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paper for two regression equations with possibly different error variances. The feasible
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the class of unbiased estimators. It is, nevertheless, established that the FGLS estima-
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1. Introduction

Consider the problem of estimating common regression coefficients 3 of two linear
regression equations

where y; is an n; x 1 vector of observations, X; is an n; X p known matrix of rank p
and e; is an n; X 1 random vector having normal distribution N, (0, crf[ni) for n; X n;
identity matrix I,,. Let 3 be a p x 1 vector of unknown common regression coefficients
and let 6% and 02 be unknown dispersion parameters possibly different. In this model,

the minima) sufficient statistics for unknown parameters w = (3,0%,02) are given by
B1, B2, Si and S, where

Bi = (X! X)) Xy,
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for the Euclidean norm [|u|| = (u'u)/2. The common regression coefficients 3 is es-
timated based on these statistics. The minimal sufficient statistics are, however, not
complete, so that we could not construct uniformly minimum variance unbiased estima-
tors (UMVUE) through the Rao-Blackwell theorem. This demonstrates some difficulty
in estimation of the common regression coefficients.

When 0 and 03 are known, we would estimate 3 by the generalized least squares
(GLS) estimator

-1
g = (Bxar i) (FExA+ gXnk), @
g7 92 o1 02
which is the UMVUE, the maximum likelihood estimator (MLE) and the best linear
unbiased estimator (BLUE). Since ¢} and 02 are both unknown in our model, the feasible
generalized least squares (FGLS) estimators are considered by substituting estimators
of 0% and 02 in the GLS estimator BGLS  These are also called two-stage (or estimated)
GLS estimators and two-stage Aitken estimators in econometrics (Taylor(1977, 78),
Swamy and Mehta(1979), Kariya(1981), Toyooka and Kariya(1986) and Kurata and

Kariya(1996)). Substituting unbiased estimators

~2
6; = Si/my, m; =mn;—Dp,

for 02,4 = 1,2, we get an FGLS estimator of the form

-1
-~ Y m m m A m ~
ﬂF’GLS = (-gf-X{X*[ + —éXéXg) (“S,%X{Xlﬁl "*' gj XZIXQ,BQ) . (1.2)
Since BFGLS is a quite natural, random weighted estimator, one would believe the
admissibility of 4¥GLS among unbiased estimators.

The main purpose of this paper is to establish the inadmissibility of the FGLS
estimator ,BF GLS within the class of unbiased estimators. The criterion adopted here
for comparing estimators is to minimize the covariance matrices of the estimators, that
is, for two unbiased estimators 34 and BB of 3, we say that B4 is better than BB in the
covariance-matriz criterion if

Cov, (B4) = E,[(B* - B)(B* = B)'] < Cov,(87) (1.3)

for every unknown w and the strict inequality holds for some w, where the inequality
in (1.3) means that Covy,(BB) — Cov,(B”) is non-negative definite. Since unbiased
estimation is focused on in this paper, it is reasonable to utilize the above covariance-
matrix criterion. When estimation problems are discussed beyond restriction of the
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unbiasedness in general, mean squared error matrices should be employed as a measure
for evaluating estimators. It is also noted that if the superiority of an estimator is
shown in the covariance-matrix criterion, then the superiority of it still holds in the

mean squared error (MSE) trE,[(3 — 8)(8 — B8)'] = Eu[l|B — B1I*].

The idea for improving on the FGLS estimator BFGLS js related to Stein (1964),
who provided the innovative decision-theoretic result of inadmissibility of a usual vari-
ance estimator by incorporating the information contained in a sample mean. In our
model, it is noticed that the statistic (ﬁl — 62)(31 — ;@2)’ possesses the information on

LS a5 stated above,

02 and 02. Since the unbiased estimators of 0?’s are used in SF¢
we can imagine that 3FCLS will be improved on by making use of variance estimators
incorporating the available information in ([§1 — ﬁg)(ﬁl — f3,). In Section 2, we really
develop a new decision-theoretic result of inadmissibility of BFGLS  One of improved

procedures is a double shrinkage and unbiased estimator of the form

L 1 | 1 -1 1 R 1 A
pPs = <A2* X1 X1 + W;Xz'Xz) (:—Q—;X{Xlﬁl + Tz‘;Xz'X’Zﬁ?) = (1.4)
0% a3 01 02

where

2* — min { Si ma 4281+ (B — B) X[ X (B - 32)}

mi mao ma +p——2

mo mi e +p*—2

2% _ min { Sy my+282+ (61 - BQ)IXéXQ (61 - Bg) } .

