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Abstract

Limiting distribution of estimators for parameters of an AR model with unit roots
has been considered by many authors. On the other hand missing observations in time
series data often arise. In this paper we consider two estimators for the parameter of
an AR(1) model with a unit root in the presence of missing observations. One is the
Yule-Walker estimator which is originally used to estimate parameters of a stationary
process. The other is the least-square estimator obtained by using all of the pairs
among the data observed consecutively. We derive the limiting distributions of these
estimators. The result is a generalization of that given by White (1958), Fuller (1976)
and Dicky and Fuller (1979) for the case of complete sampling. As an application, we
adopt these estimators to test statistics of unit root tests and their performances are

investigated by computational experiments.



1 INTRODUCTION AND MODEL

Many authors have been concerned with a nonstationary process with unit roots in the
analysis of economic time series. And limiting distributions of parameters of the process
have been considered for a long time. On the other hand missing observations arise from
a variety of causes, such as machinery disorder, clerical error or financial markets being
closed on holidays or weekends. In this paper we shall consider two estimators of the
parameter of an AR(1) model with a unit root in the presence of missing observations and
derive the limiting distributions of these estimators. As an application we apply them to
a unit root test and their performance is investigated by computational experiments.

We consider the autoregressive model

Xp = pXig-1 + €k k=1,..,n,

where Xo = 0, p = 1 and {;} is a sequence of independently and identically distributed
random variables with mean 0, variance o2 and finite fourth-order moment. These assump-
tions on {e} are used throughout this paper. This model is the prototype of a general
AR model with unit roots. And an extension of the results derived here to a general AR
mode] with unit roots will be discussed in a subsequent paper.

While Parzen (1963) introduced the time series model with missing observations as a
specific case of an amplitude modulated stationary process. Following him, we express

observed data {Y1,Y2,...,Yn} by

Xi = pXp-1+¢k, )
Vi = ar Xk,



where {ay,k = 1,2,...} represents the state of observation,

ap =1 observed,
(2)

ar, =0 missing.
Typical examples of {ax} are a stochastic Markov process and a periodically deterministic
case. We assume that {e;} and {az} are independent if {ax} is a stochastic process. If
{X,} is a stationary process, it starts from the infinite past and lp| < 1. While we assume

throughout this paper that the initial value X¢ = 0 and p = 1 as mentioned before.

Now we propose two estimators of p. One is originally proposed by Parzen (1963) for

a stationary process and investigated its asymptotic properties under various assumptions

on {X;} and {a;} by Dunsmuir and Robinson (1981). Denote this estimator by

5= SN YY1/ Sopot GkGkt1
ZZ:I Yk2/ ZZ:I af

3)
This estimator is the ratio of estimators of autocovariances. If ay = 1, that is, the data is
observed completely, jp is identical to the Yule-Walker estimator. We apply p to estimate
0.

Recently Takeuchi(1995) suggested another estimator. We defined it by

-1
k=1 YeYes
~n—1
Y ko1 ak+1Yk2

p= (4)

s -1
Noting that p = éﬂilﬁw&‘—)gﬁi, we see that j is the least-square estimator based all of
zk:] akak+lxi
the pairs of data observed consecutively. Shin and Sarker(1995) also used p as the starting

value for Newton-Raphson estimation method for a stationary AR(1) model. If the data

is observed completely, / is equal to an ordinary least-square estimator,

~1
Yot X Xpp1

S (5)
Choi X7

poLs =
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In section 2, first we prepare some limit theorems to derive the main results. Next
we apply them to obtain the limiting distributions of p and f. Our main results are
following. In the case of complete sampling, pors is an n-consistent estimator and the

limiting distribution derived by White (1958) and Fuller (1976) is

p f, BdB

B (6)

n(pors — 1)

where (B();0 < ¢ < 1) is a standard Brownian motion and 2 implies convergence in
distribution as the sample size n — oo.

While 5 is not n-consistent but /n-consistent when {ax} follows a stochastic Markov
process and the limiting distribution of \/n(p — 1) is a functional of Brownian motion
being different from (6). In contrast p is still an n-consistent estimator in a periodically
deterministic case. The limiting distribution of n(p — 1) does not exist as n — 00. But if
weputn—1=n*M+r (r=0,1,.,.M - 1) with period M, and let n* go to infinite, v
being fixed, the limiting distribution of (n*M +r+1)(p - 1) exists and depends on 7. On
the other hand j is always an n-consistent estimator. But its mean square error is larger
than that of (6).

In section 3 we shall reinforce the theoretical results of these estimators by computa-
tional experiments. Also we use these estimators as test statistics of unit root tests and
compare their performance with the test statistics proposed by Shin and Sarker (1996).
We give additional comments in section 4. Finally Appendix includes the proofs of lemmas

and theorems.



2 LIMITING DISTRIBUTIONS

First we prepare some lemmas.
We obtain the following lemma by modifying slightly Phillips and Durlauf (1986)

Theorem?2.1.

Lemma 1 Suppose that {&,k=1,2,...}is a sequence of R*-valued random variables and

{a(i; €)} are strong mizing coefficients of {€p,k=1,2,...}. Let Wy(1) = ﬁ chnjl €. If
(i) E& =0 for all k,

(i1) limp oo B[ (X her &) (ka1 &)'] = £, a positive definite matriz,

(1i1) supy Eifjklﬁ < 0o for some 3(2< < 00)and allj=1,..,4d,

(iv) es a(i:6)' 5 < 0, for some (2 < f < ),

then W,, — W%, where Wis a d-dimensional Brownian motion with a covariance matriz

E.
And we extend Chan and Wei (1988)’s result.

Lemma 2 Let {ey,k=1,2,..}, {(s,k=12...}be two sequences of random variables. Let

Un(t) = ~\-}; chnjl €k, Valt) = ﬁ E?__t_]l Ck. Then the following two statements hold.

(i) [Chan and Wei (1988) Theorem 2.4 (ii)]: Assume that there are increasing o-fields
Fi such that (e, () is a sequence of martingale differences with respect to Fg.

