' - TT'].

Using the notation (3.6) and Lemma 2.2, we see that
Df -1 ¢
(Eod [HSZ (=~ 0)1])_
EY [tr{(z; - 0,)'h:SE7'}] (3.8)
= Eg,}) [(77, —p— 1)1;1’ {((BJ - Bj)thz} + 2tr Ds{(:l}j — Bj)ihlS}]
= (n—-p-—- l)E'({’E [’cr (z; — Oj)tti] .
From Lemma 2.1, on the other hand,
Egf [tr {(=; - 6,)'hi(x, $)ST '} = Ef5 [tr V;{hi(z, $)S}]. (3.9)
Combining (3.8) and (3.9), we get the required representation of Apy.

Theorem 3.2. Let f and H be differentiable, and assume that E‘%Htr {(x;—0;)thi(z,S)SX 7Y
< 0o for every,j, and that im ,,_:oohi(x, S)f(24; + a®) = 0 and lim 5+ ohi(x, S) f(x}; +

10



a?) = 0 for every i,j, k where zgi and zj, are, respectively, defined above Lemmas 2.1 and 2.2.
Then the (i,7) element of Any is given by

(ANl)ij = Eg,g —T; {tI’ Vj(hiS)tI' Vl(h]S)} - tztz . (310)

—p—1

Solutions for the nonnegativeness of the risk difference (A;;) are proposed by Gleser(1986)

_ cH(s) 2p—2)(n—p-1)

treS ! (n—p+3)?
where two common choices of b(S) are b (S) = (tr §7")! and by(S) = Anin(S) for the mini-
mum eigenvalue Api,(S) of S. These choices yield, respectively,

R, = p - -
! trzS et Ltr S“le + trzS lat (@S~ 2)25™ ¢,
Cbg(S)

trzS 'zt {/\mm(S)

as

x2S™! for p>3 and 0<c<

I

RQ‘:—

1
t -1t -1
xrg9g" + ———— (xS xS,
99" + == - ) }

where g denotes the eigenvector of S corresponding to A, (S) such that g'g = 1. The robust
improvement for the scalar risk Ry follows from the above arguments and Honda(1991).

3.4 Extensions to a growth curve model

We consider extending the robust dominance results to, more generally, a growth curve (or
GMANOVA) model

y=ABB +e, (3.11)
where y is an N x p observed variable, A and B are, respectively, N x m and ¢ X p full rank
known matrices with V > m and p > ¢, 3 is an m x g unknown coefficient matrix, and e is an

N X p error matrix. Assume that the error e has elliptical density |2|~"/2f(tr 27 'e'e) where
§2is a p x p unknown positive definite matrix, and f(-) is a nonnegative unknown function.

For providing a canonical form of (3.11), let ¥ = I'QI'* for orthogonal matrix I' =
(BY(B'B)~'/2, By) with some matrix By, and for 4,j = 1,2, X;; is a matrix element of £
with ¢ X ¢ matrix £;,. By making orthogonal transformations (Srivastava and Khatri(1979)),
the density of y is written as

=~V (tr Eiia(@ — 0 — xxy) (@1 — 0 — @27) + tr 23,0502
+tr Ehly (01 — (2°2)29) (1 — (242)1/%) (3.12)
+tr Yoy @by + tr Eg2lztz) dz,dxodvdvqdz,
where @, xy, v1, vy and 2z are, respectively, m X ¢, m x (p — q), (p — q) X ¢, n X g and
(N —m) x (p— g) random matrices for n = N —m — (p — ¢), and 8 = (AA")/?B(BB")}/?,

v = 22"21221. Denote Sy = 2tz, 8§10 = vivy and Sy = Séézvl.
The MLE of 8 in the normal distribution is given by

~ML - -
0 =T — w25221/2'01 = (I, —CL'25221/2) ( *1 ) 5
U1

11



~ ML
which is also MLE in the ECD model if f() is a decreasing function. For improving on 6

Kariya et al. (1996) considered the double shrinkage estimators

. y ~1/2 x, + Gy (931; 511.2)
6(Gy,Gy) = (I —x25 ) ( v1 + Ga(vy, S112|22, 522) '

