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Abstract

We discuss generalization of elliptically contoured distributions to densities whose
contours are arbitrary cross sections in the framework of group invariance. This gen-
eralization leads to much richer family of distributions compared to the elliptically
contoured distributions. The basic property of the elliptically contoured distribu-
tion is the independence of the “length” and the “direction” of the random vector.
We show that in our generalized framework this independence still holds if we de-
fine the length appropriately. Our examples include “star-shaped distributions” and
their generalization to random matrices.

Key words: Elliptically contoured distribution, star-shaped distribution, group
action, invariance, relatively invariant measure.

1 Introduction

Consider a continuous elliptically contoured distribution in RP . Tts density f(x) is
written as

f(z) = h(z'S "), (1)

where z is considered as a p dimensional column vector and ¥ is a positive definite
matrix. Let

r(z) = ('L 'z)"/?

be the Mahalanobis distance. Then the “length” r(z) and the “direction” z/r(x) are
independent under (1). Furthermore by changing h in (1) we can construct ellipti-
cally contoured distribution with arbitrary continuous distribution of r(z). In this
sense the family of elliptically contoured distributions is a generalization of the multi-
variate normal distribution. Furthermore because the distribution of z/r(z) is com-
mon to all the elliptically contoured distributions with the same Y , distributional results



concerning x/r(z) derived under the assumption of normality remain to hold for all
elliptically contoured distributions. This property is often referred to as “null robust-
ness” and has been extensively discussed in literature (see Kariya and Sinha (1989) for
example). See Fang and Anderson (1990), Fang and Zhang (1990), Anderson (1993), or
Gupta and Varga (1993) for comprehensive treatment of elliptically contoured distribu-
tion.

Note that elliptically contoured distribution differs from the multivariate normal distri-
bution only in the distribution of the one dimensional length. Therefore in the framework
of elliptically contoured distribution we can not consider non-normality which is exhibited
in skewness or asymmetry of distributions.

For illustration consider the following density in R*.

Example 1.1
f(z) = f(x1, 1) = h(max(—z1, —T2, 21 + T2))- (2)

The contours of f(x) defined by
¢ = max(—x1, —T2, 21 + T2), c>0, (3)

are concentric right triangles of Figure 1.

‘)

x1

Figure 1: Triangle Contours

The contours are no longer symmetric with respect to the origin. Now define the
length of the random vector by

r(x) = max(—z1, —Z2, T1 + T2).
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Then our Theorem 2.1 shows that r(z) and z/r(z) are independent under (2). Fur-
thermore as in the case of the elliptically contoured distribution we can assign arbitrary
distribution to r(z) by specifying A in (2). In this sense (2) is a generalization of the
elliptically contoured distribution to the case of contours which are not ellipses. Actually
we can have arbitrary star-shaped sets as contours of the density as fully discussed in
Section 3.

The independence of r(x) and z/r(z) is a consequence of the general result on
factorization of a relatively invariant measure into equivariant and invariant parts. The
group action we consider in Example 1.1 is the action of the multiplicative group R of
positive reals:

g(xhx?) = (gl'laga;?)? g € R: (4)

The orbits are rays starting at the origin and the triangle considered in (3) is a particular
cross section. In Section 3 we will show that the independence of r(z) and z/r(z)
in Example 1.1 is a consequence of the factorization of the two dimensional Lebesgue
measure which is relatively invariant with multiplier x(g) = ¢° under the group action
(4). '

The group actions considered in this paper are free actions. In the case of non-free ac-
tions the equivariant has to be defined as left cosets with respect to isotropy subgroups and
this considerably complicates the general theory. Generalization of the present theory to
the non-free action is fully treated in our subsequent paper (Kamiya and Takemura, (1996)).

Organization of the paper is as follows.

General theory of cross sectionally contoured distributions is developed in Section 2.
In Section 2.2 we present a proof of the factorization of a relatively invariant measure
into equivariant and invariant parts based on factorization theorem of sufficient statistic
for a group family of distributions. Construction of general cross section and associated
contoured distribution from a standard cross section is discussed in Section 2.3. Further-
more results on distributions of the invariants with respect to two different cross sections
are given. In Section 2.4 we discuss calculation of Jacobians concerning cross sectionally
contoured densities with respect to the Lebesgue measure on Euclidean sample space. In
Section 3 we introduce star-shaped distributions on RP and discuss their properties. In
Section 4 we generalize star-shaped distributions to random matrices. In particular we
discuss distributions of random matrices involving Gram-Schmidt orthonormalization in
Section 4.1 and generalization of matrix valued beta distributions in Section 4.2.

2 General Theory

In this section we develop a general theory of cross sectionally contoured distributions.
The primary example we keep in mind is the star-shaped distributions in Section 3.
However it is advantageous to develop a general theory first. General theory allows us to
treat more difficult examples in Section 4 and will be a basis for subsequent generalization
to non-free actions (Kamiya and Takemura (1996)).



2.1 Cross section and associated equivariant function

Consider a group G acting from left on the sample space & . We consider the case that
the action of G is not transitive, so that the orbit space is not trivial. Let r be an
equivariant function from X to G':

r(gx) = gr{z), ge G, reX. (5)

We first establish the one-to-one relation between the equivariant function r(r) and
its associated cross section in a series of lemmas.

Lemma 2.1  Let r(x) be an equivariant function from X to G. Fizx g€ G . Then
the set

Z, = {a | r(x) = g} (6)

18 a cross section.

Proof. Suppose that there exist two different points z,,72 on an orbit such that
g = r(z;) = r(zz). Since they are on the same orbit there exists h € G such that
zo = hx; . Therefore 7(z;) = r(x3) = hr(z;) . Canceling r(z;) we obtain h = e, the
identity element of G, and z, = z, contrary to our assumption. Therefore Z, meets
each orbit at most once. Now from an arbitrary orbit pick a point x and let h = r(z) .
Then r(gh~'z) = g and this show that Z, meets each orbit. |

Given r(x) we call
Z=2,={x|r(z)=c¢}

the unit cross section associated with r(z) .

For x € X let

z=z(z)=r(x)"'z

then z(z) € Z is invariant. More precisely z(z) is a maximal invariant, i.e. z(x1) = 2(x2)
implies that z; and z, are on the same orbit (cf. pages 30-31 of Eaton (1989)). Consider
the pair (r,z) = (r(z),z(z)). By this correspondence between z and (r,z), & isin
one-to-one relation with the direct product G x Z of G and Z:

X & GxZ.

We call 7= r(z) the equivariant function (or part) and z = z(x) the invariant function
(or part) of this representation, and the decomposition

T =rz, reG, z€ 4,

is referred to as orbital decomposition (Section 2 of Barndorff-Nielsen et al. (1989)). With
star-shaped distribution in mind we sometimes refer to r(z) as length and 2(z) as
direction of x .



Remark 2.1 For any ¢, 7(z) = r(z)g™! is equivariant and the unit cross section
associated with (1) coincides with Z, in (6). This implies that there is nothing special
about the unit cross section. However because of the convenient product representation
X < G x Z, we often work with the unit cross section.

Zy and Z,, are disjoint for g1 # g2 and X = Ugeq Z, forms a partition of
X into disjoint cross sections. We sometimes refer to these cross sections as family of
proportional cross sections.

We now show that the existence of 7 satisfying (5) implies that the group action is
free.

Lemma 2.2 If there exists an equivariant r from X to G, then the action of G 13
free, 1.e. for any x
gr=1z = g=¢

where e is the identity element of G .
Proof. Suppose gz = z . By (5) we have

r(z) = gr(z).
Since 7(z) € G we can cancel r(z) and obtain g=e. 1

So far we have discussed how a cross section Z, is obtained from a given equivariant
function 7(z). Sometimes a cross section Z is given first and we need to construct the
equivariant function r(z). Because our action is free, this is straightforward.

Lemma 2.3 Let Z be a cross section. For x choose z € Z on the same orbit and
define r(z) € G by
z =r(z)z. (7)

Then r(x) is equivariant. Furthermore Z is the unit cross section for r(z) .

Proof is obvious and omitted. Note that r(x) in (7) is uniquely defined because of
free action.

