97-F-22

James-Stein Type Estimator by Shrinkage to Closed

Convex Set with Smooth Boundary

Satoshi Kuriki
The Institute of Statistical Mathematics

Akimichi Takemura
Faculty of Economics, University of Tokyo

June 1997

Discussion Papers are a series of manuscripts in their draft form. They are not intended for
circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.



James-Stein type estimator by shrinkage to closed
convex set with smooth boundary

Satoshi Kuriki
The Institute of Statistical Mathematics
and
Akimichi Takemura
Faculty of Economics, University of Tokyo

June, 1997

Abstract
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rate of shrinkage is determined by the curvature of boundary of K at the projection
point onto K . By considering a sequence of polytopes K; converging to K , we
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improving the restricted mle by shrinkage toward the origin in the multivariate
normal mean model where the mean vector is restricted to a closed convex cone
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settings, one shrinking toward the ball and the other shrinking toward the cone of
non-negative definite matrices.
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1 Introduction

Let r be a p-dimensional random column vector distributed according to the normal
distribution N,(u,I,) with mean vector p and the identity covariance matrix. The
problem we consider is estimating the unknown mean vector p under the loss function

L(f, ) = |l — %,

the square of the Eucledian norm, and the risk function

R(f1, p) = Eu[L(f1, p))-

It is very well known that when p > 3 the UMVU estimator z, which is minimax
as well, is inadmissible and whese risk is improved uniformly in g by the James-Stein
estimator

i (o) = o+ (1 = =) = o) (1)

Also, let M be a (p —m)-dimensional affine subspace in RP, and denote by z); the
orthogonal projection of x onto M . The estimator
m — 2

iz, M) =zp+ (1 — s
e M) = o+ (L= e

)@ — zu) 2)

is a version of the James-Stein estimator (1), and dominates the estimator z when
m>3.

Here, (1) and (2) are estimators with z shrinking to the particular point o and
the affine subspace M , and it is reasonable to apply these estimators when p = yy and
1 € M can be considered as a priori but vague information on u .

As an extension of these James-Stein type estimators (1) and (2), Bock (1982) consid-
ered the case where the unknown mean vector u is assumed to satisfy several inequalities
as a priori, vague information. Let K be a closed convex polyhedron which is formed by
a set of assumed inequalities and let zx be the orthogonal projection of = onto K . The
estimator proposed by Bock (1982) is the estimator with z shrinking in the direction of
TK -

iz K) = zx+(1- J@—2x) if m>3,

= otherwise, (3)

where m is the codimension of the face F' of K which contains zx as a relatively
interior point, i.e., p —dim F = m . Although (3) is formally the same as (2), it is to be
noted that m in (3) is a random variable while m in (2) is a constant. In this paper,
we treat the general situation where the convex set K is not necessarily polyhedral.
Under some regularity conditions on the surface 0K of K , we give estimators of u by
shrinkage to K as natural extensions of (1), (2), and (3). The estimators we focus on are
James-Stein type because the relation between the rate of shrinkage and the curvature
on the boundary 3K of K is clearly understood in James-Stein type estimators. It is
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feasible that more sophisticated shrinkage estimators lead to further improvements in our
setup.

The construction of this paper is as follows. In Section 2 we prepare notations on
geometry of piecewise smooth surface of convex sets. Distributions of statistics associated
with the orthogonal projection onto K are derived from geometric consideration. Pro-
posed estimators dominating z by shrinkage to K are given in Section 3.1. The rate of
shrinkage is shown to be determined by the curvature of 8K at the projection point of
z onto K . Discussions on approximating K by a sequence of polytopes are given in
Section 3.2. By considering a sequence of polytopes K converging to K , a particular
estimator we propose is shown to be the limit of a sequence of estimators i(z, K;) in
(3). In Section 3.3, we show that our method is applicable to improving the risk of mle
in the model where parameter space is restricted to a closed convex cone. In Section
4, we exemplify our estimators by two settings. First, we give the shrinkage estimators
toward the ball with center 1 and radius r. It is shown that when 7 is sufficiently
small proposed estimators dominate the James-Stein estimator (1). Second, the shrinkage
estimators toward the cone of non-negative definite matrices which is a typical example
of piecewise smooth convex set are considered. The performance of these estimators is
investigated by numerical studies.

As related works of this paper, Bock (1985) gives a different type of shrinkage estima-
tor toward a ball in spherically symmetric distribution; Chang (1981), Judge et al. (1984),
and Sengupta and Sen (1991) discuss shrinkage estimation when parameter space is re-
stricted by linear inequalities. For recent developments of shrinkage estimation, see also
Robert (1994), Rukhin (1995), and Kubokawa (1997).

2 Orthogonal projection onto closed convex set

In this section we prepare materials from convex analysis and differential geometry, and
derive the distributions associated with orthogonal projection onto closed convex set.

Let K be a closed convex set in RP . For each z € RP the orthogonal projection
zg of x onto K satisfying

lz — zx]| = min |z — y]|
is defined uniquely and we have the unique decomposition
T =2k +(x— k). (4)

Let 0K be the boundary of K . For fixed s € 0K , the normal cone of K at s is
defined by

N(K,s)={y—s|yx = s}
(Section 2.2 of Schneider (1993)). Note that z — zx € N(K,zk). Depending on the
dimension of the normal cone N(K,s), the boundary 0K is decomposed as

0K = D1(0K)U--- U D,(0K) (5)



with
D, (0K) = {s € 0K | dim N(K, s) = m}.

Note that (5) is a disjoint partition of 0K . Define
En(0K)={zx € RP\ K | zx € D,,(0K)}.
Then we also have a disjoint partition
RP\ K = E;(0K) U --- U E,(0K).
Here we put a regularity condition on smoothness of 0K .

Assumption 2.1 D, (0K) isa (p—m) -dimensional C? -manifold consisting of a finite
number of relatively open connected components.

Remark 2.1 In this paper we call 0K “piecewise smooth” if 0K meets Assumption 2.1.
Moreover, we call 0K “smooth” if 0K 1is piecewise smooth and D, (0K), m > 2, are
empty.

Fix z ¢ K and suppose that s = zx € D, (0K). From Assumption 2.1, there
exists a C? local coordinate system s = s(d), 6 = (6*,...,6°"™), of D,,(0K) in a
neighborhood of s. The tangent space Typ of D,,(0K) at s(f) is spanned by

_ 0Os
- 96

{ba(6) ), a=1,....p—m}.