Moreover,

E(er? + (2 Fi-1) < ¢ a.s. for some constant ¢ > 0 (7)
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and
(Unvvn) “’D“" (W1>W2)7 (8)

where (W, Wy)'is a two-dimensional Brownian motion with respect to an increasing

sequence of o-fields G;. Then

(U"’V"’ Z Un ( )Ck+1> 2, (Wtha/Ol WldW2> : (9)

(i) Assume that the condition of (i) 1s satisfied and
E(ex| Feor) = 02, E(ex®| Fr1) = v, E(e | Fro1) =7 a.s. (10)

Then
] L_—.\_ k 2 D 1 ZdW ) (11)
(aninv\/ﬁ 2 ,Ln (;l) Ck+1 ? (”la”Za/ M/l 2]

Next we derive the following theorem on p.

Theorem 1 Let & = (), ax_1axex) be a sequence of martingale differences with respect
to increasing o-fields Fy and satisfy the conditions of Lemma 1 and (7) of Lemma 2 (ii).

Assume that ——5 Py akaHle = V- 2 doroa h X2+ 0,(1). Then

. D 019 fO BdR + \/ 011022 — 0'12 fO BdB
— (12)

np-—
(;0 Vo011 fO B2dt

where (B, B)'is a two-dimensional standard Brownian motion and o;; is the (i,j)-th com-
ponent of the covariance matriz & of Lemma 1 (ii).
If ap = 1, that is, in the case of complete sampling, v = 1, 0j; = 1(1,J = 1,2) and hence
this limiting distribution is identical to (6).

Now we prepare a lemma to show the following example.
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Lemma 3 Let {a;,k = 1,..} and {ex,k = 1,..} be sequences of random variables on
independent probability spaces (g, F,, Ps) and (Qe, Fe, P.) respectively. Suppose that
{ex, k = 1,..} is a sequence of independently and identically distributed random variables.
Let random variable & be & = (e, axar—1€x). Moreover let the strong mizing coefficients

of {€x,k = 1,..} and {ax, k = 1,..} be a(i;§) and a(i;a) respectively. Then
a(t;€) < a(i- La). (13)

Example 1 (A Markov Process). {ax, k= 1,2, ...} is a stochastic Markov process. Let py
and po be py = P(ag = 1]ag—y = 1) and po = P(ax = 1lag-1 = 0). If po = p1, this process
reduces to a sequence of Bernoulli trials.v And we find that the stationary distribution
1= Plax = 1)is =5

Setting ¢ = p1 — po and ug = ag — Elaglai,i < k= 1] = ax = [po + (p1 = Po)ak-1l;
we can obtain the representation ay = ag_1 + ug. Then the argument of a stationary

Markov process (Billingsley (1968) p167-8) gives
o(i;a) < 2Jv[ (14)

By (14) and Lemma 3, {{)} satisfies Lemma 1 (iv). Also the other conditions of Theorem
1 are satisfied if we put Fj, = o(ai, ;1 < i < k).
Consequently we can apply Theorem 1 to this example. Then the covariance matrix

of Lemma 1 is



And v in Theorem 1 equals 7p;. Hence we have

p Ji BdB+r [y BdB
—

n(p=1) [TB2d1

; (15)

where r = , /1=7BL
V "7

Example 2 (Periodically Deterministic Case). {ax,k = 1,2,...} is periodically determin-
istic. Let M be the period and hence ax = agyp for any k. And let L = ZkM___.l ay, the
number of observed data in one period and K = EkM=1 a4

Then the conditions of Theorem 1 are satisfied. The covariance matrix of Lemma 1 is

1 K
M
S=c? ,
K K
M M

and v in Theorem1 equals -]IC-,I— Hence we have

1 1 r
. p ['BdB+r['BdB
w(p-1) == lezdg
4]

; (16)

where r = /M=K

Next we consider the limiting distribution of . First we derive the limiting distribution,
when {ay} follows a stochastic Markov process. In contrast to complete sampling, p is not

n-consistent but /n-consistent.

Theorem 2 Suppose that {ax, k = 1,2,...} is a stochastic Markov process. Then

_ IJ{B2~(f332dt)}d1§ (1-p1) (1= p1+po)
~ D 1 1 0
Valp=1) = JE B2dt \/ 2 Po ’

(17)
where {(B(t), B(t));0 < t < 1}is a two-dimensional standard Brownian motion.

It should be remarked that the limiting distribution is degenerated if the data is observed

completely and therefore po = p; = 1 holds.



Next we give asymptotic properties of  in a periodically deterministic case. n(p — 1)
does not have a limiting distribution. Nevertheless if we put n ~ 1 = n*M +r (r =
0,1,..., M — 1) with period M and let n* go to infinite, r being fixed, the limiting distri-

bution of (n*M + r + 1)(p — 1) exists and depends on .

Theorem 3 Suppose that {ax,k = 1,2,...} is periodically deterministic. Then

n(ﬁ _ 1) «?_) Qr (jol ledt - W1(1)2) + fol WidWy + R
B

. — Sl 1 M -
where Qr = K ay = L) 1 @mmey, B= 35 Comey (Lamtmir — Kan)m, and

(W1, W3) is a Brownian motion with a covariance matriz ¥ whose (i—j)th-components are

. 2
oy = 1,013 =091 = R+—L]—\% and 039 = '11»7 Z?ﬁil [2 Z;’:‘:m(LamamH — Kan) + Lajaj-l] .

We have that L = K = M, Q, = M, R = 0, ;3 = M and 033 = M?, in the case
of complete sampling. Then (Wy,W,) = (B, MB), where {B} is a standard Brownian

motion. The limiting distribution of n(p — 1) is

Ji B*dt — B(1)* + J) BdB
Jo B2dt '

3 COMPUTATIONAL EXPERIMENTS

In this section we shall reinforce the results in the previous section by computational ex-
periments. First we compare the finite sample distributions with the limiting distributions.
Second as an application, we also consider testing for a unit root.

