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Abstract

We study properties of global cross sections and characterize the class of all global
cross sections. Then generalizing the cross-sectionally contoured distributions of
Takemura and Kuriki (1996), we define the decomposable distributions with respect
to a global cross section. The distributional results about the invariant and equiv-
ariant parts remain to hold for the decomposable distributions. We also investigate
the relation between the actions of a group and one of its subgroups.
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1 Introduction

Generalizing the elliptically contoured distributions, Takemura and Kuriki (1996) defined
the star-shaped distributions, in which the contours of the density functions are arbitrary
star-shaped sets. Furthermore they defined the cross-sectionally contoured distributions
in the general framework of group invariance and applied their theory to random matrices.
However their theoretical discussion as well as their examples was restricted to the case
of free actions.

In the statistical literature non-free actions are more common. For example the action
of the orthogonal group on the set of positive definite matrices is not free. The present
paper started out as an effort to extend the theory in Takemura and Kuriki (1996) to
actions which are not necessarily free.

For general actions, cross sections have to be taken in such a way that the isotropy
subgroups are the same at all points of them. We call the cross sections possessing this
property the global cross sections. By taking a global cross section, we still have the orbital
decomposition; the global cross section works as the invariant part, whereas the coset
space modulo the common isotropy subgroup plays the role of the equivariant part. As



in Takemura and Kuriki (1996) we are concerned with construction and characterization
of non-standard global cross sections. We will characterize the class of all global cross
sections in terms of the normalizer of the common isotropy subgroup.

Generalizing the cross-sectionally contoured distributions of Takemura and Kuriki (1996)
we define the decomposable distributions with respect to a given global cross section. We
show that the distributional results about the invariant and equivariant parts in the case
of free actions remain to hold for decomposable distributions.

Sometimes a global cross section does not exist for the whole sample space. In this
case we can partition the sample space into equivalence classes under equivalence relation
based on the conjugacy of the isotropy subgroups. These equivalence classes are called
orbit types. On each orbit type a global cross section exists and our theory remains to
hold on each orbit type.

Another problem we consider is the relation between the actions of a group and one
of its subgroups. Let G and M act on the sample space X with H being a subgroup
of G. For example consider the group H = LT (p) of lower triangular matrices with
positive diagonal elements and the real general linear group G = GL(p) acting on the set
X of pairs of positive definite matrices. We will show that under appropriate conditions
H leads to a further hierarchical decomposition of the orbital decomposition with respect
to G .

The organization of the paper is as follows.

In Section 2.1 we summarize properties of global cross sections and discuss orbit types.
In Section 2.2 we characterize the class of all global cross sections and discuss construction
of arbitrary global cross sections from a given global cross section. In Section 3 we
define the decomposable distributions. In Section 3.1 we show that the results about the
distributions of the invariant and equivariant parts in Takemura and Kuriki (1996) remain
to hold for general actions and in Section 3.2 we give some examples of the decomposable
distributions. In Section 4 we consider actions of a group and one of its subgroups. In
Section 4.1 we derive a further hierarchical decomposition of the orbital decomposition by
means of a subgroup action. In Section 4.2 we define distributions with the corresponding
further decomposability properties.

2 The orbital decomposition and the global cross
sections

In this section we investigate properties of global cross sections. Our discussion is purely
group-theoretic and we make no topological or measure theoretic assumptions in this
section. Existence of a measurable global cross section is discussed in Kamiya (1996) and
references therein.

2.1 The orbital decomposition

Let a group G act on a space X from the left:

(g,z) = gr: GXX — X,



We list some common symbols and well known results about the orbits of the action
of G on X. Let

Gz ={gr:9€G}

denote the orbit containing z € X and let X'/G = {Gz : € X'} denote the orbit space,
i.e., the set of orbits. Let

G.={9€G:g9z=ux}

denote the isotropy subgroup at x € X. The left coset space of G modulo G, is denoted
by
G/G: =1{99.:9 € G}
with the canonical map
W(g) = gG,.
The group G acts on G/G, by

(9, hGz) +> (gh)Gs.

The action of G on an orbit Gz, z € X, is isomorphic to the action of G on G/G,

gz +« G/G,,
The isotropy subgroups at two points on a common orbit are conjugate to each other:
Goo = 999", g€G, TEX.

We now discuss properties of cross sections. Compared with orbits, the properties of
cross sections are often not fully discussed in standard treatments of group invariance.
A cross section is defined to be a set Z C X which intersects each orbit Gz, z € X,
exactly once. Therefore Z is in one-to-one correspondence with the orbit space. We
denote this correspondence by 1z : X/G — Z

12(Gz) =2z for z€ Z.

A cross section Z is called a global cross section if the isotropy subgroups are common
at all the points of Z:

G, ={g€G:92=2}= Gy, Vz € Z.

For an arbitrary cross section Z, ¢gZ = {gz : z € Z} is again a cross section for
each g € G. We call gZ a cross section proportional to Z. Note that Z and g¢gZ are
in one-to-one correspondence

9Z > 2 (2)
by gz > z. Since Z meets each orbit we have
X =192 (3)
g9€g
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We are interested in the case where (3) gives a partition of X', that is,
GENQZ#D = gZ=gZ

for gi1,9, € G, where ) is the empty set. If (3) gives a partition of X, then in view of
(2) X is in one-to-one correspondence with {gZ:9 € G} x Z:

X & {g2:9€G}xZ2,
z & (g2, z), z=gz (4)

Moreover, for an arbitrarily fixed 29 € Z, we have a one-to-one correspondence between
{9Z:9€ G} and Gz :

{9Z2:9€G} & Gz,
9Z & gx. (5)

The following lemma shows that a necessary and sufficient condition for {¢Z : g € G}
to be a partition of X is that Z is a global cross section.

Lemma 2.1 A cross section Z 1is global if and only if the family {92 :g € G} of
proportional cross sections gives a partition of X .

Proof. Suppose that {gZ : g € G} gives a partition of X . Let 2, and z; be two
arbitrary points of Z. Let g € G,, . Then gz, =2, and 2z € ¢ZN 2Z # 0, and hence
92 = Z . Thus there exists a z € Z such that gzp = z. Since Z is a cross section, we
have z; = z and hence gz, = z». This observation shows that ¢ € G,, implies g € G, .
By interchanging the roles of 2; and 2z, we see that the converse is true as well and
thus G,, =G,,. Hence Z is global.

Conversely, suppose that Z is global and let Gy be the common isotropy subgroup.
Suppose ¢1Z N g Z # B for ¢g1,9o € G. Then there exists a pair 21,20 € Z such
that ¢121 = ga2o . Since Z is a cross section, we have z; = z, and thus ¢121 = g1 .
Therefore, g;'¢gs € Gy and hence g,z = goz forall z € Z. Thus we obtain ¢; 2 = g2 .
g

For a global cross section Z we call the partition {¢Z : g € G} the family of
proportional global cross sections.

Let Z be a global cross section with the common isotropy subgroup G, and fix
zo € Z . Then (4) and (5) together with Gz, <> G/G,, in (1) yield the following one-to-
one correspondence:

X o Yx2Z,
z & (y,2), r=gz, y=mn(g), (6)

where Y = G /Gy is the left coset space modulo Gy and 7 :G — Y is the canonical map
7(g9) = gGo . The bijection z > (y,z) is called the orbital decomposition of z € X . In
the orbital decomposition we can think of y and z as functions y = y(z) and z = z(z)



of z. If z < (y,2) then gz > (gy,2), g € G. Therefore y(z) is equivariant and z(z)
Is invariant:

ylgz) = gy(z),  z2(gz) ==z(z), g€g.
Thus y € Y is called the equivariant part and z € Z the invariant part.

Note that the choice of point z; € Z is arbitrary so that we can identify all the orbits
in a natural way:

Gz ©  G/G,
gz < 9G

forall ze Z.

In the discussion above, a global cross section Z was given first and the equivariant
function y was induced by the orbital decomposition with respect to Z; conversely, we
can construct a global cross section from a given equivariant function in the following
way.

Theorem 2.1  Let ¢ group G act on a space Y (not, a priori, a coset space) as well
as on X, andlet § be an equivariant function from X to Y . Suppose that the action
of G on Y is transitive and that the function § satisfies the following condition:

glz) =glgz) & v =gz
for g€ G and x € X . Then we have the following:

1. Forany yo € Y, the inverse image § (yo) = {z € X : §(x) = yo} is a global cross
section.

2. {g7 Y y) : y € Y} is a family of proportional global cross sections:
{77 (W) :yeVt="{97 (p) : g€ G} for g€

Proof. First we prove part 1. Fix an arbitrary vy, € Y and put Z = ¢ *(yo) . Suppose
z€ Z and gz € Z for some g € G. Then,

y(z) = yo = Y(g2),
and thus z = gz by the assumed condition on §. Therefore Z intersects each orbit at
most once.

Now we show that Z intersects each orbit at least once. Take an arbitrary z € X .
Then by the transitivity of the action of G on Y, there exists a g € G such that
gi(z) = yo . By the equivariance of § we have §(gz) = yo and thus gz € 77 (yo) = Z .
Therefore Z intersects each orbit at least once.