The conditions for 6%* # S;/m; and 62* # Sy/mg are given by (p — 2)my > 2m; and
(p — 2)m, > 2my, respectively. These conditions demonstrate that, for instance, if m,
(= n; — p) is a small number with m; < (p — 2)m,/2, then the estimator 63* suggests
the use of the information in (8; — 32)' X] X1(#1 — (2) in order to improve accuracy of
estimation for 6. The inadmissibility of BFGLS given by (1.2) is thus established when
my < (p—2)ma/2 or my < (p— 2)m,/2 for p > 3. In the unbalanced case: m; # ma,
the condition is always satisfied for p > 4 while when m; = mg, it is always guaranteed
for p > 5. The proofs of the dominance results of Section 2 are given in Section 3.

Before stating the main results, it is noted that the estimation of common regression
coefficients in our model is related to the problem of recovery of interblock information in
balanced incomplete block designs, treated by Khatri and Shah (1974), Brown and Co-
hen (1974) and Bhattacharya (1980), and the problem of estimating the common mean
of two different populations, studied by Cohen and Sackrowitz (1974) and Kubokawa
(1987) among others. In general, the problem of estimation of common regression coef-
ficients appears in various applicable models such as heteroscedastic linear models and
mixed linear (or variance components) models in biostatistics and econometrics, and



FGLS estimators are heavily and widely exploited. They are quite useful in the case
of relatively large sample for their asymptotic efficiency. The problem, however, arises
when data enough to estimate the error variances are not available. In this case, as
indicated by Rao and Subrahmaniam (1971) and Rao (1980), the information included
in sample means may be useful so as to get estimators with higher accuracy. Although
the estimation issue given in this paper is limited to the simple situation, the obtained
results suggest a possibility of constructing estimators with higher efficiency in more
general setting.

2. Inadmissibility of the FGLS Estimators

The feasible generalized least squares estimator of the common regression coeffi-
cients 3 with a more general form is given by

cC

—1
. 1 ! 3
BFGLS () = ( — X1 X, + ..f__XQ’XQ — X1 X181 +
S, S2

wn). e
where ¢ is a positive constant. The usual choice of ¢ is my/m;, for m; = n; — p,
¢ = 1,2, which corresponds to the fact that the error variances Uf and 02 are unbiasedly
estimated, and this choice provides 5F GLS given by (1.2). When the variances are
estimated by the MLE in each regression equation, the value of ¢ is ng /ny. For the
query about existence of the optimal ¢, we provide the following proposition. The
proofs of proposition and theorems given in this section are deferred to Section 3.

Proposition 1. The optimal value of ¢ when p — 0 (resp. p — 00) is given by

— mg+2 mo — 4
Cv _ \’ . C = .
mi; —4 (resp omy +2>

When d > C (resp. d < C), BFGL5(d) is improved on by BFGLS (T (resp. BFCLS(C)).
If C < d < C, then there exist no FGLS estimators 3¥GL5(c) being better than
BFGLS(d).

Proposition 1 implies that the constant ¢ should be chosen between C' and C.
On the other hand, it may be requested that the combined estimator FGLS(c) has
a uniformly smaller covariance matrix than uncombined estimators ﬁl and /32, which
is guaranteed by C/2 < ¢ < 2C as presented by Graybill and Deal (1959), Shinozaki
(1678) and Swamy and Mehta (1979). Thereby the constant ¢ may be desirable to be

chosen as

max(C, C/2) < ¢ < min(C,2C). (2.2)
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For ¢ = my/m1, this condition is satisfied by (m; —8)(mo —2) > 16 and (m1 —2)(mz2 —
8) > 16, or equivalently, (m; = 9,my > 18), (m; > 18,my = 9) and (m; > 10,m2 >
10).

Our interest is to investigate whether the FGLS estimator BFGLS () is admissible
in the covariance-matrix criterion (1.3). The admissibility of BFGLS(¢) has never been
established (Sinha and Mougadem(1982)) while one believe the admissibility, for the
FGLS estimator is quite natural, random weighted least squares estimator. It is helpful
to point out that

E[(B1 — B2)(Br — B2)] = 02 (X{ X1) ™" + 05 (X, X2) 7,

which means that the statistic (3; —52)(81 — $3,)! contains the information on ¢ and o3.
The information in this statistic may be available for estimation of the variances while
AFGLS(¢) employs the information in S; and S, only. For improving on 3£%45(c), we
thus consider the estimator

cg

R 1 ¢ L . .
BP5 (¢, ) = (*g—lexl + @XéXQ) (EX{XM% + @XéXzﬁz) , (2.3)

where

p=0¢ (511 (81 — Bo) X{ X1 (B — ﬁz)) ,

=1 (—552-«31 — B X} Xa(Br — @)) .

