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Abstract

This paper investigates the situation of strategic conflict in which players have limited
prior knowledge about the objective game, that is, they do not know their true, objective
payoff functions, and therefore, have to formulate their own payoff functions based on
their past experiences in a subjective way. In distinction with the objective game, we will
define the subjective game by the combination of these subjective payoff functions and
the sets of actions.

Most of real economic situations are complex and not even well-structured. A real
economic agent spends most time to visualize and perceive the situation. Formulating the
subjective game would be regarded as the most important step for an actual agent in
reaching a decision. Despite its unquestionable importance, the investigation of the
subjective game is at this time very immature. Especially, applied game theorists in the
1970’s and 1980’s have never dealt with the question of how players formulate the
subjective game by assuming that the objective game is common knowledge among the
players and assuming that players are ideally rational.

Since actual players are boundedly rational as Herbert A. Simon has stressed, they
might formulate the subjective game which is essentially different from the objective
game and fail to achieve a Nash equilibrium of the objective game. The main purpose of
this paper is to give clear answers to several substantial questions such as what are the
characteristics of the subjective games and the choices of actions. A player is modeled as
an inductive learning procedure in a dynamic decision making which translates past
experiences into subjective evaluations and decisions, and is mainly motivated by the
maximization of the subjective expected payoffs. We will assume that, in every period, a
player is never convinced that the situation is recurrent, and therefore, she can not
establish a firm experience-based belief about the uncertain situation in which she will
seldom waver when observing unlikely events.

By requiring a couple of plausible conditions on inductive learning procedures, we
can derive the following drastic results in a wide class of environments including various
recurrent and non-recurrent situations: The subjective game formulated in the long run
belongs to an extremely restricted class of simplified games which are called trivial games.
In a trivial game, there always exists the wnique action profile which is both strictly
dominant and Pareto-efficient among the set of pure action profiles. Moreover, players
need not to be strategically sophisticated, because this strict dominance property holds
irrespective of the details of its extensive form. Zero-sum games, prisoner-dilemma
games, coordination games, stag-hunt games, and hawk-dove games are nof trivial games,



and therefore, are never perceived as subjective games. This strictly dominant action
profile in the subjective game is neither a Nash equilibrium nor Pareto-efficient in the
objective game. Of particular importance is that it is always equal to the maximin action
profile in the objective game.

JEL Classification Numbers: C70, C90, D43, D80.
Keywords: inductive learning, procedural rationality, subjective game, maximin action.
trivial game.



1. Introduction

This paper investigates the situation of strategic conflict in which players have limited
prior knowledge about the objective game. Players know the set of actions, but do not
know their true, objective payoff functions. Hence, players have to formulate their own
payoff functions based on their past experiences in a subjective way. In distinction with
the objective game, we will define the subjective game by the combination of these
subjective payoff functions and the sets of actions.

Most of real economic situations, especially in the area of industrial organization, are
complex and not even well-structured. A real economic agent spends most time to
visualize and perceive the situation. Hence, as Thomas Schelling has already stressed in
his celebrated book entitled “The Strategy of Conflict’, formulating the subjective game
would be regarded as the most important step for an actual agent in reaching a decision
(Schelling (1960)). Selten (1978) has presented an informal model of the human
reasoning process which takes into account the cognitive steps such as perception,
problem solving, investigation, implementation, and learning, and has emphasized also
that the step of perceiving the situation and formulating the subjective model is the most
important’,

Despite its unquestionable importance, the investigation of the subjective game is at
this time very immature. Especially, applied game theorists in the 1970’s and 1980’s have
never dealt with the question of how players formulate the subjective game: They have
interpreted game theory in a naive way that the objective game as a full description of a
state of the physical world and a state of mind is assumed to be common knowledge
among players. This naive interpretation of game theory is strongly criticized, because
players are sometimes required to be ideally rational in an extremely unrealistic way”.

In the early 1950°s, Herbert. A. Simon has introduced the concept of bounded
rationality and emphasized that a real economic agent is not so rational as the

! Sec also van Damme (1995).

% For the criticisms on applied game theery and the naive interpretation, see Fisher (1989),
Pelzman (1991), Rubinstein (1991), van Damme (1995), Dekel and Gul (1997), and Matsushima
(1997a). Rubinstein (1991) presented the perceptive interpretation of game theory as the
alternative to this naive interpretation, in which a combination of a game and a strategy profile is
viewed as a common perception among players. Kaneko and Matsui (1996) investigated the

situation in which players have their respective perceptions that may be incompatible cach other.



neoclassical framework assumes®. Following the Simon’s argument, it should be stressed
that a real economic agent is not so ideally rational, or substantively rational, as applied
game theorists assumes, but is procedurally rational in the sense that she perceives the
situation and makes a decision as being compatible with the cognitive and motivational
limits of rationality*. Such boundedly rational players might formulate the subjective game
which is essentially different from the objective game, and might fail to achieve a Nash
equilibrium of the objective game.

We have at this time very little knowledge about how the class of possible subjective
games is restricted, in what way the subjective game is connected with the objective game,
whether several famous games such as prisoner-dilemma games, coordination games, and
hawk-dove games can be perceived as subjective games, and so on. This paper would be
regarded as the first attempt to give clear answers to these questions, which are the most
important ones in establishing a theory of subjective games.

In this paper, a player is modeled as an inductive learning procedure in the following
way: Each player is repeatedly confronted with randomly matched opponents, plays
games together with them, and chooses actions among the same set of actions. In every
period, she can, not perfectly but almost perfectly, monitor which actions the randomly
matched opponents have actually chosen, by observing the realization of a random signal.
Before arriving at the current situation of conflict, she has accumulated the memories on
the payoffs and the signals realized in the previous periods as her own experiences. On
the basis of these experiences, she will formulate her own subjective payoff function, and
also subjectively estimates the probability function on the set of the opponents’ actions,
according to which the current opponents will be anticipated to choose actions.

A player is motivated by the maximization of the subjective expected payoff, i.e., the

3 See Simon (1976, 1982). Simon proposed that the rationality postulate of payoff-maximization
in the neoclassical framework should be replaced by a more realistic behavioral hypothesis such
as satisficing with aspiration levels, because the decisions in most economic environments are
complicated enough to transcend the actual agent’s cognitive capabilities. There are many papers
discussing the importance of bounded rationality in economics and game theory. For example,
Winter (1986), Binmore (1987, 1988), North (1990), Selten (1990, 1991), Aumann (1992), van
Damme (1995), Rubinstein (1996), Conlisk (1996), Matsushima (1997b), and so on.

* The concepts of substantive rationality and procedural rationality were introduced by Simon
(1976). Selten (1990) classified aspects of bounded rationality into the cognitive limits of
rationality and the motivational limits of rationality, and emphasized the importance of the latter

aspects.



sum of this subjective payoffs weighted by this subjective probabilities, as well as the law
of inertia. Hence, in every period, she will not choose any action which is neither the
same action as that chosen in the last period, nor one of the actions which maximize the
subjective expected payoff.

We will assume throughout this paper that in every period, a player is not convinced
that the situation is recurrent, and therefore, she can not establish a firm, experience-
based, belief about the uncertain situation in which she will seldom waver when observing
unlikely events. On this assumption, it is natural from the psychological aspects of human
nature to require that a player will lay more stress on the near past experiences than the
far past experiences. This requirement will be expressed by a condition on a learning
procedure called Uniform Adaptation in Section 3: An inductive learning procedure
satisfies Uniform Adaptation if there exists a time-and-history independent finite number
of periods such that whenever a player has continued to monitor the same action profile
and obtain some constant payoff for this number of periods, then she will always equalize
the subjective payoff for this action profile with this constant payoff.