The above lemmas do not require any topological or measurability assumptions. Now
we start making regularity assumptions. We assume that X’ is a measurable space and
we only consider measurable functions on X . Let m be a relatively invariant measure
on X with multiplier x :

m(gA) = x(g)n(4), ACX. (8)

We consider distributions absolutely continuous with respect to 7 with the density func-
tion f(z). We call = the dominating measure.
Generalizing (2) of Example 1.1 we make the following definition.

Definition 2.1  Distribution F on X with density f with respect to m is called
cross sectionally contoured (with the associated equivariant function r(z) ) if for some h

f(x) = h(r(z)). 9)



Here we list some further regularity assumptions we make on G and 7. For the
terminology of these assumptions see Chapter 2 of Wijsman (1990).

Assumption 2.1

1. 7 is a o-finite measure.

2. G is a second countable locally compact group.

2.2 Independence of the equivariant and the invariant

The basic result in our framework is the independence of the equivariant r = r(z) and
the invariant z = r(z) 'z for cross sectionally contoured distributions. Although this
result is a straightforward consequence of the factorization theorem of relatively invariant
measures (see Chapter 8 of Wijsman (1990) for example) we present our own proof based
on factorization theorem for sufficient statistic.

We use the following basic lemma by Eaton (1983), Proposition 7.19. (Theorem 4.1
of Wijsman (1986) is a version of this lemma.)

Lemma 2.4 Let P = {Py,0 € O} be a family of distributions on a sample space X
with sufficient statistic T : X — T . Let G be a group acting on X as well as on T .
Suppose that T is equivariant, the action of G on T s transitive, and P is closed

under the action of G . Then T is independently distributed of any invariant statistic
under P .

Using Lemma 2.4 we prove the following theorem.

Theorem 2.1  For a cross sectionally contoured distribution r = r(z) and z =
r(z) 'z are independently distributed. The distribution of z does not depend on h in
(9) and the distribution of T is given as h(r)m.(dr) where m, is a relatively invariant
measure on G with multiplier x in (8).

Proof. Here we give a proof for the case where h is everywhere positive on G . The
case of h with smaller support requires technical arguments, which we give in Appendix.

We introduce a group family of distributions based on f(z) = h(r(z)) with parameter
g€ G. Let w=gz,then n(dw) = x(g)n(dz), r(w) = gr(r), and the density of w
with respect to 7 1s given as

1o,
fw;g) = ;(—gjh(g r(w))-

Consider the group family of distributions

{f(z;9) 19 € G}

which is a dominated family with respect to 7. By factorization theorem on sufficient
statistic we see that r(z) is sufficient for g. Since z = r(z)~'z is invariant, r(z) and
z(z) are independent by Lemma 2.4.



Now we can write h{r)m(dz) as
h{r)r(dz) = h(r)m(dr)m,(dz). (10)

where h(r)7,(dr) is a probability measure on G and 7.(dz) is a probability measure
on Z. Since h{r) is positive everywhere, h(r(z))w(dz) and m(dz) are absolutely
continuous with respect to each other. Therefore we can divide both sides of (10) by h(r)
and obtain

n(dr) = 7, (dr)m.(dz). (11)
Since m, is a probability measure we have
m(A) = 7 (A)m(2) = 7(AZ),  ACG, (12)

where
AZ ={gzlg€ A, 2€ Z} ={z|r(zx) c A}.

Therefore 7, does not depend on h . Since 7(dz) itself does not depend on h, we see
from (11) that m,(dz) does not depend on h either.
It remains to show that =, is relatively invariant with multiplier x . Note that

m(d(gz)) = 7, (d(gr))m.(dz).
On the other hand
m(d(gz)) = x(g)m(dz) = x(g)m:(dr)m.(dz).
Canceling 7,(dz) we obtain
m(d(gr)) = x(g)mr(dr).
N

In the above proof we derived the factorization (11) of the relatively invariant mea-
sure 7 under the assumption that there exists a cross sectionally contoured distribution
h(r(x))n(dz) . Because the factorization of w(dx) is of independent interest, we state it
as a corollary.

Corollary 2.1  Let w be a relatively invariant measure on X with multiplier x .
Suppose that there exists a Borel subset A of G such that

0 <7(AZ) < o0,

where AZ = {z | r(z) € A} . Then 7 can be factored as (11), where . is a relatively
invariant measure on G with multiplier x and 7, is a probability measure on Z .

Proof.  Let I4(r) denote the indicator function of A. Then
f(z) = La(r(2))/7(AZ)

defines a cross sectionally contoured distribution. Therefore 7 can be factored as shown
in the proof of Theorem 2.1. 1



Remark 2.2 As mentioned above the factorization of m under certain reqularity con-
ditions is a well established fact (Section 8.4 of Farrell (1985), Chapter 8 of Wijsman (1990),
Section 5 of Barndorff-Nielsen et al. (1989)) and our Theorem 2.1 1s a direct consequence
of this factorization. We think that our proof is of some merit since it 1s primarily based
on sufficiency rather than group theoretic argument.

2.3 Construction of general cross sections and associated cross
sectionally contoured distributions

In group invariance arguments researchers tend to look at nice cross sections. Often these
cross sections are expressed in the form of convenient maximal invariants. For example
consider the action of the multiplicative group R of positive reals in (4). We usually
take the ordinary Fuclidean distance as length and the unit circle as associated cross
section. The advantage of the unit circle is that it has the additional invariance property
under rotation.

Our viewpoint in this paper is that restricting our attention to these standard cross
sections severely narrows the distributions we investigate. However a standard cross
section is still useful as a building block of more general cross sections.

Suppose we are given a cross section Z C X . An arbitrary cross section can be
constructed as follows.

Lemma 2.5 Let s be a function from Z to G . Then
Y ={s(2)z|z€ Z} (13)
is a cross section. Conversely every cross section can be written in this form.

Proof. s(z)z is on the same orbit as z. Since Z contains exactly one point from
each orbit the same holds for Y . Therefore Y is a cross section. Conversely assume
that Y is a cross section. Fix a particular orbit and pick y € Y and 2 € Z from this
orbit. Then there exists s(z) € G such that y = s(z)z . Therefore ¥ can be written as
(13). |

We see that a general cross section is obtained by arbitrarily moving the point z € Z
by a member of G for each orbit.

In Lemma 2.3 we discussed how the equivariant function can be constructed from a
given cross section. Let r(z) and g¢(z) be the equivariant functions associated with Z
and Y respectively. Each point = € X has two different representations

z = r(z)z(z) = ¢(z)y(z).

Let us confirm how these equivariant functions are related to s(z) in (13). For y = s(2)z
we have

e = q(y) = q(s(2)2) = s(z)a(2)
and hence s(z) = ¢(z)~', which means that

Y = {y(z) =q(z) 'z | 2 € Z} = {y(z) = q(x) 'z |z € X}.

8



Note that
g(z) = q(r(z)2(2)) = r()g(z(x)) = r(a)s(=(0) "
Similarly we can show that s(z) = r(y) and
={z2y)=r(y) 'y |lye Y} ={z(z) = r(z) o | xe XY

The next theorem gives a class of cross sectionally contoured distributions associated
with the general cross sections.

Theorem 2.2 Let = have cross sectionally contoured density h(r(x)) with respect
to the relatively invariant dominating measure m . Let q(x) be an equivariant function.
Then the density function of the random variable

w = r(z)g(x) 'z = r(z)g(z(2)) ' z(x) (14)

with respect to m 1s given by

h(g(w))A(r(w) ™ q(w)).
Here A is the right hand modulus of m, :
mr(d(rg)) = A(g)m(dr).
Proof. For AC X let
Za={r(zx) 'z € Z|ze A}
and
A(z) ={g€ G| gz € A}.

Then one.can write

A= A@{z}

Z2EZ A
which is a disjoint partition of A . Note that

La(z) = Iz, (2(2)) La(a(ay (7 (2))-

Then the distribution of w is

Pwed) = L | IA<r<x>q<z<x>r"z(x))h(«r(x))w(dx)

i
\
SS

>
\
—
2
&
—~~
=
»Q

2) ()T, (dr) ). (dz)

- /Zszz /G Tao(ra(z)™)hira(=)™ a(2) Ala(=)m (dlra(2)~) )ms(d2)
= [ 1G(], IA@rh(rq(z))A(q(z))m(dm)wz(dz)

= [ [ 1atr2)hlatr2) A () () (dr)7. (dz)

= [ Ia@h(a@)Alr(@) ™ a(@)n(da).