The risk matrix of (G, G) is written as

R:1(0(G1,G5),(0,5), f)
= [((J(GI,G2 - 0) Z7, (6(Gh, Ga) - 0)1 (3.13)

z+G —-0—x -
E[(I :chzl/z ( 1 1/22‘7>211.2

v+ Gy — Sy
_ + G — 0 — 2y ¢
I-2,87"7) [ © .
{( — '01+G2-S§427

For the cross term,
E [(wl + G~ 0 — 2yy) X7 (01 + Ga — Si2~)t ( ‘1/2) t]

R ] (3.14)
+E (ml — 0 — 7)) I (v1 + G2 - 51/2 ~)* (5”1/2) 2]

= FE [(m1 + Gy — 60— zyy) X7y (v 22 7 )t

“{"E (.’.B] -0 - ﬂ)‘z’}’)z;l 2(‘01 1/2"}’)t (5—1/2) (Ez}

L

+E |G 514G (557’ g]

Noting that the density function is symmetric at €, — @ — &2y = 0 and vy — S%zﬂy = 0 gives

that the first three terms of (3.14) are zero. If we assume the restriction on G, as
G| — @2, So2) = Ga(-|T2; S22), (3.15)

then the same argument yields that the fourth term is equal to zero, so that the cross term is
zero. Hence the risk matrix (3.13) is rewritten as

Rc1(0(G1,G2), (6,5), f)
= K [(ml -+ G1 -0 - w27)2;112($1 + G1 -0 - :1:2'7)’]

+E [w28;21/2 (171 + Gy — 5%27) 7k, (v1 + G — 51/27)z (5—1/2) 2]

The above expression allows us to enjoy shrinking ; and v; doubly. Also the improvements
on the MLE are reduced to those on z; and v; in multivariate regression models. The same
arguments as in Section 3.2 are therefore used to establish the robust dominance results in the
ECD model. For the scalar risk

Re2(0(Gh,G2),(8,%), f) = tr R (0(G1, G2), (0, ), f),

the similar dominance results can be developed. Hence all improved procedures derived by
Kariya et al. (1996) and Konno et al. (1994) are guaranteed to be robust in the ECD model.

12



~EM
For instance, the Efron-Morris type estimator @ = x — atQS;?ng] — G has the robust

i ~ML
improvement on 8 |, where

G = |azi(ziz)” — qay(zhes) ™ Sy {512(‘17%502)"1521}_1] Si1.2
form>qg+2andp—q>q+2,
= a(@Sihe]) e — @S0 S87,812) 7 Sy
forg>m+2and g>p—q+2,
with mV mA 1
a= n+(2qm~—q)/:lq+1 and ¢, =

for aV b = max(a,b) and a A b = min (a, b).

gVip—q)—gh(p—q) —1
n+(2p-3¢)Ag+1

For the noninvariant loss functions, an extension to the growth curve model was given by
Tan(1991) in the case of a normal distribution. Combining the above arguments and the results
of Section 2.2, we can provide robust dominance results for the noninvariant loss and enjoy the
robust improvements of the double shrinkage estimators.

4 Robust Improvements in Estimation of the Covariance Matrix

The estimation of the covariance matrix of the normal distribution is one of interesting issues
which have been addressed in lots of papers. Let S be a random matrix having a Wishart
distribution with n degrees of freedom and the expectation E[S] = nX. When estimator X is
evaluated through Stein’s loss tr X! — log |EX~!| — p, James and Stein(1961) showed that

. . aUB ..
unbiased estimator .~ = n~'S is improved on by
oJS
¥ = TDT,

where D = diag(dy,...,dp) for d; = 1/(n+p+1—-2i),i=1,...,pand T is a p x p lower
triangular matrix such that § = TT". It is also known that 57 is further dominated by Stein’s
orthogonally invariant estimator

£°" = Hdiag (di6y, ..., d,t,)H",

where H is a p x p orthogonal matrix and #,...,¢, are eigen values of S such that S =
Hdiag (¢1,...,0,)H and ¢, > --- > Ly

The purpose of this section is to investigate whether these decision-theoretic results hold
still for every ECD model.

Theorem 4.1 For the estimation of X in the canonical form (2.1), the James-Stein estimator
aJS UB :
X is better than X uniformly for every unknown function f(-).