To generate random numbers, we used “ran2.c” of Numerical Recipes in C [ Press

et al (1988) ]. And to generate a Brownian motion, we used an expansion of Brownian
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motion,

B(t) = sin (k + %) Tt g,

Z (2A + 1)
where Z are independently and identically normal variables N(0,1). [ See Chan and Wei

(1988) ]. Then this expansion and term by term integration give

1 oo 4
2 — Z2
/O B2dt k§:0: @ ek

and

/ Bidt = Z Z Z }o'jj 826 Do Zks gk, ey ki, ),

b1 =0 kp =0 s =0 kg o [T [(2k; + 1)7]

where

A(k17k27k37k4)
= I(k'1+‘k2-k3—k4:0)+f(k1—kz—-k3+k’4:0)+1(k‘1——k2+k3~k4=0)
~I(ky + kg + ks — ks +1=0)—I(ky + ks —kz+ ks +1=0)

"‘I(k‘l”k2+k3+k‘4+1:0>~I(-—-k1+k2+k3+k4+1:0),

and I(-) means an indicator function. And we note that

fl BdB = S(B(1) - 1)
A 2

by Ito’s rule, | see Karatzas and Shreve (1991) ] and

1 - D 1
/ BB R 7 / B2di,
0 0

where & means equivalence in distribution, (B, B) is a standard Brownian motion and
Z is a normal variable N(0,1) independent of B, since {B} and {B} are independent

processes.

11



When {a,} follows a stochastic Markov process, the limiting distributions p and p are
quite different. Here we consider pg = p; = p = 0.95, that is, the case that {ax; k = 1,2, oo}
is a sequence of Bernoulli trials. The limiting distribution of n(p— 1) is given by Example
1 with r = ,/1—;;-5531 = /15222 Figure 1 gives the comparison of the finite sample
distribution with the limiting distribution. The sample size is n = 100. The number of
replications is 5,000. We can see that the finite sample distribution is close to the limiting
distribution.

Next we compare the finite sample distribution of \/n(p — 1) with its limiting distri-

bution. This limiting distribution is

, 1 1 2 _
R {E - (BB} ap gy g | B (15" e
3 B2dt P [y widt p

where {(B,B);0 < t < 1}is a two-dimensional standard Brownian motion and Z is a
standard normal variable independent of B. This distribution is a mixed normal. Figure
2 compares the finite sample distribution with the limiting distribution when the sample
size are n = 100, 500 and 100,000. The number of replications is 5,000. Then Figure 2
shows that y/n(p — 1) converges very slowly as n increases.

On the other hand, in a periodically deterministic case, we adopt A-B sampling in
which A consecutive values of X, are observed, B missed, A observed and so on. This
sampling scheme was used in Parzen(1965), Dunsmuir and Robinson (1981), Shin and
Sarker (1996). We give quantiles of n(p — 1) and n(p — 1), to compare the finite sample
distribution with the limiting distribution. These quantiles are applied to a unit root test
later. Theorem 3 shows that the limiting distribution of (n*M + r 4+ 1)(p — 1) exists as n”

goes to infinity, 7 being fixed. Therefore we consider n = 51, 100 and 499. Then 7 is equal

12
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Figure 1: Comparison of distribution of finite sample distribution with that of limiting

distribution of n(p - 1).
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Figure 2: Comparison of distribution of finite sample distribution with that of limiting

distribution of v/n(p — 1).
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Table 1: Empirical Cumulative Distributions of n(p — 1).

p
n 01 .05 .10 20 50 80 90 95 .99

A=6,B=1
51 -13.85 -8.38 -5.93 -3.62 -0.77 0.72 1.33 1.85 3.01
100 -14.20 -8.45 -5.99 -3.65 -0.78 0.71 1.30 179 2.89
499 -14.76 -8.65 -6.12 -3.70 -0.79 0.69 1.27 1.75 2.80
Limit -14.86 -8.66 -6.12 -3.71 -0.80 0.68 126 1.74 2.77
A=5,B=2
51 -14.77 -8.77 -6.21 -3.78 -0.72 094 1.65 231 3.78
100 -14.94 -8.85 -6.30 -3.82 -0.74 0.90 1.59 221 3.62
499 -1559 -9.12 -6.44 -3.86 -0.76 0.87 1.56 2.16 3.47
Limit -15.75 -9.15 -6.44 -3.87 -0.77 0.86 1.55 2.14 3.42
A=4B=3

51 -15.80 -9.39 -6.66 -3.98 -0.69 1.25 2.17 3.04 5.07
100 -16.35 -9.58 -6.77 -4.05 -0.71 1.20 2.09 291 4.84
499 -16.85 -9.83 -6.92 -4.12 -0.74 1.15 2.02 280 4.57

Limit -17.07 -9.87 -6.93 -4.13 -0.75 1.14 2.00 277 4.0

to 1 in all cases. Table 1-2 gives the result of p and p. The numbers of replications are
100,000 in the case of finite sample size, while the numbers of replications are 200, 000 in
the case of limiting distributions. These tables show that the quantiles of the finite sample
distribution is close to those of the limiting distributions as n increases. We also observe
that the left tails are longer as n increases and that the tails are fatter as B is larger. And
p has a fatter tail than p does.

And we compare the limiting distributions of p and p in complete sampling and various

15



Table 2: Empirical Cumulative Distributions of n(p — 1).

p
n .01 .05 10 20 .50 .80 90 95 .99
A=6,B=1
51 -15.88 -10.43 -8.01 -5.62 -2.57 -0.90 -0.28 0.15 0.88
100 -16.60 -10.76 -8.22 -5.71 -2.60 -0.92 -0.31 0.12 0385
499 -17.28 -11.02 -841 -586 -2.66 -0.95 -0.34 0.10 0.84
Limit -17.39 -11.09 -8.45 -5.88 -2.67 -0.96 -0.34 0.10 0.84
A=51B=2
51 -16.74 -10.95 -8.41 -592 -2.71 -0.92 -0.26 0.23 1.02
100 -17.33 -11.21 -8.54 -5.96 -2.73 -0.93 -0.27 0.22 1.02
499 -17.86 -11.42 -8.72 -6.09 -2.77 -0.95 -0.28 0.20 1.01
Limit -17.89 -11.46 -8.75 -6.11 -2.77 -0.95 -0.28 0.20 1.00
A=4,B=3
51 -17.62 -11.34 -8.75 -6.14 -2.81 -0.94 -0.22 031 1.15
100 -18.09 -11.62 -8.89 -6.23 -2.84 -0.94 -0.22 030 1.17
499 -18.36 -11.79 -9.02 -6.32 -2.88 -0.95 -0.22 0.30 1.17
Limit -18.42 -11.84 -9.06 -6.34 -2.88 -0.95 -0.22 0.30 1.17
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Figure 3: Limiting distributions of n(p — 1) with complete sampling, A-B=6-1. A-B=5-2
and A-B=4-3.
A-B sampling. In Figure 3-4, the numbers of replications are 10,000. Figure 3 gives the
limiting distributions of 5 with complete sampling and A-B sampling ( A-B = 6-1, 5-2
and 4-3 ). Figure 3 shows that the limiting distributions of n(p — 1) with A-B sampling
converge to that for complete sampling as B is smaller. On the other hand Figure 4 gives
the result of p. In contrast to j, the limiting distribution of n(p — 1) with A-B sampling
converges slowly to that for complete sampling as B is smaller.