Remark 2.3 The transform (14) can be decomposed into the equivariant and invariant
parts:
{q(w) = r(x).
y(w) = g(=(x) ' 2(a).

v and w are one-to-one. The inverse transform of (14) is easily shown to be

z = g(w)r(y(w))”'y(w) = gw)r(w) ™ w,

or

By Theorem 2.2, when h(r(z)) is a density function with respect to 7, we can define
a family of distributions dominated by 7 :

{f(z;9) = ha(2)A(r(z) 'q(2)) | ¢ € C} (15)

or more generally

{f(z;9,9) = —(—jh(g"IQ( )A(r(z) 'q(x)) | g € G, g € C}, (16)

where C is the set of all measurable equivariant functions from X to G . The distri-
bution given by (15) or (16) is a cross sectionally contoured distribution because it has
the cross sectionally contoured density h(g(z)) or x(¢g) 'h(g 'q(z)) with respect to the
relative invariant measure on X’

7(dx) = A(r(z) ' q(z))m(dx). (17)

Note that 7 has the same multiplier y as 7, and that # and m are absolutely
continuous with respect to each other because

0 < A(r(z) q(z)) < oo

Next we will focus on the distribution of y = g(z)~'z when the distribution of = is
cross sectionally contoured with 7(z) as the equivariant function. Applying Theorem 2.1
to the probability measure derived in Theorem 2.2 we obtain the following.

Theorem 2.3 Let = have cross sectionally contoured density h(r(x)) with respect
to . Let q(z) be any equivariant function with the associated cross section Y and let
z=qy, ¢E€G, yeY, bethe orbital decomposition.

(1) The measure T has the factorization

m(dz) = mr(dg)my(dy), (18)

where 7, is the relatively invariant measure on G with the multiplier x such that
h(q)m.(dq) is a probability measure on G and my(dy) is a measure on Y. my
does not depend on h .

10



(i) The distribution of y(x) = g(x)~'z is written as

7iy(dy) = Ar(y) " )my(dy). (19)
Furthermore y(x) and r(x) are independent.

Proof. Let w = r(z)q(x) 'z . By applying Theorem 2.1 to the probability measure
h{g(w))7(dw) of w we have the representation

7(dw) = 7g(d(q(w)))Ty(d(y(w))), (20)

where the distributions of g(w) and y(w) are given by h(q)%,(dg) and 7,(dy) , respec-
tively. Note that #, does not depend on h. Since g(w) = q(r(z)q(x)"'z) = r(z) , the
density function of ¢(w) has to be identical to that of r(z), namely

h(q)7e(dg) = h(q)m,(dg). (21)
If h(g) >0 a.e.on G, we have
7q(dg) = m(dg) (22)

directly. Otherwise we can derive (22) from (21) using the same argument as in Appendix.
Writing z instead of w in (20), from (22) we have

7(dx) = 7, (dq)7y(dy) (23)
with ¢ = q(z), v = y(z) . On the other hand from (17)
i(de) = A(r(z)'q(z))r(dz)
= A(r(y) Hn(d). (24)

Comparing (23) and (24) we can write m(dz) as in (18) where m, is the measure on Y
satisfying (19). m, does not depend on h , since 7, does not either.

Because of
1

y(w) = q(w)™'w = r(z) 'w = g(z) 'z = y(z),
y(z) = q(z)"'z is independent of g(w) =r(z), and 7,(dy) is the probability distribu-
tion of y(z) . ]

Remark 2.4  In many applications it is easier to find the factorization (18) than (20)
(or equivalently (23)). Theorem 2.3 is useful in that case.

By (19) we see that we can construct various distributions on Y by appropriately
choosing the equivariant function r(z). Here we can ask the following question: “Given
a density f(y) on Y is there a cross sectionally contoured distribution with the den-
sity h(r(z)) such that the distribution of y(z) = q(z)™'z coincides with f(y) ?” The
following corollary gives the answer.

11



Corollary 2.2 Let f(y)7,(dy) be a distribution on Y such that f(y) 15 almost ev-
erywhere positive on Y with respect to m, . Suppose that the right hand modulus A s
not identically equal to 1 on G . Then there exists a cross sectionally contoured distribu-
tion with density h(r(z)) with respect to m such that the distribution of y(z) = q(z) 'z
comncides with f(y)my(dy) .

Proof. Since A is a continuous homomorphism from G to R , its range is either
{1} or the whole R’ . Therefore by the assumption A is a surjection. Fix y and
consider the inverse image of the positive real number f(y):

AN fw) ={g 1A = fly)}

Choose r(y) € G such that r(y)™' € A™'(f(y)). Furthermore for = = gy define
r(z) = gr(y) . Then 7(z) is an equivariant function from A" to G with the associated
cross section

Z={xy)=rly) ylyeY}
For a cross sectionally contoured distribution with density h(r(z)) the distribution of
y(x) = q(z) 'z is fy)my(dy) by (19). .

Finally we illustrate Theorems 2.2 and 2.3 with two examples. In each example two
different cross sections and associated cross sectionally contoured distributions are dis-
cussed. The first example is somewhat trivial, but it is useful for confirming the logic
behind Theorem 2.2.

Example 2.1  Bivariate gamma distribution (Beta and F distributions)

Let X = R, x R, and G = R’ whose action is

g(z1, 2) = (921, g22), for (z1,20) € X, g€ G .

Let
Z) X9
z(xy, T = , =(21,29), #z=1-—2,
(1 2) (:c1+:rg :c1+x2) (1 2) 2 !
z
y(fEl,fEQ) - ("iu 1) = (y17 1)
Xy

The associated equivariant functions are 7(z1,22) = 71 + 22 and q(z1,22) = 2. The
unit cross sections are

Z={(z,1-2)]|0<zn <1}, Y={@u,1)|un>0}

respectively. Z and Y are conveniently parameterized by z and y .

Now let z;, 2o be independently distributed according to gamma distributions with
shape parameters a, b, respectively. Then (z1,z2) has the cross sectionally contoured
density function

h(r(ml,xz)) —_ e*r(m,xz) — e—(q;1+x2)

12



with respect to the dominating measure

1
m(d(zy, 29)) = W@—)z‘l”’lxg“ldxldxg, a,b >0, (25)

with multiplier x(¢) = ¢***. The factorization (11) of 7 is given as

m(d(zy,10)) = m(dr) x m,(dz)
1 +h-1 1 -1 b1
= —rt e 2471 = dz,
T(a+b) TX peaa s LA s

and hence we see that r(z;,z9) = x; + 2o Is distributed as gamma distribution with
shape parameter a + b, and that z = z,/(z, + ) is distributed as beta distribution
with parameters a,b, independently of 7(zy,z2) .

Define the random variables (wy,ws) by

(w1> B _riim,xg) (11) ) (:1‘1)
wa q(zy, x2) \ T2 To Ty )

Then, by Theorem 2.2, the density of (wy,wp) is

h’(q(wlv w?)) = (3_—q(wl’w2) = e_'w?’

where the dominating measure is

. B q(w)
F(d(wr, wy)) = A(W)w(dw)
= (q (“’))“+"7r(dw)

r(w)
1 Wy atb .1 by
a ] d ‘
P((Z)F(b) (wl —+ wQ) Wy Wy QWiAW2

Theorem 2.3 assures the factorization of 7 in (25) associated with the orbital decom-
position x = qy . In this case, the factorization (18) is given by

n(d(zy,22)) = 7r(dg) x my(dy)
a+b-—-1

1 -1
= gy,
(e + b)q dq x Beta(a, b) v oo

and hence the distribution of y, = x;/z, is expressed as

1

1 a+b a
Alr(y)™my(dy) = Beta(a b)(m + 1) vy

(b/a)y, is distributed as F distribution with degrees of freedom 2a,2b. Here (y1,1) =
y(z1, ) = y(wy, wy) and g(wi,ws) = rz1,22) = 1 + 22 are independently distributed.
This example will be generalized in Section 4.2.