Write an orthonormal basis of T, s(g)'L as

{na(O), a=1,... ,m}

satisfying
(6a(0), na(0)) = 0
and
(na(0),np(0)) = dop (Kronecker’s delta),

where (, ) denotes the standard inner product. The metric G = G(#) of D, (0K) at
s =s(f) is
G(8) = (Qab(g))lsa,bgp-m
with
9ab(6) = (ba(8), b,(8))-

(a,b) -th element of G()~! is denoted by ¢**(6) .

Note that {b,(f)} are C!' functions in 6, and that we can choose {ny(6)} so as
to be of class C* as well. For example, {nq(#)} obtained by Gram-Schmidt orthonor-
malization process of the column vectors of the matrix [, — BG™'B’ are of class C! in
6, where B = (b:1(0),...,bp-m(0)) isa p x (p —m) matrix. For the differentiability of
{na(6)} , see also page 699 of Naiman (1990) and its references.
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The second fundamental form H, = H,(#) of D,,(0K) at s = s(f) with respect to
the normal direction n,(6) is defined as

Ho(8) = (B} 4(0))1<apsp-m

with o ,
Bal®) = 3 haca@g™O), haa0) = = 5-25(6).ma(8)).

Since Ts(g)l is the affine hull of N(K,s), we can write an element in N(K,s) as
™ t°n4(8) by introducing a new parameter t = (¢',...,t™). Corresponding to the
decomposition (4), we have
z = s(0) +n(h,1) (6)
with

n(0,t) = f_:l 1214(0),

which is a local one-to-one transformation of z <> (6,t). The Jacobian of the transfor-
mation (6) derived firstly by Weyl (1939) is stated in Lemma 2.1 below. Another simpler
proof of Lemma 2.1 is given in Appendix A.

Lemma 2.1

do = |l o + H(6,1)|ds(6) dt (7)
with .
H(6,t) = > t*H,(9),
a=1
where

ds(8) = \/det(g.s(0))do" - - - dP™

is the volume element of D, (8K), and dx = dz,---dz,, dt = dt*---dt™ .

Remark 2.2 Weyl (1939) has derwed the Jacobian (7) in order to obtain the formula
for the volume of tube (Weyl’s tube formula).

By means of Lemma 2.1, we can discuss the joint density function of (6,t) when z
is distributed as N,(u,I,) . Note that in our application all eigenvalues of H(f,t) are
non-negative, and hence |[,_n,, + H(6,t)| is always positive. The following lemmas hold
immediately from Lemma 2.1.

Lemma 2.2 Let = ~ N,(u,I,) . Then the conditional density of t = (t',...,t™) given
zg = s(0) € D, (0K) is

Fe10)d = e(O) exp{ ~ SIn0,01 + (0(0,1), 10— 50D} - o + HO, )] dt
for t such that n(6,t) € N(K,s()),
= 0 otherwise.

Here e(6) is a normalizing constant depending on 0 .
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Lemma 2.3 Let x ~ N,(u,1,) . Denote the length of orthogonal projection by

= |lz = zkll = [In(6, ) = /Xalt®)? (8)
and put
w=1"€ 8™ (the unit sphere in R™ ). 9)

Then the conditional density of | given zx = s(0) € D,,(0K) and w such that n(0,u) €
N(K,s(0)) is

f(l16,u)dl = e(f,u)-exp { - —;—lz + Un(f,u), u— s(G))} . |Ip_m + lH(H,u)‘ m™tdi
for 1 >0,
= 0 otherwise. (10)

Here e(8,u) is a normalizing constant depending on 6 and w .

3 Estimation by shrinkage to closed convex set

3.1 Proposed estimators

As explained in Section 1, we will discuss estimators with z shrinking in the direction of
the orthogonal projection of = onto a closed convex set K :

pz,K) = zx+(1-¢)(z—2k)
= s(0)+(1—¢)n(b,1), (11)
where
b= c(z) _ c(6,t)
|z —zkl  |In(0,1)]]?

is the rate of shrinkage. Put ¢ = 0 formally when z € K . Note that the estimators
(1), (2), and (3) can be written in the form of (11). The problem discussed here is to
determine the function c(z) = ¢(6,t) for K with piecewise smooth boundary.

By applying the Stein’s method of integration by parts to the conditional density (10),
we obtain an unbiased estimator of risk difference. In Lemma 3.1 and Lemma 3.2 below,
we use the symbols [ and u which are defined in (8) and (9).

Lemma 3.1 Assume that, for each = € E,,(0K), c(z) = c¢(0,lu) is a continuous and

piecewise differentiable function in 1 for fized (6,u) and satisfies the boundary condition

. c(8,lu) _

i G000 =0 12

Then an unbiased estimator AR of conditional risk difference between the estimators

f(z, K) in (11) and the minimaz estimator x under the conditional distribution (10),
that is,

E,JAL|6,u] with AL=||i(z, K) - ul? = llo — |,
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s given by ,
— 10c

c
where
d=d(z)=d6,t) = m+trH(O,t)(I+ H,t)™!
m+ltr H@,u)(I +[H(6, u))”l. (14)

Proof. Since )

€ oy 2%(72(0, u), u — s(0)),

T

AL
it is sufficient to verify that

B[S (0w~ 5(0)) | 6,u] = B, - -}%;- ~f@-2+clou].  (3)

By virtue of the condition (12), we have

)
= e0u) [ g e{in(6,w), 4 5(0)))
xc(6, lu) exp{—12/2} |I,_m + LH(8,u)| ™2 dI
+e(0,0) [ exp{Uin(8, u),u - s(0)))

x—(%[c(@, lu) exp{—1%/2} |Iy—m + LH(6,u)] lm‘Q] dl

= lhs of (15) — rhs of (15).

0 = Mf(lw,u)li:

The proof is completed. |

Remark 3.1 We will call d(z) in (14) “average codimension” in view of Remark 3.5
below. As a function of | (for fited 0 and u ), d(z) = d(0,lu) is a nondecreasing
function such that

lim d(8,lu) = m, lim d(6,lu) = m + rank H(6, u).
=40 =00

Lemma 3.1 immediately gives the following.

Lemma 3.2 Assume that, for each x € En,(0K), c(z) = c(0,lu) satisfies the conditions
of Lemma 8.1, and AR < 0 a.e. Then the estimator fi(z,K) in (11) is a minimaz
estimator of u . Moreover [i(z,K) dominates the estimator = unless AR =0 a.e.

