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Estimation of variance components in a mixed linear model with two variance
components has been discussed for many years. The problems arise in the incom-
pleteness of the minimal sufficient statistics and the drawback of every unbiased
estimator taking a negative value with a positive probability for the ‘between’
component of variance. This paper addresses to resolve the latter undesirable
property. For evaluating estimators, the expected Kullback-Leibler loss function
is utilized instead of the usual mean squared error(MSE). The class of estimators
improving on the ANOVA (unbiased) estimators by the Henderson method (III)
are constructed and out of the class, the positive and useful estimators and the
empirical Bayes, the generalized Bayes estimators are derived. Applications of the
proposed estimators are given (1) to the generalized least squares(GLS) estimation
of the regression coefficients, (2) to the GLS F test for a linear hypothesis and (3)
to the two-stage prediction which is related to the small-area estimation. Finally
the confidence intervals of the variance components are discussed, and several im-
provements on the minimum ratio(shortest unbiased) confidence interval related
to the Kullback-Leibler loss are proposed.
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1. Introduction and Notations

Consider two-stage cluster sampling in which k clusters are drawn at random
at the first stage and n; elements are drawn at random from the ith sampled
cluster at the second stage.(3n; = N)

Following Fuller and Battese(1973), Wu et al.(1988) and Rao et al.(1993), we

consider the nested error regression model

/ ; y —
Yij = X B+v +ej, j=1,...,n;, i=1...k (1.1)
where x;; = (50, %1, .-, Tijp-1) With z;;0 = 1 is a vector of known co-
variates, 8 = (8o, B1,.--,0p-1) is a vector of unknown regression coefficients,

v; ~ N(0,02), e;; ~ N(0,02), and v;’s are independent of e;;’s. This model is
dealt with in Battese et al.(1988) for prediction of county crop areas (small areas)
using survey and satellite data. It is also known as an error component model in
econometrics.

For the matrix representation of (1.1), lety = (¥}, ...,y%) withy, = (%1, ..,
Yime)y, X = (Xi]-|XL) with X! = (x;1,...,X50,), V = (v1,...,7) and e =
(€},...,e}) with e = (e;1,...,€n,). Then (1.1) is written as

y=XB+u, u=2Zv+e (1.2)

where Z = @%j,,,, the block diagonal form with n; x 1 unit vector j,. This is a
mixed model with two variance components and the specific design matrix. Since
v ~ Ni(0,02I;) and e ~ Ny (0,021y), u has Nn(0, (62 + 0%)V(p)) where

V(o) = (1 = p)In + pZZ! (1.3)

with p = 02/(02 +02) and ZZ' = &%J,, for I, = jn.JL.-

In the statistical inference of the regression coefficient 3, useful statistics are
functions of p in the case where p is known. For point estimation of 3, the gener-
alized least squares(GLS) estimator is given by

Blp) = (X'V(p)"'X)T'X'V(p) "'y (1.4)

An exact F test treated by Rao et al.(1993) for a linear hypothesis, and the best
linear unbiased predictors of some quantity given by Peixoto and Harville(1986)
and Battese et al.(1988) are also functions of p. Since p is unknown in practice,

p must be estimated based on appropriate estimators 2 and 62 of 02 and o2.

2

This demonstrates a motivation of estimation of variance components. Since o

and 02 express the extent of dispersion of the first-stage sampling (or the block
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effects) and the second-stage sampling (or error terms), it may be also important
to estimate the variance components themselves.

In this paper, we discuss the point and interval estimation of the variance com-
ponents with applications to the above problems for the regression coefficients. To
derive the estimators of the variance components, following Mathew et al.(1992),
we consider the statistics that are invariant under the group of transformation
y — y + Xa where a € R? is any p x 1 vector. Let r = rank(X) and let P be an
N x (N —r) matrix satisfying P’X = 0 and P'P =Iy_,. Then

P'y ~ Nn-r(0,0%In_, + 02P'ZZ'P).