The main purpose of this paper is to derive asymptotic properties of p and p if they
are used to estimate the autoregressive parameter in the case that the true underlying

process is a nonstationary AR(1) process with a unit root.
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Figure 4: Limiting distributions of n(p — 1) with complete sampling, A-B=6-1. A-B=5-2

and A-B=4-3.

18



While a unit root test is an important issue in economic time series analysis. Hence
as an application we use p and p to be test statistics for unit root tests. Recently Toda
and Mckenzie (1994) and Shin and Sarker (1996) proposed testing procedures for a unit
root test of time series data with missing observations. Their test statistics have the same
limiting distribution as that given by Dicky and Fuller (1979) for the case of complete

sampling. Among them we take up pgs defined by

n—1
C k=1 ZEZE41
pPss = n_1 .2
k=1 “k

where { X} is observed at times ky, kg, ...,k and zp = Xy, _, fork;y <k <k;, 1<k <n
pss is proposed by Shin and Sarker (1996) and is the dominating term of the one-step
Newton-Raphson estimator for log Gaussian likelihood conditional on observed data.

We compare the performance of p and p with that of pss by computational experi-
ments. Toda and Mckenzie (1994) and Shin and Sarker (1996) cover only the case that
the sampling intervals, k; 11 — k; (i = 1,2, ..) are bounded almost surely as the sample size
n — oo. Hence their results cannot apply to the case that {a;} is a stochastic Markov
process and then we consider only A-B sampling. We use n(pgs —1), n(p—1) and n(p—1)
as test statistics. We use the previous quantile as a critical value 5% for p and p and
use a critical value in Fuller (1976) of the finite sample distribution for pss respectively.
Then we calculate the empirical power. Table 3 gives empirical power with the sample
size n = 51, 100 and 499 and the numbers of replications are 10,000. A-B are 6-1, 5-2 and

4-3.

19



Table 3: Comparison of Empirical Power of n(pss — 1), n(p — 1) and n(p — 1).

A=6 B=l A=5 B=2 A=4 B=3
p pss p p pss p p pss p p
n=51
0.50 1.000 0.998 0.993 0.999 0.990 0.983 0.996 0.972 0.967
0.55 0.999 0.993 0.983 0.998 0.980 0.965 0.988 0.950 0.940
0.60 0.998 0.983 0.962 0.994 0.964 0.938 0.976 0.923 0.909
0.65 0.992 0.961 0.913 0.982 0.931 0.882 0.952 0.877 0.846
0.70 0.970 0.917 0.838 0.947 0.868 0.798 0.900 0.808 0.761
0.75 0.910 0.835 0.723 0.875 0.786 0.680 0.815 0.714 0.653
0.80 0.773 0.702 0.567 0.730 0.647 0.523 0.659 0.584 0.505
0.85 0.548 0.499 0.383 0.516 0.471 0.365 0.466 0.431 0.353
0.90 0.317 0.297 0.229 0.302 0.284 0.217 0.271 0.271  0.220
0.95 0.149 0.147 0.121 0.141 0.150 0.122 0.129 0.143 0.123
1.00 0.050 0.050 0.051 0.048 0.052 0.051 0.046 0.052 0.050
n=100
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.55 1.000 1.000 1.000 1.000 1,000 1.000 1.000 1.000 1.000
0.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.999
0.65 1.000 1.000 1.000 1.000 0.999 0.999 1.000 0.993 0.998
0.70 1.000 1.000 0.998 1.000 0.994 0.997 1.000 0.983 0.991
0.75 1.000 0.996 0.990 1.000 0.987 0.980 0.999 0.956 0.965
0.80 0.998 0.980 0.948 0.996 0.954 0.924 0.991 0.903 0.899
0.85 0.969 0.906 0.814 0.959 0.854 0.775 6.932 0.780 0.746
0.80 0.759 0.673 0.538 0.734 0.633 0.511 0.699 0.572 0.487
0.95 0.316 0.302 0 224 0.306 0.285 0.214 0.290 0.266 0.210
1.00 0.048 0.050 0.047 0.047 0.053 0.045 0.045 0.050 0.048
n=499
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
0.91 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000
0.92 1.600 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000
0.93 1.000 1.000 0.999 1.000 0.999 0.999 1.000 0.987 0.998
0.94 1.000 1.000 0.999 1.000 0.995 0.997 1.000 0.977 0.994
0.95 1.000 0.996 0.989 1.000 0.982 0.986 1.000 0.948 0.978
0.96 0.998 0.975 0.949 0.998 0.945 0.935 0.998 0.890 0.917
0.97 0.966 0.900 0.813 0.964 0.845 0.786 0.962 0.775 0.762
0.98 0.748 0.664 0.532 0.744 0.616 0.504 0.738 0.560 0.482
(.99 0.319 0.295 0.220 0.318 0.284 0.210 0.314 0.265 0.202
1.00 0.652 0.050 0.049 0.051 0.050 0.047 0.052 0.051 0.049
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Table 4: Size and Power of n(pss — 1), n(p — 1) and n(p — 1).