We have shown that Z is a cross section. It remains to be shown that it is global.
Fix two arbitrary points 2,2, € Z. Then, for g € G, we have

y(gz1) = (=)
9Yo = Yo
y(922) = §(z2)
g2y = 23.

gz =z

KO R



This observation shows that the isotropy subgroups are the same at all the point of Z .
Next we verify part 2. Fix an arbitrary 3o € Y. Note that §7'(gyo) = g5 ' (yo) for
all g € G:

y(z) = gyo
997 ) = yo
97z e g (yo)
z € g7 (o).

z € 5 (gyo)

t ¢

Now by the transitivity of the action of G on Y we have

{77 :yedy = {7 '(9w):9€6}
= {95 '(w): g€ G}
Here 47 !(yo) is a global cross section by part 1. ]

Let h: X — R be a real-valued function on X . Given a global gross section Z
we sometimes want to know if h depends only on y, i.e., if there exists some s: Y =
G/Gy — R such that

h(z) = s(y(z))-

Fora given s:)Y — R define t: G — R by t(g) = s(9Go) . Then

t(gg') = t(g), Vg € Gy, (7)

namely ¢ is invariant with respect to the action of Gy on G from the right. Conversely
if ¢t: G — R satisfies (7) then we can define s : G/Gy = Y — R by s(9Gy) =
t(g) . Therefore s : Y — R and t : G — R satisfying (7) can be identified by the
correspondence t(g) = s(9Go) .

Now let g(y): Y — G be an arbitrary selection

gy) ey ey =G/G, (8)
that is,
m(g(y) =y, ye.

Then by (6) = = gz = g(y(z))z(z) . If ¢ satisfies (7) then s(y) = t(g(y)) : Y — R
does not depend on the choice of the selection ¢(y) . Conversely any s:)Y — R can be
written as s(y) = t(g(y)) , where ¢ is defined by ¢(g) = s(gGy) and g¢(y) is an arbitrary
selection. The above considerations can be summarized in the following lemma.

Lemma 2.2 Let z ¢ (y,z) be the orbital decomposition for a given global cross section
Z . A function h: X — R depends only on y if and only if there exists t : G — R
satisfying (7) such that

where g(y) is an arbitrary selection.

We illustrate this lemma with the following example.
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Example 2.1  Spectral decomposition
Consider the action of the orthogonal group O(p) on

X ={W € PD(p) : the p roots of W are all distinct },
where PD(p) is the set of p x p positive definite matrices. The action of O(p) is
(G, W)= GWGE, GeOp).

As a standard cross section take

Z={A: A=diag(A\1,...,\), i >-> X2, >0}
with the isotropy subgroup

Go = {diag(ey,...,€) : e ==x1,...,¢ = £1}.

The orbital decomposition amounts to the usual spectral decomposition of W :

W = GAG' = GIW)A(W)G(W)', G(W) e O(p). 9)

Note that G is unique up to the sign of each column of G corresponding to the left
coset GGy . In order to deal with the indeterminacy of G, one usually takes G such
that the elements of the first row of G are all positive. But this is just an example of
selection and any other selection works equally well. Let G(W) in (9) be an arbitrary
selection. Then A(W) is a function of G(W)Gy € Y = G/Gy if and only if h(W) can
be written as

h(W) = HG(W))
where t satisfies t(G) = t(G diag(ey,...,¢€)), €1 =x1,...,¢, = 1.

So far we have discussed properties of a global cross section, assuming that it ex-
ists. However a global cross section does not always exist. For example, for the ac-
tion of the multiplicative group R} of positive real numbers on the p-dimensional Eu-
clidean space RP, a global cross section does not exist, and that is why in the dis-
cussion of the star-shaped distributions, the origin is omitted from the sample space
RP (Takemura and Kuriki (1996), Section 3). As a second example, take the action
of the group LT (p) of lower triangular matrices with positive diagonal elements on a
set A of n x p matrices. In this case, A is usually taken to be the Stiefel mani-
fold V], of p-frames in n-space. That is, matrices of rank less than p are excluded
(Takemura and Kuriki (1996), Section 4.1).

A global cross section exists if and only if all the isotropy subgroups G, ,z € X, are
conjugate to each other. One can confirm this easily by noting Gy, = ¢G,g™! for g€ G
and z € X . Now define the equivalence relation ~y in X by the conjugacy of the
isotropy subgroups:

T~y 2 © Gy=gGyg " for some g€ G. (10)

Then even when a global cross section does not exist for the action of G on X, there
does exist a global cross section if we restrict our attention to the action of G on each
equivalence class under ~y . These equivalence classes are called orbit types. See Section
1.8 of Kawakubo (1991) or Section 1.4 of Bredon (1972).

7



Example 2.2 Action of LT(p) on n x p malrices

Consider the action of G = LT(p) on the set X of all n x p matrices: (T, X) — XT',
where the prime denotes the transpose. For this action, a global cross section does not
exist, and the orbit types can be explicitly given as follows.

For a given X = (xy,...,x,) € X, let 7 =rank X and define (4;,...,%,), 1 <4 <
<o <4, <p, by

ir=min{i:r()) =k, 1<i<p}, k=1,...,m,

where r(i) = rank(zy,..., ;). Then, X € X and X € X are equivalent X ~y X if
and only if they have the same rank r and (i1,...,%,); in other words

{ X, i) 0<r<p, 1 <y <---<i, <p}

gives the partition of X into the equivalence classes under ~y, where X(iy,...,4,) is
the set of n x p matrices which correspond to (iy,...,1%,) .

The proof of this fact is given in Appendix A.1. For other examples, see Bredon (1972),
pp.42-44 and Barndorff-Nielsen, Blaesild and Eriksen (1989), pp.115-116.

Now, let us consider Theorem 2.1 when a global cross section does not exist for the
whole &X' . The existence of a global cross section is equivalent to the existence of ) and
¢ in Theorem 2.1. Thus, for each equivalence class under ~» in X, we can find ) and
y . We illustrate this fact with the following simple examples.

Consider the action of R} on X = RP, which was considered in the case of the
star-shaped distributions, but here the origin is not removed from KP . In this case the
equivalence classes are A} = RP — {0} and X, = {0}. Correspondingly let Y, = R,
be the set of positive real numbers and Y, = {0} and let §,(-) = %(-) = || - || be the
Euclidean norm. Then we can apply Theorem 2.1 to each triple (X;,V;, ;) (i =1,2).

As another example, consider the action of the group O(p) of p x p real orthogonal
matrices on A = RP under matrix multiplication. The equivalence classes are again
X, = R — {0} and X, = {0} . We can take Y; = SP°! (the unit sphere in RP),
Yo = {0}, fu(®) = (1/||=|)x and §(0)=0.

2.2 'The class of global cross sections

One of the motivations of Takemura and Kuriki (1996) was to consider non-standard cross
sections and they discussed construction of a general cross section from a standard cross
section Z by arbitrarily moving the points of Z within the orbits (Takemura and Kuriki (1996),
Section 2.3). However this construction does not work when the action is not free. The
difficulty is that even if Z is a global cross section, cross section Z’ obtained by arbi-
trarily moving the points of Z within their orbits is not necessarily global.

In this subsection we discuss construction of general global cross sections from a given
global cross section and we characterize the class of global cross sections in terms of the
normalizer of the common isotropy subgroup. We derive our results in a series of lemmas
and summarize our results in Theorem 2.2 below.

The following lemma states how we can construct a general global cross section from
a given global cross section.



Lemma 2.3 Let Z be a global cross section with the common isotropy subgroup Gy .
Let N denote the normalizer of Gy : N = {g € G : gGog™' = Go} . Then for any coset
gN € G/N = {gN : g € G} and any mapping f: 2 — gN, the set Z2' C X defined by

Z'={f(z)z:z€ Z}
s a global cross section.

Proof.  Theset Z'={f(z)z:z € Z} is obviously a cross section. We shall show that
Z' is global. Note that we can write f(z) € gN, z € Z, as

f(z) = gn(z), n(z) eN.

Write an arbitrary 2’ € Z' as 2’/ = f(2)z = gn(z)z, z € Z. Then the isotropy subgroup
at 2 is

gz’ - ggn(z)z
= (gn(2))G.(gn(z))™

gn(2)Gon(z) g™
gg()g“17

which does not depend on 2’ . This observation shows that 2’ is global. |

Converse of Lemma 2.3 can be given as follows.

Lemma 2.4 Let Z and Z' be two global cross sections with the respective isotropy
subgroups Gy and G . Denote by N and N’ the normalizers of Gy and G, respec-
tively. Then there exist cosets gN' € G/N , ¢N' € G/N' and mappings [ : Z — gN ,
fZ' — gdN' such that

Z'={f(z)z:2€ 2}, Z={f(:2eZ'}.
Here gN and ¢ N’ are unique and they satisfy
g9 eN', gdgeN.
Furthermore

fO)G:Z2 — gWN/Go) ={gnGy:ne N}
FO)G 2 = JdWN'/G) = {gn'Gy:n' e N'}

are uniquely determined and they are related by

F1(Z)Gy = (f(2)Go) ™

for z,2' on a common orbit.



Proof. Since Z' and Z are cross sections, we can write 2’ = {f(z)z : z € Z} for
some f : Z — G. Fix an arbitrary point 2z, € Z . Since the isotropy subgroups are
common at all the points of Z', we have f(2)Gof(2)™" = f(20)Gof(z0)™" = Gy for all
z€ Z. Thus f(z) 'f(z) e N forall z€ Z. If we put f(z) =g, we have

f(z) € gN for all z€ 2.

Now we show that gN and f(-)Go are unique. Suppose there exist another gN €
G/N and f:Z — gN such that

Z'={f(2)z: 2z € Z}.

We want to show f(-)Go = f(-)Go and gN = gN . Take an arbitrary 2 € Z. Then
there exists a Z € Z such that f(2)z = f(2)Z. But since Z is a cross section, we
have z = % and thus f(2)z = f(2)z. This observation implies (f(2))~'f(2) € Go or
f(2)Go = f(2)Go for all z € Z. This proves f(-)Go = f(-)Go . .

Next we show that gN = gAN . From the proof above we have f(z) € f(2)Gy C
GNGy = gN . On the other hand, f(z) € gN . Therefore gN and gN are not disjoint
and hence gN = gN .