Let \y > A2 > .- > A > 0 be the distinct non-zero eigenvalues of P'ZZ'P
with respect multiplicities mq,mg,...,my. In our model (1.1), it is noted that
these eigenvalues are distinct n;’s, and that rank(P'ZZ'P) = ¥m; = k — 1 since
the columns of Z sum to 1 and P is orthogonal to 1. Consider the spectral
decomposition

P'ZZ'P = £t \E;

where E; is an idempotent matrix of rank m,; and E;E; = 0 (i # j). Writing
Eppg = Iy — EleE,- and assuming N —r — k+ 1 > 0, we see that myy; =
rank(E¢y 1) = N —r — k+1 > 0 and that y'y can be decomposed as y'y =
it y/PEP'y where

57 =y PE;P'y ~ (62 + Nio2)Xo,, i=1,...,¢ (1.5)

2 ! ! 2.2
$i+1 =Y PE. 1Py ~ 00X N —r—kt1

and s%’s are mutually independent (i = 1,...,¢+ 1).

Invariant estimators for 02 and 02 are constructed based on s2’s, but the uni-
formly minimum variance unbiased estimator does not exist in the unbalanced case
for lack of completeness of the statistics s2’s. This leads to production of various
kinds of unbiased estimators. For instance, the ANOVA estimators derived by the
well-known Henderson (1953) method (III) is expressed in the above notation by

1
62VB =28, v=N-r—k+1 (1.6)
v

where

Sy =82, =y'P(y_, — P'Z(ZPP'Z)"Z'P)P'y



=y'Pxy —y'PxZ(Z'PxZ)"Z'Pxy,
S, =%t s? =y'PxZ(Z'PxZ)”Z'Pxy, (1.7)
M =3t \m;/(k—1) =trZZ'Px /(k —1)

= {N —tr [(X'X)~ shonixx ]} /(k-1)

for Px = Iy — X(X'X)~X' and %;. = £ x;;/7; (see Seal (1971, pp465- pp467),
Battese et al.(1988) and Rao et al.(1993)). Also S; and S; can be represented as

=3"%"¢ and S = >N ag - s,
7 7 7 7

where {¢;;} are the residuals from the OLS regression of y;; — J;. on {zij1 —
Ti1y--->Tijp—1 — Lj.p—1} without the intercept term for 7,. = Zj Yij/m; and
Tip = 9 ; Tije /n;, and {d;;} are the residuals from the OLS regression of y;; on
{zij1,. .., Tijp—1} with the intercept term. In the balanced case ny = - =ng =
n, we have

S ~ agx,z, (1.8)
So ~ (02 +103)Xh-1

and M = 5¢_,\;m;/(c—1) = n. Also in the unbalanced case with B = (Bo,0,...,0),
S; and S, are also simplified as S; = &5 12505 (Yig — V- )2 and Sp = Xk 1”1(.%
7..)? for total mean %.. . So the ANOVA estimators can be much simplified in
these special cases. Besides the ANOVA estimators, the minimum norm quadratic
unbiased estimators (MINQUE) proposed by Rao(1971a,b) and its modifications
are also useful.

These unbiased estimators of 02, however, have a serious drawback of taking
negative values with a positive probability. LaMotte(1973) showed that unbiased
nonnegative quadratic estimators of o2 do not exist. On the other hand, Kleffe
and Rao(1986) demonstrated that nonnegative biased quadratic estimators of o2
fail the minimum condition of consistency as n; remains fixed, but k -— co. These
prompt us to consider nonnegative estimators other than the quadratic forms.

A simple nonnegative procedure eliminating the undesirable property of an
unbiased estimator is a truncation of it at zero, yielding the uniform improvement
as noted by Herbach (1959), Thompson (1962) and Berger (1990). The trun-

2

cated estimator, however, seems still unpleasant because o> must be estimated by

zero with a probability. Some reasonable procedures have been proposed by Port-
noy (1971), Chow and Shao (1988), Mathew et al.(1991), Kubokawa (1994c) and
Kubokawa et al.(1993b). In these papers, the mean squared error (MSE) is uti-
lized as a criterion for comparing estimators. However we could not think that the



MSE is an appropriate criterion for evaluating estimators of the scale parameters.
What loss function is desirable for estimation of the variance components?