We will introduce another condition on a learning procedure called Independence of
Irrelevant Experiences, which might be also plausible to require in a realistic context with
respect to the psychological aspects of human nature. Independence of Irrelevant
Experiences means that a player will never change her subjective payoff evaluation for an
action profile as long as she does not actually monitor this action profile.

This paper examines a wide class of environments which includes various recurrent
and non-recurrent situations. We nevertheless can derive the following very drastic
consequences: The subjective game is essentially different from the objective game, and

the subjective game always belongs to an extremely restricted class of simplified games
which are called #rivial games: A game (N, (4,,u,),.y) is said to be trivial if for every

i € N, there exists an action a; € A4, such that

u(a',a')>ul(a,a ) forall a , ed,  al a’, ed,  andall a, #a;.
Hence, in a trivial game, there always exists a unique action profile which is both stricily
dominant and Pareto-efficient among the set of pure action profiles.

Most of the games which have been intensively studied such as zero-sum games,
prisoner-dilemma games, coordination games, stag-hunt games, and hawk-dove games
are not trivial games, and therefore, are never perceived as subjective games. This is in
contrast with the applied game theory developed in the 1970’s and 1980’s in which
various complex extensive form games have been contrived in order to classify situations
in an extremely flexible way and have been required to be common knowledge among
players.



This strictly dominant action profile in the subjective game, (4, ).y € x A, 18

regarded as the apparently obvious solution in noncooperative game theory, because the
strict dominance property always holds irrespective of how the details of its extensive
form such as the order of players’ moves are specified, and therefore, players need not to
be strategically sophisticated. This point also is in contrast with the applied game theory
in which the predictions derived from the refinements of Nash equilibrium sometimes

depend substantially on the very details of its extensive form’.
Moreover, this action profile (a’),, € x 4, is, in general, neither a Nash
ieN

equilibrium nor Pareto-efficient in the objective game. Of particular importance is that
this action profile is always equal to the maximin action profile in the objective game,
where a maximin action is defined by the action which maximizes her own payoff
minimized by the opponents’ actions. Players nevertheless have lost the will to bridge the
gap between the objective game and the subjective game in the long run.

For example, consider a hawk-dove game presented in Figure 1.1 as the objective
game, where the mixed action assigning “dove” probability % and “hawk” probability

% is the unique evolutionary stable strategy (ESS) addressed by Maynard Smith (1982)

in the literature of evolutionary game theory in biology.® However, the subjective game
formulated in the long run is approximated by Figure 1.2. Players comes to choose “dove”
with probability 1 in the long run, which is the maximin action in the objective game. The
action profile (dove, dove) is strictly dominant and Pareto-efficient in this subjective game,

but is neither Nash equilibrium nor Pareto-efficient in the objective game.

* We must have the fact impressed on our mind that the attempts of applied game theory have been
objected mainly because the flexibility in modeling extensive form games and the tight dependence
of the predictions on the very details of the models make it impossible to judge which models are
more appropriate and also make it difficult to get general insights with significant economic
implications. See Fisher (1989), Pelzman (1991), and also van Damme (1994).

® See Hammerstein and Selten (1994) and van Damme (1987, Chapter 9).



dove hawk

dove 1 1 0

hawk 3 0 -1

Figure 1.1: Hawk-dove Game
as the Objective Game

dove hawk

dove

hawk | Lo O} Lo L

Figure 1.2: Trivial Game

as the Subjective Game
(L, <0 for h=1234)

The organization of this paper is as follows. In Section 2, we will explain the basic
ideas in deriving several results of this paper by investigating a simple example of single-
person decision making. In this example, it is shown that a decision maker (a manager)
fails to maximize the objective expected payoff in the long run. In Section 3, we will
present the formal model of the general single-person decision making problem, and will
show that a decision maker comes to choose the maximin actions in the long run.

Section 4 is the main part of this paper, which considers the multi-person decision

making problem with strategic conflict. It is shown that the subjective game is always a



trivial game, and the maximin action profile in the objective game is strictly dominant and
Pareto-efficient among the set of pure action profiles in the subjective game. Section S
investigates several examples of the objective games, ie, stag-hunt games and
coordination games.

The results of this paper may be regarded as being negative by orthodox game
theorists, because most of the famous games such as zero-sum games, prisoner-dilemma
games, coordination games, stag-hunt games, and hawk-dove games can not be viewed
as the subjective games. We, however, would like to stress that this paper would be
regarded as the benchmark for the possible progress towards a theory of subjective
games. Section 6 gives several discussions relevant to this issue.

Finally, Section 7 argues the relevance to evolutionary game theory in economics.



2. Formulating the Subjective Payoff Function: An Example

It would be helpful to start with the following example of recurrent situation in
single-person decision making. A manager (a decision maker) repeatedly decides whether
to enforce a risky project or a safe project. There are also two possible states of the world,

i.e., state “boom” and state “recession”. In every period, state “boom” occurs with a
positive probability p > 0, whereas state “recession” occurs with a positive probability
1— p> 0. The probability p is time-and-history independent, and states are determined
in a time-independent way. If the manager enforces the risky project and state “boom”
occurs in a period, then she obtains one hundred dollars at the end of this period. If the
manager enforces the risky project and state “recession” occurs, then she loses one

hundred dollars. If she enforces the safe project, then she obtains zero dollar irrespective
of which state actually occurs. We will assume p > % The risky project is more

profitable than the safe project, because the objective expected payoff for the risky
project, (2p —1)x 100, is more than zero induced by the safe project (see Figure 2.1).

boom recession
I>p>Y O0<l-p<}

risky 100 -100

safe 0 0

Figure 2.1: The Objective Payoff Function

The manager has limited prior knowledge about the structure of this decision making
problem. Throughout this section we assume that the manager does not know the
probability p. (If she is convinced that the probability of state “boom” is p, then she will
always enforce the risky project, because by doing so she can maximize the expected

payoff.) We also assume that the manager can nof observe the realization of the states. (If
she can observe the realizations of the states, then she eventually comes to learn p
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approximated by the relative frequency of the realization of state “boom” in the previous
periods.)’

From now on, we will investigate three cases. i.e.,, Cases 1, 2, and 3. Case 1 will
suppose that the decision maker is always convinced that the situation is recurrent,
whereas Cases 2 and 3 will suppose that she is not convinced of it. Moreover, Cases 1
and 2 will suppose that the manager a priori knows the true objective payoff function,
whereas Case 3 will suppose that the manager a priori knows that the safe project always
induces zero dollar but she does not know the state-dependent payoffs induced by the
risky project.

Case 1 will give a scenario that the manager succeeds to enforce this profitable risky
project in the long run. On the other hand, Cases 2 and 3 will give their respective
scenarios that the manager fails to enforce this risky project. Among these cases, Case 3

is the most relevant to our concern.

CASE 1: Since the manager does not know p, she has to evaluate the subjective
probability () €[0,1] of the realization of state “boom” in every period 7 on the basis of
the past experiences. The manager is not convinced that her initial probability evaluation
5(1) is correct and is willing to change the probability evaluation after experiencing
unlikely events for a time being.