The same is true with the roles of Z and Z' interchanged.

Now we show gg' € N’ and ¢'g € N. Since f(z) isin gN, we can write f(z)=
gn(z) with n(z) € N, and as in the proof of the previous lemma we have Gj = gGog™" .
Similarly Go = ¢'Glg'" . Therefore G} = (9¢')G5(g9¢') ™" and thus gg’ € N'. The relation
g'g € N can be proved similarly.

Finally we show f'(2')Gy = (f(2)Go)~' for z,7z’ on a common orbit. Since

2 = f(2)2 = F( ()7,

we have f(z)f'(z') € G . Similarly f'(z')f(z) € Gy . Therefore we have
NG = f()7'G

f(z)"'gGog™!

Gof(2)"'gg™"

Gof(2)™"
(f(2)Go) ™,

in which the third equality follows from f(z)7'g € V. |

i

It is useful to explicitly write down how the equivariant part transforms by the con-
struction of Lemma 2.3. Let x < (y,2) be the orbital decomposition with respect to Z
and let z <> (y/,2') be the orbital decomposition with respect to

Z'={f(2)z:2€ Z} ={gon(2)z:z € Z },

where n(z) € N'. For simplicity we only consider the case gy = e, the identity element
of G . Actually there is no essential loss of generality in assuming gy = e . Then 2’ has
the same isotropy subgroup Gy as Z . Now we have the following lemma.
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Lemma 2.5 Let 2" ={n(2)z:z € Z} andlet x <> (y',2') be the orbital decomposi-
tion with respect to Z'. Write x € X as v =gz =¢'2/, z€ 2,2 € Z'\7(g) = 9G =
y,7(g") = gGo=1y". Then

y' = ¢'Go = gGon(2)"" = yn(z)™". (11)
Proof. Substituting 2’ = n(z)z into z = gz = ¢'z/, we have gz = ¢'n(z)z. Hence
9Go = ¢'n(2)Gy = ¢'Gon(z) since n(z) € N'. Multiplying by n(z)~! from the right we
obtain the lemma. 1

Concerning the arbitrary selection discussed in Lemma 2.2, Lemma 2.5 implies the
following. Let g(y) € y = gGo be an arbitrary selection in the orbital decomposition
z = ¢g(y)z ¢ (y,2) . Define

g(@)=gyn(z)"", y=y(), z=2(v). (12)

Then ¢'(z) = g(y)n(z)"! € gGon(z)™! = ¢' and ¢'(x) is again a “selection” for z <
(v, 2") . We make use of this fact in Example 3.3.

The following lemma captures the interchangeability of the roles of Z and 2’ in the
form of the conjugacy of their isotropy subgroups and normalizers.

Lemma 2.6  Under the assumptions of Lemma 2.4, Go and G§ are conjugate and so

are N and N':
Go=9Gog~", N'=gNg',

where ¢ 1is the g € gN in Lemma 2.4. Moreover the factor groups N /Gy and N'/G
are isomorphic.

Proof. We have already noted Gj = gGog™' in the proof of Lemma 2.4. Using this
relation, we can show N’ = gNg~! as follows: For any n € A/, we have

(gng NGo(gng™)™1 = gnGen~'g™
= 9Gyg~"
- g
and thus gng~!' € N’ . This observation shows gAN¢g™! C N'. The reverse inclusion is
proved similarly. Thus the proof of N’ = gA g~ is completed.

Now we show that factor groups N /Gy and N'/G) are isomorphic. By N’ = gNg™*
and G = ¢Gog™', we have

NGy = gNg'/gGog™

{(gng™")gGog ™" 1 n € N}
= {g(nGo)g~' :n € N}.

Now the mapping
nGo — g(nGo)g ™"

gives an isomorphism from N /Gy to N'/G] . ]
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Let Z be a global cross section with the common isotropy subgroup Gy, and denote
by AN the normalizer of Gy . Then we have by Lemmas 2.3 and 2.4 that Z' is a global
cross section if and only if Z’ is of the form

Z'={gon(z)z:z € Z} (13)
for some gy € G and n: Z — N. We give two examples of this construction.

Example 2.3  Orthogonal Group

Counsider the action of G = O(p) on X = RP— {0}, p > 2, by the usual multiplications
of matrices and vectors: (C,z) ~ Cx . This action is not free but there exists a global
cross section. A natural global cross section is 2 = {(z1,0,...,0) : 2y > 0} with the
common isotropy subgroup

go'——-{(é g):ée(’)(pwl)}, 0=(0,...,0) ¢ RF°L. (14)

Using £ as a building block, we obtain general global cross sections 2’ in the following
way: Since the normalizer N of Gy is

,N'::{(g g):f::tl, CeOp-1)},

we have by (13) that 2’ C X is a global cross section iff it is of the form

_— e(xy) (1} z1\ |
_ {co(e(“’(l))xl) Ly > 0}, (15)
with Cy € O(p) and e(z;) = +1, C(x;) € O(p — 1) (x; > 0). In other words, a

cross section is a global one iff it is contained in a line through the origin, which is to be
expected.

The above example is somewhat trivial. The next example is more substantial from
statistical viewpoint.

Example 2.4  Two-sample Wishart problem

Consider the action related to the two-sample Wishart problem. Let G = GL(p) be the
real general linear group and let

X = { (Wl,Wg) € PD(p) X PD(p) :
the p roots of det(W; — A(W; + W3)) = 0 are all distinct }. (16)

The action is
(B, (Wl, W2)) —r (BWlB,, BWQB,)

12



If we take
Z={(AI-A) : A=diag(\,..., \), I>A > > )\ >0}, (17)

we have
Go = {diag(er, ..., €p) : € ==%1,...,¢ = £1}

and

N ={PeGL(p) : P hasexactly one nonzero element

in each row and in each column}.

The normalizer N is the group generated by permutation matrices and nonsingular
diagonal matrices. A subset Z' C X' is a global cross section iff it is of the form

{ ( BP(MAP(AYB', BP(A)(I — A)P(AYB' ) : (18)
A =diag(Ar,-. M)y 1> A > > X, >0},

with B € GL(p), P(A) € N, where I is the identity matrix.

Although Lemmas 2.3-2.6 characterize the class of global sections, their statements
are somewhat lengthy. By introducing appropriate equivalence relations, we can state the
results of these lemmas more succinctly.

Note that the go in (13) is not essential since Z' and gg'Z' are proportional and
thus induce the same family of proportional global cross sections:

{92 :9e€ G} ={9(9;'2") : g € G}.

Moreover n in (13) is essentially unique. These two points are clearly stated if we
introduce the following equivalence relations.
We define the equivalence relation ~ among the global cross sections by proportion-
ality:
Z~Z2 o JgeG:Z=g2.

Now for any global cross section Z with the isotropy subgroup Gy and its normalizer
N, denote the factor group N/Gy by Mz . Mg for different global cross sections Z
are isomorphic to each other in view of Lemma 2.6. Therefore we can identify Mz with
a particular factor group M. Let 7: X/G — M be a mapping from the orbit space to
M . We introduce an equivalence relation ~¢ among the mappings 7 : X /G — M by

neepm & Ime M VGx o n(Gr) = mi(Gr). (19)

We shall denote the equivalence classes under ~ and ~p¢ by [-] and [ - ]um, respec-
tively.

Fix an arbitrary global cross section Z . Abusing the notation, we simply write 7(z)
instead of 7(:3'(2)), where ¢z : X/G — Z is the one-to-one correspondence between
the orbit space X' /G and Z. Then we can write 7(z) = n(2)Gy ,z € Z, for some
n:Z — N. Thus

n(z)z =n(2)Goz = n(2)z, z€ Z.
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If we denote {n(z)z:z€ Z} by nZ, we have
nZ ={n(z)z:z € Z}.

We are now in a position to summarize the results of this subsection in the following
theorem.

Theorem 2.2  Let Z, 2" be global cross sections with the associated isotropy subgroups
Go, Gy and their normalizers N,N', respectively. Then there exists a mapping 7 :
X/G — M suchthat [2'] = [iZ]. Here [Ajpm 1is unique, that is, if [2'] = [ 2] = [ Z]
then [f1]ym = [No)p - Furthermore if 2' = nZ and Z = mZ', then mn = €, where
the mapping mn : X/G — M is Gz — m(G2)1(Gz) (multiplication in M ) and
E:X/G M is €(Gz) = =Gy (the identity element of M ).

Proof. As was mentioned earlier, there exist gy € G and n: Z — N such that (13)
holds. For this n, we define 7: X/G — M by n(z) =n(z)Gy ,z € Z. Then we have

WZ={n(z)z:2€ 2} =g,' 2,

and hence [nZ] =[2'].
Next we show the uniqueness of [y . Suppose [Z2'] = [, 2] = [pZ] for iy, Ny ¢
X/G — M . Then we have
mZ = g(n2) (20)

for some g € G. If we write #; and 7y as () = n1()Gy and 7(-) = ne(-)Go,
respectively, with n; : Z — N, ny : Z — N, we have by (20) that

{ni(z)z:z € Z} = {gne(2)z : z € Z}. (21)

Since Z is a cross section, ny(z)z = gna(z)z, z € Z . therefore ny(2)Gy = gna(2)Go or

n1(z) = gng(z), z€ Z. (22)

Now n;(z) tgna(z) € Gy and g € ny(2)Gona(2)™! C N . Therefore m = gG, belongs
to M = N/G, . Furthermore gGyns(z)z = gne(2)Goz = gna(z)z . This implies that (22)
can be written as f;(2z) = mfy(z) and we have [7y|ap = [Rgjm -

Finally, the last assertion is just a particular case of Lemma, 2.4. i

3 The decomposable distributions

Takemura and Kuriki (1996) defined the cross-sectionally contoured distributions for free
actions and obtained distributional results about the invariant and equivariant parts. In
this section we generalize their results to the case where the group does not act freely.
We also generalize their discussion in another direction: we define the decomposable
distributions, which include the cross-sectionally contoured distributions as a special case.
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We deal with the situation at the beginning of Section 2.1:

X & YxZ,
z ©  (y,2), z=gz y=7(9)€Y=G/G.