We here discuss the simultanious point estimation of cr;f and o2 and propose
the following loss function for their estimation:

~2 ~2
L(Uea 'v’w) = U{%_ ——logg-— - 1}

624+ Mo2 62 + Mo?
+(k_1){ 2+M0:)2) B gog—I—Mag _1} (1.9)

for a couple of unknown parameters w = (02,02). This can be checked to be a
convex function of 62/02 and 62/02. Note that it incorporates the design ma-
trix and the design parameters. We shall call the loss (1.9) the Kullback-Leibler
Loss because (1.9) can be derived by the Kulback-Leibler information loss in the
balanced case. When a random variable has density f(z,6), the Kullback-Leibler

distance between 6§ and the estimator § is defined by

/1 { (,0) }f(x,é)dx (1.10)

and it is seen that this distance is just L(62,62%;w)/2 in the balanced case of our

model.
When we find the best estimators in the sense of minimizing risks within
the class of estimators 62 = aS; and 62 = M~{bS; — aS;} for constants a

and b, they are just the ANOVA estimators 52VB and 62UB with respect to the
Kullback-Leibler loss (1.9) although the ANOVA estimators are not an optimal
choice relative to the MSE criterion.

The main purpose of the present paper is to find nonnegative estimators of
(02, 02) improving upon the ANOVA (unbiased) estimators (62U5, 62U simul-
taniously relative to the Kullback-Leibler loss (1.9). The Integml-Ea,pression-of—
Risk-Difference(IERD) method given by Kubokawa(1994a,b) is useful for our pur-
pose. This technique is used in Section 2 to construct a class of estimators better

than (62UVB 52UB) This class includes various kinds of improved estimators, for

example, (azEB G2EBY (52PT §2PTY and (62¢8,62¢#), which are given by
S, S +8
~2EB . 1 1 2
Gi78 = mm{my S 1}, (1.11)
1 S S
~2EB 2 1
= - max - = 1.1
TN {k 1 O}’ (112)

)



1 S S S 7]
~2P1T 2 1 | 2 ~ 2P
v M[ {k—l’y+k“3} v :l’ ( )

~2GB _ S1 fOSQ/S‘ ;z;(k~1)/2—1/(1 + x)(v+k-—1)/2d$

y oo 2-—-1 v+k—1)/2
~2GB __ 1 Sa fSI/SZ z/ /(1 +$)( ' ode _ %GB
vk =1, a3 /(L o)tk D/2de

(1.15)

Gy =7 } . (1.18)

It is interesting to note that the estimators (67 2EB §2EBY and (6268, 62¢8) can be
derived as the empirical Bayes and the generalized Bayes estimators, respectively,

2PT

in the balanced case. The estimators (52F7, 52PT) are always positive, simple and

improved procedures. The simulation results given in Section 2.3 demonstrate that
(62BB 52EBY and (62PT, 52PT) have much smaller risks than (62V%,62V%) and
that (62 2GB 62GB) is the best of the four for 02/02 > 0.5 while it has the same
risk as (O'ZUB G2UBY at 2 = 0.0.

In Section 3, the results of point estimation will be applied to the two-stage
GLS estimation of 3, to the two-stage GLS F test discussed by Rao et al.(1993),
and to the two-stage prediction of a linear combination of 3,’s and v;’s, which is
related to the small-area estimation. In Section 4, the confidence intervals for o2,
02 +no? and 02 are discussed in the balanced case, and several procedures and
their comparison by simulation studies are given. In particular it is clarified that
the Kullback-Leibler loss is related to the confidence interval such that the ratio
of its end points is minimized.