Now, we give two types of shrinkage estimators toward the convex set K whose

boundary is piecewise smooth. One is denoted by ji(z, K) and the other is denoted by
i (z, K) , which are given by Theorems 3.1 and 3.2, respectively.
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Theorem 3.1 For x ¢ K, define d=d(z) = d(0,t) by

do,t) = d(b,¢) if m>2,
= d0,t)+ if m=1, (16)

1
|I,—1 + H{0,1)|

where m = dim N (K, zg) . Then, the estimator ji(z,K) in (11) with c=d—2 (z ¢
K), =0 (z € K), is a minimaz estimator, and dominates = unless m-+rank H(0,t) <
2 a.e. The risk gain —AR = —E,[AL], minus of risk difference, of the estimator is

Eu[x{mgz} : Zlé—{(m —2+trH(I + H)‘l)2 +2tr H(I + H)"z}]

+ B[ Xm=1y 215{(t1rH(I+H)'1 - 1)2 +2tr H(I + H)™?
1

-1 1
“TTEE 2tr H(I + H) 1 (17)

I+ H|
where H = H(0,t) =1H(0,u) and x() ts the indicator function.
Before proceeding to proof, we prepare a lemma. The proof is given in Appendix B.

Lemma 3.3 Let B be a symmetric matriz such that O < B <1, that is, both B and
I — B are non-negative definite. Then

(trB)2+1—|I - B|*—2tr(B*) —2trB-|I - B| >0, (18)
and the equality holds iff rank B < 1.

Proof of Theorem 3.1. The function c(x) = d(x)—2 is continuous and differentiable
in [.

The unbiased estimator of the risk gain —~AR when m > 2 is the content of the
expectation in the first term in (17), which is non-negative. Moreover, —AR is positive
for m > 3; or for m =2 and rankH > 1. When m =1, —AR reduces to 1/12
times the lhs of (18) with B = H(I + H)™'. Note that rank B = rank H . Therefore,
~AR is always non-negative, and is positive iff m > 3;0or m =2 and rankH > 1; or
m =1 and rank H > 2. These three cases are summarized as m +rank H > 3.

Now, it remains to check the boundary condition (12). Since c¢(z) is bounded, the
boundary condition (12) holds obviously for m > 3. Also, it holds that lim;_, 2@#2 f(
f,u) =0 for m=1,2. Moreover when m =2,

_d-2

fli - wHOu), fI]0w) =0, as 140,

and hence (12) also holds for m =2. When m =1, we have

5:_‘1_%2_)0, FU10,0) = e(0,u), as [ — +0,

and (12) holds for m = 1. The proof is completed. ]
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The estimator given in Theorem 3.1 seems complicated at a glance. The motivation
why we propose it will be revealed in Section 3.2.

The estimator ff(z, K) given in Theorem 3.2 below is a modification of i(z, K) only
in the region E;(0K) and has a simpler form.

Theorem 3.2 For v € K, put d(z) = 0 formally. Let m = dim N(K,zk). The
estimator in (11) with c(z) = max{d(z) — 2,0}, that is,

_d@) -2y o
o) @) i d) 2,

= z otherwise, (19)

iz, K) = zx+ (1

is a minimaz estimator, which dominates z wunless m + rank H(0,t) <2 a.e. The risk
gatn —AR of the estimator s

By [X(a)>2 llz{ (m—2+aHI+H)™) + 20 H(I + H)?], (20)

where H = H(0,t) =1H(6,u) .

Proof. The function ¢(z) = max{d(z)—2,0} is continuous and piecewise differentiable
in [.

The unbiased estimator of the risk gain —AR , the content of the expectation in (20),
is non-negative, and positive when d(z) > 2. It holds that d(z) > 2 with a positive
probability unless m + rank H < 2 a.e. (see Remark 3.1).

For the boundary condition (12), we only have to verify the case m = 1. Since
c(x) = ¢(0,lu) is bounded, we have lim;_, ﬂ%f(l | 6,u) = 0. Since d =d(0,lu) is a
continuous nondecreasing function in !, and d -2 — —1 as [ — +0, it holds that

¢ _ max{d-2,0}
I !

Noting again that f(l | 6,u) — e(f,u) as | — +0, we see (12) holds for m = 1. The
proof is completed. |

-0 as [ — +0.

Remark 3.2 Because max{d(z),2} = d(z) = d(z) for m > 2, plz,K) = p(z, K)
holds for © € En,(0K), m > 2, and for x € K. For z € E|(0K), d(z) —2 >
max{d(z) — 2,0} (see also (48) and (51) of Appendiz C) and the shrinkage by o' (z, K)
of Theorem 3.2 toward K is less or equal to the shrinkage by [z, K) of Theorem 3.1.

Remark 3.3 When K is polyhedral, it holds that H(6,t) = 0 and hence d(z) in
(14) becomes m . In this case the estimators ji(z,K) of Theorem 8.1 and pf(z,K)
of Theorem 3.2 reduce to Bock’s estimator (8). They obuviously reduce to the James-
Stein estimator (1) or (2) if K = {w} or K is an affine subspace M . Therefore the
estimators fi(z,K) and p'(z,K) can be considered as extensions of the James-Stein
estimator for K with piecewise smooth boundary.



Remark 3.4 Besides the estimators [(z,K) and ['(z,K), we can give estimators
which satisfy the assumptions of Lemma 3.2 and reduce to Bock’s estimator (3) when
K is polyhedral. For example, the estimator defined by c(x) = max{m — 2,0} is such
an estimator. However, we will show in Section 3.2 that the estimator j(z,K) of The-
orem 8.1 is the natural extension of Bock’s estimator, and in this paper we focus on the
estimator ji(z,K) and its modification if(z,K) .

3.2 Approximation by a sequence of polytopes

Here we confirm that the estimator f(z, K) defined by Theorem 3.1 is the natural gen-
eralization of Bock’s estimator (3) by approximating K by a sequence of polytopes.
Throughout this subsection we assume that K is compact.