Example 2.2  Multivariate normal distribution

13



Let X = R? — {0} and G = R7 . where the action is
gz, ..., xp) = (921, -, 9Tp), for = (x1,...,1,) € X, g€G.

Let (1) = (2'S7'2)Y2 | g(z) = (z'z)"/? = |lz]| be two equivariant functions. Corre-
sponding invariant functions are z(z) = /(S 2)Y? and y(z) = /||l , respectively.
Assume that z is distributed according to p dimensional normal distribution N,(0,%) .
Then 2z has the density function

1

h(r(z)) = exp (- 5r(0)°)

with respect to the dominating measure

1

dzr) = d 26
mdr) = Grphdern) 2™ (26)
with multiplier x(g) = ¢? , where dz is the Lebesgue measure on RP .
Consider the transformation
. ,lz—l -
w = L(—:L‘_)_l_: (1 1)1/2‘7}‘
q(z) z'z
Noting that
. _ q(w) o w'w \p/2
7(dw) = A(;—(@)W(dw) = (m) 7(dw),
we obtain the distribution of w by Theorem 2.2 as
- B 1 1 2 q(w)
h(g(w))7(dw) = (27)7/2(det £)1/2 exp ( B ~2—q(w) )A(T(w))dw
1, w'w  \p/2
- i dw. 27

By applying Theorem 2.1 to the cross sectionally contoured distribution (27) we see the
independence of the length ¢(w) = (w'w)/? and the direction y(w) = w/(w'w)"/? under
the distribution (27).

The factorization (18) of 7(dz) in (26) associated with the orbital decomposition
T = qy is given by

m(dz) = m(dg) x my(dy)

1 1
—_— . gP? e d
eIt U o der )Y

where dy is the “volume” element of the unit sphere Y = Sr-1 = {z | q(z) = ||z]| = 1}
in R? and

p/2
27 (28)




is the total volume of the unit sphere. Therefore from (ii) of Theorem 2.3 the distribution
of y=uylz) (=y(w)) is

1 1
Alr -1 dy) = dy.
(r(y)~ " )my(dy) wy(det ¥)1/2 (y/\;—ly)pﬂ y

(29)

This example will be discussed again in Example 3.3 in the context of star-shaped distri-
butions.

Remark 2.5  Figure 2 is a surface plot of the density function (27) in two dimen-
sional case (p = 2 ) with its contours plotted on the bottom plane. Here we set % =
diag(o11, 022) = diag(V2, 1/V2) . Note that the density function s not continuous at the
origin. In fact, if we let w = (pcos ¢, psing) and p — +0 with ¢ fized, it holds that

1, w'w  \2/2 . 1
exp ( - Zw w) (——-——~) - ——
2 w' S w o1 cos? ¢+ 035 sin® ¢’

which depends on ¢ wunless oy = 09 . Figure 2 1s drawn by connecting finite mesh
points of the density (27) and its behavior around the origin is not perfectly rendered in
Figure 2.

Remark 2.6  The distribution (29) has been noted in several literatures. Section 3.6
of Watson (1983) referred to this distribution as angular Gaussian distribution, and dis-
cussed some properties. Several arguments on statistical inferences based on this model
are given in Tyler (1987). The special case where p = 2 s treated in Section 3.4.7 of
Mardia (1972). See also Kent and Tyler (1988) for the case of p = 2.

The distribution (29) of y = z/||z|| , as well as that of YL ly = 'S e /a'x, plays
an important role in null robust testing problems. See, e.g., Kariya and Eaton (1977) and
King (1980).

2.4 Density of the equivariant and the invariant for Euclidean
sample space

In this section we consider the case that the sample space X is Euclidean R" endowed
with the standard inner product (-,-). We assume that G C GL(p) is a Lie group of
dimension m (m < p? ) and the action of G on X is of class ch.

Furthermore we assume that the Lebesgue measure dz is relatively invariant under
the action of G with multiplier x .

Given a cross section Z each orbit can be identified with G . Since the action of
G is of class C!, each orbit is a manifold of dimension m of class C'. Regarding
cross sections, we restrict our attention to cross sections Z which are manifolds of class
O of dimension n — m . We can allow Z to be piecewise of class C' as in Example
1.1, where Z consists of 3 straight line segments. In terms of the equivariant function
we equivalently assume that 7(z) is piecewise of class C' . In the following we will
ignore singularities of Z because for piecewise smooth Z , the singularities form a set of
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Figure 2: Surface plot and contour of the density (27)

Lebesgue measure 0. Note that Z or r(z) may even be discontinuous at the points of
singularity.

Fix a point zo € X and write zo = rozo. Let up,...,un be local coordinates of
G in a neighborhood of the identity element e of G and let umy1,-..,Un be local
coordinates of Z in a neighborhood of 2. Then z in a neighborhood of zo can be
expressed as

x = 1or(Uny « - Um) Z(Uimg1s - - - Un)- (30)

Here we are using the fact that a neighborhood of e translated by o is a neighborhood
of 7o . For convenience we assume r(0,...,0) =e and 2(0,...,0) =z .

In the examples considered in Sections 3 and 4 the groups are R and the lower
triangular group LT (p) . These groups have a natural global coordinate system. However
for the general consideration, it is advantageous to use local coordinates at the unit cross
section as (30).

The usual Jacobian calculation at z = zy gives us

dz = J(ry, 20)du; - - - At X dUpmyr -+ dup
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where J is the Jacobian. Now under the regularity conditions of Theorem 2.1, J(ro, 20)
can be factored as

J(TQ, Z{)) = JT(TQ)JZ(ZO).

Now dx can be written as
dr = J.(ro)duy - - duy, X J.(20)dUpy1 - - - dUp. (31)

J,(ro)duy - - - duy, is a relatively invariant measure on G with multiplier x .
Consider translating = by ¢g. Then

d(gI) = X(g)d.’]] = X(g)']r(r())dul e dum X v]z(zO)durrL~+~l e dun (32)
On the other hand gz = groz, and by (31)
d(gz) = Jo(gro)duy - -+ dum X J,(20)dUnm1 - - - dun. (33)

(32) and (33) imply
Jr(ro) = x(r0)J-(e)

and (31) can be written as
dz = x(ro)Jr(€)duy - - - Aty X J,(20) AUy - - - AUy, (34)

It might be mathematically more pleasing to express the above relation in terms of
exterior differential forms. Taking the differential of » = rz and forming the wedge
product (31) can be written as

dry N ANdxy, = wp N w,,

where w, is a relatively invariant m —form on G with multiplier x and w, is an
(n —m) -form on Z . In the following we employ both the usual Jacobian calculation
and calculation using differential forms.

For the rest of this section we consider orbits and cross sections as submanifolds of R"
with volume elements induced from the usual inner product of R". Unfortunately we
could not establish general results relating the volume elements of the orbits or the cross
sections to the group action. However in the case of star-shaped distributions in Section
3, the arguments below give very clear interpretation of the behavior of the group action.
Also for the generalization of star-shaped distribution in Section 4.1 the arguments below
are useful.

Define the orbit manifold Mo(zo) and cross section manifold Mc(xo) through =z
by

Mo(zg) = {rz | 7 € G}, Mc(zo) = {roz | z € Z}.
Denote the tangent space of Mo(zo) at zo by Ty(Mo) and the tangent space of
Mc(zo) at zo by Ty (M) . Similarly denote the tangent space of X' itself at zo by
Ty (X) .

dz on the left hand side of (34) is the (Lebesgue) volume element at zp. Now
both Mo(zo) and Mg(ze) as submanifolds of R™ have volume elements induced by
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the usual inner product of R™ . We can investigate these volume elements using the first
fundamental form.