Since the manager is convinced that the situation is recurrent, it is natural to assume
that she always puts the same stress on every past experience in evaluating the subjective
probability &(¢). In this case, the influence of new experience on this evaluation gradually
weakens, and in the long run the manager will establish a firm experience-based belief
about this uncertain situation in which she will seldom waver when observing unlikely

events.
For example, let 7(t) denote the set of all periods up to period 7 in which the

decision maker has enforced the risky project, and let a subset 7(#) < 7(#) denote the set

of all periods up to period ¢ in which the manager has enforced the risky project and
obtained one hundred dollars. Suppose that &(7) is determined by

7 According to the same idea as this parentheses, Milgrom and Roberts (1991) showed in a context
of learning in games that if players can perfectly monitor the opponents’ choices of actions, then
they come to choose a rationalizable action profilc in the long run. This result relies crucially on
the perfection of the monitoring abilities in the strict sense. We will show in this paper that by
adding a slight noise of observation, players instead come to choose the maximin action profile in

the long run.

11
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where |B| is the number of the elements in the set B . The manager always equalizes the
subjective probability &(¢) with the number of the previous periods in which the manager

has obtained one hundred dollars divided by the number of the previous periods in which
she has enforced the risky project.

Moreover, suppose that the manager will always experiment with the risky project at
least with a small but positive probability &> 0. Hence, as time passed, the number of

periods in which the manager has enforced the risky project increases without limits, and
therefore, the influence of new experience on the probability evaluation &(f) gradually

becomes negligible. The law of large numbers says that it is almost certain in the long run
that the probability evaluation &(z) approximates the true probability p, which holds
irrespective of how &> 0 is given. Hence, by choosing & close to zero, we can conclude
that the manager who is mainly motivated by the maximization of the subjective expected
payoff will succeed to maximize the objective expected payoff, i.e., to enforce the risky
project.

CASE 2: We will suppose that the manager is not convinced that the situation is
recurrent, and therefore, she may not put the same stress on every past experience in
evaluating (7). It would be natural from the psychological aspects of human nature to
assume that the manager always believes that the near past experiences are more tightly
related to the current situation than the far past experiences, and therefore, she will put
the heavier stress on the near past experiences than the far past experiences in evaluating
the subjective probability &(¢). In this case, the influence of new experience on this
evaluation is kept non-negligible in every period, and therefore, the manager can not
establish a firm, experience-based, belief about the uncertain situation in which she will
seldom waver when observing unlikely events.

Suppose that the manager believes at the very beginning of period 1 that the risky
project is more profitable than the safe project, i.e., 6(1)> yz and therefore, enforces
the risky project in period 1 because the subjective expected payoff (26(1)—1) x100 for

the risky project is larger than zero induced by the safe project. However, if the manager

continues to lose one hundred dollars for a long time, she will gradually decrease the
subjective probability 6(7), make it less than y , and eventually stop to enforce the risky

project. Assume that the probability of experimenting with the risky project &> 0 is very

close to zero. Once the manager makes &(7) less than % and stops to enforce the risky

12



project, it is unlikely for her to enforce the risky project again in the near future: After
enforcing the safe project, the manager constantly obtains zero dollar and gains no
informative experience concerning which state has actually occurred. Since the
probability of experimenting is very small, almost no experiences in the future influence
the subjective probability, and therefore, the manager will inevitably stick to this
pessimistic evaluation for a very long time.

The important point is that the event that 5(¢) < yz always occurs with a probability

more than some positive time-and-history independent real number, because the manager
will put the heavier stress on the near past experiences. This, together with the
assumption that the probability of experimenting is very small, urges the manager to stay
“safe” for a very long time. This point is in contrast with the arguments in Case 1, where,
as time passed, the subjective probability &(7) gradually approaches the true probability

p> y , and therefore, the probability that 6(¢) < yz approaches zero.

More precisely, there exists a positive integer s~ such that for every period 1, if the
manager continues to enforce the risky project and lose one hundred dollars from period
t through period 7+ s -1, then she always evaluates &(f+s") less than yz in period

t+s", irrespective of what are the history of the past experiences up to period 7. (This
will be expressed in Section 3 by Uniform Adaptation.) In every period, the event that the
manager continues to lose one hundred dollars for the next s~ periods will occur at least
with a positive probability (1- p); > 0, which means that it is certain that this event will

eventually occur, provided the manager continues to enforce the risky project. Hence, it is
almost certain in the long run that the manager continues to enforce the safe project for a
very long time.

From now on, for the simplicity of the arguments, the probability of experimenting
with the risky project is assumed to be zero. Thus, it is certain that the manager eventually
comes to decide not to enforce the risky project forever.

For example, let 8 €[0,1] denote the discount factor, and suppose that (1) is

determined by

Z gl—r
S(y= <O
(t) Z 6l~r

el (t)

This implies that for every 7 <, the manager will put the y@ times heavier stress on the

experience in period 7 than the experience in period 7 —1. We must note thatif =1,
this evaluation rule is equivalent to that presented in Case 1. If 6 <1, then any integer
s> loga(%) satisfies that whenever the manager continues to enforce the risky project

13



and lose one hundred dollars for s” periods, then &(f+s") < % holds. (Because

Z et+s'—z i 6,

S(t+5)= ’J(Z’Ezm._r ey <El7: .
T
el (1+5) ; ¢

Hence, according to this evaluation rule, the manager eventually comes to enforce the
safe project forever.

The failure to enforce the risky project relies crucially on the assumption that when
enforcing the safe project the manager gets no informative experience concerning which
state has actually occurred. From now on, we will assume that in every period the
manager always observes the realization of some random signal which is tightly related to
the realization of the state: If state “boom” occurs, then the manager observes signal “B”
with probability 1 - &> 0 and signal “R” with probability &> 0 irrespective of whether to
enforce the risky project or not. Similarly, if state “recession” occurs, then the manager
observes signal “B” with probability &> 0 and signal “R” with probability 1-¢&>0. By
choosing ¢ sufficiently close to zero, the manager can, not perfectly but almost perfectly,
monitor the realized states. We will assume that the manager is convinced that the
observation of signal “B” (the observation of signal “R”) almost surely means the
realization of state “boom” (the realization of state “recession”). Hence, the manager
eventually comes to learn p approximated by the relative frequency of observing signal
“B” in the past experiences, and therefore, succeeds to enforce the risky project with
almost certainty (see Figure 2.2).

Signal “B” Signal “R”

boom p-¢) pe

recession (1-p)e (I-p)l-¢)

Figure 2.2: The Probability Structure
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CASE 3: The last statement in Case 2 relies crucially on the assumption that the manager
a priori knows the objective payoff function. In Case 3 we will suppose that the manager
knows that the safe project always induces zero dollar but she does not know the state-
dependent payoffs induced by the risky project. Moreover, suppose that the manager
does not even know that the payoff for the risky project is determined only by which state
actually occurs. We will show below that the manager fails to enforce the risky project in

the long run, even though she can almost perfectly monitor the true states.
In every period 7, the manager has to subjectively evaluate the payoffs v®(1) and

v®(¢) for the risky project associated with states “boom” and “recession” respectively,
as well as S(7). Assume that at the beginning of period 1, the manager evaluates
v®(1) >0 and v®(1)> 0, and therefore, enforces the risky project irrespective of how
the initial probability evaluation (1) is given. The manager is not convinced that these

evaluations are correct and is willing to change them after experiencing unlikely events.
For every period ¢, if the manager continues to enforce the risky project, observe signal
“B”, and lose one hundred dollars for a large finite number of periods, say s’ periods,
from period +1, then she evaluates v®(t+5') <0, and evaluates (f +s") close to
unity in period 7+s’. Hence, the manager’s subjective expected payoff for the risky
project in period 1+s', 8(t+s WP (1+5)+(1-8(1+s)VO(t+5"), becomes less
than zero, and therefore, the manager will stop to enforce the risky project. We must note
that the payoff evaluation v\®(¢+s") for state “recession” is kept equal to v (1)
evaluated in period ¢, because the manager has never observed signal “R”, and therefore,
never gained experiences relevant to state “recession” during these periods. We must note
also that this event will occur at least with a positive probability {(1- pey >0.