We denote 35(¢) = BP5(¢,1) and 35 (¢) = BPS(1,4) and call them Single Shrinkage
Estimators while we call 3°5(¢, ) the Double Shrinkage Estimatorfor ¢ # 1 and ¢ # 1.
As shown by Khatri and Shah (1974), Brown and Cohen (1974) and Swamy and Mehta
(1979), the estimator 3P5(¢,4) is unbiased. Using the Integral-Ezpression-of-Risk-
Difference (IERD) method given by Takeuchi (1991), Kubokawa (1994) and Kubokawa
et al.(1994,96), we can establish the following theorem concerning the superiority of the
single shrinkage estimator 35 (3)).

Theorem 1. For ¢ < (my+ p—2)/(my + 2), assume that
(a) ¥(w) is nondecreasing and lim,,—, % (w) =1,
(b) ¥(w) 2 min{1,9*(w)}, where

?/)* (w) _ C(ml + 2) wa m(p+2)/2_1/(1 _+_. x)(m2+P)/2‘“1d$
T mytp—2 [PaptD/2-1/(1 4 o) me4p)/2dg

(2.4)

Then the single shrinkage unbiased estimator 325 (v0) is better than the FGLS estimator
BFGLS(¢) in the covariance-matriz criterion (1.3).
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The condition ¢ < (mq + p— 2)/(m; + 2) guarantees that ¥ (w) # 1 with a positive
probability. It can be seen that *(w) is nondecreasing and

. N e(my +2 ) . e(my + 2)
hmw—)Od’ (’LU) = %’%‘i—p_—:)i and  limy 00t (w) = '_(n;i"::zl

Also note that

f3 /(1 +z)Pde < o o*(1 +z)de
[ /(1 +z)Ptide — [y zdx

where we used the well-known fact (for instance, see Bhattacharya (1984)) that if for
positive functions f(z), g(x) and h(z), two functions g(x)/f(z) and h(z) are monotone
in the opposite directions, then

[9@h(@)dz _ [ g(x)dz
[ f@h(@)de = [ f(z)dz

(2.5)

These observations imply that the conditions (a) and (b) of Theorem 1 are satisfied by
the shrinkage functions

’lb()('LU) = min {17 Qp* (w)} ’ (26)
~ mi (mi+2) (y p+2

wl(w)—mm{l, mg+p—2(1+p+4 )}, (2.7)

o(w) = min {1, %%1;—3)2 (1 +w)} . (2.8)

When ¢ = C = (my — 4)/(my + 2), we have that yg(w) = *(w), that is, Bg(wo) is
a smooth estimator improving on BF GLS((). For the usual choice ¢ = mgy/m;, the
inadmissibility of 3FGLS (m,/m,) is established if

(p — 2)m1 > 2mag, (29)

which is satisfied by (p = 3,m; > 2ms), (p = 4,m1 > m2) or (p > 5, m1 > 2my/(p—2)).

By the symmetry consideration, it can be seen that the single shrinkage estimator
B5(¢) dominates BFGLS(c) in the covariance-matrix criterion if for ¢ < (ma + p —
2)/(m1 +2),

(a) p(w) is nondecreasing and lim,, . p(w) =1,



(b) ¢p(w) > min{1, ¢*(w)}, where

Mo + 2 f(;” 2 (PH2)/2=1 /(1 4 g)mitp)/2=1 ]y

T = S p =) [T (L) P s

(2.10)

By the same arguments as below Theorem 1, it can be verified that these conditions
are satisfied by the shrinkage functions

¢o(w) = min {1, ¢*(w)}, (2.11)
. ma + 2 p+2w
¢1(w) = min {1, o pp——— (1 + o ) } : (2.12)
. ms +2 )
¢2(w) = min {1> T E— (1+ w)} : (2.13)

For ¢ = ms/m;, the sufficient condition for 37 (¢) to dominate BFGLS (my /m,y) is given
by
(p — 2)m2 > 2my, (214)

and together with (2.9), it follows that S¥GLS (my/my) is inadmissible if

my > 2my or mg > 2m for p =3,

™my > mg or my > my for p =4,

my > 2ma/(p — 2) or mg > 2my /(p — 2) for p > 5.
In the unbalanced case, that is, m; # ma, the condition for the inadmissibility of
BFCGLS (1, /my) is always satisfied for p > 4 while when m; = mg, the condition is
always guaranteed for p > 5.