The convex hull of a finite number of points is called polytope. For any compact
convex set K , there exists a sequence Kj, j = 1,2,..., of polytopes which converges
to K in the sense of Hausdorff distance

p(Kl,Kz) = mf{)\ >0 l KicKy+ AU and K, C K| + )\U},

where U is the unit ball in RP (e.g., Corollary 3.1.7 of Webster (1994)).
Consider the estimator fi(z,K;) of (3) with respect to the polytope K;. Denote m
in (3) by d(z, K;) , max{d(z, K;),2} by d(z,K;), d(z) in (14) by d(z,K), and d(z)

in (16) by d(z, K) .

Theorem 3.3 Let K;, j = 1,2,..., be a sequence of polytopes which converge to K
in the sense of Hausdorff distance. Let A be a bounded, Borel-measurable set in RP
satisfying

A C E,(0K) and dist(A, K) > 0,

where
dist(A, K) =inf{|lz — y|| |z € A, y € K}.

Then it holds that

}g& Ad(av,Kj)da: = /Ad(x,K)d:c, (21)
lim [ d(z,K))dz = /A d(z, K) dz, (22)
and
I A,Kd:/A,Kd, 23
lim | Az, Kj)de = | iz, K)dz (23)

where dx 1is the Lebesque measure of RP .
Theorem 3.3 says that the estimator j(z, K) is the limit of a sequence of the Bock’s

estimators fi(z,K;) in a sense of weak convergence of measures. The proof is given in
Appendix C.

10



Remark 3.5 d(z, K) can be interpreted as an average of codimensions in the sense of
(24). Abbreviate Ex(0K;) as Ex; . From (21), we see for large j that

Sk - Vol(AN Eyj) = / d(z, K;) dz
& A
~ /A d(z, K) dz = d(z*, K) - Vol(A),

where x* s a point in A, and hence

VOI(A N Ekj)
B ST

k

~ d(z*, K). (24)

The lhs of (24) is the average of codimension k with respect to the ratios of the volume
Of Ekj in A.

3.3 Improving the mle restricted to closed convex cone

In this subsection, we treat the multivariate normal mean model N,(i,I,) where the
mean vector p is restricted to a closed convex cone, say C, in RP. This is a typ-
ical model which has been studied extensively in the field of order restricted inference
(Barlow et al. (1972), Robertson et al. (1988), and Shapiro (1988)). When =z is ob-
served, the restricted mle of p is given as the point z¢ which attains mingec ||z — g -
Sengupta and Sen (1991) showed that, when C' is polyhedral, the risk of restricted mle
zc is improved by shrinkage to the origin. We now demonstrate that their proposition
holds for more general cones which are not necessarily polyhedral.

A class of shrinkage estimators considered here is of the form:

(1—@)zc with ¢ = c(z)/||zc|? (25)
Denote the dual cone of C by C*. Since

T =Tc+ To, (xc,zcr) =0,
the difference of losses between the shrinkage estimator (25) and the restricted mle z¢ is

AL = |[(1=d)xc—pl® = llzc — ul?
= |lzc- + (1= @)zc — pll* = llzer + zo — pl)?
= |z + (1 = @)zc — pl® = ||z — pl*.

Because z¢» + (1 — @)z is the estimator (11) with K = C*, the coefficient ¢ of the
rate of shrinkage can be determined by the method developed in Section 3.1 as long as
C* satisfies Assumption 2.1.

4 Examples

In this final section we exemplify our method by giving shrinkage estimators to smooth
and piecewise smooth convex boundaries.
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4.1 Estimators by shrinkage to the ball

Let K = {z |||z — o]l < r} be the ball in RP with center po and radius r. Let =z
be a p-dimensional random vector distributed according to N,(u, I,) . We consider the
estimators fi(z,K) and ff(z, K) in Theorems 3.1 and 3.2 by shrinkage toward the ball
K . Put pg =0 for simplicity.

Assume that * ¢ K . Then zg = HTTM“C and m =dim N(K,zg) = 1. By choosing
a suitable local coordinate system, we have that

H= —f: -1 with I =]|z|| -7,

and that
d(z) = d(z) + (T:l)”"l.

The estimator fi(z, K) in this model is

N p—2—(r/)(1 - (r/||z|])P? ,
Ur(x) — (1 _ ( / )”(x”2 ( /H |) )>.’L‘ if ”x“ >,
= z otherwise. (26)
Note that 1
p —
d(z) — 2 —.
(z) >0 & |z| > - 5"
The estimator if(z, K) (19) in this model is
. p—2—-1/l ) _
pl(z) = (1 - ———-l-]—;”—z——/—)x if ||z|| > &—%r ,
= =z otherwise. (27)

The following theorem states the comparison of the risks of estimators f, and Al
with those of the James-Stein estimator fi;s of (1) with pp = 0 and the positive-part

James-Stein estimator 5
ftys+(x) = max (1 - %;“—Q,O)x. (28)

A proof as well as the expressions for the risk gains of the estimators are given in Appendix
D.

Theorem 4.1 Assume that p> 3.
(a) For sufficiently small r > 0, both fi, in (26) and i} in (27) dominate fiys .

(b) For any r >0, [iys+ in (28) does not dominate either i, or il .
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Remark 4.1 Kubokawa (1994, Theorem 4.1) gives a wide class of estimators which dom-
inate the James-Stein estimator. We see that the estimators fi, and fif do not belong
to Kubokawa’s class, because in (26) and (27)

.
c(zy~p—2—— as t=|z|*— oo,
(z)~p 7 [z

which does not meet the condition (b) of Theorem 4.1 of Kubokawa (1994).

Table 4.1 shows the estimated risk gains

— AR = Ey(lle — pl’] - Bullli(z) — ] (29)

for the estimators jiys, flss+, fir, and ff by Monte Carlo method with 1000000
replications. In this study, we put the dimension p = 5 and p = (u,0,...,0), 0 <
p1 < 10. We can confirm that when r = 0.25 and 0.5 the risk gains of ;s are smaller
than those of fi, and j! uniformly in the noncentrality parameter A = u?. We also
see that, for any r > 0, jijg+ does not dominate either fi, or ff. For example, when
p = 6.00 the risk gain of ji;g; is less than those of fi, and ff .