In order to discuss distributional results, we need to assume some regularity condi-
tions. In this paper integrals and measures are interpreted in the sense of Section 6.3 of
Wijsman (1990). Here we make regularity conditions on the topologies of the relevant
spaces.

Assumption 3.1

1. X s a locally compact Hausdorff space.

2. G 1is a second countable, locally compact Hausdorff topological group acting contin-
uyously on X .

3. Gy 1s compact.

We agree that a quotient space receive the quotient topology when regarded as a
topological space. This applies to ) = G/Gp as well as to the orbit space &'/G . Because
of 2 of Assumption 3.1 there exists a left invariant measure pg on G, which is unique
up to a multiplicative constant. For most of our theoretical discussion we do not need
to specify the multiplicative constant. As in Takemura and Kuriki (1996) we consider
densities with respect to a dominating measure A which is relatively invariant with
multiplier y :

Md(gz)) = x(9)A(dz), g€ G
Concerning cross sections, we make the following assumption.

Assumption 3.2  There exists a global cross section Z such that the bijection z <>

(y,z) is a homeomorphism, where the topology on Z is the relative topology of Z as a
subset of X .

Note that under Assumptions 3.1 and 3.2, Z is a closed subset of X and is thus
locally compact.

Actually we want to deal with an arbitrary measurable global cross section for which
x > {y,z) is not necessarily a homeomorphism. A global cross section Z is said to be
measurable if it is a measurable subset of X . In Appendix A.2 we argue that Assumption
3.2 concerning a standard global cross section is sufficient to guarantee the factorization
of the relatively invariant measure in (23) below for an arbitrary measurable global cross
section as well.

We are now in a position to define the decomposable distributions.

Definition 3.1 A distribution on X 1is said to be decomposable with respect to a global
cross section Z iff it is of the form

F(@)Adz) = fy(y(z))fz(2(x))M(dx).

In particular it is said to be cross-sectionally (resp. orbitally) contoured if fz(z) =1
(resp. fy(y)=1).

15



By F; we denote the family of decomposable distributions with respect to all possible
global cross sections Z and relatively invariant measures A .

Obviously a distribution f(z)A(dz) is cross-sectionally contoured iff f(x) is constant
on each proportional global cross section ¢Z, g € G . Similarly, f(z)A\(dz) is orbitally
contoured iff f(z) is constant on each orbit Gz, z € X.

Before we examine the distributions of the invariant and equivariant parts in Section
3.1, we observe the following two points.

First, a decomposable distribution fy(y(z))fz(z(x))A(dz) could always be thought
of as a cross-sectionally contoured distribution:

H(y()) fz(2(x))Mdz) = fy(y(z))A(dz)
with AMdz) = fz(z(z))\(dz) .

Next, we can take various global cross sections, including non-standard ones (Section
2.2), and thus we can consider the cross-sectionally contoured distributions associated
with different kinds of global cross sections. On the other hand, once an action is given,
there is no room for choosing the orbits; the orbits are determined by the action in
question and usually those orbits are standard subsets of X . Hence we cannot produce
the orbitally contoured distributions based on the orbits which are unfamiliar subsets

of X . For those reasons, we shall be concerned primarily with the cross-sectionally
contoured distributions.

3.1 Distributions of the invariant and equivariant parts

For the reason previously stated, without loss of generality, we deal with the cross-
sectionally contoured distributions in this subsection. We shall see that the distributional
results corresponding to Theorems 2.1, 2.2 and 2.3 of Takemura and Kuriki (1996) remain
to hold for non-free actions.

First we confirm the independence of the invariant and equivariant parts.

Thanks to the assumption that Gy is compact, we can induce a measure py on Y
by

uy(B) = pg(n(B)), BCY

(Wijsman (1990), 2.3.5. Proposition, 7.4.4. Corollary). Also, by the same assumption we
can define ¥(y) ,y € Y, by

x(y) = x(g) fory=m(g),

where y is the multiplier of A. With some abuse of notation, we shall write x(y) for
X(y) -

Now since G/Gp and Z in Assumption 3.2 are locally compact Hausdorff and the
action of G on G /Gy is proper (Wijsman (1990), 2.3.11. Proposition), by Theorem 7.5.1

of Wijsman (1990) A(dz) is factored as

Adr) = x(y) py(dy)vz(dz), (23)

where vz(dz) is a probability measure on Z . Although Theorem 7.5.1 of Wijsman (1990)
only covers the case of a standard Z in Assumption 3.2, the factorization actually holds
also for arbitrary measurable global cross sections as discussed in Appendix A.2.
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Theorem 3.1  Suppose thai x is distributed according to a cross-sectionally contoured
distribution fy(y(z))A(dx) . Then we have:

1. y=uy(x) and z = z(x) are independently distributed.
2. The distribution of z does not depend on fy .
3. The distribution of y is fy(y)x{y)uy(dy) .

Given the factorization of A(dz) in (23), the proof is straightforward.

Now consider the situation where there are more than one orbit types. As was men-
tioned in Section 2.1, there does exist a global cross section for each orbit type; further-
more, given a particular orbit type, the invariant and equivariant parts are conditionally
independent in the following sense.

We assume that the number of the orbit types are at most countable. It is known that
if G is compact then the number of the orbit types is actually finite (see Bredon (1972)
Sec.4.1). Let {X; :4 > 1} be the partition of X into the orbit types. By restricting
the action (G,X) of G on X, we obtain the action (G, A;) of G on each A, i > 1.
For each ¢ > 1, let Z; be a global cross section for (G,X;), and denote by G; the
common isotropy subgroup at the points of Z;. Then for each ¢ > 1, we have the
orbital decomposition of AX; :

Xi 4 y,, X ‘Zzﬁ
T > (Y, %), zi = giziy, ¥i= 6:G:i € Vi=G/G;.

Write Y = ;) and Z = U; Z;, and define the functions y: X - )Y and z: X = 2
by
y(z) =yi(z), 2(x)==z(z) if z€ X, i>1. (24)

Note that 2 is a cross section for (G, X) .

Concerning topological questions, we assume 1, 3 of Assumption 3.1 and Assumption
3.2 with X, Gy, Z, z > (y,z) replaced by X, G;, Z;, z; <> (i, ), respectively. On
X; we consider a dominating measure A; which is relatively invariant with multiplier x; .
We note that by 2 of Assumption 3.1, G is metrizable (Ash (1972), A5.16 Theorem). We
regard the elements of ) as subsets of G . By endowing Y with the Hausdorff distance,
we make ) a metric space. For details see Appendix A.3.

Let A(dz) = ¥; Ix,(z)Ai(dz), where Iy, is the indicator function of A;. Note that
A is not necessarily a relatively invariant measure. Now suppose that z is distributed
according to

Py (y(=))Adz) (25)
for some fy:Y — R. Here we assume [y fy(y(z))A(dz) > 0 for each i > 1. Under
these conditions it is easy to show that for each ¢ > 1,

Ply(z) e A, 2(z) e Blz e X)) =P(y(z) e A|z € X))P(z(z) e Blz e X))  (26)

for each measurable A C ); and B C Z;. Therefore y(z) and z(z) are conditionally
independent given X;. An example of the conditional independence will be given in
Example 3.4.
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Now let us go back to the situation where a global cross section Z exists. We shall con-
firm the results corresponding to Theorems 2.2 and 2.3 of Takemura and Kuriki (1996).

Let Z' be another measurable global cross section. Suppose without essential loss
of generality that Z’ is taken in such a way that the common isotropy subgroup at the
points of Z’ is the same as that at the points of Z :

gz’:gz:go, Z’EZI, z € Z.

Denote the invariant and equivariant parts with respect to 2’ by 2/ = 2/(z) and y' =
y'(x), respectively:

X o YxZ
z < (W,d), z=47, ¥ =r()=4G.

Now denote by g(y) an arbitrary selection in (8). From now on, we shall write g(z)

for g(y(z)) : 0)0) .
r=glz)z(r), TECA.

Define ¢'(x) in a similar way:
z=4¢(z)d(z), z€X.
Now consider the map w : X — A defined by
w=w(z) = g(x)2'(z), z€X, (27)

Note that since G, = Gy ,2' € Z', w does not depend on the choice of the selection
9(y) . Furthermore noting that z and w(z) are on the same orbit, we call w within-orbit
bijection. The within-orbit bijection is a basic tool for deriving a new cross-sectionally
contoured distribution from a given cross-sectionally contoured distribution.