We now address the problem of investigating whether the single shrinkage estima-
tors 37(¢) and (5 (¢) can be further improved on by the double shrinkage estimator
BD S(¢,1). This problem has somewhat of technical difficulty in two respects: (1) the
shrinkage functions ¢(w) and v (w) hold the statistic {3, — 52) (31 — B2)’ in common and
(2) ¢(w)/¢(w) shrinks towards the opposite directions. Under such difficulty, applying
the IERD method establishes the following theorem.

Theorem 2. For ¢ > (my +2)/(my + p — 2), assume that
(a) #(w) is nondecreasing and lim,, ,,d(w) =1,
(b) ¢(w) > ¢o(w) for function do(w) given by (2.13).
When 1p(w)/w is nonincreasing in w, the condition (b) is replaced with

(Y ) &(w) > min{l, ¢**(w)}, where

mo + 2 f()w a;(P-f-?)/z/(l + IIZ)(""Q )/ 2y

9™ (w) = e(my +p—2) f(;” z(P+2)/2 /(1 + x)(m2+p)/2+1da;'

(2.15)
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Then the double shrinkage estimator 3PS (¢,1)) improves on the single shrinkage esti-
mator 35 (1) in the covariance-matriz criterion (1.3).

By using the inequality (2.5), it is easily shown that ¢*(w) < ¢**(w) for ¢*(w)
given by (2.10), so that the condition (b') is somewhat restrictive. This restriction is
caused by the reason that ¢ and 7 contain the common statistic.

The symmetry consideration can give a similar condition for 3PS (¢,%) to dominate
619 (¢), and we get a sufficient condition for B3PS (¢2, %2) being better than ﬁf (¢2) and
B3 (4h2).

Corollary. Assume that

— 2
me+2 _ . _Matp—2
m1+p—2 m1+2

(2.16)

Then the double shrinkage estimator 35 (¢g,1b;) dominates single shrinkage estimators
B3 (o) and (5 (12), being better than 3FGLS(c) in the covariance-matriz criterion (1.3),
where ¢ and 1Py are given by (2.18) and (2.8) respectively.

When ¢ = mgy/m;, the condition (2.16) is satisfied by

p—2

—~"-2—m2 <my < my for p>5,

p—
and then, the improved single shrinkage estimators are further dominated by the double
shrinkage estimator 3PS given by (1.4), while 325 is superior to B¥GLS, by (1.2), for
2my < (p— 2)my or 2my < (p — 2)ma.

We conclude this section with providing the results of Monte Carlo simulation for
the relative covariance-matrix improvement

100 x Cov(B7EE5) /2 { Cou(BFEES) — Cov(B) } Cov(B" %)~/

for the single shrinkage estimator 3 = 37 (¢3) = 37 and the double shrinkage estimator
8= BDS(qﬁg,wz) = 3PS These are done in the cases where p = 20, (my,m3) = (2,2),
(10,10), (15,15), (2,20), (20,2), (5,15) and (15,5) and p = 0% /0% = 0.1, 0.2, 0.5, 0.75,
1.0, 1.33, 2.0, 5.0 and 10.0. The case where X{X; = X} X5 is only treated for simplicity,
and then the relative covariance-matrix improvement is a diagonal matrix with the same
diagonal element which is just the relative variance improvement for each component of
the estimators. Table 1 reports the average values of this relative variance improvement
based on 50,000 replications. From the table, we see that the variance gain of BP5 is
relatively bigger in the unbalanced cases my # mo than in the balanced cases m; = ma.
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Also for larger m; and smaller m;, the variance gains of the single shrinkage estimator
Bls are quite small while 475 holds the reasonable variance gains. This demonstrates
that the double shrinkage estimator works effectively in comparison with the single
shrinkage one. When m; = mgy = 2, the variance improvement of B3PS attains the
largest value near p = 1.0 and approaches zero when p tends to zero or infinity. When
my = mg = 10 or 15, in contrast with the case of m; = mgy = 2, the variance gain is
large near p = 0.2 and 5.0 while it is small at p = 1.0. This phenomenon seems to be
brought about by the fact that the ratio of unbiased estimators of o} and o3 gives a
better estimate of p near p = 1.0 for larger m; and m..

3. Proofs

We begin with reducing the estimation of 3 to the equivalent one-dimensional
problems. Let @ be a p x p nonsingular matrix such that X{X; = Q@' and X;X; =
QD Q' where Dy = diag(\1,...,\p), Ai’s being eigenvalues of (X{X1) 'X3X5. Let

7 = (T11,. -, T1p) = Q'B1, T2 = (Tar, ..., Top) = QB2 and p = (p1, ..., 1p) = QB
Then z; ~ Np(u, 031,), 2 ~ Np(p,0%1,) and

-1
1ADS — __1_ _f__ ._1_ - ¢
QB (o) = (Sl¢lp+ SQ¢DA> <51¢$1 + SWD,\ZDZ) ,

¢ = ¢((z1 — 2) (z1 — 22)/51),
Y =Y ((z1 — 22) Da(z1 — 32)/S2).