2. Simultanious Point Estimation

2.1. Derivation of Improved Estimators

We first construct the classes of estimators improving the unbiased ANOVA
2UB 52UB

estimators (6277, 67

). For this, consider the estimators of the forms
. S
52(e) = S (—2) (2.1)

3200) = 37 { 520 (Sl) S (Sj)}

Then the risk function of (62(¢),62(¢,)) relative to the Kullback-Leibler loss
(1.9) may be written by

R(w; 62(),6%(9, %)) = vRu(ws sﬂp( )>+(k—1)R2(w 5245( )>, 2.2)



where

Ry(w; $1¢ (%‘)) =FE E%Tﬁ (gj) ~lo ilw (%) - 1] )

S S S2
Ry(w; S2¢( )) = [0_31—?\_/[_52(/5 (é—) - logm¢< :

The IERD method can be applied to obtain sufficient conditions for the domina-

tion, and we get
Theorem 1. Assume that

(a) (w) is nondecreasing and limy,—, ot (w) =v71,

(b) ¥(w) > o(w) where
1 fg“ gk=1/2-1 /(] 4 g)vtk=1)/24y

Yo(w) =

Then Ry(w;S1%(S2/51)) < Ri(w;v™181) uniformly for every w.
Theorem 2. Assume that

(a) ¢(w) is nondecreasing and ¢(0) = (k —1)~1,

(b) $(w) < do(w) where

1 fuﬂjo mu/z—l/(l + x)(”+k"l)/2d$

po(w) = v+ k—1 f:o ov/2=1 /(1 4 )W rkt1)/2dg

Then Ra(w; S2¢(S1/52)) < Ra(w; (k — 1)71S,) uniformly for every w.

v k=1 [7p0—D/2-1](1 + g)w kT 2dg

(2.3)

(2.4)

The proofs are so technical and given in the Appendix. Combining Theorems

if ¢ and 1 satisfy the conditions (a) and (b) of both theorems.
For (2.3), we can show that

fo =/l +2z)Pde fw 2ot /(1 4+ z)PtHde
[ ze/(1 +z)B+idr jo z@/(1+z)Ptide
a+1
cpydo2tide fo dx
Jo wdx
a+1

for a > 0 and 3 > 0. Putting

14w
= mi ~1
1/)1(11))~mm{1/ ’V+k—1}’

¢2(w)=min{y*1, 1+(’<—1>w/<k+1)},

v+k—1

1 and 2 gives that the estimators (§2(¢), 52(¢,))) are better than (62V8, 52UB)

(2.5)
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we see that ) (w), 12 (w) satisfy the conditions (a) and (b) of Theorem 1, so that
for 02, we get the simple and improved estimators 6278, 62FT given by (1.11),
(1.13). It is also checked that )y (w) satisfies (a), which yields the smooth improved
estimator 62¢8 = 62(¢pg) = S1¢0 (S2/S:1) given by (1.15).

For Theorem 2, on the other hand, it can be shown that

Jo &/ 2)de _ [P1/(1+2)Pda
[Pz /(1 +2)PHdr = [21/(1 + )P+ de

=ﬁﬁ](1+w)>1+w
for « > 0 and B — @ > 1. Putting
1 1+w
¢1(“’)“‘ma"{k~1’u+km1}’ (2:6)
1 14w
¢2(w)“max{k—1’u+k—3}’

we can verify that ¢,(w), ¢o(w) satisfy the conditions (a) and (b) of Theorem

2. Also these conditions hold for the smooth function ¢o(w). Combining these

results and improved estimators of 02 yields the superior estimators §2F8, §2PT

and 62CGB given by (1.12), (1.14) and (1.16), respectively. It should be noted that

2EB ~2PT ~2GB ~2GB
Oy

is nonnegative, 07} is positive and & is positive and smooth. 67

may be complicated to compute it because of including the ratio of integrals or

52EB 2PT

infinite series. 62%° is a usual truncated procedure. 6.7 is a positive, simple

and improved estimator.

2.2. Some Bayesian Properties

2GB ;2GB

We here treat the balanced case n; = - - - = ny = n and show that (6577, 67

and (62FB 62EB) are the generalized Bayes and the empirical Bayes estimators,
respectively, relative to the Kullback-Leibler loss.
Let n=1/02, and € = 02/(0? +no?). From the loss (1.9), the Bayes estima-

tors are generally given by

6'23 — 1
© EniS:, S)

1 1
5,12)3 - = {________ﬁ___ _ 6'23}
n | E[gn|S1,S2) ¢

where E[|S;,S3] designates a posterior expectation given S; and S;. For the
generalized Bayesness of (6298 62GP)  assume the improper prior distribution
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n~¢~ldndg, 0 < n < 00, 0 < £ < 1. Then the posterior density of (n, €) given Sy
and S is proportional to

§(k_1)/2—17)('/+k_1)/2 1,—3(51 +£Sz)n

so that it can be easily checked that & 2GB and 62GB are derived as the generalized
Bayes rules.