Theorem 3.2  Suppose that = is distributed according to a cross-sectionally contoured
distribution fy(y(z))A(dx) . Then the distribution of w = w(x) is

Fo(y' (w))x(g(w) ™' g' (w) A% (g(w) "¢ (w)) A(dw),
where AY is the right-hand modulus of G :
ng(d(991) = A%(g1)uc(dg), g1 €G-
Proof. First note that

wo = g(z)d(z)
9(2)g'(z)"'x
= g(2)g'(2(2)) " 2(2).

i
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Now we regard w = w(z) as a function of y = y(z) and z = z(z) : w=w(z) =
w(y, z) . Noting that the integration over ) can be carried out by the integration over
G, we have for an arbitrary measurable subset B C X that

PweB) = [ In(w(@)fy(y(z)Mdz)
= [ ], il Dy (dyva(dz)
= [, [ 1a(e9 () )i 0)x(a)ug(dgvz(de),

where fy = fy om. The rest can be shown by the same calculation as in the proof of
Theorem 2.2 of Takemura and Kuriki (1996). |

For notational simplicity write

Ag) = x(9)A%(g), g€6,

which is a continuous homomorphism from G to R . Because of 3 of Assumption 3.1
Ag) =1 forall g € Gy and A(g(w)~'¢'(w)) does not depend on the choice of the
selections g(w) and ¢'(w). Also note as in Section 2.3 of Takemura and Kuriki (1996)
that

Adw) = A(g(w) g (w)) Mdw) (28)

is relatively invariant with multiplier x and that w is distributed with cross-sectionally
contoured density fy(y'(w)) with respect to A(dw) .

Now we turn to the distribution of 2'. Corresponding to the orbital decomposition
with respect to Z’, the measure A(dz) is factored as

Adz) = ex(y )y (dy' vz (dz'),

where vz is a (not necessarily probability) measure on Z’, and ¢ =1/ [y, fy(¥')x (") uy(dy’) .
In terms of vz, the distribution of 2’ is written as follows.

Theorem 3.3  Suppose that z is distributed according to a cross-sectionally contoured
distribution fy(y(z))A(dz) . Then the distribution of 2’ = 2'(x) is A(g(?)) ‘vz (d?') .

Proof.  We have A(g(w) ¢’ (w)) = A(g(z'(w)))™'. Writing v = ¢'(w) and 2’ =
Z'(w), we have by Theorem 3.2 that the distribution of w is

P @)AE (w) A dw) = fy)Ag=) ex () uy(dy vz (dz')
= cfy()x( )y (dy)A(g(2") vz (d2').

Accordingly, the distribution of 2’ = 2'(w) is
A(g(2")) vz (d2).

Since r and w = g(x)¢'(z) 'z are on the same orbit, we have 2'(x) = 2'(w) so that
the distribution of z'(z) is the same as that of z'(w) . ]
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3.2 Examples of the decomposable distributions

In this subsection we give some examples of the decomposable distributions.

Example 3.1  Rotations in R?

Let G = O%(2) be the group of 2x2 proper orthogonal matrices acting on X = R*—{0}
by matrix multiplication. Note that unlike the actions of O (p), p > 3, the action of
O*(2) is free and this fact leads to the following class of decomposable distributions.
Also, if we include reflections and consider the action of O(2), then by Example 2.3 the
action is not free and the following construction does not work.

A general cross section Z is of the form

Z={2z: 2=2z2(t) = (tcosn(t),tsinn(t)), t>0}, n:Ry=(0,00)—[0,27),

For a given 7, cross section Z is parameterized by ¢t € R, and we identify Z with
R, by z(t) <> t. Let

0(9)2(6089 —sinﬁ), 0<8<om

sinfl  cos@

Then G = {C(#) : 0 < 0 < 27} is parameterized by the angle 6 and we identify G with
[0,27) . Now write

z = (||z]| cos(arg z), ||z||sin(argz) ), argz € [0,27).

Then z = Cz reads
(H:c|| cos(argm)) B (tcos(ﬂ + n(t)))

||| sin(argz) / ~— \ ¢tsin(@ + n(t))
and thus t = ||z]|| and 6 = 6(z) = argz — n(||z]|) mod 27 . Therefore

z ¢ (argz — n(||z]]) mod 2 , [[z]])

is the orbital decomposition with respect to Z. Let A(dz) = exp(—z'z/2)dz . Then
t = t(z) = ||z|| and 8 = 6(z) = argz — n(|jz]|) mod 27 are independently distributed
under the distribution

fe(ll21]) fo(6(2)) A(dz). (29)

If 7(t) = ¢t for some real ¢, then the cross section Z is “helical” and the surface of the
density of (29) looks like a twisted circular cone.

Example 3.2  Orthogonal group (Ezample 2.8 continued)

By considering the action of R} on RP — {0}, Takemura and Kuriki (1996) obtained
the following distribution on RP — {0} :

1 —lw'w)( w'w

/2
e D)2 exp( 5 P2 dw, (30)

w'Stw
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where ¥ is a p x p positive definite matrix. They obtained (30) as the distribution of
w = ('S 2/2'z)"?r when z is distributed according to the p-dimensional normal
distribution N,(0,%) . Now we show that (30) can also be obtained as a decomposable
distribution under the action of G = O(p) on X = RP — {0}, i.e., we show that (30)
belongs to Foy) as well as Fg, .

As in Example 2.3 take Z = {(21,0,...,0)' : 2y > 0} with the associated isotropy
subgroup Gy in (14). Then

y=y@) = (o/lall,B.) Go={ (¢/llal, B:C) : C e Op-1)},
c=z(e) = (Jall,0,....0),

where B, is any p x (p— 1) matrix satisfying (z/||z||, B:) € O(p). Let A(dz) = dz .
Then A(dz) is invariant and we can write (30) as fy(y(z))fz(z(z))A(dz) with

1

M) = Grraers

1
E (9'12~1Z/1)—p/2, fz(z) = exp(———z-z’z),

where y; = y;(y) is the first column of any g€ y C G .

We now show that there is no inclusion relation between F, R and Fo(p) - For example
the multivariate normal distribution N,(0,X), £ # I, isin Fg, but not in Fo(y) . An
example in the opposite direction is harder to find. We need to take some non-standard
global cross section in (15). In R? — {0} take the following global cross section with
respect to the action of O(2):

Z={(21,0):0<z; <1} U{(-21,0) : z; > 1}. (31)

Now consider the following density with respect to dzdz; :

1/27, if /22 + 3% < 1 and 7, > 0,
flzr, 22) = 1/2m, if 1 < /2% +2% <2andz; <O,

0, otherwise.

It is easily verified that this density does not belong to Fg: but is decomposable with
respect to the global cross section (31) for the action of O(2).

Example 3.3  Two-sample Wishart problem (Ezample 2.4 continued)

By considering the action of ¢ = LT(p) on X = {(W1,W,) : W,W, € PD(p)},
Takemura and Kuriki (1996) generalized the distribution of the pair (Wi, Ws) of inde-
pendent Wishart matrices to the cross-sectionally contoured distributions associated with
arbitrary cross sections for this action. Now we consider the same problem with the action
of GL(p) on X in (16) instead. As in Section 4.2 of Takemura and Kuriki (1996) we
can take the dominating measure of the form

Ad(Wy, Wy)) = (det W)@~ D72 (det W) P~ D24, dWy, (32)
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where a,b > (p—1)/2, Wy = (w1 4;), Wa = (way;), dW) = [1;5; dwy 45, dWe = [lis; dwa;
with multiplier
x(B) = (det B)*@* B € GL(p).

W = (W, W,) can be written as

(W, W) = (BAB,B(I—A\)B)
( BW)AW)B(W)', BW)(I - MW))BW)"),

where A = diag(Ay,...,A\), 1> X >---> )\, >0, and B € GL(p). Here A(W) is
uniquely determined by W but B(W) is only unique up to the sign of each column of
B(W) as in Example 2.1. Here we use some appropriate selection B(W) in the sense of
Lemma 2.2. A general global cross section Z’ for this problem is given in (18). Without
loss of generality, we take B = I in (18). By (12) a selection of the equivariant part for
Z' is given as

B(W)P(A(W))™".

Let t: GL(p) - R be a real-valued function which does not depend on the sign of each
column of G in #(G). Then a density of the form

FW) o t(BW)PAW)™) (33)

with respect to A gives a cross-sectionally contoured distribution with respect to 2.
Under this density A(W) and B(W)P(A(W))~! are independently distributed.

Example 3.4  Projection to the cone of non-negative definite matrices

Here we present an example with more than one orbit types. In most examples of statis-
tical invariance, there exists a particular orbit type O such that all other orbit types
Oy, Os, ..., are null sets with respect the dominating measure X, ie., MO;) =0, >1.
In these cases, although we have different orbit types we can remove O;,¢ > 1, from the
sample space without changing the distribution. For example, under the Lebesgue mea-
sure on RP we can remove the origin. Also, from the set of n xp matrices we can remove
the set of matrices X with rank X < p under the Lebesgue measure. The remaining
main orbit type Oy is called the principal orbit type. See Section 4.3 of Bredon (1972).
Therefore we need an example where non-principal orbit types receive positive probabil-
ity. Although somewhat artificial, this can be accomplished by considering projection to
lower dimensional spaces.

An example we consider here is the distribution considered in Kuriki (1993) and Sec-
tion 3 of Takemura and Kuriki (1995). Let pxp symmetric random matrix U = (u;;) be
distributed according to the symmetric normal distribution, i.e., u;;, > j, are mutually
independent normal variables with means 0 and variances

Var(u;) = 1, Var(u;;) =1/2, > j.

With probability 1, U is nonsingular and the characteristic roots of U are all distinct.
Denote the spectral decomposition of U as

U=HLH = (hy,...,h,) diag(ls, ..., L,)(hy,..., by,
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where I} > --->1, and H € O(p). Let 0 <r=r(U) < p be defined by [, >0 > lry; .
Now let

X = Hdiag(ly,...,1,,0,...,0)H' = S Lih;h.
i=1

Note that X is obtained from U by replacing negative roots of U by 0. Actually X
is an orthogonal projection of U onto the cone of non-negative definite matrices. Now
define

X ={X : X isnon-negative definite and positive roots of X are all distinct }.

and let P denote the probability distribution of X on X . X is partitioned as X =
YUX U U X, where

X, ={X €X : rank X =r}.