First consider the orbit and cross section manifolds at zy . Regard z = r(uy, ... U
Z(Umi1,---,Uy) as an n dimensional vector and let
or 1
v = 1= PR R
' 6u1 wy = =un =0 ' ’
Then {vi,...,v,} forms a basis of T,,(Mp) and {Vm+1,..-,vn} forms a basis of

TZO(M0> . Let
I'=T(2) = (vi;) = (v, v5)), 7 =1...,n,

be the matrix of inner products of v; s and let I'(z9) be partitioned as

= (i ) 5

where I'j1(z2¢) is m x m . Then around zg

dr = y/detT'(z9)du;---du,
= A/ det Fn(ZO)dul s dum X 4/ det FQ?(ZO)dum+1 ce dun

X \/det(—’m — T'1a(20)T57 (20)T21(20) L1 (20))- (36)

On the right hand side the first term is the volume element of the orbit manifold Mo (zo)
at z, and the second term is the volume element of the cross section manifold M¢(29)
at zg . Furthermore the third term can be written as

min{m,n-—-m)

H sin 6;,

=1

where 61,...,0min(mn-m) are the canonical angles between the tangent spaces T, (Mo)
and T,,(Mc) .

Now consider translation by ¢ from z = 2 to = = gz . Let g. denote the
differential of the map z — gz . g, is a linear map from Ty, (X) to Ty, (X) . Clearly

x(g) = |det g.|.

Furthermore we have

g*TZo(MO) = TgZo(MO)’ g*Tzo(MC) = TQZO(MC)?
because
gMo(20) = Mo(gz0) = Mo(o), gMe(20) = Mc(g20)-

Let v;{g2) = gwvj,j =1,...,n. Then {vi(g20),.- . Um(g20)} forms a basis of Ty, (Mo)
and {vm+1(g20),---,vn(g20)} forms a basis of Ty, (Mc). Let I'(gz0) = (1:5(920)) =
((vs(g20), vi(920))), 4,5 = 1,...,n, and partition I'(gz) as in (35). Then around zo =

18



rozo we have the same decomposition of volume element as in (36) with I';j(20) replaced
by T;(rozo) . Now (34) implies that

\/det ['11(ro20) ' \/det [a2(7020)
\/detF“ 20) \/det [99(20)
\/det m— Tia(ro20) T3 (roz0) U1 (rozo) U1 (T020))
\/th m — Di2(20)T5 (20)T21 (20) T3 (20)) .

The first term and the second term on the right hand side show the changes of volume
elements of the orbit manifold and the cross section manifold due to translation by g

respectively. Write
det F11(T020) \/detI 29 702()
xo(ro) = , (38)
detFll(zo) \/d&‘t F22(70

It is of interest to investigate whether o and Xc are homomorphisms from G to
R% . If xo is a homomorphism, we say that the volume element of the orbit manifold is
relatively invariant with multiplier xo . We also say that the volume element on the cross
section manifold is relatively invariant with multiplier x¢ if x¢ is a homomorphism from
G to R . For the case of star-shaped distributions in Section 3 both xo and x¢ are
homomorphisms. In Section 4.1 we will see an example where xo(r) is a homomorphism
although xc¢(r) is not.

x(ro) =

(37)

3 Star-shaped distributions in R”

In this section we define star-shaped distributions in RP generalizing Example 1.1 and

investigate their properties. All relevant results are easy consequences of the general

theory given in the previous section. We summarize the results in Theorem 3.1 below.
Let G = R and define its action on RP by

g(z1,...,xp) = (g21,...,97p).

The Lebesgue measure is relatively invariant with multiplier x(g) = ¢” and we take the
Lebesgue measure as the dominating measure.

Let r(z) be an equivariant function from RP to RY . We call distributions with
the densities of the form f(z) = h(r(z)) star-shaped distributions. The orbits are rays
starting from the origin. Note however that we omit the origin from the sample space
RP . We can do this because the Lebesgue measure of the origin is zero.

The associated cross section

Z={z|r(z)=1}

is a set which meets each ray exactly once. Hence

UcZ

0<c<1
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contains every line segment connecting the origin and a point on Z , namely 1t 15 a star-
shaped set with respect to the origin. This is the reason why we call the densities of
the form h(r(z)) star-shaped. (For the term “star-shaped” see also Definition 3.1 of
Naiman and Wynn (1992).)

On R we take P~ 'dr as the standard relatively invariant measure with multiplier
x(r) = . By Theorem 2.1 7 = r(z) and z = z/r(z) are independent and the joint
distribution of 7 and z can be written as

(1/co) h(r)r?~'dr m.(dz), co = j{)m h(r)r?~tdr, (39)

where 7, is a probability measure on Z .

For star-shaped distributions the standard cross section is obviously the unit sphere
Y = SP1 = {z | q(z) = 1} where g(x) = ||z|| = (¢'z)"/? is the usual Euclidean length
of z. Now dx obviously factors as

dr = ¢*~'dg dy = (1/co) ¢"~'dg - cody,

where dy is the volume element on the unit sphere. In this case “area element” might
be a better expression, but we just use the word “volume element” regardless of the
dimensionality.

Since G = R is commutative the right hand modulus coincides with the multiplier

From Theorem 2.3 the distribution of y = z/||z|| is given as

cor(y) Pdy, /ey = /Y'r(y)“”dy-

¢ is also given by (39).

We now investigate star-shaped densities more closely using the techniques of Section
92.4. We make the additional assumption that 7(x) is piecewise of class C'. Let dr be
the volume (length) element of R’ around r and du; be the volume element of R}
around 7 = 1. Then dr = rdu, . Let

Oz

" Ouy

0
= —"“(Uqu) = 2.

U1
20 8’&1

Now choose local coordinates wua,...,u, of Mc(z) such that

0 ‘
vj:%z(o,,..,O,uj,O,...,O)luj:O, J=2,...,p,

are orthonormal vectors. Then dus---du, is the volume element of Mc(z) at 2o -
Writing z = u12(ug, ..., up) we see that

dr = |det(vy, ..., vp)| X duy X duy - - - duy, (40)
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where (vy,...,v,) denotes the matrix consisting of columns vy,..., vy, . Let n,, be the
unit normal vector of Z at z, pointing outward of the star-shaped set Up< < cZ . Write

v, = 2o as a linear combination of orthonormal vectors ng,, va. ..., Up . a5
20 = Q1M + QU9 + - - + AUy, ar = (20, Mag)y @ = (20,0i), 1=2,...,p
Then
|det(vy, ..., vp)| = a1 = (20, Tzg)

and (40) is written as
dz = duy X dug -+ duy X (20, zy)-

Rewrite this further as
dx = ||zo||duy x duy - - - duy X {z0/|20l|, 220 - (41)

Note that ||zo||/duy = y/(vi,v1)du; is the volume element of Mo(z) . As mentioned
above duy---du, is the volume element of Mc(z) . Let 6 denote the angle between
2o (or T, (Mg)) and the tangent space Tyo(Mc). Then m/2 -6 is the angle between
2o and n,, . Therefore

<Z0/HZOHv nzo) = sin 0.

We now see that (41) corresponds to (36) in the previous section.

We also note that the unit normal vector 7, coincides with the normalized gradient
of r(z), ie.,
_ Vr(z)

IVr(zo)ll’

Furthermore sometimes it helps to use the following fact. Let H,, = 2o + T,,(M¢c) be
the tangent hyperplane of Z at z. Then

N2y

(29, 15,) = Buclidean distance from the origin to H, . (42)

For star-shaped distributions the effect of translation by g is straightforward. Since
the translation by g is just the scale change, we see that the volume element of the
orbit manifold Mo (z) is multiplied by g and the volume element of the cross section
manifold Mc(z) is multiplied by ¢°~', p — 1 being the dimensionality of Mc(z) -
Furthermore the angle between these manifolds does not change by ¢ . Therefore in the
present setup (37) just reads

rx Pt x 1

We now summarize the above results in the following theorem.

Theorem 3.1 Let = € R? have star-shaped density of the form h(r(z)) . Then 1 =

r(z) and z = x/r(z) are independent and the joint distribution of v and z is written
as

(1/co) h(r)r?~t dr 7, (dz),

where ¢ = [°h(r)rP~Ydr and w, is a probability measure on Z = {z|r(z)=1}.
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Let dy denote the volume element of the unit sphere Y = SP7'in RP . Then 1/co =
Jy r(y) Pdy and y = x/|z|| is distribuled as
cor(y) Pdy.