Next, if the manager continues to observe signal “R” for a large finite number of
periods, say s” periods, from period #+s’+1, then she makes o&(7 + 5"+ s") close to
zero in period 7+ s’ +s” . Hence, the manager’s subjective expected payoff for the risky
project in period ¢+ s’ +s" becomes more than zero, and therefore, the manager will
start to enforce the risky project again. We must note that this event will occur at least
with a positive probability {pe+(1- p)(1- e}y >0.

Furthermore, if the manager continues to enforce the risky project, observe signal “R”,

and lose one hundred dollars for a large finite number of periods, say s periods, from
period 7+s'+s” +1, then she evaluates v(¢ + 5" +5" +s") <0. We must note that

the payoff evaluation V(¢ +s' +s” + ™) for state “boom” in period 7 +s"+5" + 5" is
kept equal to v\ (7 + ") <0 evaluated in period 7+s’, because the manager has never
observed signal “B” from period #+s'+1 through period ¢+s’+s" +s"". Hence, the

”"e

manager’s subjective expected payoff for the risky project in period 1+5s +s"+s

15



becomes less than zero, and therefore, the manager will stop to enforce the risky project
again. Of particular importance is that from period #+s'+s” +s" +1 the manager never
decides to enforce the risky project: The manager has come to believe that the payoff for
the risky project is always negative, irrespective of which state occurs, i.e,

V(1 +s5+5 +5"+5")<0and vI®¥(1+s+5 +5" +5")<0.
Since she gains no informative experience concerning how the payoff for the risky project
is related to the realization of state when enforcing the safe project, she inevitably sticks
to those pessimistic payoff evaluations. This event will occur at least with a constant
positive probability {(1- p)1-¢)}* >0.

From the above observations, we have shown that in every period, the event that the
manager comes to make both payoff evaluations negative and stop to enforce the risky
project will occur at least with a positive probability

(A= p)ey {pe+ (1= p)i- &)}y {U-p)Xl- &)} >0,
which implies that this event will eventually occur. Hence, the manager in the long run
comes to evaluate the payoffs for the risky project negative, and decide not to enforce the
risky project forever. The subjective payoff function which the manager formulates in the
long run is approximately described by Figure 2.3.

boom recession
(signal “B”) (signal “R”)
risky L L,
safe 0 0

Figure 2.3: The Objective Payoff Function
(L, <0 for h=12)

In the next section, we will extend the results obtained in this section to the more

general class of recurrent and non-recurrent environments with multiple risky actions.
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3. Maximin Actions

In this section, we will consider a long-run single-person decision making problem
by D=(A4,Q® H u®, p?,q") which is defined in the following way: 4 is the finite
set of actions. Q is the finite set of states. @ is the finite set of signals. A decision maker

repeatedly chooses actions among A infinitely many times. In each period 21, the
decision maker chooses an action a(t) € 4, and a state o(¢) €Q is realized. We will

assume that the decision maker can not observe the realization of state @(?). At the end
of each period 7> 1, the decision maker obtains a payoff v(#) € R and observes the
realization of a random signal ¢(¢) € ® which is related to the state @(?).

Let 4° be the null history, let H® = {h"}, and let u*”:4xQ—> R be the payoff
function in period 1. Recursively, for every ¢ >1, let 4' = (a(7), w(7),v(7), #(7)),, bea
history up to period t and #*): 4 x Q@ —> R be the payoff function in period 7+1
provided the history A’ up to period ¢ is realized, where we assume that for every
tell,.. ., t},

v(7) = u(a(r),w(1)).

Let H' be the set of all histories A’ up to period 7, andlet H = D H' . 1n every period
=0

t, the decision maker obtains the payoff v(f)=u""(a(t),w(t)) according to the
history-dependent payoff function #*.*

Let p" = p®(|a(t)):Q2 — R, be a history-dependent conditional probability
function on €, and let ¢ " =¢" (la(t),w(1)):® —> R, be a history-dependent
conditicnal probability function on @, where

Zl)(h'-‘)(a)la(t)) =land ) g (gla(t), w(1)=1.

weQ ped
Given that A" € H™' was realized and a(f) € 4 was chosen in period ¢, a state
(1) €Q is realized with probability p""(w(¢)|a(?)), and the decision maker observes a
signal ¢(1) e @ with probability ¢ (#(0)|a(t), w()).
Assume that for every a € A, there exists a real number u(a) € R which satisfies
u(a)= r:’lelg u(a,w) forall £>0 andall ' eH".
That is, u(a) is the minimal payoff for action a € 4. Define
u=maxu(a).

ac4

® In this paper, we will sometimes refer to the case of history-independent payoff function as a

recurrent situation, and the case of history-dependent payoff function as a non-recurrent situation.
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Definition 1: An action a € A4 is a maximin action if
ua)=u.

A maximin action maximizes the minimal payoff u(a) with respect to pure action

a € A.° The set of maximin actions is denoted by 4" < 4. The set of maximin actions
A" does not depend on the probability structure (p*’,¢"’). In the example of Section 2

the safe project is the only maximin action.
We will present a technical condition on D as follows.

Condition 1 (Uniform Positive Lower Bound for (p",¢"’)): There exists a positive

real number &£>0 such that for every 72>1, every A eH', and every
(a,0,) e AxQxD,

P Nwla)z e and ¢* (Pla,w) = €.

Condition 1 implies that p and ¢ have the full supports with a time-and-history

independent positive lower bound.
A decision maker is modeled as an inductive learning procedure which is defined by
(d,T), where T = (') and T = ((v(?), 4, 8®): The set of mixed actions is

denoted by A(A). The decision maker chooses among A according to a decision rule

acd »

d:H — A(A). For every t>1 and every h'"' € H'"', the decision maker chooses each
action a € A with probability d(h'"')(a). Since the decision maker can not observe the
states, it is clear that d(h'") is independent of (w(7))", forall 1 >1 and all A" e H.

The set of all probability functions on @ is denoted by A(®). An evaluation rule for
an action a€A is defined by T'® =(v“?),.,6), where v(®”:H — R and

8 H - A(P). According to v\** | the decision maker subjectively evaluates the
payoff v (k') which she obtains when choosing a(f) = a and observing ¢(¢) = ¢ in
period ¢, provided A" was realized. According to &', the decision maker anticipates
that she observes a signal @(7)=¢ with probability &'“(h"')(¢) when choosing
a(t)=a, provided h"' e H"™' was realized. An evaluation rule is defined by
F=(T"),,.

Forevery ac A, every t>1,andevery h'" e H'', the subjective expected payoff
Jor an action a € A is defined by

® The definition of maximin action in this paper is different from the definition in the textbook:

The latter is in terms of mixed action, whereas the former is in terms of pure action.
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V(a)(hH ) = Z 5(a)(ht-v1 )(¢)v(a,¢)(he~1 ) ,

pe®
which is the sum of the evaluations v*#(h'") with respect to ¢ € @ each weighted by
the subjective probability & (A" )(¢).

Definition 2: A decision rule d is consistent with an evaluation rule T if for every ¢ > 1
andevery A" e H'",
(VR 2V (W) forall a' e A]=[d(h")a)>0],
and
[a#a(t-1)and VO(h™) <V (h'™) for some a’ e A]=>[d(h'™ Ya)=0].