, . . ~UB ~JS ) , ) )
Proof. The risk difference of the estimators ¥~ and X"~ relative to Stein’s loss is written as

Act = R(E"",(6,2),5) - RE",6,9).f)
= Ely[n'tr ST~ log|n'ST 7 - e TDT'E™ + log [TDT' 5]

P
= Eg’l {n“]trS—i—plog n—trTDT +) log d;|. (4.1)

1=1

13



Note that

p
ng,] [n“ltr S] = E&f’l [n‘l Z zgzi] =p X Eglzl[l] (4.2)
i1
for z = (2z1,..., 2,). If we can show that
E{,[T'T] = D™ E{,]1], (4.3)

then combining (4.1), (4.2) and (4.3) gives

4
Ac1=Eg,1 {plogn—Zlog (n+p+1—2i)},

=1
which is nonnegative as checked easily.

We shall now verify the condition (4.3) to complete the proof. For the purpose, S and T
are decomposed by S = (S;;) and T = (Ty;) for ¢,j = 1,2 with scalars Sy, Ty and T3 = 0.
Since Sy = T T, S19 = TnTh, and Sy, = ToyTh, + T2, we observe that

(T'T)n = THTu +THTy = THTu + 117 81255,(Thh) 7,
(T'T)y = ToyTe= Tl—llsw\/szz ~ 81287 S1a,
(T'T)yy = T2, = Syy — SIQS 'S,

Let S;; = ztz; for z = (21, z9) with n X 1 vector z,, and let (v}, vh) = Hz, with (p—1) x 1
vector vy for n x n orthogonal matrix H such that (Hz;)! = (T11,0). Then we have Sy =
2522 = Tu'vl, so that

Ef, [T78085, )] = Ef, [vnvl] =1, B[], (4.4)
Eg’, [322 - 51251‘11512] = EgJ [zé(In - zl(zizl)‘lzﬁ)z‘z]
= El,[vivs) = (n—p+1)Ef, 1], (4.5)
EL, [T;; S12y/So — sgzs;fsm] - E, [vl\/&?@} —0. (4.6)

On the basis of (4.4), (4.5) and (4.6), the equation (4.3) is verified by the 1nduct10n For p = 2,
notmg that EU[THTU] = E&,[Sn] = nE[;[1], we can easily see that E 2 [T'T] = diag (n +

—1)Ef[1]. For p > 3, suppose that Eg,,[TtuTu] =diag(n+(p—-1)+1-24,i=1,...,p—
1)ng,[1]. Then from (4.4), E,[T% Ty, + T4 To) = diag (n+p+1-2i,i =1,...,p— 1)EF,[1].
Hence from (4.5) and (4.6), we get (4.3) and the proof is complete. A

For the assertion of the robustness of Stein’s result, the following lemma is essential.

Lemma 4.1. Let S = HLH', L = diag ({1,...,%,), {1 > ... > {,, and consider the estimator

by (¢) = Hdiag (¢1(L),...,¢,(L)) H'. Then under suitable conditions corresponding to those
of Lemma 2.2,

3¢z L)

Ely [tr2(¢)27"] = Ejy 22 il
i#]

_ 1) Z ¢z§zL)

This lemma is immediately derived from Lemma 2.2 and the equation

DsE(¢)) =S $i(L)/(l — &) +}:a¢l )/0¢;

i£]
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as evaluated by Dey and Srinivasan(1985).
ST . aJs .
Theorem 4.2. X" is better than X"~ uniformly for every unknown f(-).

: . ~JS
Proof. Using (4.3) and Lemma 4.1, we can write the risk difference of estimators X° and

~ ST
Y as

Az = R(E”,0,5),5)-RE",(0,2),f)
= B}y [t DT'S™'T| - E5 [tr Hdiag (dity, ..., dply) H'E™] (4.7)

= Blol - Bl 2z#+2zdi+(n—pw1)zdi].

1>

Using the equation
dil; — d;l; d;—d;
G-t b= bt d;,

we can rewrite Ago as

[ ~d;
Acy = -—E;:E 2Z€ /Z +}:n+p+1—2z)d }
L t>J -
| i>J 3 J
since Yo d; = Y0 S dy = Y0 S dy = (p—j)d;. Fori> j, d; > d; and £; < ¢,
so that we get that Acz 2 0 and the proof is complete. A