Under the additional assumption that 7(z) s piecewise of class ', (1)) mp(dz)
s written as

(1/co) m,(dz) = (z,n,) dz,

where n, is the outward unit normal vector of Z and dz on the right hand side is the
volume element of Z . Furthermore the joint distribution of 7 and z 15 written as

h(r) x ||z||dr x P dz x (z/]|2]], n2),

where ||z||dr is the volume element of Mo(z), P=Ydz is the volume element of Mc(x) ,
and {(z/||z||,n.) equals sin@ where 6 is the angle between To(Mo) and T,(Mc) .

Now consider Corollary 2.2. For the case of star-shaped distributions in R? the right
hand modulus A(g) = g” is one-to-one. Therefore for a given positive probability density
f(y) on the unit sphere ¥ = S~ we can uniquely determine an equivariant function
r(z) such that for the cross sectionally contoured density h(r(x)) the distribution of
y = z/||z]| is given by f(y)dy . In fact the unique equivariant function is

r(z) = el (f @/ ll=l) ™

with the associated cross section

Z={(fw)"PylyeY}

For the rest of this section we consider some examples of star-shaped distributions.
Example 3.1  (Ezample 1.1 continued.)

First we work out Example 1.1 in detail. Just for concreteness let us specify h as
h(r) o exp(—r?) . Therefore

flz) x exp(—r(z)?), r(z) = max(—x;, —T2, 21 + Za).

We need to evaluate the integration over Z = {z | max(—z;, —T2, &1 + Ta) = 1} to
determine the overall normalizing constant for f(z) .

Note that in Figure 3 the closest point on L; from the origin is (1/2,1/2) and the
closest point on L, from the origin is (0,—1). These are interior points of the line
segments. Therefore from (42) we have

(z,m;) = 1/V2, if z€ Ly,
i 1, if z € Lo, Ls.

Noting that on Z the lengths of the line segments Ly, Ly, Ly are 3v/2,3, 3, respectively,
we have

1/co = /Z(z,nz)dz —3x3=0. (43)
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Figure 3: Line Segments of Triangle Contour

We see that under f(z), each of three line segments gets equal probability 1/3, and on
each of these line segments z is distributed uniformly (i.e., on each of the line segments,
the probability is proportional to the length). Now

(1/¢o) /Ooo rexp(—r?)dr = —g

Therefore after normalization
2
flz) = 5 exp(—r(z)?), r(z) = max(—xz1, —T2, T1 + T2)-

It is interesting to note that each of Ly, Lo, L3 gets probability 1/3, although L,
is longer than Ly, Ly . Therefore the probability density (with respect to the volume
element of the line segments) on L, is actually lower than on Ly or Lz and the density
of z is not “uniform” on the whole Z . This is because the distance between neighboring
contours of f(x) = h(r(z)) is narrower (by the factor 1 /v/2) around L, compared to
L2 and L3 .

Let 6 denote the angle of the vector x . Then the density of @ is proportional to
r(cos@,sin@)~? with respect to df . Let 6p = arctan(1/2) = 0.4636 . Then

(cos@ +sin0)72, if —b <8 < m/2+ 6o,
r(cos8,sin )™ = ¢ sin™?6, if —3/4m < 0 < —by,
cos™2 6, if 7/2+460y<0<5/4m .
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Using (d/df) tan 6 = 1/cos®# we can directly evaluate the definite integrals. The results
are
72+ . —fo 5/4m 9
/ (cos B +sin @) *do = / sin 26df = / cos “0df = 3. (44)
J—6q ~3/4m Jrj2+60
Therefore th> normalizing constant is again 3 x 3 =9 and the distribution of # is given
as

%r(cos 6,sin ) d. (45)

However there is no need to carry out integrals in (44). co has been already calculated
as ¢y = 1/9 in (43). This immediately leads to (45) as summarized in Theorem 3.1.

Also note that actually we already know the values of (44) because on Z each line
segment gets probability 1/3 and therefore on the unit circle each of the corresponding
parts has to get probability 1/3 under the induced probability measure.

Example 3.2  Hypercube distribution and crosspolytope distribution

As a next example let us consider “hypercube” distribution and “crosspolytope” dis-
tribution on RP . Hypercube and crosspolytope are basic regular polytopes in RP polar
to each other (Chapter 0 of Ziegler (1995)).

Let

r(z) = max(|z1}, ..., |[7pl),

then Z = { | r(z) = 1} is the surface of the hypercube C, in RP. As in the previous
example the density of z is constant on each face of Z . Furthermore by symmetry each
face of Z gets equal probability. Therefore in this case the distribution of z is uniform
on Z. Since (z,n,) =1, [,{z,n;)dz coincides with the total volume of the surface of
the hypercube. Therefore

1/co = /Z(z,nz)dz =2p x 277

Now Theorem 3.1 implies that

1
dy = 27, 46

/yfzy;,...,y,z, |y [P (46)
where y = (y1,...,yp) €Y = 5771,

Now let
r(z) = o]+ -+ (2],

then Z = {x |r(z) =1} is the surface of the crosspolytope Cp in RP.
Fang and Fang (1987) and their subsequent papers in Fang and Anderson (1990) studied
properties of this distribution under the name “ ¢, -norm symmetric distributions”.

Cﬁ has 2P faces and each face is just the sign change of the standard p— 1 dimen-
sional simplex Ap_;:

Ay ={z=(21,...,2) E R |z, 20, i=1,....p, Ty + -+ =1}
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It is easy to check that the p —1 dimensional volume of A, is given by

%'1(AP—1) = (p\{ﬁl)‘

The Euclidean distance from the origin to A,y is 1/,/p. Dividing the total volume of
the surface of the crosspolytope by /p we obtain

/Z(z,nz)dz = 2P x TR

This leads to the following definite integral.

/ ! dy = — (47)

500 (Il + -+l (=1

The definite integrals (46) and (47) seem to be rather difficult to evaluate directly.

Example 3.3  Elliptically contoured distribution

Finally we consider the elliptically contoured distribution in RP . Let ¥ bea pXxXp
positive definite matrix and let f(z) = h(r(z)), r(z) = ('S 1z)1/? . The gradient of
r(z) is given as L'z /r(z) .

The density of z = z/r(z) on Z with respect to the volume element dz of Z is
proportional to

1

2072/ ) = ==

R
We can determine the constant by considering the particular case of the normal distribu-
tion. Note that

1 1
e e S

1 00 __l 2\ ot
(QW)p/Z(detE)W/o exp( 5" )T dT/Z(Z,nz)dz.

Hence
1/co = wy(det )72 = /Z (z,1,)dz,

where w, is given in (28).
The density of z on Z with respect to the volume element dz of Z is given as

1 1
wy(det )2 (/21527

The distribution of the direction vector y = z/||z|| was already given in (29), because
(29) does not depend on the normality assumption in Example 2.2.
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4 Matrix star-shaped distributions

In this section we generalize the star-shaped distributions of the previous section to ran-
dom matrices. The group G we consider is the group L7 (p) of lower triangular matrices
with positive diagonal elements. In Section 4.1 we consider LT (p) acting on n X p ma-
trix X as X — XT' where T € £T(p) . In Section 4.2 we consider two sample Wishart
problem and consider two px p positive definite matrices Wy, W . The action of LT (p)
is given as (W, Wy) — (TWLT', TW,T") .

Although matrix generalizations of star-shaped distributions are not as useful as the
star-shaped distributions in the previous section for application, it is of considerable
theoretical interest, because L£7(p) is not commutative and the results of the general
theory of Section 2 can be fully appreciated by considering these generalizations.

Throughout this section we will write groups, cross sections, and other manifolds in
script letters to distinguish them from matrices written in capital letters.

4.1 Distribution related to Gram-Schmidt orthonormalization

Let X be the set of n x p matrices X = (z;;) of rank p. A is identified with R™
with the standard inner product

(X, V)=t XY, X, Yex

Let LT (p) be the group of lower triangular matrices with positive diagonal elements
and let V,, = {H :nxp| H'H = I,} denote the Stiefel manifold. The Gram-Schmidt
orthonormalization of the columns of X leads to

X = HT,

where H € V,,, and T = (t;;) € LT (p) .
In this section we shall call this decomposition “HT decomposition” for convenience.
Define the action of L7 (p) on X by

X XT',  Te€LT(p). (48)

In order to make the action of £T(p) from the left, we are writing the lower triangular
matrix T transposed.