The consistency of (d,I') implies that the decision maker maximizes the subjective
expected payoff with a positive probability, and she never experiments with any action
which neither maximizes the subjective expected payoff nor is the same as the action
chosen in the last period.

We will present two conditions on a decision rule d as follows.

Condition 2 (Law of Inertia): For every 7>1and every A" e H',
d(h" " Ya(t-1))> 0.

Condition 3 (Uniform Positive Lower Bound for d): There exists a positive real

number & >0 such that for every 1>1,every A" e H™', andevery a € 4,
[d(h" Ya)> 0] <= [d(h" " )a)2 e].

Condition 2 implies that the decision maker chooses the same action as that chosen in
the last period with a positive probability. Condition 3 is a technical condition similar to
Condition 1.

We will present three conditions on an evaluation rule I" as follows.

Condition 4 (Minimal Evaluation): For every 7>1, every h™' e H'"', and every
(a,9) e AxD,

Ve (R > u(a).

Condition 5 (Independence of Irrelevant Experiences): For every 7>1, every
h' eH' andevery (a,§) e AxD,

[(a(t), p(1) % (a, ) }= [VO(h) = v (h )],
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Condition 6 (Uniform Adaptation): There exists a positive integer s" such that for
every (a,p) e Ax® every t>s andevery b’ e H"' if

(a(7).v(7), (7)) = (a,u(a), $) forall z=1-5",..,1-1,
then

v ('Y= u(a), and 5“(h"')(g)=1 forall a’ €4.

Condition 4 implies that the evaluations for an action are never less than the minimal
payoff for this action. Condition 5 implies that the evaluation for a combination of an
action and a signal is influenced only by the experiences which the decision maker gains

when actually choosing this action and observing this signal. Condition 6 implies that
when continuing to choose an action a € A and observe the minimal payoff u(a) and a

signal ¢ € ® for a time-and-history independent finite number of periods, say, s" periods,
the decision maker always comes to make the payoff evaluation for (a, ) equal to this

minimal payoff and also comes to believe that she certainly observes this signal ¢

irrespective of which action she actually chooses.

Remark: The difference from the Bayesian framework pioneered by Savage (1954) and
Harsanyi (1967, 1968) is important. The Bayesian framework assumes that a decision
maker knows the objective model, whereas our theory does not. Harsanyi has applied the
Bayesian framework to a quite wide class of multi-person decision making problems with
uncertainty, and advocated the doctrine that every situation of incomplete information
can be described by a state of nature in a well-defined Bayesian game which is assumed
common knowledge among players. This “Harsanyi doctrine” is sometimes strongly
criticized, because it relies heavily on the unrealistic assumption that players are ideally
rational " Since an actual economic agent is not so rational, her subjective model! is
essentially different from the objective one and she does nof even know the entire
structure of her own subjective model. The current paper characterizes the subjective
model not from the view-points of rationality but from the psychological aspects of

human natures, and views the decision maker as the myopic expected-payoff maximizer

' Harsanyi has emphasized that the common knowledge assumption of a Bayesian game and the
common prior assumption is automatically satisfied if players are ideally rational. However, it is
at present pointed out that the Harsanyi doctrine is not necessarily justified only by ideal
rationality. See Dekel and Gul (1996).
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within her own subjective world."

Definition 3: For every 7' >1 and every ¢>¢', a history up to period ¢, h' € H',is
reachable from a history up to period ', h* € H" , with respect to a decision rule d if
d(h"' Ya(r))>0 forall ref{t'+1,...,1}.

Theorem 1: Suppose that D satisfies Condition 1, d satisfies Conditions 2 and 3, T
satisfies Conditions 4, 5 and 6, and d is consistent with T . Then, the following two
properties hold.
(i) For every & (0,1}, there exists a positive integer s such that for every t2s, it
holds at least with probability 1- & that for every a € A which is not a maximin action,
d(h'Ya)=0, and v*P(h')<u forall ¢ .
(i) For every t'>1 and every h' e H", if for every a € A which is not a maximin
action,
d(h" Ya)=0, and vV (h")<u forall $c®,
then, for every t>t', every h' € H' which is reachable from h", and every a € A

which is not a maximin action,
d(h'Ya)=0, and v (h')y<u forall $c®.

Theorem 1 implies that almost certainly in the long run, the decision maker comes to
choose the maximin actions and the payoff evaluations for the maximin actions are
greater than the payoff evaluations for all actions that are not maximin, ">

The proof of Theorem 1 is summarized as follows: Consider an action a € A which is
not a maximin action, i.e., u(a) <u. Condition 6 (Uniform Adaptation) says that when

continuing to choose this action a € 4, the decision maker eventually makes veR ('

less than u for every signal ¢ € ® . After that, the decision maker never chooses this

" In this paper, an inductive learning procedure is assumed to be exogenously given. Several
papers such as Abreu and Rubinstein (1988) derived decision rules endogenously by regarding
boundedly rational players as the payoff-maximizers with the explicit constraints on the limitation
of information processing ability. This approach, however, is sometimes criticized, because
computing an optimal rule with the constraints of bounded rationality is much more difficult than
computing without constraints. See Gilboa (1988), Lipman (1991), Conlisk (1996) and
Matsushima (1997a).

2 We must note that this does nor imply that the decision maker is motivated by choosing

maximin actions in the subjective game.
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action as long as the subjective expected payoffs for all of the other actions become less
than u . However, Condition 4 (Minimal Evaluation) says that the subjective expected

payoff for any maximin action is never less than # . Hence, the manager will not choose

any action which is not a maximin action in the long run.
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Proof of Theorem 1: First of all, we will prove Part (ii) of this theorem. Fix ' >1 and
h" e H" arbitrarily, and suppose that for every a € 4 which is not a maximin action,
d(h'Ya)=0 and v*P(h")<u forall ged.
Suppose that A“*' is reachable from h". Then, a(z'+1) must be a maximin action, and
therefore, Condition 5 (Independence of Irrelevant Experiences) says that for every
a € A which is not a maximin action,
v Ry = v (R ) <u forall ged.
From Condition 4 (Minimal Evaluation) and the consistency of d with I', one gets that
every a € A which is not a maximin action neither is the same as a(#’ + 1) nor maximizes

the subjective expected payoff, and therefore, satisfies
d(h"'Ya)=0.
Recursively, for every 7>1" and every h' € H' which is reachable from A", we can
check similarly that for every a € 4 which is not a maximin action,
d(h'Ya)=0 and v*“?(h')<u forall gcd.
Next, we will prove Part (i) of this theorem. Fix ¢ (0, 1] arbitrarily. From Part (ii),
all we have to do is to prove that it holds at least with probability 1— & that there exists a

positive integer s such that for every a € A which is not a maximin action,
d(h’Ya)=0 and v*?(h’)<u forall ged.