Two major dominance results in estimation of the covariance matrix have been thus estab-
lished to be robust in our sense. Another orthogonally invariant estimator of the form

g = / ITrDTYLIT
O(p)

was proposed by Takemura(1984) where O(p) designates a class of p X p orthogonal matrices
and Tp is a p X p lower triangular matrix such that I'"SI" = TpT%. It can be seen that
this estimator is superior to X/° uniformly for every function f(-). Also Sheena and Take-
mura(1992) proved that non-order-preserving estimators are improved on by the corresponding
order-preserving estimators. In other words, let £(¢) = Hdiag (¢;(L), . ..,¢,,(L))H * be an
orthogonally invariant estimator and let E((,bo) be the order-preserving estimator given by mod-
ifying £(¢) as L(¢°) = Hdiag (¢7(L), ..., ¢9(L))H', where ¢¥ (L) is the ith largest element
in (¢1(L), ..., ¢p(L)), that is, ¢2(L) > --- > ¢2(L). Then X(¢°) is better than Z(¢) in the
normal distribution if Pg(¢O(L) # ¢,(L) for some i) > 0 for some X. The robustness of this
dominance can be guaranteed when the function f(-) is nonincreasing. This result follows from
the fact that Lemma 1 of Sheena and Takemura(1992) holds for nonincreasing function f(-).

. : s ST . . .
This also demonstrates the inadmissibility of X~ for p > 2 and every nonincreasing function

f0).

In the ECD model, n='S is an unbiased estimator of ¥* = E,{’E[n”IS] = Ef/[1]¥. By
verifying each step of the above proofs, it can be shown that the robust dominance results
obtained in this section still hold in the situation of estimation of X*.
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5 Robust Improvements in Other Estimation Problems

5.1 Estimation of variance with unknown Jocations

We shall, in this section, investigate whether the robust improvements can be asserted in other
estimation issues. The robustness of improvements shown in the previous sections is technically
grounded on the Stein and the Haff identities given by Lemmas 2.1 and 2.2. The dominance
results in some estimation problems have, on the other hand, been established without using
their identities. In the estimation of a variance of a normal distribution with an unknown
mean, for instance, the dominance result is proved through an infinite series expression of a
noncentral chi square distribution. It is thus of great interest to argue whether the robustness
can be extended to such a situation of the dominance.

We here focus on the problem of estimating the scale parameter 2 in the model (1.1) with
the density (1.2) and 0? = X for p = 1. The canonical form (2.1) is written as

o N f(o7H |z - 0| + o7 ]2l]"), (5.1)

where z € R™, 8 € R™, z ¢ RY ™™ and ||z]|> = z!2z. Letting n = N — m, Stein(1964) showed
in the normal distribution that unbiased estimator 62V = n=1||z||? of ¢ is dominated by
g% = min {n7Y|2[[*, (n+m)7 (||2]]* + [|=|*)}
relative to the loss
L(6%,0°%) = 6%/0® — log6®/o® — 1, (5.2)

which can be derived from the Kullback-Leibler distance. Our purpose is to investigate the
robustness of the dominance result.

Let u = (u1,...,un) = o 'Hz, p = (07']0]])? and v = 67z for m x m orthogonal
matrix H such that H@ = (||8]],0,...,0)". The joint density of u and v is rewritten by
f(lull? = 2/Bus + p+ ||v]}?), and for T' = [|u]|* and S = ||v||?, we begin with obtaining the
joint density of (T',S). The following formula is quite useful for our purpose. For any function
h{-) and y € RF,

[ [ r(lyiP)1Gs = iyl Pydyds = e [ 827 h(s)ds (53)

where ¢, = {T'(k/2)}'«*/2. This formula can be verified by using the transformation to the
polar coordinates (see Takemura(1991)). It is also a special case of Corollary 3.2.3 of Srivastava
and Khatri(1979).

Lemma 5.1. Suppose that the function f(-) belongs to the C® class, namely being infinite-

times continuously differentiable, and permits the Taylor expansion. Then the joint density of
(T, S) is given by

00 T k
g(t,s;u) — Z (/J’é:‘) Cm+2kcnt(m+2k)/2—l8n/2—1f(2k)(t 454 M)a (54)
k=0 :

where f(%¥)(z) = (d?*/dz?*) f (z).