In (48) each row of X is multiplied from the right by T". Therefore dXT'") =
(det T)"dX , dX = A, ;dz;; , and the multiplier of the Lebesgue measure is

P
x(T) = (det T)" = ] t5-
i=1
We can use elements of T themselves as global coordinates of LT (p) . For S = (si;) €
LT (p), d(ST) = TI-, s4;dT where dI' = A;»;dt;; . Therefore
P

11ty dr (49)

i=1
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is a relatively invariant measure on L7 (p) with multiplier x (see Muirhead (1982) for
example) and we use this as the standard relatively invariant measure. Furthermore

d(TS) = [12_, s%""'dT and the right hand modulus of the relatively invariant measure
(49) is

i

p .
A(T) — H tn+p~21+l
1]

(Section 1.4 of Eaton (1989)).

Let the HT decomposition of X be X = HT'. Since the Gram-Schmidt orthonormal-
ization process is uniquely defined, H and T are functions of X : X = H(X)T(X)' .
It is obvious that 7'(X) is an equivariant function and H(X) is an invariant function.
Also V,, is a cross section with respect to the action of L7 (p). We consider V,, as
the standard cross section.

If X is distributed according to the normal distribution N,,(0,7, ® ), i.e. if the
rows of X are ii.d. multivariate normal N,(0,%), then the density of X is written as

! 1 -1y
= ! 1 -1 !
T @ (det sy P (- g2 TT )

Under normality 7(X) and H(X) are independent and H(X) has the orthogonally
invariant probability measure on the Stiefel manifold V,, . Note that the distribution of
H(X) does not depend on Y. . The multivariate normal distribution can be generalized
by considering density of the form

f(X) = MT(X)).

This is a matrix version of elliptically contoured distribution. See Lemma 5.2.4 of Farrell (1985),
Example 4.4 of Eaton (1989), Section 3.3 of Kariya and Sinha (1989), and Takemura (1993).
For this class of distributions the distribution of H(X) is the same as the multivariate
normal distribution. Actually this is a special case of our Theorem 2.1.

Now consider general cross sections. Let S(H) be a function from V,, to LT (p)
and assume that S(H) is piecewise of class C! . Define

Z={HSH)|H eV}, Z(X)=HX)SHX)).

Then from (13) of Section 2.3 we see that Z is a cross section. The associated equivariant
function is

R(X) =T(X)S(H(X))™"
Let X have the density f(X) of the form

f(X) = h(R(X)). (50)

Then R(X) = (r;;) and Z(X) are independently distributed and the joint distribution

can be written as
P

(1/co) M(R) [] 57" dR m2(d2),

=1
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where

Co = AR
0 LT (n) H
and 7z is a probability measure on Z .

For the HT decomposition the factorization of the Lebesgue measure is given as follows.
Let hy,...,h, denote the columns of H . Choose hpi1,...,h, sothat {hy,... h,} is
an orthonormal basis of R"™ . Define an orthogonally invariant np — p(p + 1)/2 -form on
Vip by

Y4 n
(H'dH) = /_\ | —/\+ My

Then dX is decomposed as
dX = Ht" “dT - (H'dH) (51)

(Theorem 2.1.13 of Muirhead (1982)). Noting R(H) = S(H) ', Theorem 2.3 shows that
the distribution of H(X) under the density (50) is given as

COH*" n+p ZHI(HdH)

We now investigate the factorization of the Lebesgue measure dX from the viewpoint
of Section 2.4. It turns out that the Lebesgue measure of the orbit manifold Me(X)
is relatively invariant with multiplier xo(T) = [1}_; ;. However the Lebesgue measure
of the cross section manifold Mc(X) is not relatively invariant. We shall show this
by investigating the factorization of the Lebesgue measure for the case of the standard
HT decomposition. We also make comments on some ambiguous statements in existing
literature concerning the volume element of the Stiefel manifold.

Consider a point X = H, where Hj is a particular pointin V,, . Let hy,...,h, be
the columns of Hy and choose h,y1,...,h, toform an orthonormal basis of R™ . Let 4;;
denote the Kronecker’s delta and E;; denote the matrix with 1 in (i,j) position and
0 everywhere else. Let w;;, ¢ > j, be local coordinates of L7 (p) around the identity
element I € LT (p), i.e

I1+U = ((5,] =+ ’U,ij) € £T(p)

is a lower triangular matrix in the neighborhood of I. Then X = Hy(I + U)' is in the
neighborhood of Hy on the orbit manifold Mo(H,) . Now take the partial derivative of
X with respect to u;;, then

9 '
—5~—--(1510(1+U))}U:0 = HyE;; = (0,...,0, hj ,0,...,0),

ij i—th

which is a matrix with h; as the ¢-th column. We denote matrix of this form by
H(i;j), 1<i:<p, 1<j<n. Itis easily seen that

(H(i;7), H(@'; "))y = tr H(¢; ) H(i'; ') = 60, 1<i,<p, 1<4,5<n
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Hence p(p+1)/2 “vectors”
H(z;7), l<yj<i<p, (52)
form a set of orthonormal vectors of Ty, (Mp) . Similarly np — p(p +1)/2 vectors
H(i;7), 1<j, 1<i<p 2<j<n,

form a set of orthonormal vectors of the orthogonal complement Ty, (Mo)* of Ty, (Mo) .
Now take the differential of H'H = I, at H = Hy. Then HydH + dH'Hy = 0, i.e.
H{\dH is skew symmetric. Using

HyHGG) = {7 ¢ 150
we see that
> ayH (i 5)
1<i<p
1<;<n

belongs to Ty, (M) iff

p
Hy > aH(i;7) = D aiiEj

1<i< ',':1
1255 “
is skew symmetric, i.e.,
aij = —aj, J<p-

Other a;;’s, ie.,, a; for j > p, are arbitrary. Therefore as orthonormal basis of
Ty,(Mc) we can take the following np — p(p + 1)/2 vectors:

1

—(H(i; ) — H(j:1)), 1<j<i<p,

\/Q( (2;9) (4;1)) J p

H(i;7), 1<i<p,p<j<n (53)

Note that (52) and (53) are mutually orthonormal except for the pairs (H(4; j), (H(%; 7)
H(5;i1))/V2), 1 < j < i < p, and that the angle between H(i;j) and (H(i;7) —
H(5;i))/V/2 is /4. We see that among the canonical angles between Ty, (Mo) and
Th,(Mc), p(p—1)/2 angles are 7/4 and the other min(p, (n — p)p) angles are /2,
i.e., orthogonal. Note that dU = A;s, du,; is the volume element of Ty,(Mo) because
of the orthonormality in (52). Therefore comparing (51) and (36) dX around X = H,
can be written as

dX =dU - (\/é)p(p“l)/Q(HldH) . (_l_)p(p—l)/2

V2

where (V2)PP~V/2(H'dH) = 2??-V/4(H'dH) is the volume element of the Stiefel mani-
fold V.

We now investigate the effect of translation by T = Ty, € LT (p) on the volume
elements. For the orbit manifold we can use the fact that orbit manifold is a relatively
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open subset of p(p + 1)/2 dimensional linear subspace in R™ and the fact that the
elements of T can be used as global coordinates of L7 (p). Consider the elements
of T as local coordinates around T, . Differentiating X = HyT’ with respect to the
t,, we obtain the same orthonormal vectors H(i;j) as tangent vectors of Thyr,(Mo) -
Therefore the volume element of Mo (HoTp) is equal to dT' = A,jdt; . Let w;; be
local coordinates around T = I as above. Then

P
dT = d(TyU) = [] ¢, - dU, Ty = (ti),
1==1

and xo in (38) is given as
p .
xo(T) =1 ti:- (54)
i=1

In this case we see that the volume element of the orbit manifold is relatively invariant
with multiplier xo. Also note that dI' is a relatively invariant measure on LT (p)
itself with the multiplier (54). Therefore dT can be considered both as the relatively
invariant measure on L7 (p) and as the volume element on the orbit manifold with the
same multiplier for the case of HT decomposition.