Now consider the action of the orthogonal group O(p) on X acting as (G, X) —
GXG', where G € O(p). Under this action X, are different orbit types and X =
UP_, &, coincides with the partition into orbit types. Furthermore P(X;) >0 for r =
0,...,p. The probabilities P(X,),r = 0,...,p, are investigated in Kuriki (1993) and
Takemura and Kuriki (1995) in detail. On X, we can take the standard global cross
section
Z' = {A, : A, = diag(ly,...,1,,0,...,0), Ly > - > 1. > 0}

with the isotropy subgroup

Qn,yz{(tg’ g,) E, = diag(ey,...,6), 6 =%1,1<i<r, Ce€O(p—-r1)}

The set (hy,...,h,) of the first 7 columns of an element of y € Y, = O(p)/Gor
consists of 7 orthonormal characteristic vectors hi,...,h, of X , where the signs of
these r vectors are ignored. P is orthogonally invariant on each A&, . Therefore given
X eX , A and hy,...,h, are conditionally independently distributed.

4 Further hierarchical decomposition by a subgroup
action
In this section we consider the relations between the actions of a group and one of its

subgroups. Let a group G act on a space X, and let H be a subgroup of G. By
restricting the action (G, X) to H , we have the action (H,X):

(h,z) = hzx, heH, rei.
Obviously each H-orbit is contained in a G-orbit and # acts on each G-orbit by
(h,gz) — (hg)z, heH, geq.

Therefore we actually need to consider the relations of three actions: (G, X), (H,X) and
(”,Gz) .

The relations between these actions are not obvious. For example consider the follow-
ing conditions:
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(i) There exists a global cross section Zg vy for action (G, X) .
ii) There exists a global cross section Zy x) for action (H,X).
(H,X)
(iii) There exists a global cross section Z(gy) for action (H,Gz) ,z € X .

We see that (i) implies (iii) for each Gz,z € X : Simply take Z3, 60 = Gz N Z,x) -
However, there are no other implication relations among (i), (i) and (iii). Furthermore
there are no inclusion relations between the classes of cross-sectionally contoured distri-
butions for actions (G, X) and (#,X) . These points are discussed in Appendix A.4.

However under certain conditions the orbital decomposition with respect to G and
H are nested and this leads to a further hierarchical decomposition of the G-orbital
decomposition by the action of # .

Throughout Sections 4.1 and 4.2 we assume that a measurable global cross section Z

exists for action (G,X), and denote by Gy the common isotropy subgroup at the points
of Z.

4.1 Decomposition of the equivariant part by a subgroup ac-
tion
In this subsection, we give a further factorization of the orbital decomposition for (G, X)

by decomposing the equivariant part by means of (H,Gz) .
As in Section 2.1 we have the decomposition

X o G/Gyx Z. (34)
Now H actson G/Gy by
(h,9Go) > (hg)Go, h€eH, g€G.

Note that we may equivalently consider the action of H on Gz : (h, gz0) = (hg)20, 20 €
AR

Now suppose furthermore that a global cross section V exists for action (H,G/Go) -
Existence of a global cross section V leads to a further hierarchical decomposition of (34)
as follows.

Denote the common isotropy subgroup at the points of ¥V by Ho. Then G/Go is
decomposed as

G/Go <> H/Ho x V. (35)

We can take V in such a way that Gy € V; in that case, we can write Hy as
Hoz—"Hgo :{hEHIhg():go}:Hﬂgg.

From now on we always take ) in this way. (We do not make a notational distinction
between the actions of H on G2y ,2; € £, and on G /Gy, and by abuse of notation, we
write the isotropy subgroups as Hgy,, and Heg, ,9 € G .)

Combining (34) and (35), we have the decomposition

X e H/HoxV x Z.

Therefore our question is:
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(i) specifying the condition for V to exist, and

(ii) expressing V in a concrete form.

Note that (H,G/Gg)-orbits in G/Gy are of the form

%gg()’ g € g

H¢Go is a double coset of H and Gy in G . This suggests that the above questions are
closely related to the properties of the double cosets HgGy, g € G, in G.
The following lemma indicates this fact.

Lemma 4.1 Let G' C G . Then {¢'Gy : ¢ € G'} is a cross section for the action of H
on G/Go if and only if G' is a complete set of representatives of the double cosets HygGo
in G.

The proof is straightforward and omitted.
Concerning the existence of V , we now state the following theorem.

Theorem 4.1  Suppose that there exists a global cross section Z for the action of G
on X, with the common isotropy subgroup denoted by Gy . Then a global cross section
V ezists for the action of H on G/Gy if and only if

%mgig()gi—la iEI’

are all conjugate in H, where {g;:i € I} is a complete set of representatives of double
cosets HgGo, g € G.

Proof. First note that a global cross section V exists for action (H,G/Go) if and
only if the isotropy subgroups Hyg, ,¢ € G, are all conjugate in H .

Let {g;:i € I} be a complete set of representatives of double cosets HgGo . Then,
we can write every ¢ € G in the form

g=nhgigo, heH, i€, g€ Go

and thus we have
-1
Hggo - %hyigogo = thig() = h%gigoh .

Therefore V exists if and only if H,g,, ¢ € I, are all conjugate in H.
Here we can write Hg,g, as

Hoge = {h€H:hgGo= 9:G0}
= {heH: g hgi € Go)

Remark 4.1  The condition that all HN g:Gog; ' ,i € I, be conjugate does not depend
on the choice of {g;: i€ I}.
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Corollary 4.1  If the action of H on X is free, then so is the action of H on G/Go .
Proof.  The isotropy subgroup at ¢Gy € G/Go is
Hogo = Mgz = {e}, 20 € Z,
where e is the identity element of H . |
Let us now consider the second problem—expressing V in a more concrete form.

Lemma 4.2  Suppose that G' C G is a complete set of representatives of the double
cosets HgGy, g € G, such that the isotropy subgroups Hgg, ,9' € G', do not depend on
g €G'. Then

V={gGo:¢ €G'}

is a global cross section for the action of H on G/Gy .

The proof is obvious.
Under the assumption of Lemma 4.2, X is decomposed as

X o H/HoxV x Z,

where H, is the common isotropy subgroup at the points of V for action (H,G/Go) -
We now prove that V x Z is a global cross section for action (H,X) .

Theorem 4.2  Suppose that there exists a global cross section Z for the action of G
on X, with the common isotropy subgroup Gy . Suppose that G' is a complete set of
representatives of double cosets HgGy of G satisfying the condition of Lemma 4.2, and
let V={gGo:q €G'}. Then V x Z is in one-to-one correspondence with

GZ={¢z:9g€G z€ Z}, (36)
and the latter is a global cross section for the action of H on X .

Proof. The correspondence (g'Go,2) > g’z between V x Z and G'Z is bijective.
Now we show that G'Z is a global cross section for action (#,X).

Every z € X can be written as z = gz, g € G, z € Z. Furthermore g can be
written as ¢ = hg'go , where h€ H, ¢' € G' and gy € Go. Hence z = hg'goz = hg'z .
This implies that G'Z intersects each (,X)-orbit Hz at least once.

Next we show that G'Z intersects each Hz, z € X, at most once. Suppose that

hgz€GZ

for he H, ¢ € G and z € Z. Then there exist g" € G' and 2’ € Z such that hg'z =
¢"7 . Since Z is a cross section for action (G,X), we have z = 2" and hg'Gy = ¢"Go .
Because hg'Gy € Hg'Gy and ¢"Gy € Hg"Gy we have ¢ = ¢”. Thus we obtain

hgz=g'z.
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This observation shows that G'Z intersects each Hz, = € X, at most once.

It remains to be proved that the isotropy subgroups Hy. at the points ¢'z € ¢'Z
are all common. This is shown as follows. For any ¢'z € G'Z, we have Hy, = Hyqg, -
Here Hgg, does not depend on ¢ by the assumption of Lemma 4.2. Thus Hg, does
not depend on ¢'z € G'Z . |

We call a global cross section of the form (36) a decomposable global cross section for
action (H,X). Of course a general global cross section for (#,X) is not necessarily
decomposable. See examples in Appendix A.5.

Let us consider special cases.
First, consider the case where the action of G on A is free. In that case, we want
to decompose G by considering the action of H on G : (h,g) + hg .

Corollary 4.2  The action of H on G is free, and any complete set {g; : 1 € I} of
representatives of the right cosets Hg ,9 € G, of H is a cross section for this action.

Proof. It is trivial to see that action (#,G) is free. In order to show that {gi:1€l}
is a cross section for (H,G), we apply Lemma 4.2 with Go = {e} : Theset {g;:i € I}
serves as ¢’ in Lemma 4.2. [ |

In the case of Corollary 4.2, G is decomposed as

G & Hx{g:iel}
«  HxH\G,

where H\G is the right coset space
H\G = {Hg:9 € G}

Corollary 4.3 Suppose the action of G on X s free, and let Z be a cross section
for this action. Then the action of H on X s free, and for any complete set G' = {g:
i € I} of representatives of the right cosets Hg ,g € G, of H, the set G'Z = {giz:i €
I, z€ Z} is a cross section for this action.

Proof. It is trivial to see that the action of H on X is free. As in the proof of
Corollary 4.2, G' = {g; : i € I'} satisfies the conditions of Lemma 4.2. Thus we have by
Theorem 4.2 that G'Z is a cross section for action (,X) . ]

As an example, consider the actions related to the star-shaped distributions—the
actions of G = R (the multiplicative group of nonzero real numbers) and H = R% on
X = R? — {0} by scalar multiplication. In that case, G acts on X freely. Moreover,
{+1} is a complete set of representatives of Hg ,g € G, and is thus a cross section for
action (H,G) . Accordingly, we have one-to-one correspondence

R < R x {£1}.
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Furthermore, we have by Corollary 4.3 that ¢'Z with G’ = {£1} is a cross section for
the action of R% on RP — {0} . Let us take Z as

Z={(z1,...,2,) €SP i zpy >0} U{(z1,...,2p-1,0) € SPl (3, mpe) € Z},

where Z is a cross section for the action of R% on RP~!— {0}, 0 € RP~'. Since it is
clear that G'Z = SP~! is true for p = 2, we see by induction on p that for all p,

¢z = {(z1,...,z,) €S8 i, £0YU{(21,...,2p-1,0) € P71}
= s

which is clearly a cross section for the action of R% on RP — {0} .