For the empirical Bayesness of (6275, 52FF), assume the improper prior dis-
tribution 1~ dn with unknown fixed &, 0 < f < 1. Then the posterior density of 7

given S; and S, and the marginal density of S; and S5 are given by
(posterior density) o pltk=1)/ 2-1,~4(S1+£S2)m

(marginal density) o ¢k=1/2(g5, +552]”(”*“’“"1)/25;/2“15’;’%1)/2“1.

Hence the Bayes estimators of 02 and o2 are

S S
526 = 2102,
9By L[ S1+852  om
0= o o)

Since 0 < £ < 1 is unknown, it should be estimated from the marginal density. The
maximum likelihood estimator of ¢ is written by EML — min{(k —1)S1/(¥S2), 1},
which is substituted in the above Bayes estimators so as to obtain the empiri-
cal Bayes rules 628(£ML) and §2B(EML), just being 6277 and 62FB given by
(1.11) and (1.12). In this way, the interesting Bayesian interpretations for some
estimators are presented.

2.3. Simulation Study

It is of interest to compare, in terms of risk, the estimators (62UB 52UB),

(62BB 52BB) (52PT §2PT) and (62¢F,62¢F), which are here represented as UB,
EB,PT a.nd GB estimators, respectlvely. We treat the following two simple models
and provide the results of Monte Carlo simulation for their risk functions relative
to the Kullback-Leibler loss.

We first consider the model (1.1) with 8 = (50,0, ...,0) and o2 = 1.0, that
is, yij = Bo+vi +eij, J=1,...,n, 0 =1,..,k Tables 1 and 2 report the
average values of their risks based on 50,000 replications in the balanced and the
unbalanced cases. It is noticed that the risk of EB estimator has the performance
similar to that of PT estimator. They have significant improvements for 02 near
zero. GB estimator may be the best of the four for 02 > 0.5 although it has the
same risk as UB estimator at 02 = 0.
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Another model we deal with is (1.1) for p = 2 and ny = - -- = ng = n, that is,

Yij = Po + Brzij +vi + eij, i=1,...,k 7=1,...,n (2.7)

where 02 = 1.0 and {z;;} are generated from N(10,02) for 0, = 5.0. Table 3

reports the average values of the risks based on 50,000 replications for (n,k) =

(10,3), (2, 10), (5, 10), namely, (v, k—1) = (26,2), (9,9), (79, 19). It is revealed that

the risk performances of the estimators are similar to Tables 1 and 2. Since PT

and GB estimators are always positive and they have good risk performances in
large ranges of 02, they may be employed for a practical use.

Table 1. Expected Kullback-Leibler losses for UB, EB, PT and GB

estimators in the balanced cases

o4 0.0 0.01 0.05 0.1 0.5 1.0 4.0 9.0
UB 220 220 220 220 220 220 220 220

n=3 EB 145 145 146 147 167 182 206 2.12
k=3 PT 153 151 148 145 156 1.71 200 2.10

GB 220 216 200 186 153 154 182 197

UB _2.08 208 208 208 208 208 208 208
n=3 EB 146 146 148 151 1.81 196 208 208
k=6 PT 150 149 146 147 173 191 207 2.08
GB 208 204 187 173 155 168 2.00 2.07
UB 217 217 217 247 217 217 217 217
EB 135 136 139 145 176 191 209 213
PT 137 137 137 141 171 188 208 213
GB 217 206 177 158 145 161 195 2.06

NS
il
w o

Table 2. Expected Kullback-Leibler losses for UB, EB, PT and GB
estimators in the unbalanced cases