4.2 Estimation of non-negative definite mean matrix

Let S, be the set of pxp symmetric matrices. We consider S, as a metric vector space
with the inner product

<W17 WZ) =tr W1W2 Z W14 Wi + Z \/_wlz] \/—wh])

1<j

for Wy = (wy45), Wo = (wai) € Sp. Let C in S, be the cone formed by p x p non-
negative definite matrices, i.e.,

C={WeS,|W >0}

Note that C is self-dual, i.e., C* = —C'. As shown by Takemura and Kuriki (1995), C
(and hence C* as well) is a typical example of closed convex set whose boundary is not
smooth but piecewise smooth. The partition (5) of the boundary 0C' is

P
0C = | Dj(i+1)2(0C),
i=1
where
Dz(z+1)/2(80) = {W eC | rank W = p— Z}

The statistical model considered here is as follows. Let X = (z;;) € S, be a symmetric
random matrix whose components are distributed independently as

Zii ~ N(pis, 1), V2 ~ N(V2pi5,1) (i < j).

Then, the joint distribution of X can be written as

1
op/2pppiiya X { |X M }dewa

1<J

13



where M = (u;;) is the mean matrix. Furthermore, we assume that M is non-negative
definite. This model arises as the limit of multivariate variance components model when
the number of blocks goes to infinity. See Kuriki (1993) and its references. We discuss
here the estimation of M .

Write the spectral decomposition of X € S, as

x-ana=(@ an( 0)(2),

where Iy > --- >, are the eigenvalues of X , r is the integer such that [, > --- > [, >
0>l > 21, Ay =diag(ly,...,l,), and Ay = diag(lr41,...,4) . @1 and Qy are

pxr and px (p—r) matrices such that @ = (Q; @2) is orthogonal. The orthogonal
projections of X onto C and its dual cone C* are given as

Xe=Q1MQY and Xev = QA2Q2,

respectively.
The restricted mle of M wunder the restriction M € C is X¢ . According to Section
3.3, we can construct the shrinkage estimator

c(X)
tr A12

(1-¢)Xc with ¢= (30)
which dominates X .
In order to determine the function ¢(X), we need the concrete form of second fun-

damental form of the boundary of C* = —C , which has been derived by Takemura and
Kuriki (1995).

Lemma 4.1 Non-zero eigenvalues of the second fundamental form H = H(X¢c», X¢) of
Dy(r41y2(0C*) at Xe- = QaA2Qy with respect to the normal direction X = Q1MQ1' €
N(C*, X¢c+) are

= =Ll j=r+l...p (31)
—;

From Lemma 4.1 above, d in (14) in this model is

dX) = r(r+1)/2+trHI+H)™?
_ r(r;l) +§j§ﬂ l,flj' (32)
d in (16) is
dX) = d(X) if r>2,
P

if r=1.

I
=
=
+
—

N/"\
=
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The shrinkage estimator of M by the method of Theorem 3.1 is (30) with
6 = =ldX)-2) iz,

= 0 otherwise.

The risk gain (17) for this estimator is
Eu[l|Xe = M|*] = Ex{l(1 - ¢)Xc — M|

:EM[X{@}'ZS 1.2{( r(r+1) _2 Z Z
2y 3 )

=1 j= r-+—1
1 P —l] 2 P ll 4 "‘l]
X {1} © — +2 . . 33
X{r=1} 112{ j]‘;IQ(h*lj) ?;_Qll—lj jl_—.:Ig(ll’—lj)}] (33)
The shrinkage estimator by Theorem 3.2 is (30) with
ot = 1lzmax{d( )—-2,0} ifr>1,
=1
= 0 otherwise.
The risk gain (20) for this estimator is
Eu[|Xc = M|P"] = Enlll(1 ~ ¢")Xc — M]?]
1 r(r+1) L I, \2
= Ewm|x : — 2+
M[ {d(X)>2} Z?j 2{( 2 ;j:;—l lz . l])
34

Table 4.2 is a numerical study for the proposed estimators. We put the size of matrix
p = 2,4, and the non-negative mean matrix M = diag(my,...,my), my > -+ >m, >0,
without loss of generality. Note that the risk of the estimator X is

; (p+1),

which is 3 for p = 2 and 10 for p = 4 . In Table 4.2, the columns labeled by “projection”,
“shrinkage”, and “shrinkage ' 7 are the estimated values of

Em[IX - M|") =

En{IX = M| = Eul|Xc ~ MIf]
=Eu|(p-r)p—r+1)— > 1)

j=r+1 1=1j= r+1

] (35)

(33), and (34), which are the risk gains by projection to C and by shrinkage to the
origin of two proposed estimators. We evaluated the risk gains by averaging the unbiased
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estimators given by the rhs’s of (35), (33), and (34) by Monte Carlo simulations with
1000000 replications.

From the simulation results we see that the risk gains by projection and shrinkage are
nonincreasing in each element of the diagonal matrix M . Moreover, under the condition
that A = ||M]|? is fixed, the risk gain by shrinkage is larger as the variation of my,...,m,
is smaller; while the risk gain by projection is larger as the variation of my,...,m, is
larger. Also, although the risk gain of (34) seems slightly larger than that of (33), the
difference is very little. In particular, when p = 2 these values are exactly the same
because rank H =1 for r=1.

Remark 4.2 We have obtained the unbiased estimator of risk difference (13) with d in
(82) through the second fundamental form (81). But in this model, we can also derive it
directly by the method of Sheena (1995).

A Proof of Lemma 2.1

We introduce here a notational convention for indices; when some indices appear twice,
the symbols of summation are abbreviated and terms are summed up with respect to the
indices.

From the representation by components of (6), we have
T; = 8; + 1" Nia,

and therefore

00 ) d6" + g dt®, (36)

where

90a = by = (bIm Y bpa),a Ng = (nlaa <. 7npa),-

By multiplying (36) by b; , and summing up with respect to ¢ =1,...,p, we have

bib dl‘, = (gab + tahaba) do*. (37)
Here we used the relation
(977,,‘(1 . 8bzb —}
ib“é@; = "505';;77'@'01 = Ngbpa-

On the other hand, by multiplying (36) by n;s, and summing up with respect to
1=1,...,p, we have
ania

a6e

ns dxz = tanm do*® -+ dt‘g. (38)
Combining (37) and (38), we have

det(by, ..., bp—m,N1,. .. ) de,- = det(gap + t%Papa) H dg* Hdta‘
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Since

| det(b1, ..., bpem, N1y - -, )|
= {det(bl, ca ,bp_m,nl, e ,’I’lm)/(bl, . ,bp_m,nl, N ,nm)}1/2

1/2
= det ((gg,) f ) = det(gap)"/?,

it holds that
[T dz; = + det(62 + th%,) det(gas)"/* [] d8* ] dt*.

The proof is completed.