Noting that 3P5(g, ) is an unbiased estimator of be, we see that
Q'Cov (B75(4,%)) Q
=~ [(Q’BDS(cb, ¥) - Q'8) (QBS(6,w) - Q'ﬁ)']
— diag (B[ (iP5 (6, 9) — w)"] . i=1,-.p),

where

where

["'Ds(fﬁ ) = ('L + CAi >~1 (—1—x1 + S:\—z—xz) . (3.1)
’ ’ S Savp Sip" " Sqp T
This implies that 3P5(g, ) is better than 37%L5(c) in the covariance-matrix criterion
if and only if for every 4, the variance of /i?°(#,) is uniformly smaller than that of
APS(1,1).
Without loss of generality, let 4 = 1 and consider the problem of estimating
relative to the squared error loss. Let us express iP5(o,v) as gP5 (¢, %) = ®z11 + (1 —
@).’L‘Ql for ¢ = Sgl/)/(ﬁ‘)\151¢ + S‘z’lﬁ) Also let

~GLS P P
= 11+ 1~ x
1+p11 ( 1+p> 21
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for p = 02/(\10?). The variance of 4P5(¢,4)) is written as

Var, (075 (,%))
= B, (a5 (8, 0) = a5 + ™S — )|

2
o p p
=E, {(‘I’ e +p) (z11 —221) + 1 +p(ﬂfu — 1)+ T2 —,Uq} }
b \?
= K, <<I> — _-) (11 — 3321)2

5 +Var, (fi GLS) (3.2)

p p
+2FE, [(‘I’ — m) (x11 — z21) { 1 +p($11 — 1) + T21 ~IL1}] :

Note that @ is a function of Sy, Sy and (z1; —2)? ¢ = 1,...,p, and that the conditional
expectation of xg) — p; given xy; — xg; is

Eplzar — pilzin — za1] = — 1+ p(ﬂin — T21),
which shows that the third term of the r.h.s. of the extreme equality in (3.2) vanishes.
Hence,
2
Var, (4% (¢,%)) — Var, (a5"°) = E, [(‘I’ - T—%;) (z11 — 3321)2] ; (3.3)

which demonstrates the amount of the estimation error arisen from substituting esti-
mators 67 and 6% for 0% and 02. The estimation problem of y; is thus reduced to that
of p/(1 + p) relative to the loss (® — p/(1 4 p))%(z11 — T21)>

Let z; be a random variable having a X%—distribution. Also let v; = S;/ aiz for
i=1,2and z; = (z1; — x%)?/(6% +02/\;) for i =2,...,p. Then,

Sa p \° 2
Ep [(0/\1S1¢+52’¢ 1 +P) (@1 =) ]

— 2
_ pu2tp P
=i 4ok, [(mam;«z %) (34
o?p
_ 9ip
1+pRl(p7 7¢ 2/})7
where for F' = vy /v,
— 2
F
Rl (pscv ¢7 ¢) = ~Ep {(%—% - 1) } ) (35)

-o(S () 3).
) (zp1< pf\1> )
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The quantity (3.4) is also represented in another form as

c/\lSld) 1 2 2 Cf%
Ep [(CAISIQb“" Szw 1+p> (-Tll 11321) 1+p 2(p,C,¢ ’I'L')

where for G = vy /vy = 1/F,

Rg(p,C,¢,1/)) = Ep CG@—FP;/}—

((1 +p)eGo 1) 2} ’ (3.6)

and both expressions will be used in the proofs.

We now prove the results given in the previous section. The following lemmas are
useful for our purpose.

Lemma 1. Let h(z) be a nondecreasing and positive function on interval (a,b). If for

function K(x) on (a,b), there exists a point zo on (a,b) such that K(z) <0 forz < g
and K(z) > 0 for z > z¢, then

b b
/ K(z)h(z)dz > h(xo)/ K(z)dz,
a a
where the equality holds if and only if h(z) is a constant almost everywhere.

Lemma 2. Let X be a positive random variable with E[X ~77!] < co forr > —1. Then
Jfor0 <6 <1,

E[@+(1-6)X)""] . E[X™7]
B0+ (1 _g)x)-r—1] = ™" {1’ E[X—1] } '

Lemma 1 was used in the proof given by Strawderman (1974) and Lemma 2 can
be easily verified by the same arguments as in Battacharya (1984).