Next we treat the case which covers the two-sample Wishart problem.

Corollary 4.4 Let Gy be a subgroup of G . Suppose there exists a subgroup K of G
satisfying the following conditions:

(i) Every g € G can be written uniquely in the form g=hk  heH, k€ K.
(ii) GoC K.
Then, the action of H on G/Gy is free, and
V=K/Go={kGo: k€ K}
18 @ cross section for this action.

Proof.  Noting that HNK = {e} by assumption (i) and that kGok™' C K, k € K, by
assumption (ii), we have HNkGok™! = {e} forany k € K. Therefore Hyg, = HNgGog™!
is trivial for any ¢ in K and thusin G:

Hagy = Hakgo = MHagoh ™ = {e}, g=hk, he H, ke K.

Hence action (#,G/Go) is free.

Let G' ¢ K be a complete set of representatives of left cosets kGy in K. By
Lemma 4.2 it suffices to show that G’ is a complete set of representatives of double
cosets HgGy, g € G. Since

U Hg'Go=HG'Go=HK=G

glegl
it remains to show that
HG'Go =Hg"Go, ¢.9" €7, (37)

implies ¢' = ¢”. If (37) holds, then there exist h € H and gy € Gy suchthat g’ = hg"go -
By assumptions (i) and (ii) we have ¢’ = g"go . Thus

9'Go = 9" 90G0 = 9"Go,
and we have ¢ = ¢". |
In the case of Corollary 4.4, G/Gy is decomposed as
G/Go +» H x K/Go.
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Corollary 4.5  Suppose there cxists a global cross section Z for the action of G on
X, with the common isotropy subgroup denoted by Gy . Suppose moreover that there exists
a subgroup K satisfying conditions (i) and (i3) in Corollary 4.4. Then, the action of H
on X s free, and KZ is a cross section for this action.

Proof. KZ = G'Z for any complete set G' C K of representatives of left cosets
kGo, k € K. Therefore KZ is a (global) cross section for action (#,X) by Theorem
4.2.

Now we show that action (#,X) is free. As was shown in the proof of Corollary 4.4,
Hig, is trivial for each k € K. Accordingly, by noting that Hy. = Hig, ,k €K, z € Z,
we sce that Hy, is trivial for each £ € K and 2 € Z. But since K2 is a cross section
for action (#,X), we have that (#,X) is free. |

As an example, consider the two-sample Wishart problem in Example 2.4 with H =
LT(p) and Z in (17). Then O(p) can serve as K in Corollary 4.4. Corollary 4.5
implies that the action of H = LT(p) on X is free and that KZ with K= 0O(p) isa
cross section for (H,X). We can write KZ as

KZ = {(CAC',I-CAC'):C € O(p), A =diag(Ai,..., \p), 1> A >--- > ) >0}
= {(U,I-U):0<U<I, and the eigenvalues of U are all distinct},

where O denotes the null matrix and < means the Lowner order.

4.2 Distributions further decomposable with respect to a sub-
group action

In this subsection, we discuss distributional aspects of the further hierarchical decompo-
sitions in Section 4.1.
Suppose there exists a subgroup £ of G of the form

L = glg()a (38)

where @' is a complete set of representatives of double cosets HgGy in G such that
Hyg, does not depend on ¢ € G'. Then we have HL = HG'Go = G . Therefore every
g € G can be written in the form g = hl, h € H,l € L. Moreover, by considering the
action of the product group H x L on G:

((h, 1), g) — hgl™",

we have the bijection G ¢ (H x L£)/F*, where F* ={(g9,9): g€ F}, F=HNL, is
the isotropy subgroup at the identity element of G.

Here we note the following.

Consider the situation in Corollaries 4.2 and 4.3. Suppose the action of G on X is
free and that a complete set {g; : 4 € I} of representatives of the right cosets Hg ,g € G,
of H forms a subgroup of §. Then we can take £ =G = {g: : ¢ € I} . For instance,
consider the example immediately after Corollary 4.3—the actions related to the star-
shaped distributions. Then {#1} forms a subgroup of G = R and thus can serve as

L.
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On the other hand, consider the situation in Corollaries 4.4 and 4.5. Suppose 2
subgroup K of G satisfies conditions (i) and (ii) of Corollary 4.4. Then we can take
£ = K . For instance, consider the example immediately after Corollary 4.5—the actions
related to the two-sample Wishart problem. Then O(p) can serve as L.

Now we have by Lemma 4.2 that V = L£/Gy = {lGs : | € L} is a global cross section
for action (H,G/Go), and thus we obtain the decomposition

X © UxVxZ (U =H[Ho),
r < (w,v,2), x=hlz, u=hHo, v=I1G, (39)

where Hy = H NGy since £ is a group and thus contains the identity element of G.
Concerning topological questions, we assume Assumptions 3.1 and 3.2 and further
make the following assumptions:

Assumption 4.1
1. H and L are closed subgroups of G.

2. F is compact.

Note that under our assumptions, Ho = H NGy is compact since Gy is compact and
H N Gy is closed in the relative topology of Gy. Note also that the one-to-one corre-
spondence G <> (H x £)/F* is a homeomorphism since G is second countable (p.92 of
Wijsman (1990)).

Now let A be a measure on X relatively invariant under the action of G with
multiplier x . We define the extended decomposable distributions as follows.

Definition 4.1 A distribution on X is said to be an extended decomposable distribu-
tion with respect to (U,V, 2) iff it is of the form

F@)A(dz) = fu(u(z))fy(v(@)) fz(2(z))Adr)-

The next theorem gives the distributions of u,v and z when z is distributed ac-
cording to an extended decomposable distribution.

Theorem 4.3  Suppose that x is distributed according to an extended decomposable
distribution  fy(u(2)) fy(v(2)) fz(2(x))Mdz). Then u = u(z) = hHy, v = v(z) = IGo
and z = z(z) (z = hiz) are independently distributed with the joint distribution

Ju(w)x () p(du)
X fy(v)x(v) A% (v) A" (v) ™ py(dv)
sz(z)l/g(dZ)7
where A* is the right-hand modulus of £, measure py (resp. py ) is a version of the

invariant measures on U = H/Hy (resp. V = L/Gy ), and vz is the probability measure
in (23).

This theorem can be proved by 7.6.1 Proposition and (7.6.5) of Wijsman (1990).
Let us apply Theorem 4.3 to the above-mentioned two examples. '
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Example 4.1  Symmetric star-shaped distribution

Consider the actions related to the star-shaped distributions--the actions of G = Rj
and H = R: on X = RP — {0}. Then we have Gy = {e} and Ho=H NG = {e}. If
we take £ = {£1}, we obtain the bijection

X & HxLxZ,
z & (hez), x=chz,
where Z is a cross section for action (G, X). Furthermore, we have that G and L are
unimodular: A9 =1, AX =1.
Now suppose that @ is distributed according to a star-shaped distribution—that is,
a cross-sectionally contoured distribution for action (#,X) :

f(h(x))dz.

This distribution can also be regarded as the extended decomposable distribution with

fulh) = fu(h) = f(h),
fV(e) fC(E) = 1v
fZ(z) 1,

i

i

and
AMdz) = dx.

Measure X is relatively invariant under the action of G with multiplier

x(g) =19, g€,

where |-| denoctes the absolute value. Therefore, we have by Theorem 4.3 that h, ¢ and
z are independently distributed according to

co  f(MPRT dh = ¢t f(M)RP7 dh,  py = pe,  ve,

respectively, where ¢o = [° f(h)hP"'dh and pp({1}) = pe({—1}) = 1/2. Under the
additional assumption that h(z) is piecewise of class C', we have

vz(dz) = co(z,nz)dz,
where 71y is the outward unit normal vector of Z, dz on the right hand side is the

volume element of Z, and (-, -) denotes the inner product (Takemura and Kuriki (1996)
Section 3).

Example 4.2 Two-sample Wishart problem (Ezample 2.4, 3.3 continued)
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Take £ = K = O(p). Then we obtain the bijection

X + H X [:/go X Z,
(W], Wz) > (T', Cgo, (A, I - A)), (Wl, Wz) = (TCAC/”T’, YWC(I — A)C'TI)

Furthermore, we have that G and £ are unimodular: A9 =1, Af = 1.

Suppose that the random matrices W, and W, are independently distributed ac-
cording to W,(ny, ) and Wy(ns, £), respectively. The dominating measure is as in (32)
with a = n,/2,b = ny/2 . Then the distribution of (W, W,) is the extended decompos-
able distribution with fy(T) o« etr(—3S71TT"), fu(CGo) =1 and fz((A,I—A))=1
Therefore by Theorem 4.3 T, CG, and A are independently distributed. The distribu-
tions of these parts are given in standard textbooks of multivariate distribution theory
(see Anderson (1984) or Muirhead (1982) for example). In particular CG, is distributed
according to the invariant probability measure on V = O(p)/Gy induced from the left
invariant Haar measure on O(p).