B Proof of Lemma 3.3

We will prove Lemma 3.3 by mathematical induction with respect to the dimension p
of the matrix B. Without loss of generality, we assume that B = diag(bi)i<i<, with
0<bh<1.

We see easily that the statement holds when p=1.

Assume that the statement holds for the (p — 1) x (p — 1) matrix B,_; . The lhs of

(18) with
— _ Bp—l 0
B=B,= ( - bp)

reduces to the quadratic polynomial in b, :
F(bp) = e2b,” + c1by, + o,

where
= (I =Byl ~ 1) <0.

Note that ¢; =0 < B,_1 = O. Moreover ¢y is the lhs of (18) with B = B,_;, and
therefore we have by the assumption of mathematical induction that ¢, = f(0) > 0 and
f(0) =0 < rank B,_; <1. On the other hand,

f() = (trBy,_y)*+2tr B,_;(I — B,—1) > 0, (39)

and the equality in (39) holds iff B,_; = O . Since f(-) is concave, we have f(b,) > 0
for 0 < b, <1. The equality f(b,) =0 holds iff

£(0) =0 if b, =0,
f(1)y=0 if b, =1,
fO)=f(1)=0 and ¢ =0 if 0<b,<1.

At least one of these three cases holds iff rank B, < 1. The proof is completed.
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C Proof of Theorem 3.3

C.1 Proof of (21) and (22)

Fix a bounded open subset Ay of RP satisfying Ay C E,(0K) and dist(Ay, K) > 0.
Let B(Ap) be the Borel field generated by open sets of the topological subspace Ao in
RP with the relative topology. (21) and (22) are equivalent to the statement that the
measures v; and 7; defined by

vi(A) = /; d(z,K;)de  and  ;(A) = /A d(z, K;) dz
converge weakly to the measures v and 7 defined by
I/(A):/Ad(x, K)dx and v(A) :/Ad(x,lx)da:,

respectively, where A € B(4,) . To prove these, we only have to show that (21) and (22)
hold for any open set A C Ay (e.g., Theorem II1.1 of Bergstrom (1982)). Before preceding
to proof, we prepare some materials mainly from Sections 4.1-4.2 of Schneider (1993).
For z ¢ K define
Ik(z) = llz — 2kl > 0

and
ug(z) = (r — 2x)/lx(x) € SP"1  (unit surface in RP).

We consider the triplet (Ix(z),zk,ux(z)) as a point of Ry x RP x SP~1,
Let ( C Ry x R? x SP~! be a bounded open set. Let

(={leRs|(qu) e}

and for pe ¢ let
n, = {(q,u) € R? x S| (p,q,u) € C}. (40)

Since g is continuous in z (and so are lk(z) and ug(z)) by Lemma 1.8.9 of
Schneider (1993),

A= {.’L‘ € R I (lK(x)vxKauK(x)) € g} (41)

is a bounded open set as well. The volume of A in RP is given by

d
Vol(4) = [[dp o (Kom)|

n="ne

where p,(K,n) is the volume of the local parallel set
{z € R” |0 <lk(z) < p, (vx,uk(z)) € n}.

By virtue of the formula for u,(K,7n) (Theorem 4.2.1 of Schneider (1993)), we can write
1& (P
AV — - E : o 9
ol(4) /édp {p =" (a) Op-alK.1p)}. (42)
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where ©,_,(K,-) is the generalized curvature measure.
On the other hand, if A C E,,(0K) ,

Vol(4) = /A dz

m-1g / I, .. + pH(8,u)| ds(6) du
/ép P Jisoym 9#))6%‘ g (6,u)]ds )

t

P
= /_dp ST 007 | tramH(0,u) ds(6) du, (43)
¢ a=m Np

where tryH is the k-th elementary symmetric function of the eigenvalues of H for
k>1 and trgH = 1. Therefore, comparing (42) and (43), we have in this case

aflp
—_— () — 3 >
( )Op_a(K, n) = / tro—mH (0, u) ds(8) du for a > m,

= 0 otherwise. (44)

Now, by preparing three lemmas we first prove (21).

Let ¢ be a bounded open subset of R, x RP x SP7!  and define A by (41). Assume
that for each p, 7, in (40) is a continuous set of the measure ©,_(K,-) and that
A C En(0K) and dist(A, K) > 0. Let

Aj={zx € R? | (Ix,(2), zk;, uk, (v)) € C}.
Note that for large j, Ix;(z) >0 and ug,(z) is well-defined.

Lemma C.1 A4s j — o0,

/A d(z, K;) dz — /A d(z, K) dz. (45)

J

Proof. From the property of weak convergence of the generalized curvature measure
(Theorem 4.2.1 of Schneider (1993)), it holds that

@p—-a(Kja np) - ep—'a(K7 77p) (46)

Abbreviate E(0K) as Ej . Since

Vol(A; N Ey) = /C.pk_ldp X (the coefficient of pF~! in d‘dgﬂp(Kj,ﬂ) )}

3
n=p

we have
P
/A‘d(ac,Kj)d:E = Z ol(A; N Ey)
’ P
- /C P

k=1

E(2)o0rntrsin (a7)
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On the other hand, for z = s(6) + In(6,u) we have

Py, o H

, = H)™'= 48
d(z,K)=m+ltr H(I + |H) a;ma T | (48)
with H = H(#,u) , and hence using (44) we have
p a-—m
P traem H -1
dz,Kyde = [dp [ Y ol B |1 4 pH| g7 ds(0) du
/ d(z.K) [dp [ 3 eyt |1+ pH 07" do(6)
> ap“—‘f(p )@p_a(K, o) (49)
¢ a=m p\&
Comparing (47) and (49), we show (45) by (46). |
Lemma C.2 As j - o0,
\dz — . 5
/A' d(z, K;) dz /Ad(a:,KJ) dzx — 0. (50)

J

Proof. Since zg;, — zx, Ik, (z) = Ik(z), and ug;(z) - ux(r) (Lemma 1.8.9 of
Schneider (1993)), we see that xa,(z) — xa(z) for

z ¢ N = {CE l (lKj(x)’ij’qu(x)) € 8C}

From the assumption on A that 7, in (40) is a continuous set of ©,_4(K,-), Vol(N) =0
by (42) and therefore x4,(z) — xa(z) a.s. Since we can assume that {Kj;} and hence
{A,} as well are uniformly bounded,

ILhs of (50)] < p/ x4, (z) = xa(2)] dz = 0,
|

Finally in order to prove (21) for any open set A it suffices to prove the following
lemma.