Proof. Expanding f(||u||® — 2/pu;, + p + ||v]|?) with respect to —2,/fu; gives the infinite
series

Z(2¢%lfwmmF+MW+m
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so that
L = //f(||“||2 - 2y/puq + p+ Hol|?)duy Im'[ du;dv
/ /2, 4u) Fudt SO ([l + [lol* + ) dulnduzdv (5.5)
=2

By using the formula (5.3) several times, the r.h.s. of (5.5) is expressed as

00 k
//Z@ﬂ'_c g2 f k)¢ gg+2u + ||v||2+u)ddeuldv

3==2

[ ] 5 o2 1 + o+ o

(4 :
//Z ,J’) Cm+2kcmt(m+2k)/2—lsn/2—1j(2k;)(t+ S"f"[ll)dtds, (56)

,,,,, (’2k+1

where u* € R™"?*. Noting that {4¥/(2k)!}c1/cors1 = (k!7%)™1, we get the expression (5.4).
A

On the basis of Lemma 5.1, we get a result concerning the improvement on 52V, Letting
W =T+ S and Z =T/(T + S), we see that the conditional expectation given Z in the risk of
the estimator (||z||2+]]z1|?)é(||z||?/(]|z||>+||z]|?)), being rewritten by oW ¢(Z), is minimized
at ¢(Z) = {E[W|Z]}~!. From Lemma 5.1, the joint density of (W, Z) is given by

L(H/ )

k=0

h(w, 2z IJ) +2kCn Z(m+2k)/2—1(1 _ Z)n/z—lw(m+n+2k)/2—1f(2k) (,w + /l),

which provides that {E[W|Z]} ! < A4 (f), where

(m+n+2k)/2~—1f(2k)

w w + p)dw

Am+n(f) = Sllp f 2k)/2 (2k) ( ) .
k>0 >0 [ w(mtnt2k)/2 £2K) (y) + p)dw

Hence we get

Proposition 5.1. If there exists A* such that Apin(f) < A* < n7Y, then 62V = n71|2]|? is
mproved on by

g*1(A*) = min {n7"|2|]%, A*(||=l|* + ||2]1*)}
relative to the loss (5.2).

It is noted that the constant A,,,,(f) generally depends on the function f(-). However,
by imposing restrictions on the class of the distributions, we can get improved estimators
independent of f. One of the restrictions we treat is to assume that

/2 f%) () + 1) is nondecreasing in w for every k > 0. (5.7)

Noting that 1/w and e*/2f(¥)(w+ 1) are monotone in opposite directions under the assumption
(5.7), we get the inequality

f w(m+n+2k)/2~1f(2k)(w + u)d'w f,w(m+n+2k)/2—1e~w/2dw
fw(m+n+2k)/2f(2k) (w + /,z)dw - fw(m+n+2k)/ze—w/2dw ’

(5.8)
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and the r.h.s. of (5.8) is equal to 1/(m + n + 2k), so that A, n(f) = 1/(m + n).
For instance, consider a class of contaminated (or mixture) normal distributions such that
the error term e in the model (1.1) has

(1 - /\)NN(O, 0'211\}) + /\NN(O, 0*211\() (5.9)

where A\, 02 and ¢*? are unknown parameters satisfying 7 = 0*?/0? > 1. This model means

some data with a larger variance can be taken with probability A. The function f(w + p) is
thus represented by

flw+p) =1 =N (2r) M 2exp {—9—}&} + A27r7) "M 2exp {——E);T—ﬁ} , (5.10)
and it is easy to check the assumption (5.7). Hence the robustness of the Stein’s dominance
result still holds within the model (5.9).

One choice of distributions with heavier tails is a multivariate ¢-distribution whose density
is given by
VIR ((N + v)/2)
aN2oNT (v /2)
which approaches a normal density as v tends to infinity. The function f&*(w + p) =

(const.)(w + p + v)~NV+)/2=2k ynfortunately, does not satisfy the assumption (5.7). Thereby,
Apin(f) is directly calculated as

(v + llell?/o®)" N2 v > 1, (5.11)

00 o (m+n)/2+k~1 —(N+v)/2-2k g
Am+n(f) = sup fo (w +pt V) w
k>0u>0 Joo wimAnd/24k(qy 4y 4+ v)~ (N+v)/2-2k oy

v—2+2k
= 5.12
kzs(},lfzo{(u+u)(n+m+2k)}’ (5.12)

which is smaller than or equal to (n+m) 'if v >n+m+2, orv ' if2<v<n+m+2
When the class of the multivariate #-distributions is restricted to the case v > ¢, we denote
the restricted class by F;(¢). From Proposition 5.1 and the above arguments, therefore, we see
that 6257 is better than 62Y8 for every f € F;(m + n + 2), that is, the improvement is robust
in the neighborhood F;(m + n + 2) of a normal distribution. From (5.12), it is also noted that
Anim(f) <(n+1)"'forv > n+1and n > 2. Hence from Proposition 5.1, 5?U# is improved
on by 6257 ((n+1)71) for every f in larger class F;(n + 1) although the rxsk gain will be quite
small.