A=6 B=1 A=5 B=2 A=4 B=3
p pss p p pss p p pss p p
n=>51
0.50 1.000 0.997 0.990 0.999 0.988 0.978 0.993 0.966 0.961
0.55 0.999 0.991 0.975 0.997 0.976 0.957 0.984 0.941 0.932
0.60 0.997 0.980 0.948 0.992 0.957 0.924 0.969 0.909 0.894
0.65 0.988 0.953 0.891 0.976 0.918 0.858 0.936 0.858 0.826
0.70 0.962 0.903 0.798 0.932 0.849 0.765 0.877 0.781 0.735
0.75 0.889 0.812 0.674 0.847 0.757 0.642 0.779 0.680 0.620
0.80 0.739 0.669 0.509 0.694 0.610 0.483 0.618 0.545 0.474
0.85 0.510 0.463 0.336 0.475 0.434 0.334 0.426 0.392 0.328
0.90 0.288 0.270 0.193 0.270 0.254 0.192 0.243 0.238 0.201
0.95 0.133 0.131 0.100 0.124 0.130 0.104 0.114 0.121 0.109
1.00 0.044 0.045 0.040 0.041 0.046 0.043 0.039 0.044 0.044
n=100
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.55 1.000 1.006 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.999
0.65 1.000 1.000 1.000 1.000 0.999 0.999 1.000 0.992 0.998
0.70 1.000 0.999 0.997 1.000 0.994 0.995 1.000 0.980 0.989
0.75 1.000 0.995 0.987 1.000 0.984 0.976 0.999 0.949 0.962
0.80 0.997 0.978 0.938 0.996 0.947 0.916 0.989 0.890 0.892
0.85 0.964 0.892 0.789 0.952 0.835 0.756 0.924 0.756 0.734
0.90 0.741 0.649 0.508 0.716 0.602 0.485 0.681 0.538 0.472
0.95 0.302 0.279 0.204 0.291 0.258 0.199 0.275 0.239 0.200
1.00 0.046 0.046 0.041 0.045 0.046 0.042 0.042 0.043 0.046
n=499
0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
0.91 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000
0.92 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000
0.93 1.000 1.000 0.999 1.000 0.999 0.999 1.000 0.987 0.998
0.94 1.000 1.000 0.999 1.000 0.995 0.997 1.000 0.977 0.994
0.95 1.000 0.996 0.989 1.000 0.982 0.986 1.000 0.947 0.977
0.96 0.998 0.975 0.947 0.998 0.944 0.934 0.998 0.890 0.915
0.97 0.964 0.899 0.808 0.961 0.843 0.784 0.958 0.774 0.759
0.98 0.741 0.663 0.527 0.735 0.613 0.502 0.730 0.556 0.479
0.99 0.312 0.294 0.217 0.311 0.281 0.208 0.307 0.263 0.201
1.00 0.051 0.050 0.048 0.049 0.049 0.047 0.050 0.050 0.048




Moreover we also use the quantile of limiting distribution as a critical value for p and
p. Similarly we use a critical value in Fuller (1976) of the limiting distribution for pss.
Table 4 gives empirical power with the sample size n = 51, 100 and 499 and the numbers
of replications are 10,000. A-B are 6-1, 5-2 and 4-3. The size and the power are smaller
than in Table 3, because the critical values of Table 4 are smaller than those of Table 3.

Table 3-4 show that pgs mostly performs better than p and p. And there is not a
clear rating between p and j. However when {X;} is a stationary process. pss is not a

consistent estimator and converges almost surely to

(A=1)p+ B+ pP*!
A+ B

asn — 0O0.

Consequently the bias is positive since

(A-Dp+B+pB  pPH 4 B-(B+1)p
A+ B po= A+ B
_ (=pB-pltp+t..t+p" )
A+ B ’

and becomes larger as p is closer to zero and A is smaller. On the other hand p and p are

still consistent estimators of p.

4 ADDITIONAL COMMENTS

(1) Throughout this paper we assumed that {e;} and {a;} are independent stochastic
sequences if {a;} is stochastic one. However Theorem 1 can be applied to some cases that

{¢k} and {ax} depends on each other.

22



For example let {a;} be defined by
a =1 }Ek| <C,

ap =0 ‘Ekl >C,

with some constant C. This sampling scheme means that if {e;} is an outlier, Xy is not
observed. And we assume that {;} is independently and identically distributed and has

a symmetric distribution with mean 0, variance o2 and finite fourth-order moment. Then
E(arap—16k|Fr—1) = Q-1 E(erI(lex] < C)=0 a.s., (19)

where F, is the o-field generated by {e1,€2,...,6x} and I(-) implies a indicator function.
Hence {ej,agag—1£x} is a sequence of martingale differences with respect to Fr. And it is

casily shown that the covariance matrix of (Wi, W) in Theorem 1 is

1 7p
3 = o2
Tp TP
and
-1 2 n—1

1% P
=3 apap XP = =5 > Xi +0p(1),
n =] n k=1

k
where 7 = L E(e?I(|ex] < C) and p = Pr(leg| < C). Then

n(p - 1) D Tfol BdB + /7(1 — 7']))/pf01 BdB
' p f) B2dt

holds.
(2) We consider asymptotic properties of p under the assumption that {X}} is a non-
stationary process. But j is also an useful estimator of an autocorrelation function of a

stationary process. Now we assume that |p| < 1. Then

—1—= Zn—l X
- = ) k=1 N kEk+10kAk+1
Jn(/) - P) = \/~ 1 n—1

ol akaks1 X
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If {ax;k = 1,2,..} is a sequence of Bernoulli trials, then we have

n—oo

1 n—1 )
lim =" X} = EX{p*
m " Z Apagy1 AL 1P

and

1 n-—-1

. D

7= 3" Xperprararn — N(O,(EX])PpP(1 - p%),
k=1

where p = Pr(ax = 1). Hence

2

; D 1-p
Va(p - p) — N(0, 7

).

Ou the other hand asymptotic variance of \/n(p — p) is Ltﬁz—zgiz—pl [See Dunsmuir and
Robinson (1981)]. Consequently j is asymptotically more efficient than p. In order to
estimate the autocorrelation of a stationary process at lag [, we can generalize the definition

of p and p by

n Y Vgt SRDS akke
ZZ:I Yk2/ 22:1 ag

p(l) =

and
y S Y Yy
p(l) = ~57_7L—~t~

fo kY
respectively. Asymptotic properties of p and p are investigated by Yajima and Nishino
(1996).
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APPENDIX

A Proof of Lemma 1

Let X,(t) be —\}; 2[::]1 E"%gs. Then since the tightness of {X,(t)} is proved in the same
way as the proof of Phillips and Durlauf (1986) Theorem 2.1, it suffices to show that
the finite dimensional distributions of X, (t) converge weakly as n — oo to those of a

d-dimensional standard Brownian motion B(t).
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We consider arbitrary linear combination Yy, (1) = N Xn(t) = ﬁ Z[Sgll vs(say) with
NA = 1. {v,} satisfy the condition of Lemma 1 for d =1 and by univariate invariance
principle of Herrndorf (1984) Corollary 1 we obtain Yy(1) £ V(t) as n — oo, where V (#)
is a 1-dimensional Brownian motion. Writing V(t) = N'B(t), we obtain X' Xn(?) 2 N B(t)
as n — oo for arbitrary A with M\ = 1. By the Cramer-Wold device we show that the

finite dimensional distributions of X,(t) converge weakly as n — oo to those of B(t).