A non-standard distribution with respect to the action of G = GL(p) is given in (33).
Write (up to an arbitrary selection)

1‘3(W)P(A(W))“1 =T(W)C(W), T(W) e LT(p), C(W) € O(p).
If ¢t can be written as
t(BW)PAW))™) = fu(T(W)) f(C(W)Go)

then T(W),C(W)G, and A(W) are independently distributed. Suppose furthermore
that ¢ satisfies the following condition

t(B) = t(BC), VYC € O(p), B € GL(p),

or equivalently suppose that ¢(B) dependsonly on BB'. Then fy isa constant function
and C(W)Gy is again distributed according to the invariant probability measure on
YV = O(p)/Gy induced from the left invariant Haar measure on O(p).

5 Appendix

A.1. Orbit types of Example 2.2

We give a proof of the orbit types described in Example 2.2. First we show that for
each (ig,...,%) (1 <@ <.+ <4 <p, 0<r< ), X,X € X(iy,...,i,) implies
X ~op X . Tt suffices to prove that there exists a global cross section for each X (i1,..-0p) .
Let

Z(ity .. yip) ={H = (hy,...,hy) € X : h;, ..., h; are orthonormal
and hy =0forj ¢ {iy,...,i} }.

Then Z(iy,...,i,) is a global cross section for X (i1,...,%,) . This is shown as follows. It
is easy to see that Z(iy,...,i,) is a cross section for X(41,...,%;) . On the other hand,
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for any H € Z(iy,...,i,), the isotropy subgroup Gy at H is the set of T = (tij) =
(ti,....t,) € LT(p) with

$ — eifor?ﬁ({{z},...,i,‘},
¢ (0, ceey 0, tn’, ti+1,i7 . 7tpi), is arbitrary for ¢ ¢ {il, ceay ir},

where e; = (0,...,0, 1,0,...,0) is the ¢th coordinate vector. Thus Gy does not
depend on H € Z(iy,. N Jir) -

Next we show that X ~y X implies X, X € X(iy,...,5) forsome (iy,...,i) (1<
W< <, <p 0<7r<p). Supposethat X ~y X and that X € X(iy,...,0,), X €
X, ...,i") . We want to show r =1’ and (i1,...,%) = (i},...,%) . Note that it is
sufficient to consider the case r, ' > 1. Suppose on the contrary that (i1,...,%) #
(¢, -, i) . Then there would exist either i such that i € {i1,...,%} N {zl,..., i, }¢
or i € {iy,..., i, 1S {if, .. i, Where C denotes the complement. Without loss of
generality let ¢ € {zl,...,ir}ﬂ {zl,... 'YC If we write X and X as X = HT' and
X = HT (7, T e LT(p), H € Z(zl,..., ), H € Z(i,...,i.)), respectively, then we
have H ~x H :

TGyT ' = Gp for some T = (t;;) € LT (p).

Now for any ¢ > 0 there exists a matrix in Gz which has ¢ as the i-th diagonal
clement. On the other hand, all the matrices in TGy have ¢; as the i-th diagonal
element. This is a contradiction. Thus we have proved (i1,...,%) = (&},... i) . ]

A.2. Factorization of measure for measurable Z

Theorem 7.5.1 of Wijsman (1990) guarantees A(dx) can be factored as (23) for a
standard global cross section Z in Assumption 3.2. For an arbitrary measurable global
cross section 2’ the factorization of the dominating measure A with respect to the
orbital decomposition can be obtained as follows. Consider a standard global cross section
Z and factorize A . Now by within-orbit bijection gZ — g2’ in (27), the dominating
measure transforms as (28), and we see that factorizability of A is equivalent to the
factorizability of ). We now see that Assumption 3.2 implies factorization of X for
measurable global cross sections 2’ as well.

Regarding factorizability we can also use the sufficiency approach in Section 2.2 of
Takemura and Kuriki (1996).

A.3. Some topological questions about )Y in Section 3.1

Here we discuss some topological questions about Y = U;); with )V; = G /G in
Section 3.1.

Since G is a metrizable group, the topology of G can be defined by a right invariant
distance d (Dieudonné (1976), (12.9.1)). For two nonempty subsets A, B of G write

d(A,B) = geAi of d(g,9).

g'eB

For brevity we shall write d({g}, A) as d(g,A) for g€ G and ACG.
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Now we regard each element ¢G; ,g € G, i > 1, of ¥ =,;Vi =U;G/G: as a subset
of G:gG: C G. Noting that ¢G; is compact for each g € G and each i > 1, we endow
V with the Hausdorff distance h to make ) a metric space:

h(ggzag,gz’) == HlaX{P(ggi,g’gi’)7 P((],gz',ggz)}» gag’ € g? ivi, Z 1

with p(9Gs, §'Gr) = supy,eq, d(9gi,9'Gy) - By restricting h:Y xY — R to Vi x )i, we
have the induced distance (also denoted by h ) for each );, i > 1.

Here we show that for each i > 1, the topology on Y; defined by h is the same as
the quotient topology on Y; = G/G; . Fix an arbitrary i > 1. Note that by the right
invariance of d,

Vgi € Gi : d(99:,9'Gi) = d(g,9'G:)
for g,¢' € G . Using this relation, we have

p(9Gi,dG:) = supd(99:,9G)

9i€G;
= ggggi d(9,9'g:)
_ ’o
= ggggi d(d'gi, 9)
_ . rooo—1
= giggi d(9',99; ")
= d(g,9G)
= p(d'Gi, 9Gi)

for ¢,¢ € G . Accordingly, we obtain

hgGi,dG:) = max{p(9Gig'G), p(9'Gi,99:)}
= p(99i, 9G:)
= d(g9,9G)
= d(99:9'G)

for g, € G.
Thus we have by (12.11.3) of Dieudonné (1976) that the topology on Y; defined by
h is the quotient topology on Y; = G/G; .

A.4. Examples concerning existence of global cross sections for subgroup ac-
tions in Section 4

We show that there are no implication relations among the conditions (i), (i) and (iii)
at the beginning of Section 4 except for (ii) = (iii).

First, we show that neither of (i) and (ii) implies the other.

In order to see that (i) does not imply (ii), consider the following example: § =
GL(p), H = LT(p) and X = R? — {0}, and the actions of G and H on A are the
usual multiplications of matrices and vectors. The action of G on A is transitive, i.e.,
there is only one orbit: X = Gz, x € X. Thus there trivially exists a global cross section
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Zg,xy for this action: Zg x) = = {2}, z € X. On the other hand, a global cross section
Z3,x) does not exist for ‘tho action of H on X . One can see this by noting that the

isotropy subgroups at e; = (1,0,...,0)" and e, = (0,...,0,1)" are not conjugate in #
since
1 0
%61 = { 0 T22 : T‘22 < LT(p — 1)},
Tll 0 p—1
Hep = { t, 1 3T]1 € LT(p—— 1), t21 S R },
21

where 0 = (0,...,0) € RP~'. In addition, this example also indicates that (i) does not
imnply (iii).

In order to see that (ii) does not imply (i), we consider the actions related to the
two-sample Wishart problem: ¢ = GL(p), H = LT(p) and X = PD(p) x PD(p) =
{(Wy,Ws) : Wy, W, € PD(p)} . The actions are (B, (Wy,Ws)) — (BW.B', BW,B'), B €
GL(p) and (T, (Wi, W) = (TW,\T'",TWoT"), T € LT (p). Then, since the action of #
on X is free, there exists a (global) cross section Z3 x) for this action. On the other
hand there does not exist a global cross section Z(g x) for the action of G on X . Inorder
to ensure the existence of Z(g x), we have to exclude, for example, the pairs (W, Wy) €
PD(p) x PD(p) for which the characteristic equation det(W; — AM(W; + Ws)) = 0 has
multiple roots A .

Next we see that (iii) does not imply (ii): Just take H = G and consider any action
of G on X which does not satisty (i).

Finally we know from the implication relations above that (iii) does not imply (i). On
the other hand, as was mentioned earlier, we have that (i) does not imply (iii).

A.5. The class of decomposable distributions for a subgroup action in Section
4

We compare the classes of decomposable distributions for actions (G, X) and (H, X)
for a subgroup H C G.

Consider the situation where there exist global cross sections for both (G, X) and
(H,X). Let F; and Fy be the families of decomposable distributions with respect
to (G, X) and (H,X), respectively. One may wonder which, if any, of Fg and Fy is
wider. In general, however, neither of F; and JF3 contains the other as a subclass.

For instance, consider the actions related to the star-shaped distributions—the actions
of G=RY and H =R, on X = RP— {0} under scalar multiplication. In that case,
the actions of G and H are free, so that in the trivial sense, there exist global cross
sections for both actions.

Let us take p=2.

First we give an example of a distribution which is in Fg but not in F . Consider
the distribution f(zy,z9)dxdxs with

o) = (1—e2)/(4r) if (z1,22) = (tcosh, tsinf), 0 <t <2, 0<O<m,
R T otherwise,

where ¢(z1,15) = (27) Lexp(—(z? + x2)/2) . It is easy to see that this distribution can
be realized as a cross-sectionally contoured distribution associated with (G, X), but not

with (#,X).
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Next we give an example of a distribution which is in F but not in Fg . Let Z =
Zu,x) be (the boundary of) the triangle with vertices (-1,2), (2,-1) and (—=1,-1),
(see Example 3.1 of Takemura and Kuriki (1996)) and let y(z1,22) be the equivariant
part of the orbital decomposition with respective to Z for (H, X ) . Then the distribution
of the form

fy(y(zy, z9))dz1dz, with [ injective
is of course in Fz, but not in Fg. One can confirm the latter assertion by not-
ing that we have only three pairs {z,Z}, z,Z € 2, such that z = -2, that is,

{(071)’(0?"‘1)}7 {(LO))(WLO)} and {(17_1)7(_171)}'
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