0% 0.0 0.01 0.05 0.1 0.5 1.0 4.0 9.0

UB_ 2.09 209 209 210 212 213 215 216

replications EB 142 142 147 1.55 1.96 2.07 215 2.16
(3,3,5,5,7,7) PT 144 143 144 1.1 1.92 206 215 2.16
GB 209 198 173 157 165 188 212 215

UB_ 2.09 209 210 212 224 232 242 244

replications EB 143 143 147 1.56 2.04 223 241 244
(1,1,5,5,9,9) PT 144 144 145 151 2.00 221 241 244
GB 209 200 175 160 170 199 237 243

UB 209 209 211 216 250 271 299 3.07

replications EB 143 143 147 1.56 2.18 2.54 298 3.07
(1,1,1,1,13, PT 144 144 145 1.52 213 251 297 3.07
13) GB 209 201 181 167 181 220 288 305
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Table 3. Expected Kullback-Leibler losses for UB, EB, PT and GB

estimators in the simple regression models for o; = 5.0

0% 0.0 0.01 0.05 0.1 0.5 1.0 4.0 9.0
UB 217 217 218 218 218 219 219 219

n=10 EB 136 136 142 152 189 201 213 217
k=3 PT 137 136 140 149 186 200 212 217
GB 217 201 163 145 156 1.76 201 213

UB 2.08 208 208 208 209 210 210 210

n=2 EB 154 154 155 158 1.82 198 209 210
k=10 PT 160 159 156 155 1.71 191 208 2.10
GB 208 204 194 18 164 171 196 2.09

UB 202 203 203 203 203 203 204 204

n=5 EB 145 146 159 176 2.03 203 204 2.04
k=20 PT 146 146 156 173 2.03 203 204 2.04
GB 202 189 160 153 198 203 204 2.04

3. Applications

Now we consider utilizing estimators of variance components in applications
to the inference of the regression coefficients (.

3.1. Generalized Least Squares Estimation

The estimation of the regression coefficients § is first considered. In the case
of known p, as stated in Section 1, the GLS estimator of (8 is given by

Blp) = (X'V(p) ' X)'X'V(p) "y

where X is supposed to be with a full rank in this section.

Following Fuller and Battese (1973), we transform the model (1.1) so as to
apply the standard OLS methods. Let oy = 1 — [(1 — p)/{1 + (ni — 1)p}]Y?,
Y5 = Yij — @Y. and Xj = Xjj — ;X;., where ;. = ¥y /mi and X, = 35X /1.
The transformed model is written as

* K * . oA
yz_y_nglﬁ+uzg7 J——l,...,n,,Z——l,...,k‘,

or in matrix notation as
y* — X* ,6 + u*

where u* ~ Ny(0,02Iy). Note that y* and X* depend on p. Then the GLS
estimator (3(p) is represented by B(p) = (X¥X*)"1X*y*.
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In practice, p is rarely known and must be estimated. When p is estimated
by a consistent estimator p, Fuller and Battese (1973) demonstrated that B(p)
is asymptotically first-order efficient. Based on the estimators of variance com-

ponents given in the previous sections, we shall consider the following consistent

estimators:
EB o2kB UB
pr = W = max(p~ ", 0),
~2PT ~2GB
T = T P98 = e —saE
o + 05 og + 0%

It is noted that pFT and PGB are always positive and less than 1. Then we inves-
tigate the MSE performances of the two-stage GLS estimators 3(p%F), B(pFT),
A(pB) and the OLS estimator 3015 = (X'X)™'X'y(= B(0)).

Table 4 reports the simulation results based on 50,000 replications in the
simple regression model (2.7). B(p*%), B(pPT) and B(p“P) have almost same
performances of risks, which are stable in comparison with BOLS as expected.
301‘3 has an impermissible large risk for large 02, especially for o, = 1.0, while
it is the best for small 0.