Proof of Proposition 1. Taking g — 0 in the expression (3.5) gives that
lim,_,oR1(p,¢,1,1) = B[(F/c 1),

which is minimized at ¢ = E[F?]/E[F] = (mg +2)/(m; — 4) = C. Similarly,
lim, 00 R2(p, ¢, 1,1) = E[(cG — 1)?],

being minimized at ¢ = E[G]/E[G?] = (mz — 4)/(m; +2) = C.
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We next compare two FGLS estimators 3F¢%5(d) and BFGLS(c) for d < C or

d > C. For this issue, it is sufficient to consider the difference
L+pF N (Al )
—t 1) | - 1\ (3.7)
d+pF c+pl )/

(c—d)F { (1+p)F N (L+p)F 2}]
(d+pF)(c+pF) | d+pF  c+pF ’

Afp,d,c) = E

a1 +p)E[

which is greater than or equal to

(c—d)F (1+p)F
2(1+p)E[(d+pF)(c+pF){ s —1}] (3.8)

(c — d)F(F —c) }
(d+pF)(c+pF)? |’

= 2(1 +p)E[

In the case of d > C, put ¢ = C. Then from Lemma 1, we can show that

E[(Z?'»»d)F(F—Fi)J>E[ C-d
(d+pF)YC+pF)2| — | (d+pF)(C + pF)?
~0, (3.9)

]Epw_a]

which implies that FGLS(d) for d > C is dominated by BFGLS(C). In the case of
d < C, from (3.7) and (3.8), the same argument with putting ¢ = C gives that

W(Q—@HF—Q)}_EFQ—@GO-QQ}

(d+pF)(C+pF)?] | (dG +p)(CG + p)?
. C—d

. [(dG +p)(CG + p)?

] BIG( - CG)]
=0,

so that BFCGLS(d) for d < C is improved on by GFGLS(C).

We shall verify that for C < d < C, BFGL5(d) is never dominated by BFCLS (). It
is now supposed that there exists an estimator 3FGL5(¢) such that BFGLS (¢ is better
than B¥GLS(d) for C < d < C. If d > ¢, then we have that 0 < A(p, d, ¢) for any p > 0,
while from (3.7),

~—d C C
lmbamMmd¢)=cm,EU@{E+~;~2}<0,

which yields the contradiction. If d < ¢, on the other hand, using the expression (3.6)

gives that
0 < hmpﬁoo {R2(p7 d7 1’ 1) - R2(p7 & 1’ 1)}

=(d-E[G?*](d+c-2C) <0,
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also yielding the contradiction. Hence Proposition 1 is proved.

Proof of Theorem 1. Using the expression (3.6), we see that it suffices to show that
A4(p) > 0 for every p > 0, where

((162 i);G ~ 1>2 ~ (% _ 1)2} , (3.10)

For simplicity, let yg; = 1+ \;/(pA;) for i = 1,...,p and let ug = > © | 7¥2;2;/v,. From
the condition (a), note that lim;, % (tug) = 1. Applying the Integral-Expression-of-
Risk-Difference (IERD) method to the difference A, (p) gives that

Ai(p) = E, (——flif)cc" 1)2 ~ }

Di(p) = E,

G + pp(tug) t=1

_p | [T atpeG Y
_L,,/l dt{<cG+p¢(w2) 1) }dt} (3.11)

— op, uw ( (L+p)eG 1) (1 +p)pou21/J’(tu2)dt]

{(cG + pip(tuz)}?
— c V12 . ~ (L+p)eC -
= —2p(1 + p)cE [/ //1 (cG + Pt (325 V2izit/v2) 1)

Ot o () Hd} |
=2

{cG + ph (3, vaizit/v2) }?

=1

where f)(2) designates a density function of a x3-distribution. Making the transforma-

tions w; = z;t/vy with dw; = ({/vg)dz; for i = 1,...,p, we observe that
_B8ie) g [///oo ( (L+p)eG 1)
2p(1 + p)c ? 1 G + ph (D, yeiws)
G(X, vasws ) (3, vaiws)
X C ? 3.12
{eG + ph(37; Yaiw:) 2 (812

S (o) TT {26 ()} [T 0w

Since 1 (u,) is nondecreasing, we have A;(p) > 0 for every p > 0 if

V1 ,v2 (1 +p)eG B G
b [(G b0, ) 1) G+ (S varwn) )2

X /100 Z;—;—fg (%wl) fg {%Efl (%ug)}dt] <0, (3.13)
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for every p > 0 and every w; > 0,7 =1,...,p. Here,