B  Proof of Lemma 2

See Chan and Wei (1988) Theorem 2.4 (ii) for the proof of (1).
We only show the outline of the proof of (ii), since the proof is similar to that of
Chan and Wei (1988) Theorem 2.4 (ii). By the Skorokhod representation theorem, there

is another probability space 1 and DI0, 1]-valued random variables U™, V™ such that

”(Unv Vn) - (le WZ)“oo - 0 a.s. (20)
and
vy R (UnVa) (21)

D . . C . .
Let ~ denote equivalent in distribution. Defining

= T () (v (5 ()

and

‘ 1 n—1 kN2
G, = V—H;Un (E) Ckt1s
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we have

(U V™6™ R (UnyVa,Gn) (22)

In order to show(11), it suffices to show that
1
R / W 2dW,. (23)
0

By (20) and Egorov’s theorem, for given € > 0, there is an event (), C { such that

P(1.) > 1—¢€and
sup{[|(U™ (@), V")) — (Wi (@), Wa(@))lleo s w € A} =8, — 0. (24)
Note that 6, is a sequence of constants. We can choose integers N(n) — oo such that
N(n)6,> -0 and N(n)/n—0. (25)

For each n, we can further choose a partition {to,...,tn(n)} of [0,1] such that

* . *

, N (n
0=ty <ti(n) =" <ta(n)= 2 < .. <iywn)=—2L=1, (26)
n n n
maz{|tigr — ti} 10 <P < N(n) =1} = o(l). (27)
We first show that
N(n)
Gr= 3 UM (te1)? (VP () = V7™ (te=1)) + 0p(1)- (28)
k=1
We set that
N(n)
Jn= G =3 U™ (teoa) (VP () = V7 (te-1)) -
k=1
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Using the fact that (4, () are martingale differences and (10), we have

o = o8 (1) o) (0 (1) (D)
N(n) nj-1

Y EK ( 2—Un(tk~1)2> (Vn("ff)

k=1 i=nj}_,

|

-V, (=
-V, |-

()]

N('n '/Lk—'l r 1/ 2 2
< = Z > E (Un (—) - Un(tk,1>2)}
k=1 z—nk 1 L n
e N il T i 4 i 2
= - Z Z E (Un (") - Un(tk-—l)) + 4Un(tk—1)2 (Un (') - Un(tk—1)>
n n n
k=1 i=nj}_, L
c N (n) n;:l ' ) 4 ‘ ) . \
S PIPY (= g7 + 3 = o Pt + 4 = noa )|
=1i=n}_,
c Y * x\2 * *  \3_4 * ko Y2% 4
< 3 Z [5(7% —nf_1)*T 4 (nf —nj_y) 0" +2(ng - ny_1) ng_10
k=1
N(n) * N(n) *
et Mg _ e
< %m‘wk“k ~ tg-1l kzl (n - —k—n—l) + cotmazglty = tpa|® k}; ( 1)
{n) n* n}z X
+2cotmazelty — tiotl 3 (_nﬁ _ 7:) ~ o(1). (29)
k=1

The last identity of (29) is given by (27) and Zivz(’;) (T—;Z‘ - ?—Zn;‘—) = 1. Thus (28) is shown.

Next we show that

N(n) N(n)
Z U™ (te1)? (V™ (1) = V™ (1)) = Tg, p Wi (k- D (V™ (1) = V™ (tk-1)) + 05(1)-(30)
k=1

We obtain the following inequality

N(n)

g, Y (U (k) = WA (te-1)") (V" (t) = V" (t=1)) I
k=1
N(n)
< ATy, S (Un () = Wa (4mn)?) (VP () = V7 () P

k=1

N(n)
+20I. 3 2(U™ (te-1) = Wi (tr-2)) U™ (Bp-0) (V™ (t) = V7 (te-1)) I*

k=1
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N(n) N(n)
< 2N(n)8* > (VP (te) = V™ (k- O 8N D U™ (tee) (VR (k) = V™ (k- 1))

k=1 k=1
Hence
N(n) .
Ellg, 3 (U7 (er) = W (tmn)”) (V7 (1) = V7 ()]
k=1
N(n) N(n)
< QNn)(Sn CL(tk—-tk 1)+8N(TL(5 Cztk 1tk—tk 1) 0(1)
k=1

By the Chebyshev inequality, (30) is proved.

Finally we have

N(n)
I, S~ Wi(te1)* (V™ (t) = V™ (tk-1))
k=1
N(»)
= I, 3 V) (W)’ = Walter)?) + Ta W1V (1)
k=1
= T > Wa(tk) (I’Vl(tk)2 - Wl(tk——1)2> + IS‘ler(l)QWz(l) + 0p(1)
k=1
N(n)
= Ig > Witko1)? (Wa(tk) = Wa(te-1)) + 0p(1)
k=1
= g, /01 Wi(t)?dWa(t) + op(1). (31)

Summation by parts gives the first and third identities, the second identity is shown by a

similar method to (30) and the last identity is given by the fact that

N() o, 2
E {5_: /t ) AT ACY dWQ(t)}
- yEU [Wi(thr)? —Wlt)}dWZ(tr

N{(n)

2
Z 2F [ t {Wi(tgey) — Wi (1)} de(t)]

<
N(n) te 2
+ > 8E [Wl(tk_l) / {Wi(tk-1) — Wi(8)} dwz(t)]
k=1 th—1
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N(n) N(n) t
< Geot Z/ (t = tp- 1)2dt+8004 Z tho 1/ (t —tg—1)dt = o(1)
tpe1 Th—1

The last inequality is given by Karatzas and Shreve (1991).

Combining (28), (30) and (31), we show (23) and therefore proved Lemma 2 (ii).