When the estimation problem of o2 of the multivariate t-distribution is considered for fixed
v, apart from the contents of the robust improvements, the above arguments provide the dom-
inance result that unbiased estimator 62V8(v) = v=1(v — 2)n7!||2||? of 02 is improved on by
estimators

v i (v — 2)min {n7Y|z|]%, (n+m)7(||2||®2+||z||?)} ifv>n+m+2,
v (v — 2)min {n7Y|2||%, (v = 2)7 (||| + ||2]|*)} ifn+2<v<n+m+2

5.2 Estimation of ordered parameters in a mixed linear model
Let us consider the linear regression model (1.1) withm=p=1, A=3j,=(1,...,1)! € RV,

B = p € R and a covariance structure, that is, y = pjy + e, the N x 1 error vector e having
density

2772f (' "e) (5.13)
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where 2 is a N x N matrix with the covariance structure
N=0Iy+o- D J; (5.14)

for ©f | J; = diag (J1,...,J%), J; = j,3- and N = kr. In the case of a normal distribution,
this corresponds to a one-way mixed linear model with two variance components:

e=a®j, +e

where a and € are independent random variables with a ~ Ny (0,02I;) and € ~ Ny (0,0%Iy).

For providing a canonical form, consider 1 x N vector H; = N™/25% and (N — 1) x N
matrix H such that H,jy = 0 and HyH, = Iy_;. Let z = Hyy and z = Hoy. The joint
density of (z, z) is written by

Q2 f (D(:v) + 24 (o I vy + 03H2{@f:1Ji}H§)-1z) ’

where D(z) = (z — uv/N)?/(0?+r02). It can be easily seen that Ho{®*_,J;} H', = rE, where
E;is an (N —1) x (N —1) idempotent matrix with rank (E3) = k—1. Letting By = Iy, — E»
with rank (E,) = N — k, we see that

0’ In-1 + o Ho{®) | J:} Hy = 0> Ey + (0 + rag)Ez.

Let S = y'E,y and S* = y'E,y, and use the simple notations n = N — k, n* = k — 1 and
0*? = 0? + ro?. Applying the formula (5.3) and integrating out with respect to z, we get a

joint density of (S, S*) given by
CnCr (02)—n/2(0*2)~n*/28n/2—1 (5*)n‘/2—1g (0"25 + (0*2)-18*) , (5.15)

where

9(2) = / (o) f(D(z) + 2)dx. (5.16)

It is noted that the parameters o2 and ¢*? possess the order relationship 02 < 6*2. The esti-
mation issues of these ordered parameters 02 and o*2 are considered here where the estimators
are evaluated based on the same types of loss functions as in (5.2). In the normal distribution,
the unbiased (or best scale equivariant) estimators of 0% and o*? are given by 635 = n™1S and
6% =n*"1S*, which are dominated by their truncation rules

64p = min{n7'S, (n+n*)"1(S + S}, (5.17)
o5 = max{n*"'S* (n+n*)"'(S+SY}. (5.18)

Our interest is to investigate whether these dominance results maintain the robustness in the
ECD model.

For estimation of 0%, more generally, we treat the estimators of the form 62%(y)) = Sv(S*/9)
and obtain the condition on ¥(-) for %(¢) dominating 6%y in terms of the risk

wtso (S=[50(5) e (5) -1

Proposition 5.2. Assume that
(a) Y(w) is nondecreasing and lim , oo (w) = ay,
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(b) ¥(w) 2 tho(w) Bnn-(g) where for g(z) defined by (5.16),

Jr g 271 (1 4 )~ (AT 2y
Po(w) = P75 7
Il an 1271(1 + ) —(ntn®)/2=1(y;

(5.19)

and 5 ey (n+n*)/2-1 g(y)dy
n+n*(g) f y,H_,, )/2 ( )dy

Then Ry(w; S19(S*/S)) < Ri(w; agS) uniformly for every w.