Lemma C.3 For each bounded open set A C RP satisfying the assumptions of Theorem
3.3, there exists a bounded open set { C R, x RP x SP™! satisfying (41) such that 7,
defined by (40) is a continuous set of the generalized curvature measure ©,_o(K,-) .

Proof. Let U, be the open ball in RP with radius ¢, and let the linear hull of
N(K,zk) be denoted by lin N(K,zk) . Then, for sufficient small £ > 0,

C: {(p,q,U) ! pe 57 (Q7u) € Tlp}

with 3
¢ ={lg(z) € Ry |z € A},
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= {(@u/llull) € B x "7 |Ik(z) = p, 7 € 4,
qg—zx €lin N(K,zg) NU, u—ug(z) € lin N(K,zx)" N Ue}

is such a set. ]

The proof of (21) is completed.
For proving (22), replace the equations (47) and (48) with

p
/A d(z, K;)dz = 3 max(k,2) - Vol(A4; N Ex)
J k=1
and

- 1
diz, K) = m+ltrH([+lH)_1+X{m:1}'m

= f_: max(a, 2) - 7 o H
o ’ [I+1H|

We see that the proof of (22) is parallel to that of (21). The proof is completed.

C.2 Proof of (23)
Let fii(z, K;) and fi;(z,K) be i-th coordinates of ji(z,K;) and j(z, K) , respectively.
Then

/A/:Li(w K;) d:v—/ﬂix K)dz

_/ _ (.’E_-ZEK),‘
va - xK il2 |z — zk||?

/ ool mp {7(de) - p(dz)}. (52)

Since (z — zk,)i/ ||z — 2k, ||> — (x — 2K)i/||z — zk||* converges to 0 on the compact set
clA (the closure of A) and that |d(z, K;) — 2| < p— 2, the first term of rhs of (52)
converges to 0. The second term also converges to 0 because (z — zk):/||z — zk]||? is
bounded and the measure 7; converges weakly to . The proof is completed.

} (d(e, ;) - 2)do

D Proof of Theorem 4.1

Note that the risk gains (29) of the estimators fiss, ftys+, fir, and fil are written as

~ 3 (p—2)°
Ais = B Tp) :
~ARsst = BuX{isl>p-2) (p”;”%) + Xt <p-2 (20 = 12]%)],
—-AR, = Eu :X{lell>r}{( ” “z) ||55H3f1(“~’5”)}]
- 2
~AR! = E, LX{||x||>§:—;r}{(pH$”2) + ”x”sfz(”xll)}]’
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respectively, where
1

Al = Gl t- - p- 2 -0,
2—1

D.1 Proof of (a)

The risk differences between jijg and ji, , and between fi;s and il are
AR;ys — AR: = Eugi(ll=l]) — hu(ll=]])]

and
AR;s — ARl = Eulga([l2l]) — ha(llz])],
respectively, where

T T
gilllzl) = Xqeiser 7o il
(el = Xttatoed o g
(-2
hzlw - X zi<c;} T e 2 121)27
ED) {leli<e} o
with
cL=r 0 =2"" lr
1 ’ 2 p— 9 .
Since fi(t) is a polynomial of (2p — 5) -th degree in ¢, and
- _ i (9 — 2)¢P—2
A = {1+ ?;‘; t — (2p — 2)"2}
1 s S 2
> i“::'z{l -+ (2]) - 3)t2” 3 £vj=0 - (2]) - 2)tp }
172
= T3 > 1 for 0<t<1, (53)

we have fi(t) > 1 for 0 <t < 1. Here the first inequality in (53) holds by the convexity
of t*. Also, fa(t) > 1 for 0 <t <1 holds obviously. Hence, we have

T ,
gi(l=ll) > Xllel>ed s 0= 1,2.

Now we evaluate the expectations of h; and g; in turn, and then give a lower bound
of E,[g; — hi] .

Since ||z||* is distributed according to the noncentral chi-square distribution with p
degrees of freedom and the noncentrality parameter A = ||u||? , it holds that

o0 k 0-2 /2+k—1
_ 2 (A/2)% _yjp o1 vP —v/2
P e i Bl

k=0
2 (V/2)F -X/2 ef  pp/Ath2
s (-2 ,§ K © /0 2p/2+kr(g+k)d”
o) )\/Q)k 3 C_p+2k—.2
— -9 2 ( A/2 1 )
p-2) Z;) KC PRI k- DD(E 1K)
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By putting

o2k
we have
(o ¢]
Eu[hi] < ( ok —)‘/2
Ic 0
= (p— 22" *F(c)e M. (54)

In the case p > 4, it holds that
. T
EJg] = E, [X{uxnm} W]

k 2+k-1
e S WY /°° L ~v/2g,
C

2 g 2 032 PR L k)

o0
2)k _
= Z )\/ e M2 arGposian(ci®),
where
I'(&2 +k)
U = B2T(2 + k)’

and G,(t) = Pr(x2 > t) is the upper probability of chi-square distribution with v
degrees of freedom. Noting that

1

> Q. = ,
=0T R Y R) (52 + k)

Gp-s+a(ci®) > Gi(e?),

for p>4, k>0, and putting
. . k~
M= min (3/2)Fa, < o0,

we have

0o k
E.lg:] > MTél(Ciz)kz_zo ()\2?) : (3/12)k e™M? = MrGy(c;?)e e, (55)

Therefore, by (54) and (55), we have
Eulgi — hi] > MrGy(ci®)e™/® — (p = 2)%c? 72 F(c;)e ™. (56)

Note that ¢; = r or g—:%r ,and that G(-) and F(-) are nonincreasing and nondecreasing

respectively. For a sufficient small r > 0, the rhs of (56) is positive for all A, and the
proof in the case p > 4 is completed.
In the case p=3,

E, gl > re?? T PR (A/2) i Q—Z—QYC—_lve”A/ZbkC_r'gk(cf)
wod - 2 w2 BT() 2 D)

;‘ 11 + Iz (say),
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where
(k)

b = B2kT(2 + k)

Here

1 -1 1 1
~A/2 v ~1/2 3. __ . L
Bzt [ @ P Vi %

Also noting that )

= SRk 1)

by

v

for £k > 1, and by putting B
N = min (3/2)F by, < o0,

we have
N & (M2 1 a2 (2 N ., o
hzgr g 1y (3/2)F1¢ Ga(e”) = 5rGa(a’)re™ 7,
and hence . 1 .
> e M2 L G (02 hem M6
E,[g:] \/ﬁ—r log e + 5 rGa(ci®) Ae

By (54) and (57), we see

e N

E,lg:i — hi] > \/..__r 1og —1— e + E-rég(ciz) e M8 — ¢, F(c;)e ™4,

which is, for a sufficient small r > 0, positive for all .
The proof is completed.