On the other hand the volume element of the cross section manifold is not relatively
invariant. We shall show this by investigating the canonical angles between the orbit and
the cross section manifolds. Suppose that xc in (38) is a homomorphism from § to
R* in addition to xo . Then the third term on the right hand side of (37) has to be
a homomorphism as well. However the third term corresponds to the canonical angles
between My and M and it is bounded. Note that bounded homomorphism from G
to R’ has to be identically equal to 1. Therefore if X is a homomorphism in addition
to o , then the third term has to be 1. Now for the special case of p = 2, it is easily
checked that the only non-orthogonal canonical angle 6 at X = HT" satisfies

t2
sin’ § = ——3——,
i1 + 151 + 15
which is not constant and the third term on the right hand side of (37) is not identically
equal to 1.

We have investigated the standard cross section V,, in detail. However the argument
can be equally applied to other cross sections Z . Note that the action of G on the orbit
manifold Mp(2) and the volume element on Mop(zp) do not depend on the choice
of cross section. Therefore for any cross section Z, the volume element of Mo is
relatively invariant with the multiplier xo . We just have to take into account that the
volume element of Mo(Z) at the unit cross section Z has to be multiplied by the
multiplier xo(S) = [Tf-; s, where S = (s;;) € LT (p) is defined by Z = HS'.

Now we summarize results of this section in the following theorem.

Theorem 4.1  Let a random n X p matric X have the density (with respect to the
Lebesgue measure) of the form h(R(X)), where R(X) is an equivariant function from
X to LT(p). Let Z(X) = XR(X) ™. Let X = HT be the HT decomposition of X
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and define S(Z) € LT (p) by Z = HS(Z) . Then R(X) and Z(X) are independent
and their joint distribution is given as

p

(1/co) M(R) [ rit " dRwz(dZ) = (1/co) h(R) Ip] )., dR - Hr"’ s(2) 5 T2 (dZ),
=]

i=1
where

= noi
Cy = T H Ty R

7z s a probability measure on Z , and Hz’:l s(Z )u dR is the volume element of Mo(X)
at X = RZ . Furthermore the distribution of H 1s given as

14
H I{ n+p 2l+l(H dH)

Concerning Corollary 2.2 we see that its conditions are satisfied and any positive
density f(H) on V,, with respect to (H'dH) can be obtained from a density of the
form h(R(X)). However in this case A is not one-to-one and R(X) is not uniquely
determined from f(H) .

Remark 4.1  As shown above the volume element of the Stiefel manifold V,, 1is given
by 2°v-V/Y(H'dH) . The statements in Section 2.1.4 of Muirhead (1982) and Section
7.8 of Farrell (1985) are ambiguous about the factor 2P®P~1/% and seem to claim that
(H'dH) itself is the volume element. For example consider the simplest case of the group
G = OF(2) of rotations in R?. Let H € O"(2) be written as

cosf —sinf
H= ( sinf  cosf ) ’
Regarded as a vector in R%, the elements of G form a circle of radius V2 and the total

length of the circle is 2/2m . On the other hand Jor@(H'dH) = 2T dh = 21 gives a
wrong answer.

4.2 Generalization of matrix beta distribution

In this section we briefly discuss how our general theory can be applied for generalization
of matrix beta distributions. The group we consider is again the lower triangular group
G=LT(p). Let W,,W, be pxp positive definite matrices and define the action of G
by

(Wl, WQ) > (TWlT,, TWQT’)

As a dominating measure we consider a measure of the following form
(det W)@~ +D/2(det, Wy )~ D24, dW,

where (L,b > (p b 1)/2 and W1 = (wl,ij)7 W2 = (U)Q,ij) , dW1 == AiZj dwl,,;j, sz =
Ai>; dws;; . This measure is relatively invariant with multiplier

X(T) = (det T)2e) = Hﬁ‘“*”
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The relatively invariant measure on L7 (p) with the same multiplier is
P )i
121

and its right hand modulus is

A(T) = H t?(a+b)+p42i+1'

it
1=1

It is interesting to note that there are two common cross sections used in literature.
Let TT' =W, + W, be the Cholesky decomposition of Wi + W, . Then T itself is the
equivariant function and U = T~ 'W,T'~! is the invariant function. If W, and W, are
independent Wishart matrices, then U has the matrix beta distribution. On the other
hand let TT'" = W, be the Cholesky decomposition of W, . Then the invariant F =
T-'W,T'"' has the matrix F distribution (Dawid (1981), Section 5 of Farrell (1985)).
This is a matrix version of Example 2.1.

Here we prefer to use the beta type cross section and consider the Cholesky decompo-
sition of Wi + W, . Write

U={UI-U)|U:pxp 0<U<I}
where < means the Lowner order. For convenience write W = (W;,W,) and
W = (TUT', T(I-U)T"), T=TW), U=UW).
Let S(U) be a function from U to LT (p). Let
Z={(SUSW),sU)I -U)SU))|UelU},
Z(W) = (SWW)UW)SU W)Y, SWW))(I ~ UW)SUW)))
be a cross section with the associated equivariant function
R(W)=TW)S(UW))™..
Now the application of Theorems 2.1 and 2.3 gives the following result.
Theorem 4.2  Suppose that the distribution of W = (W, W) is given as
h(R(W))(det Wy)2 P+D/2(det W)~ PHD/2qW, dW,.
Then R(W) and Z(W) are independent and their joint distribution is given as

p .
(1/co) h(R) T ri®*" ™" dR 74 (d2), (55)
1=1
where ,
_ LR 2(a+b)—i dR,
Co £T(n) L( ) lzl—I1 Tis

and 7wz 1is a probability measure on Z . Furthermore the distribution of U = (us;;) s
given as

p .
co [T s(U)AaHHP=24 1ot 1Yo+ D/2(det(I — U))P~@+D/2dU

i=1

where dU = A;>; duj .

32



Unfortunately the volume elements of both orbit manifold and cross section manifold
do not seem to be relatively invariant with respect to the group action and interpretation
of the terms of (55) from the viewpoint of Section 2.4 does not seem feasible.

5 Appendix

Here we complete the proof of Theorem 2.1 for the case of h with possibly smaller
support.

Even when the support of A is not the whole G, the factorization (10) holds. Our
difficulty is that outside the support of h we can not divide by h(r) and =, is not
uniquely determined.

Based on h we will construct an alternative h such that h is everywhere positive on
G and h(r(z)) defines a cross sectionally contoured distribution. If we construct such a
h , the proof in Section 2.2 applies with h = A and the proof of Theorem 2.1 is complete.

Let 7, be defined by (12). We argue that there exists an open subset A of G such
that

0 < m(A) < 0. (56)

This can be shown as follows. Note that
1= [ hr@)a(d) = [ nrym,(dr)
implies ({7 | h(r) > 0}) > 0. For b> 0 write
{r|h(r) > b} = A

Then by the continuity of measures there exists some by > 0 such that n.(A;,) > 0. On

the other hand
1> h(r)m,(dr) > b, ( Ay, )-

Apg

It follows that =, (As,) is finite. Since A,, is a Borel subset of G there exists a sequence
of open subsets A, D Ay, of G such that

Wr(An) J, Ty (Abo)>

as n — o0o. We see that there exists some n such that A, = A satisfies (56). Let
c=7,(A) for this A.

Since G is second countable there exists a countable dense set {gi,g2,...} of G.
Let

- 1 1
h(r) = - 2;1 m'é;-lgm(r)

where I, 4 is the indicator function of gxA. Fix arbitrary g € G. Then the set
{gf]‘g,gglg,.;.} is dense in G . Therefore for some k, g;'g € A or g € gpA. It
follows that h(r) is everywhere positive. Furthermore by construction

/Xﬁ(r(m))w(dm) = /Giz(r)m(dr) = 1.
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Therefore h(r(z)) defines a cross sectionally contoured distribution. This completes the
proof of Theorem 2.1.
]
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