Let m" =|®|, k" =| 4|, and denote ®={¢',...,¢" } and A={d',..,a*} Fix t>1and
h' € H' arbitrarily.
We will define m'k" actions a*? €4, ye{l,...,m"}, ze{l,.,k"}, below. Define
a = a(1).
Recursively, for every z €{2,.... k'}, define a'"*! as follows: Fix k e{l,...,k"} arbitrarily.
Ifforevery z' <z,
a® #a™" and v("’"‘”‘)(h') > u(a™*),
for every a € A4 suchthat a #a"™ forall z' <z,
v(""’“’l)(h' )> v(""”l)(h‘),
and for every k' <k suchthat a* #a™ forall z'<z,
v("k"”"(h’) > v(“r"”l)(h'),
then
a[l,Z] = ak ]
If there is no such & €{l,...,k"}, then
attsl = g1

For every y €{2,...,m’}, we define
Pl = g J_

Recursively, for every y e{2,...,m'} and every ze{2 . k'}, a”? is defined as
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follows: Fix k €{l,..,k"} arbitrarily. If for every z' <z,
a* #a”*) and v (h') 2 u(@”"),
for every a € A suchthat a#a”" forall z' <z,
v‘“"“y)(h‘) > vty
and for every k' <k suchthat a* #a"" forall z' <z,
v(a‘,¢y)(ht )> v("k""’y)(h‘),
then
a”I =a"
If there is no such k e{l,...,k"}, then
at?l = gl
Let s be the integer presented in Condition 6 (Uniform Adaptation), and let
ke {l,...,k"} be the integer such that a* is a maximin action but for every k < Ig, a* is

tem'k’s 41
r=t+l

not a maximin action. We will define (a(7), v(7), #(7)) as follows: Define

a(t+m'k’s" +1) = a*,
vt +mk's" +1)=u,
and
dt+nmk’s"+1)=¢".
Forevery y e{l,..,m"'}, every z e{l,..,k"}, and every s efl,...,s"}, define
a(t+(y -Dk"s" +(z=1s" +s)=a”",
v(t +(y - Dk's" +(z=1)s" +5) = u(a>),
and
P+ (y-DE's" +(z=1)s" +5)= ¢
Let
H(R') = (B g HUm85 9 bt s the sub-history of A™™***' and
(a(r), (1), $(T))"E 54 s defined above}.
Conditions 5 (Independence of Irrelevant Experiences) and 6 (Uniform Adaptation) say
that for every A" "' cH(h'), every yefl,..,m’}, and every z e{l,.. k'}, if
(a,¢)=(a”,¢") forsome y’'<y andsome z’'e{l,.. k"}, then
VPR = a),
and if @ is not a maximin action and ¢ = ¢” for some y’< y,then
v(ay¢)(hlfyk‘s‘+zs° ) <u.
Hence, it holds for every RS g (h') that if @ is a maximin action, then
VER KTy forall ged,

and if a is not a maximin action, then
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yED(REESy oy forall ped,
and

d(h"" Y a) = 0.
Here, this last equality is derived from the consistency of 4 with I' and the fact that
a(t +m’k"s" +1) is a maximin action.

Conditions 1 (Uniform Positive Lower Bound for (p“,¢“)), Condition 2 (Law of
Inertia), and the consistency of d with T imply that every A*""***' e H(h') is reachable
from A'. Let &> 0 be a positive real number which satisfies the inequalities in Conditions
1 and 3 (Uniform Positive Lower Bound). We must note that the probability conditional
on A' that H(h') occurs is at least £"¥S* 5 0 irrespective of how ¢ and A'are given.
Hence, for every & (0, 1], by choosing & small enough to satisfy £"¥ < £ it holds at
least with probability 1~ £ that there exists a period ¢ such that H(h") occurs in period
t+mk’s +1.

From these observations, one gets that for every & e(0,1], it holds at least with
probability 1— & that there exists a period # such that if a is a maximin action, then

VEO(RHT Sy 2y forall ged,
and if a is not a maximin action, then
Ve (Y oy forall g e®, and d(h*FT Y a) =0,
This, together with Part (ii), implies that Part (i) holds.
Q.E.D.
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4. Subjective Games and Trivial Games

This section is the main part of this paper. We will investigate the situation of

strategic conflict which is described by an n-person noncooperative game
G=(N,A,..,A ,u,.. u,) as the objective game, where N ={l, ..,n} is the finite set

of players, 4, is the finite set of actions for player i, and u;: x A — R is the payoff
eN

7
function for player 7. Players a priori know the sets of actions 4,,..., 4,, but have no

prior knowledge about the payoff functions u,,...,u,. Each player i instead has her own
subjective payoff function ii;: x A, — R. In distinction from the objective game G , the
JeN

subjective game is defined by G= (N,A,...,A,d,...i,).

Players also have no prior knowledge about which actions the others will choose.
Each player / instead has her own subjective probability function p{*’: A — R, onthe
set of the other players’ action profiles A4, = x 4, where " pi*’(a_)=1. According

s a_ed,
to p'*, player i who chooses an action a, € 4, expects the opponents to choose an
(n—1)-tuple of actions a_, € 4_, with probability p{*’(a_,).
We assume that each player i does not even know that the game with which she is
confronted is a simultaneous-move game: She may believe incorrectly that the opponents

choose actions affer observing her choice of action. This is why we will allow player i’s
subjective probability function p{“’ to depend on her own choice of action a,.

Let A(4,) be the set of all mixed actions for player i. Player i chooses an action
among A, according to a mixed action denoted by o, € A(4,) . If player / maximizes the

subjective expected payoff, then o, must satisfy
[o,(a)>0]=] 3 p“a )i a,a,)2 Y p(a, )i a)a )

a_j€A_; a_j€d;
forall a/ €4 ]

The main purpose is to characterize the combination of the subjective game, the
subjective probability functions, and the mixed actions (G, (o, ,),., ), and to provide
clear answers to several important questions such as in what way the subjective game is
connected with the objective game. On the basis of the analysis of the long-run single-
person decision making problems in Section 3, we will specify (G, (p",0,),y) in the
following way: Each player i is randomly matched with n—1 opponents infinitely many
times. In every period, player i plays an n-person noncooperative game which has the
same sets of actions as G, together with the randomly matched opponents in this period.

Similarly to Section 3, a long-run single-person decision making problem for player i
is defined by D, =(4,,Q,, @, H,,u®, p*,q"), where it is assumed that

1
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Q =4,
and the associated maximin set of actions A is a singleton, that is,

A=),
In a period ¢, player i chooses an action a,(f) € 4,, obtains the realized payoffs
v,(t) € R and signals ¢,(t) € @, but can not observe the opponents’ actions @,(f) €4,
where v (1) = u® (a,(1), w,(1)). In particular, the state ,(7) realized in each period 1
represents the actions chosen by the opponents with whom player i is maiched in this
period.

Similarly to Section 3, define 4" = (a,(r), ®,(7),v,(z),4,(7)):}, H/',and H, Ifa
history A € H"' for player i up to period ¢ was realized and player / chose an action
a,(t) € 4,, then the randomly matched opponents in period ¢ will be anticipated to
choose ,(¢) = a_, with probability p#(a_la,(1)), and player i observes ¢,(1)=¢,
with probability ¢ (¢,|a,(¢), w,(¢)).

Furthermore, similarly to Section 3, each player / is modeled as an inductive learning
procedure (d,,I,), where I, =(I'*), ,: Player i chooses actions among 4,
according to a decision rule d,: H — A(4,), where d,(h/) isindependent of (,(7)]
because player i can not observe the opponents’ actions. For every 21 and every
h' e H', player i chooses an action a,(f)=a, with probability d,(" )a,).