(5.20)

Proof. Since lim,,_,t%(w) = n~!, the Integral- Expression-of-Risk-Difference (IERD) method
used in Takeuchi(1991), Kubokawa(1994, 1995) and Kubokawa and Srivastava(1996) can be
applied to get the following equations:

Ri(w; apS) — Ry (w; S (%i))

= B[{5 (1) -row (%t) -1}l (521
= 2" il () oo () -1} o]
Let v = S/0? and u = S§*/0*? and from (5.15), the joint density of (v, u) is given by
h(v, 1) = cpep- 0™ 1™ 2 1 g(v + u). (5.22)

Carrying out the differentiation in (5.21) gives
EM {F‘m} rid (S )dt}
1 Ou |,
/// { 0ut/v)}7¢ (But /v) dth(v, u)dvdu,

for 6 = 0?/0*? = 1+ ro?/0? > 1. Making the transformations (¢/v)u = w and w/t = z in
order with (¢/v)du = dw and (w/t2)dt = dz, we observe that the r.h.s. of (5.21) is equal to

/// { V(6w )}_w (Hu)) h{v,vw/t)dtdvdw

=/ / { }(mﬁ (6w) / (v, ve)dzdvdw. (5.23)

Since 9'(w) > 0, it is concluded that the r.h.s. of (5.23) is nonnegative if

ICv fy h(v,vz)dzdv
I v? [y h(v,vz)dzdy

Y(fw) > (5.24)

Since § > 1 and ¢/ (w) > 0, it follows that 1 (fw) > ¥(w), which, from (5.24), gives the sufficient
condition that ¢(w) is greater than or equal to the r.h.s. of (5.24), which, from (5.22), yields
the condition (b) of Proposition 5.2, which is established. JAN

The condition of Proposition 5.2 depends on the function g or f through By, ,,-(g). A conse-
quence of Proposition 5.2 presents a class of estimators with robust improvements on 6%, that

20



is, if 9 (w) is nondecreasing and if ¥(w) > yo(w) sup, Bpin- (g) with lim o pp(w) = n~!, then
&*%(1) is better than 67 5 uniformly within the class of ECD models. It is, nevertheless, difficult
to get the value of sup, By, .- (¢), and it may be needed to restrict the class of distributions.
One of the restrictions is to impose that

¢”/2g(w) is nondecreasing in w, (5.25)

which implies that By, ,-(g9) < (n + n*)"! as shown by the same way as in (5.8). Noting that
¥o(w) < 1+ w, hence, we get the robust improvements of 6% upon 674 for every g satisfying
(5.25). The contaminated (or mixture) normal distributions given by (5.9) belong to the class
(5.25).

The other choice of distributions with heavier tails is a multivariate t-distribution, where
the function g(z) defined by (5.16) is written as

VID((N =1+ v)/2)
g(z) = ,/T(N__l)/QF(V/2) (V

A C T (5.26)

for N —1 =n+n*. Since g(z) does not satisfy (5.25), we can directly calculate By ,+(g) as

f(?o y(n+n*)/2—1(l/ + y)”(”+"*+”)/2dy v 9 1 < 1

Bn+n* (g) = fooo y(n+n*)/2(’/ + y)_(n+n*+y)/2dy - v n + = n + * .

(5.27)

This demonstrates that 675 dominates 675 for every v > 1, that is, this dominance result is
robust within the class of multivariate t-distributions.

The robust improvement in estimation of ¢*? has a quite different story from the case
of estimation of 0? although both estimation issues have a similar scenario in the normal
distribution. Consider the estimator 5*?(¢) = S*¢(S/S*) and evaluate it in terms of the risk

o ()= £ [0 (2) - n e (2) 1]

Proposition 5.3. Assume that
(a) ¢(w) is nondecreasing and ¢(0) = a3,
(b) ¢(w) < ¢o(w)Brin+(g) for Buin-(g) defined by (5.20), where

L:O xn/2—1(1 + $)_(n+n*)/2d$
[ gnl2=1(1 + g)—(n+n*)/2=1(g”

¢0(U)) =

(5.28)

Then Ry(w; S*¢(S/S*)) < Ra(w; aS*) uniformly for every w.