P
Vs ) Vo [ Us 1 /w0y (pH4)/2-1 _ o
-téfg (-—t%uq) H —f«jl (-—;—wi>} is proportional to n (—;w) e va Y wilt,

By making the transformation y = vy S w;/t with dy = (v2 3 w;/t?)dt, the condition

(3.13) is written by
_ i, [ v 1 <o,
(CG+ﬂw WG ki w;w

Ev2[{0 + (1= )/ (¢G)} 2G ™ Ha(vz 3, wy)]
Eowa {0+ (1= 0)p/(cC)} 3G 1 Tlp(vs S wn)] = (3.14)

for every p and w;’s, where 6 = 1/(1 + p) and

IPOITN
H Uszi =/ yPt2)/2=1=v/2 gy,
; 0
%

Let E*[-] stand for the expectation with respect to the probability measure

/Ewl’v2 [G_l.ﬂz (ngwi):‘ .

By applying Lemma 2 to the L.h.s. of (3.14), it follows that

E*[{0+ (L= 0)9/(cG)} 2] B*[(cC/3)?]
E*[{6 + (1 —0)y/(cG)}3) 2 min {1’ E*[(cG/4)3] } ) (3.15)

E'Ul U2

or

P*{(’Ul,vg) S A} = Fvuv2 |:IAG_1H2 (’Uz Z’U)z)

which is greater than or equal to one if

E*[G3
(0 (21: ’Yzi’wz) > CE—*—%—(??%

= (:Evl 2 (v /v2)? Ha (v2 23 Wi)]
Evvz[(vy fvg) Ha(va 3, wi))
v 2 Ha(va Yo, wi)]
[vy !t Ha(ve 3o ws)]
~e(m +2) S awH2/2=1 /(1 4 g)(matP)/2- 1 g
mzAp—2 [TV rD/2-1 /(1 4 g)matr)/2de |

(3.16)

E
= ¢(my + 2) 7

for every p and w;’s. Since ¢ is nondecreasing, (3. (1 + Ai/(pA1))w;) > (O, wi).
Therefore the inequality (3.16) is satisfied by the condition (b) of Theorem 1, which is
established.
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Proof of Theorem 2. The proof is done by the similar arguments as in the proof of
Theorem 1 except that two functions ¢ and ) include the common statistic. From the
expression (3.5), it is sufficient to show that Ay(p) > 0 for every p > 0, where

(Q:*:ﬁff@ _ 1)2 _ (thﬁ__)@ - 1)2} . (3.17)

Balp) = Eo |\ "1 @+ pFb

Let v = 1+ pA1/N\;, e =1,...,p,and u; = Y 5 | 7142/v1. Using the IERD method,
for 7vo; and uy defined in the proof of Theorem 1, we observe that

*d A +p)Fp(u2) 2
/1 it {<c¢(tu1)+pp¢(u2) 1) }dt
o [T A 4p)Fp(ug) L\ (L p) Y (ug)cus ¢ (bus)
=2k [/1 (C¢(tU1) + pFp(uz) > {ep(tur) + pFp(uz)}? dt]
- : oo (L4 p) (3, v2izi/v2) N
= 2 +p)ek, [/; (ccb(Z,- Yizit/v1) + pFY(37, veizi [ve) 1) (318)
N F( vz /v (3, vaizi [v2)d' (3, '\/lizit/vl)dt}
{ed(3", mizit/v1) + pFY(Y,; Yeizi /v2) 2 '

Aq(p) = E,

Making the transformations w; = (t/v1)z; with dw; = (t/v1)dz; gives that

a) = -2t e [ [ [ [7 (A WD)y

o P, yiawi b (30, yaiws/ (EF)) ' (D7, miwi)
{ed (3, viaw:) + pFp (3, Yaiws /(L)) }2

S () TT (3 (3m) e T

1=2

(3.19)

Making the transformation y = v; ), w;/t again and using the same arguments as in
the proof of Theorem 1, we can see that Ag(p) > 0 for every p > 0 if

wrs | [P0 (U4 p)Fp(day/va)
N [/0 (C¢(d1)+ﬂF¢(d2y/v2) 1> (3.20)

di Fy(day/v2)e'(d1)  (pyay/a—i —y/2
X {C¢(d1)+PF¢(d2y/v2)}2yp e ¥ dy| <0,

for every p > 0 and every w; > 0, where d; = Y, vi,w; and dy = >, vaw;/ D _; Wi
Since ¢'(d;) > 0, the inequality (3.20) is equivalent to the condition that