Let T = ((v**),0,6) be player i's evaluation rule for a, €4, and let
ri — (ri(a[))

ieN, and let 7,4, — ®, be a one-to-one function. By observing the signal

.cs, D€ player i's evaluation rule. Here, we assume that |®,|>| 4| for all
¢,(1) = n(w,(1)) in period ¢, player i is convinced that the opponents have almost
surely chosen the actions ,(¢) € 4 ,. Hence, player i will regard the payoff evaluation
y(meD(pily as the payoff which she can almost surely obtain when she chooses action
a, € A, and the opponents chooses a_, € 4_,. Moreover, player i who chooses a, € 4,
anticipates that the randomly matched opponents in a period ¢ will choose a_, € 4_; with
probability & (h' ") (a_,).
We will suppose that all players in N happen to meet together and play the objective
game G inaperiod §, given an arbitrary profile of histories (4’ ),.,, up to period § —1.
We will specify the combination of the subjective game, the subjective probability
functions, and the mixed actions, (G,(p,0,)..,), by
i(a,a_ )= veneD(pSty forall ieN,al a, €4,,andal a, e4d,,
pa )=8(h " Na ) forall a, €4,

and

o,(a)=d (h’")a,) forall a, €4,.

27



We will require each player i’s inductive learning procedure (d,,I)) to satisty
Conditions 1 through 6 as well as the consistency of (d,I').

Remark: Condition 1 implies that for every j =i and every a, € 4, there always exists
a positive proportion of the population who will choose this action a; € 4; when being
matched with player 7. One interpretation of Condition 1 is that there exists a positive
proportion who are programmed to always choose a, €4, by birth. The other
interpretation is that in every period, there always exists a positive proportion who were
just born and begin by choosing actions at random.

Definition 4: A subjective game G is trivial if for every i € N, there exists a; € 4, such

that
i(a’,a’)>(a,a,) foral a ,ed al a’, ed,, andall a, #a, .

We must note that for every i e N, the action a; e 4, presented in Definition 4 is
strictly dominant, i.e.,
d(a’,a_)>dl(a,a ) forall a €A andal a =a/,
and the n-tuple of the actions (a).., € x 4, is Pareto-efficient among the set of pure
ieN
action profiles in a trivial subjective game G, i.e., there exists no (a,),,, € x 4, such
ieN
that (g, ),y #(a,),y and
u(a,a’)zd(a,a ;) foral ieN.

We will provide the main theorem of this paper as follows.

Theorem 2: Suppose that for every i€ N, D =D, satisfies Condition 1, d =d,
satisfies Conditions 2 and 3, T =T, satisfies Conditions 4, 5 and 6, and d=d, is
consistent with T =T ,. Then, for every £ (0,1, there exists a positive integer S* such
that if S >S", then it holds with at least probability 1- & that

(i) the subjective game G is trivial,

(ii) for every i € N, the action a in Definition 4 is equivalent to the unique maximin
action a.,

(iii) for every i €N, every a_, €A, every a', € A, andevery a, #a,,

i(a},a') 2 u, = min u(a},a") >i(a,a.),

and
(iv) g, (a:) =1

28



Proof of Theorem 2: Theorem 1 says that for every & €(0,1], there exists a positive
integer S* such that if § =S, then it holds at least with probability 1- & that for every
ieN,

d(h¥)a))=1,and v**(h’)<u, forall a, # a andall ¢ €®,.
From the definition of the subjective game G and Condition 4 (Minimal Evaluation), one
gets that for every a_, € 4, every a’, €A, and every a; # a;,

i(al,al,) =V () 2w, > V() = ii(a,a.,).
This implies that G is trivial (Property (i), and for every j e N, the action a; presented
in Definition 4 is equivalent to the maximin action a’ (Property (ii)). Since
u; = alpei;l u(a;,a") for all i e N, Property (iii) holds. It is straightforward from the

definition of o, that Property (iv) holds.
Q.E.D.

From Theorem 2, we can obtain the following remarkable properties: The subjective
game is totally different from the objective game. The subjective game is always trivial,
and therefore, several famous games which have been intensively studied in the literature
of game theory such as zero-sum games, prisoner-dilemma games, stag-hunt games,

hawk-dove games, and coordination games can not be perceived as subjective games
because these are not trivial games. The maximin action profile (g;),y € x 4, in the
ieN

objective game is Pareto-efficient among the set of pure action profile and strictly
dominant in the subjective game. Of particular importance is that the strict dominance
property holds irrespective of how the order of players’ move is specified: In a trivial
game G , it holds that for every i € N and every function a: 4, = 4,
i(a,aa)) > ia,aa,)) foral a #a;.

This means that choosing the maximin action «a € 4, is always the best response for
player i against all correlated strategies for the opponents which may condition on player
i ’s choice of action.
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5. Several Examples

In this section, we will investigate several example of the objective games such as

hawk-dove games, stag-hunt games, and modified coordination games.

Hawk-Dove Game: We have already examined the hawk-dove game in the introduction
(see Figure 1.1 and 1.2). Here, (dove, dove) is the maximin action profile in the hawk-
dove game as the objective game.

Stag-Hunt Game: In the stag hunt game as the objective game presented in Figure 3.1,
(stag, stag) is the payoff-dominant Nash equilibrium.” If x <3 5 then (stag, stag) is also

the risk-dominant equilibrium in the sense of Harsanyi and Selten (1988)." If x >3 2

then (hare, hare) is the risk-dominant equilibrium. The emergence of the risk-dominant
equilibrium has been studied in the literature of evolutionary game theory (see Kandori et
al. (1993) and Young (1993)). The subjective game in the long run is approximately
expressed by Figure 3.2, where (hare, hare) is strictly dominant and also Pareto-efficient
among the set of all mixed and correlated action profiles. As a result, players behave as
being extremely risk-averse.

" A Nash equilibrium (a)e x 4 in G=(N,(4,,4,)) is payoff-dominant if for every Nash
ieN

equilibrium (a') € x A andevery ieN, u((a,)2u(a,)-

4 A Nash equilibrium (a,a) ina 2x2 symmetric game such that 4, = 4, = {a,b} is risk-

dominant if u (b,b)—u(a,b) <u(a,a)-u(b,a).

30



stag hare

stag 3, 3 0, x

hare x 0 X, X

Figure 3.1: Stag Hunt Game

as the Objective Game
(0<x<3)

stag hare

stag

hare

Figure 3.2: The Subjective Game
(L, <x for h=1234)

Coordination Game: In the pure coordination game as the objective game presented in
Figure 4, there are multiple Nash equilibria, that is, (c,c), (d,d,), and the mixed action
profile assigning ¢ probability % and d probability % Since there are also multiple

“ »

maximin actions (action “c” and action “d”), Theorem 2 gives no insight on the analysis of

this objective game.
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Figure 4: Pure Coordination Game
as the Objective Game

Next, in the modified coordination game which is presented in Figure 5.1, there are

also multiple Nash equilibria, i.e., (c,c), (d,d) and the mixed action profile which assigns ¢

probability lﬁ;ﬂ_fl’_ and d probability 23" 2p

. Clearly, (c,c) is the payoff-dominant

equilibrium. If g~y >1, then (d,d) is the risk-dominant equilibrium, whereas if
B -y <1, then (c,c) is the risk-dominant equilibrium. According to the argument of
Section 4, if B> ¥, then the associated subjective game is approximated by Figure 5.2, in

which the payoff-dominated equilibrium (d,d) in the objective game is strictly dominant.
On the other hand, if f <y, then the associated subjective game is approximated by

Figure 5.3, in which the payoff-dominant equilibrium (c,c) in the objective game is strictly
dominant. Here, we must note that if 0 < f#— y <1, then the strictly dominant equilibrium
in the subjective game is not equal to the risk-dominant equilibrium in the objective game.

In a modified coordination game as the objective game, the ‘Spiteful” action in the
sense that a player’s choosing this action makes the opponent’s payoff worse than her
own payoff will survive in the long run as the strictly dominant action in the associated
subjective game.