Proof. Since ¢(0) = a, the same arguments as in the proof of Proposition 5.2 give

Ro(w; a3S") — Ra(w; S*6 (SS))

= —-F [/1%{5*¢(§;t) —log%qﬁ (5—;1&) ——1}dt]
- / / / { el u} Y ( )dt h(v, u)dvdu (5.29)
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for the joint density function h(v,u) given by (5.22). Making the transformations (t/u)v = w
and w(1/t) = y in order, we can rewrite (5.29) as

/// { w/O }¢(w/9) h(uw/t, u)dtdudw

///w {W'U} ¢’('w/9)%h(uy,u)dydudw, (5.30)

so that since ¢'(w) > 0, the Lh.s. of (5.29) is nonnegative if

[ [ uh(uy, v)dydu
I S5 w?h(uy, w)dydu

B(w/0) < (5.31)
Hence Proposition 5.3 is established by noting that ¢(w/6) < ¢(w), and that the r.h.s. of (5.31)
is equal to ¢o(w)By,n-(g) given in the condition (b). A

From Proposition 5.3, we get a class of estimators with robust improvement on 657, namely,
if ¢(w) is nondecreasing and if ¢(w) < ¢p(w)inf, Byin-(g) with ¢(0) = n*7', then 6**(¢)
dominates 6% uniformly with respect to the ECD model. It is interesting to note here that
the required values of B, ,-(g) defined in (5.20) for the improvement in estimating o? and o*?
are in the opposite directions. For the estimation of 6*2, the value of inf, By in-(g) is needed
while supy By yn-(g) is required for 6®. As indicated in the above examples, sup, By in-(g) is
attained when g is the standard normal distribution, namely the distribution with the lightest
tail. In contrast with it, infy B, 1,-(g) may be attainable when g has a tail as heavy as possible
within a class of distributions under consideration. Two issues of estimations of o2 and o*?
thus have different stories in robustness of improvements.

One restriction of distributions corresponding to (5.25) is to impose that for known value
T > 1,
€@/ (210) g (1) is nonincreasing in w,

which is satisfied by the class (5.9) with the constraint on the dispersion that ¢*? < 7y0?. The
617 is improved on by max {n7'S, 75 (n 4+ n*)"1(S + S*)} for every distribution within the
restricted class of (5.9).

For the multivariate ¢-distributions, one needs to impose the restriction on v as v > V() for
known value vy > 2. Then from (5.27), it follows that 677 is dominated by max {n~1S, v5 ! (vo—
2)(n +n*)"'(S + S*)} uniformly within the class with v 2 V.

Apart from the robustness of improvements, we conclude this section with providing decision-
theoretic results in the situation where the distribution g is fixed as a known function. Note
that unbiased (or best scale equivariant) estimators of o2 and o*? are given by 67 5(9) =
" (n 4+ n*)Byiar(9) and 67%5(9) = n*~1(n + n*)Buyn- (9). Proposition 5.2 shows that 6% 5(g)
is dominated by smooth estimator 6Z5(9) = St¢0(S*/S)Bpin-(g) and truncated estimator
6%5(9) =min {n'S, (n+n*)"1(S + S*)}(n + n*)Buyn-(g). It is here interesting to note that
6% p(g) is interpreted as a generalized Bayes estimator against the prior distribution 7 1¢~dndg,
0<é<1,forn=1/0%and &€ = 0?/0*?. Also 6%5(g) is derived as an empirical Bayes estimator
against the prior distribution ~'dn with unknown parameter £, 0 < £ < 1. In fact, the Bayes
estimator of o2 is of the form 6%(€) = (S + £5*) Byin-(9), and the marginal density of (S, S*)
is given by (const)&™ /2(S 4 £8*)~(n+n7)/2 | p(n+n")/2=14(p)dp. The maximum likelihood estima-
tor of £ is min {n*S/(nS*), 1}, which is substituted in 6%(€) and we get the empirical Bayes
estimator 6%5(g). For estimation of 0*2, the same arguments and Proposition 5.3 provide the
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generalized Bayes estimator 63%(g) = S*¢¢(S/S*) Bnin-(g) and the empirical Bayes estimator
532:(g) = min {n*"1S, (n+n*)"1(S+S5*)}(n+n*)Bpin-(g), both improving on 63%(g). For in-
stance, By in.(g9) = (n+n*)"" for the normal distribution while Byin-(g9) = v} (v—2)(n+n*)"}

for the multivariate t-distribution. '
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