Eyeve[{feg/ (Fp) +1 - 0}~ 2g(y, v1,v2)]
Evovez[{feg/(Fyp) +1 — 0} 3g(y, v1,v2)) s1 (3:21)
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for every p and w;’s, where
1
Fip(day/v2)

for indicator function I(.). By the similar arguments as in (3.14), (3.15) and (3.16), it
is sufficient to show that E[(F/co)2g(y, v1,v2)]/ E[(F/cd)>gly, v1,v2)] > 1, or
(S ) = E G o o) o o)y 0 e v )
ViWi) 2
: Ewvwa [ 715 (v fv1 b (day /vy P22~ L emv/2dy]

Note that ¢(> (1 + pA1/A)w;) > #(>, w;) and that 1(day/ve) < 1. Hence the in-
equality (3.22) is satisfied if for w =}, wj,

sy > TS /o)y [oa)y 72 0 )
C
U= T [T (0 oy )b (day va )y D 2 L emv 2dy)

/ Evve [( ¢ — -"> 2y (dz—--a:> vy (1) PR/ “’“"”/2] dz
0 v1) v V2

= (const.) /O Eave [(cgf)——(l—%—x)%—) i’z?-w (dQIixf‘;)]hl(x)dx (3.24)
>0,

9y, v1,v2) = y P/ 2=1e=u/2 1 (y < oy Z’wz')?
i

(3.22)

(3.23)

or

where hy (x) = x®+2/2=1/(14.2)(m1+P)/2 and 7 is a random variable having a x7,, | p4 2
distribution. By applying Lemma 1 to the integrand in (3.24) with respect to the random
variable vy /z, it is evaluated by

/OwE [(ab -1 +x)923) 2y ( 1+' )] hy(z)dzx (3.25)

> /0 E*v2 [w (dgﬁgv—iﬂ B [(ep = (1 +0)2 ) 2| ha(e)da,

From the r.h.s. of (3.25), we get one sufficient condition that

ep(w) > (L+w)E|(vz/2))/ Elva/ 2] (3.26)
= (L+w)(ms +2)/(m1 +p - 2),

which is guaranteed by the condition (b). When one can impose the condition that
¥(w)/w is nonincreasing, by applying Lemma 1, the r.h.s. of (3.25) is evaluated by

[ o) 2] -2
> (ccmst.)/w Jo [vzp (d 1+m2) 1“’]{ id hl(x)}dx (3.27)

< [ (- e 0 2) 2 o) de
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The r.h.s. of (3.27) is nonnegative if

f E#v2|(vy/2)?|ahy (z)dz
E#v2[vy/2){z/(1 + z)}hi(x)dx
Mo + 2 f() xkp+7)/2/(1 + .’IZ)(ml *’p)/zd:L'
my+p—2 f(;” cP+2)/2 /(1 + z)ma+p)/2+1dy’

cep(w) > f
0

which is guaranteed by the condition (b). Therefore the proof of Theorem 2 is complete.
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Table 1.

The Relative Variance Improvements of the Single and Double

Shrinkage Estimators ﬁf = 3§(¢2) and 3PS = BPS(4hy, ¢3) for p = 20

miy =2 mo=2

) 0.1 0.2 05 075 1.0 1.33 2.0 50 10.0

pf 0.052 0.114 0.196 0.179 0.142 0.093 0.038 0.004 0.000

GPS  0.052 0.116 0.249 0.291 0.304 0.293 0.251 0.122 0.051

N mi = 10 mo = 10

% 0591 0.723 0.584 0.364 0.220 0.116 0.034 0.001 0.000

BPS 0591 0.723 0.623 0.506 0.497 0.554 0.694 0.793 0.658
my =15 mo =15

B 0739 0.813 0.582 0.345 0.197 0.090 0.016 0.000 0.000

BPS 0739 0.813 0.611 0.448 0.399 0.434 0.579 0.814 0.746
my =2 mqo =20

pls 0.535 1.204 2.819 3.439 3576 3.356 2502 0.359 0.019

BPS 0535 1.204 2.819 3.439 3.576 3.356 2.502 0.359 0.019
m; =20 1mo =2

pf 0.000 ©.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

BPS 0.034 0419 2614 3539 3.769 3.601 2.941 1.269 0.571
mi =5 my=15

£Y 1.040 1.614 2.155 1.897 1.484 0.998 0.409 0.008 0.000

BPS  1.040 1.614 2.156 1.901 1.491 1.009 0.427 0.038 0.029
my = 15 Mo = H

pls 0.020 0.022 0.012 0.006 0.004 0.002 0.001 0.000 0.000

BPS  0.020 0.042 0510 1.092 1.588 1.987 2.240 1.700 1.120

19