C Proof of Theorem 1

First we have

LS Xk k41 @554
oIS XE 4 o)

Defining U, (t) = \/_ Z[Tl_tl g;and V() = 7= Z [n] e,a, 1a;, we have that (U, V,) converge

n(p-1)= (32)

in distribution (W, W,) by Lemma 1. Hence the assertion (8) of Lemma 2 (ii) is satisfied.

Then by Lemma 2 (i) and continuous mapping theorem, we have
1 n-—1

"7‘1: Z Xk£k+1akak+1 _'—> / WldWQ,

k=1

and
Ly~ xz 2 [z
= Z P Widt.
k=1
Orthogonalizing (W, W;), we define B and B by

1
B = —W,
VA N! !

011 g12
e <W2 - =W ).
011022 — T4 011

Then (B, E) is a two-dimensional standard Brownian motion. Consequently we have

012 fO BdB + /011022 — 0'12 fO BdB (33)

Vo1 fo Bt

B

i

n(p—1)
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D  Proof of Lemma 3
Herrndorf (1984) defined the coefficients of strong mixing by

a(i;€) = swpan(i:6), 1= L2,
where
an(i;€) = sup{|{P(AN B) = P(A)P(B)| : A€ o(€p,1 S k< D), Beo(§e,l+is k < n),
1<l <n—1}
Similarly we define a(i;a) and an(i; a) by replacing {€x} by {ax} respectively. Let
A 4={all finite unions of disjoint rectangles A, X A,
with A, € o(ag,1 <k <l)and A, € o(e, 1 <k < D}, (34)

and

Fu=0(As) (theo — field generated by A4), (35)
noting that A4 is a algebra. Similarly define Ag and Fp for sequences {ag, l+i—1 < k < n}
and {ex,l+1 <k <n}.

First we shall show
|P(AN B) — P(A)P(B)| < aq(i;a) forevery A € Aa, B € Ag. (36)

For any A € A4, we can choose {4; = Agj X Aegj5 1 < J < 74y Agj € olar;1 <k <

I)and A € o(ex; 1 < k <1)} such that

A= 7‘@ Aj,
=1
A NAg; = ¢ for 1 # 7. (37)
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We can choose in the following way. By (34) we have

K
A= jL_Jl A%, where A} = Al X AL,

A:rﬂA;:qbfor N
Then we have
A = ﬁu{ U ’>x< N A')m( N A’°>]}
' p=1 5 | \hmigpip O hemin poenip " h=iprrize O
TA
= U A4
2
where U; means the union of all of the sets satisfying
{'il,...,ip}u{ip+1,...,i["} = {1,...3[(},
{ilv -'-7ip} N {ip-ﬁ-ls "'aiK} = ¢7

and 74 = 25 — 1 and A; implies a product set

U ') X n A’)m( N A’C)].
<h=i1,..‘,ip “h) [(h:il,.“,ip ch hippyize O

Then A;j satisfies (37).
Similarly we can choose for any B € Ag, {B; = Baj X Bej; 1 < j = 78, B,; €

olag;l+i—1<k<n)and B € o(er;l+ 1 <k < n)} such that
B = U Bj,
J=1
BeiﬂBej = ¢ for 2#]

If we note that Y04, P(Ae;) = P(Uj2; Ag) < 1, Y72, P(B.j) = P(UL, B.;) < 1 and

{e)} are independent, we have
A THB

|P(AN B) — P(A)P(B)| = |y 3 [P(4; N By) = P(A4)P(By)]l

J=1k=1

33



TA TB

= DD [P(Aaj N Bak) - P(A4j)P(Bak)|P(Aej)P(Ber)]

j=1k=1
TA THB
< 3> |P(Agj N Bak) - P(Auj)P(Bak)|P(Ac;) P(Bek)
j=1 k=1
7A B
< ap(i-1a) ZP(Aej) [Z P(Bek)] < (i - 1ja).
j:]_ k=1
Hence (36) is proved.
Second we shall show
|P(AN B) — P(AYP(B)| < an(i— 1;a) for every A € Fa, B € Fa. (38)

By Chow and Teicher (1988) Theorem 1.5.3, for any € > 0 (fixed), for every A € Fa,
B € Fg, there exist A, € A4, B, € Ag, such that P(AAAL) < &, P(BAB;) < g, where

A means symmetric difference. Then
|P(ANn B) - P(A)P(B)| < |P(AL N B.) - P(AL)P(B))| + 2P(AAAL) + 2P(BAB))
< |P(A.n B~ P(A)P(B)| + ¢
By this inequality and (36), we show that for any € > 0, for every A € Fa, B € Fg,
|P(AN B) — P(A)P(B)| < an(i — 15 a)+ €. (39)
Hence (38) is proved.

Last, noting that o(£,,1 < k <1) C Fa and o(&, [+ 1< k < n) C Fp, we have

an(i; €) < sup{|P(AN B) = P(A)P(B); A€ Fa, BeFp, 1< 1< n—i} < anli=1 a).
(40)

Hence
a(i;€) < ali-la) (41)
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E Proof of Theorem 2

Let Fi = a(ay,e1,-..,ak,ex) and ug = ag — E(ak|Fy—1) = ax — {po+ (p1 — po)ar—1}. Then

we have
(A 1) L\/ﬁ Znﬂl X]?akuk-kl -711, ZZ-—l ap \/— Zk 1 AEUE41 (42)
n(p—1)= .
nQ k= 1‘1ka n Zk 1 Ak Qk+1 Zk 1 AkCk+1
And
n—1
— Zak 2 and Z apari1 —3 wp1, (43)
k 1

since {ax} is a strong-mixing process. From

1 ’
E {ﬁ Z(ak - W)X,f} =o(1)
k=1

and Chebyshev’s inequality, we have 1 Y3_; ap X7 = 7% 2o%; X7 + 0p(1).