D.2 Proof of (b)

Let
dlzmax(r, p~2), dzzmax(iiér,\/p——ﬂ.

Since

_ 2)2

(p (p—2)°
—ARjsy < E, [X{||x||>di}W + X{l|zfl<d;} MAX {W—, 2p — Hx”?}]

(p—2)° P
Ey, [anmw T X{lall<d:} HW]

for i =1,2, and

—9)2 r T
—~AR, > E“[x{nxn>d1}{(p“m”2) + ||x|;3f1(||:c|l)}]’

27
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we see )
ARjsy — AR, > Ey[gi([|=|)) — ha(llzID],

ARysi — ARL 2 By[ga(lall) = ha(llll)],

where

- r T
gillzll) = X{|1:c||>di}|7”5fi(m)a

- p2 ‘
hi(llz]]) = Xilleli<a) T i=1,2.

In the same manner as in the proof of (a), we have

E”[gi - 77,1] Z Mr(—?l(diz)e_”\/(‘ — p2d¢p—2F(di)e_’\/4 for D Z 4 y

rlog £ e M2 4 —];[—r@gg(df))\e”’\/ﬁ — 9d; F(d;)e™™*

>
for p=3,

which is, for any fixed d; > 0, positive for a sufficient large A . The proof is completed.
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Table 4.1. Risk gains of estimators by shrinkage to the ball.
{Monte Carlo simulation with 1000000 replications.)

D 1 fus fuss Pr=02s fe—os fle=1 flr=p i—pos fh—os fhey —s
5 0.00 3.00 3.60 3.17 3.32 3.05 1.07 3.19 335 281 041
0.40 2.90 3.49 3.07 321 298 1.09 3.08 324 2.77 043
0.80 2.64 3.17 2.79 292 277 1.14 2.80 2.95 2.61 0.51
1.20 2.29 272 240 251 246 1.20 241 2.54 2.37 0.62
1.60 1.90 2.22 1.98 207 209 124 1.98 2.09 2.06 0.74
200 1.53 1.75 1.59 1.65 1.72 1.22 1.59 1.67 1.73 0.86
240 1.22 1.35 1.26 1.30 1.38 1.15 1.26 1.31 1.41 0.93
2.80 0.97 1.04 1.00 1.03 1.10 1.04 1.00 1.03 1.12 0.93
3.20 0.78 0.81 0.8 0.82 0.87 090 0.80 0.82 0.89 0.88
3.60 0.64 0.65 0.65 0.66 0.70 0.76 0.65 0.66 0.71 0.79
4.00 052 0.53 053 0.54 057 063 053 0.54 0.58 0.67
440 0.44 044 045 045 0.47 053 045 0.45 048 0.56
480 0.37 0.37 0.38 0.38 0.40 0.44 0.38 0.38 0.40 0.47
5.20 0.32 0.32 032 033 034 037 032 033 0.34 0.39
560 0.28 0.28 0.28 0.28 0.29 0.32 0.28 0.28 0.29 0.33
6.00 0.24 0.24 0.25 0.25 0.26 0.27 0.25 0.25 0.26 0.28
6.40 0.21 0.21 0.22 0.22 0.22 0.24 0.22 0.22 0.22 0.24
6.80 0.19 0.19 0.19 0.19 0.20 0.21 0.9 0.19 0.20 0.21
7.20 0.17 0.17 0.17 0.17 0.18 0.19 0.17 0.17 0.18 0.19
7.60 0.15 0.15 0.15 0.16 0.16 0.17 0.15 0.16 0.16 0.17
8.00 0.14 0.14 014 0.14 0.14 015 0.14 0.14 0.14 0.15
840 0.13 0.13 0.13 0.13 0.13 0.14 0.13 0.13 0.13 0.14
8.80 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
9.20 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
9.60 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
10.00 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
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Table 4.2. Risk gains by projection and shrinkage.
(Monte Carlo simulation with 1000000 replications.)

P (ma,...,myp) A projection shrinkage shrinkage '
2 (0,0) 0 1.503 0.148 0.148
(1,0) 1 1.212 0.165 0.165
(2,0) 4 0.896 0.103 0.103
(3,0) 9 0.753 0.053 0.053
(4,0) 16 0.688 0.030 0.030
(5,0) 25 0.651 0.019 0.019
(1,1)/V2 1 1.134 0.211 0.211
(2,2)/V2 4 0.524 0.172 0.172
(3,3)/ V2 9 0.149 0.109 0.109
(4,4)/V2 16 0.026 0.066 0.066
(5,5)/vV2 25 0.003 0.042 0.042
4 (0,0,0,0) 0 5.000 3.276 3.267
(1,0,0,0) 1 4.677 3.036 3.036
(2,0,0,0) 4 4.220 2.337 2.338
(3,0,0,0) 9 3.912 1.634 1.635
(4,0,0,0) 16 3.723 1.134 1.134
(50,00) 25 3.599 0.811 0.811
(1,1,0,0)/v2 1 4.619 3.143 3.143
(2,2,0,0)/vV2 4 3.899 2.655 2.655
(3,3,0,0)/vV2 9 3.268 2.059 2.059
(4,4,0,0)/v2 16 2.846 1.539 1.539
(5,5,0,0)/v2 25 2.579 1.151 1.151
(1,1,1,0)/v3 1 4.589 3.227 3.227
(2,2,2,0)/V3 4 3.694 2.901 2.901
(3,3,3,0)/v/3 9 2.762 2.428 2.428
(4,4,4,0)/v/3 16 2.054 1.930 1.930
(5,55 0)/v3 25 1.612 1.497 1.497
(1,1,1,1)/2 1 4.572 3.296 3.297
(2,2,2,2)/2 4 3.559 3.106 3.106
(3,3,3,3)/2 9 2.353 2.761 2.761
(4,4,4,4)/2 16 1.278 2.328 2.328
(5,5,5,5)/2 25 0.548 1.876 1.876
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