32



Figure 5.1: Modified Coordination Game
as the Objective Game

(B<Ly<l)
C d
L, L, L, P
b, L, 1, 1

Figure 5.2: The Subjective Game
(y <p<LL,<p for h=1234)
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Figure 5.3: The Subjective Game
(B<y<L L,<y forh=1234)
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6. Discussions

Several results in this paper might be regarded as being negative by the orthodox
game theorists, because these imply that most of the famous games such as zero-sum
games, prisoner-dilemma games, coordination games, stag-hunt games, and hawk-dove
games can not be viewed as the subjective games. We, however, would like to emphasize
that this paper should be regarded as the benchmark for the possible progress toward a
theory of subjective games in the future. |

We have assumed that a player is not convinced that the situation is recurrent, and she
can not establish a firm experience-based belief about the situation in which she will
seldom waver when observing unlikely events. This point was well expressed by
Condition 6 (Uniform Adaptation). A real economic agent, however, sometimes
establishes a firm experience-based belief as the undoubted self-evident knowledge which
essentially regulates how to visualize the uncertain situation. In order to show that
various types of games can be viewed as the subjective games, it would be inevitable to
weaken Condition 6 and clarify what kind of experience-based beliefs will be regarded as
being self-evident in the long run.

We can provide a scenario that players succeed to view any non-trivial game as the
subjective game: Let us reconsider Case 3 in the example of recurrent situation presented
in Section 2. Differently from Section 2, we will suppose here that the decision maker is
convinced that the situation is recurrent. Then, in the similar way to the latter half of Case
1, one can get that in the long run the decision maker succeeds to make the subjective
payoff function approximate the objective payoff function and to maximize the objective
expected payoff with almost certainty. It might be easy for sophisticated readers to
conjecture that this argument is also applicable to general class of multi-person recurrent
situations, and that players who are convinced that the situation is recurrent will
eventually come to equalize the subjective game with the objective game irrespective of
how the objective game is given.

I think, however, that the next round in the theory of subjective game will be to
investigate nom-recurrent situations much more intensively from the view-points of
bounded rationality, instead of recurrent situations: Actual players sometimes cafegorize
various situations into a /limited number of groups each of which are viewed as a
particular form of subjective games such as trivial games, prisoner-dilemma games,
coordination games, zero-sum games, hawk-dove games, stag-hunt games, and so on.
These subjective games are not necessarily the same as the objective games. It would be
quite substantial to answer the question of how players categorize situations, which is the

35



matter of the more precise understanding of inductive learning.

We have assumed in this paper that a player is motivated by the maximization of the
subjective expected payoff as well as the law of inertia, and have assumed that the
probability of experimenting is negligible. However, as Selten (1978, 1990) have stressed,
a real economic agent has multiple motivations some of which urge her to choose an
action which neither maximizes the subjective expected payoff nor is the same as the
action chosen in the last period. What motivates a player is undoubtedly one of the most
important issues in the study of procedural rationality, which might also depend on the
past experiences."’

The companion paper, Matsushima (1997b), reconsidered the example presented in
Section 2, by assuming that the manager (the decision maker) behaves according to a
particular form of Markovian learning procedure, and that she experiments with the risky
project with a non-negligible probability, but that the probability of experimenting
decreases as she continues to experience the loss of one hundred dollars. It was shown
that the manager sometimes comes to believe as ‘undoubted self-evident knowledge’ that
the risky project should not be enforced in the long run, even though this risky project is
actually profitable.

We have assumed in the main body of this paper that a player can, not perfectly but
almost perfectly, monitor the realized states, or the realized actions chosen by the
opponents. This implies that players need to spend very long time in perceiving the
situation as a trivial game, which leads us to pay attention to the question of what about
the middle run. It might be conjectured that similarly to the case of perfect monitoring,
players continue to monitor the realized states correctly until the middle run. Hence, in
the middle run of a recurrent situation, players may succecd to make their subjective
payoff functions equalize with the objective ones and to maximize their objective
expected payoffs.

We have assumed in Section 3 that for every action a € A4, there exists the minimal
payoff u(a) = rggxg u*(a, @) common to all histories. This assumption is quite restrictive

v - . . . . g -
in a class of situations, because the minimal payoff min u"(a,w) may be history-
@€

dependent, and the set of the actions which maximizes the minimal payoff may also be
history-dependent in general. The results of this paper can not necessarily be applied to
these cases without substantial modifications.

'* We have also assumed in the paper that players are myopic. It might be interesting to consider

players who maximize their Jong-run subjective expected payoffs.
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Finally, Theorem 1 in Section 3 says that if the set of maximin actions is a singleton,
then the action which the decision maker chooses in the long run is uniquely determined.
However, if there are multiple maximin actions, there still exists a variety of the decision
maker’s possible long run behaviors which satisfy the conditions required in this theorem.
The other companion paper, Matsushima (1997¢), provided an additional condition on a
learning procedure, which guarantees the uniqueness of the decision maker’s choice of
action in the long run, even though there are multiple maximin actions.
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7. Evolution and Learning

The recent studies of evolutionary game theory in economic environments are related
to this paper.'® Players are modeled as inductive learning procedures in order to learn to
anticipate how the opponents will behave. Players may not even know the structure of the
objective game. However, as we have already stressed in the introduction, most papers
do not have dealt with how to learn to perceive the subjective game. Many papers in this
literature have explored conditions under which the realizations of rational solution
concepts such as rationalizability, Nash equilibrium, and its refinements can be justified
also in evolutionary contexts.

Unlike our work, most papers in this literature have investigated only recurrent
situations, and have assumed that a player can observe the actions chosen and the payoff
obtained by the other players who did not match her but played the same game with their
respective randomly matched opponents. This assumption plays the crucial role in
justifying these rational solution concepts: A player always gets informative empirical
data concerning any action, by observing the payoff obtained by some of the other players
who did choose this action. This prevents the player from sticking to the improper
pessimistic evaluations for the actions which are not maximin."’

Fudenberg and Kreps (1988) considered learning behaviors in extensive form games
without this assumption, and explained the similar point to ours that players may choose
as the stationary point a strategy profile which is not a Nash equilibrium, because they
have serious lack of experiences on the situations which take place after some players’
deviation.

Borgers and Sarin (1996) reconsidered a version of the learning model addressed by
Bush and Mosteller (1951) in a game-theoretic context, and showed that in a continuous
time limit this learning model converges to the replicator dynamics of evolutionary game
theory, which makes players maximize the objective expected payofts in the long run.
This convergence property, however, is rather exceptional and relies crucially on the

assumption that players adjust very slowly. This assumption inevitably makes this

'* For the surveys of this literature, see Fudenberg and Levine (1995), Kandori (1997), Matsui
(1995), Weibull (1996), Vega-Redondo (1996), Samuelson (1997), van Damme (1994) and so on.
' 1t might be also interesting to consider the case in which a player can not observe the choices of
actions and the payoffs obtained by the other players, but can hear the opinions of the other

players about how they subjectively evaluate these actions.
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convergence take place in the u/tra-long run."®

Blume and Easley (1992) studied an evolutionary model of single-person decision
making with payoff uncertainty and showed that the expected log-fitness maximizer
dominates the population in the long run, which differs from the expected fitness
maximizer. Their result also expresses the similar point to ours that the actions having a
possibility to result in very low payoffs tend to be weeded out even though these expected
payoff are the highest.

18 See Arthur (1993) and Marimon (1997, Section 3.3).
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