Let £ = /E(ag_qur)? = /(1= p1);r and ( = Eﬁzélw“—‘L Then (e, (x) is a sequence of
martingale differences with respect to Fy. Let U, (t) = ﬁﬁ Zf[km]l ek, Va(t) = f Zk | Cke
By Lemma 1 we have (U,,V,) LS (W1, W;). Therefore we obtain by Lemma 2 (ii) and

continuous mapping theorem

L i X} o [y Un(t)2dt o? [} Widt
LS Xtagugyy | = | 0% \/iﬁ S Un(£) ket = o2 [J W2dW, | - (44)
\/‘ YRI1 Oktke £ Va(1) + 0p(1) € Joy dWs
Substituting (43) and (44) into (42), we completed the proof. '
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¥ Proof of Theorem 3

By definition we have

D Yk‘Yk’+17lz D k=1 ‘lk - ZZL Yo TkOkt1

n(p—1) =
LY =Y sty akak+1

(45)

2
First, we shall give some relations used in this proof. Noting that E [;117 S het (ak — XL/I') X,f] =

o(1), we obtain by Chebyshev inequality,

f = f:&% + 0,(1). (46)

In the same way, we have

1 , I l
= ViVip = —
n k=1

}: X Xpp1 + op(1). (47)

Moreover we have
1 n 5 1 n*M )
;{ikz:Xk = ngXk +0p(1)
=1 k=

nx—1 M iM+m 2
= = Z 2( M+ L 53’) + 0,(1)

1=0 m=1 J=itM+1
*M nkx-—1
=1
Similarly
1., 1., 49
EXn = ;Xn*M + OP(l)' ( )
And we note that
r+1
LakwnLJrZam, (50)
m=1
and
Z arap_1 =n"K + Z Gy O 41+ (51)
m=1
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Then from (46), (48) and (51), the denominator of (45) is

( f:xk + 0p(1) ) [ (n K+ Z amamHﬂ

m=1
_LEw n*
=573 Zxk+op(1 lem Z Xhr +0,(1
k..

Next, by (50) and (51), the numerator of (45) is

1 n-—1 1 n 1 n 1 n—1

2
=Y ViYepi= Y ap— = Y Y= ararp
(L) gy s "ies

n*

n—1
= = [Z (Lakak+1Xka+1 — I(ak.X,f) - ]{aani!
k=1

n—1 r41

1 n—1 T
2 L YiYi Z Am ) Z Yk2 Z Ay G 41
k=1 m=1

n* n-—1 ! 7 n*
= ——7 {Z [(Lakak+1 K le)Xg + Lakak+1Xk5k+1]} - ﬁl\ (L,~+1X72L

1 - K X L
'_5 Z (M A — ‘Z amam+1> + Op(l)

m=1 m_—l
This last equality is obtained by (46), (47) and 5 X2 = 0,(1). If we put
T+1

Z am — L Z Um Qm4-1,

by (48) and (49), the right hand side of (53) is equal to

* n—1
n . ,
~ { S [(LakakH — Kap) X7+ Lakakﬂka} }

nkx—1

1
'—""—I\(ZT+1X *M+Q7‘ nZ Z X -+ Op(l)

r=1

Now we evaluate the first term of (55). First we have the following relations,

M

Z [Lamam—!-l - —Kam]» zzM =0,

m=1

n2 Z Z (Lamamser — Kag )( Z €j)2
1=0 m=1 j=tM+1
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(53)

(54)

(56)



*n-l M

=3 }: Z(LamamH Kan,)mo? + op(1), (57)
1=0 m=1
4: n—1 n* n —‘}. M

2 Z Lakak+1XkEk+1 ;{2‘ Z Z Lama'm+1XiM€iM+m + Op(l)v (58)

1=0 m=1

and

n* n*M+r n* T

— S (Lagarsr - Kap)XE = ;ﬁxf;. v Y (Lamamsr — Kan) +0p(1). (59)
k=n*M+1 m=1

By (56), (57), (58) and (59), the first term of (55) is

* n—1
n ) ,
) {Z {(Lakak—{-l - K ak)X% + Lakak+1X}c€k+1]}
k...
n* n*-1 M iM4+m thm
= — Z Z (Lamamsr — K am)2Xim Z €; +( Z Ej)z]
N 520 m=1 j=iMA41 j=iM+1
n* n*M+r n* n--1
+“-§ z (Lamam+1 - K am)Xk + Z Lakak+1stk+1
n k=n*M+1
n* n*~1 M iM+m
= — Z Z 2X;m(Lamamer — K am) Z g + Lty -10m XiMEiM+m
" 20 m=1 j=iMA+1
* n*-—-1 M T
Z Z(Lamam+1 - K ozm)mor + -X2 M Z(Lamam+1 — Ka,,) + o0p(1).
=0 m=1 m=1
(60)
If we put
M tM+m
Vi1 = }: [2(Lamams1 — Kar) Z £+ L Gm—1EiM+m) (61)
m=1 j=tM+1
and
1 M
R = -"M" Z (Lamam.l_l - Kam)m, (62)
m=1
(60) is equal to
n* n*—~1
nz > Ximvin M+ -—X%M Z(Lamam+1 — Kan) + op(L). (63)
1==0 m=1
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Now, substituting (63) into (55), we can rewrite the numerator of (45) as

x n¥—1 n*—1
mn
71,‘2 Z Xim Vi1 + _"“Ro'zM + Qr [ Z X M] + Op(l)
=0 1=1
n*2 1 n —1 n ——1
= Z Xinv vig1 + Ro®’M + Q. ( — Z X3, )} + 0,(1). (64)
1=0

Then substituting (52) and (64) into (45), we have

n(p~1) =
LS5t Xing viga + RPM + Q (2 T X3y — & X20y) + 0,(1)
LKL T XAy + 0p(1) '

(65)

Finally we set that uw; = Y.M_, Eli-nM+m and F; = (€15 ey EM,y s EiM).  Then

(ui,v;) is a sequence of martingale differences with respect to F;. Defining Un«(?) =

\/n_*l"ﬁﬁ ZE” 1] u; and Vs (t) = \/—wQ El K 10;, we show that (U,«,V,+) converge in dis-
tribution (W;, W) by Lemma 1, where the (i, j)-components of the covariance matrix of

2
(W, Wy)are o1y = 1,000 = F {Z%:l vm] =and oy =091 = F [E%:l wm YoM, Um] =

2 R+ 4X. Then using Lemma 2 (i) and continuous mapping theorem, we can see that
T Xy Jo Widt
* D *
El’*‘ S Xy vigr | Mo? JIwaw, | asn® — oo (66)
] Xz*]%( W1(1)2
From (65) and (66), the proof is completed. i
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