Table 4. Risks of two-stage GLS estimators B(p7B), B(ﬁp T,
B(ﬁGB ) and the OLS estimator BOLS for (3 in the simple regression models

o4 00 001 005 01 05 10 40 9.0
B(pPE) 019 019 021 023 036 053 120 321

n=10 BEFT) 019 019 021 023 036 053 120 321
k=3 pB(p%8) 019 019 021 023 036 053 120 3.21
oy = 5.0 BOLS 018 0.18 021 023 040 062 1.50 4.12
B(3FP) 031 031 033 034 044 054 081 145

n=2 pBpT) 031 032 033 034 044 054 081 145
k=10 PB(p°B) 032 033 034 035 044 053 080 145
oz = 5.0 BOLS 029 030 031 033 046 062 127 3.22
B(s®B) 0.05 0.05 006 006 008 011 021 052

n= B(pFTY 005 005 0.06 006 008 011 021 052
k=20 B(p°B) 005 005 0.06 006 008 011 021 052
oz = 5.0 BOLS 005 005 0.06 006 010 014 032 087
B(FE) 106 1.07 111 114 126 131 144 176

n=>5 B@PY) 106 107 111 114 126 131 144 176
k=20 [B(pCE) 107 108 111 114 126 131 144 176
o, =10 BOLKS 106 107 111 116 158 210 419 1046
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3.2. Generalized Least Squares I Test

Wu et al.(1988) and Rao et al.(1993) discussed the problem of testing the
linear hypothesis Hy : Cf = b, where C is a known g X p matrix of rank g(< p)
and b is a known ¢ x 1 vector.

Let 3* = (X*X*)~1X*y and X} = X*(X*X*)"'C'. For known p, the GLS
F test is given by

(CB* - b): (XE’XE)'I(?ﬁ* —b)/q
(y* — X*3*) (y* — X*3*)/(N —p)

which has an exact F' distribution with ¢ and N — p degrees of freedom.

F(p) =

Since p is unknown, two-stage test statistics substituting estimators of p are
suggested. We investigate the actual type I error rate (size) and the power of the
two-stage test statistics F'(p¥F), F(pF") and F(pS?B) and the OLS I test

FOLS _ (CBOLS — by (X'cXc)i1 (CB°LS —b)/q
(y — XBOLS) (y — XBOLS) /(N — p)

for X¢ = X(X'X)1C'.
For the problem of testing Hy : fp = 1 = 0 in the simple regression model

(= F(0)).

(2.7), we provide the simulation results for the sizes and the powers of the two-stage
GLS F tests and the OLS F test. The expected sizes of the tests for the nominal
5% level based on 50,000 replications are reported in Table 5, and the following
observations are revealed: (1) The two-stage GLS F' tests /' (pFB), F(pFT) and
F(p%®) have similar size-performances, which are stable especially for k¥ more than
10. (2) The sizes of FOLS is much inflated for 0% far from zero. (3) The two-stage
GLS F tests have better size performances than FOLS while they are also inflated
for large 04. Comparing the results of two cases 05 = 5.0 and o, = 1.0 for n =5,
k = 20, we see that the inflation of the two-stage GLS F-tests is affected by the
singularity of the design matrix X. The simulation results for the powers of the
tests are given by Table 6 in the case of n = 5, k = 20 and o, = 5.0. From
these investigations by the simulation, we think that the two-stage GLS F' tests
may be employed for a practical use instead of F OLS with the remark that their
size-performances are not very good for small k or small o2,



Table 5. Sizes (%) of two-stage GLS F-tests F(p"B), F(pFT),
F(pCB) and the OLS F test FOL5 for Ho: fo = B1 = 0, nominal 5% level
in the simple regression models

o4 00 001 005 0.1 0.5 1.0 40 9.0

F(pFF) 46 50 7.0 92 179 211 245 259

n=10 F(pPT) 44 49 68 89 177 211 245 259
k=3 F()°B) 31 34 45 61 148 192 238 257
oz =5.0 FOLS 49 56 82 11.7 289 384 500 558

F(pFP) 51 52 54 57 68 73 75 74

n = F(pFPT) 48 48 51 54 65 72 75 74
k=10 F(pSB) 45 45 47 50 59 66 73 T4
0z = 5.0 FOLS 49 50 53 56 75 92 118 13.6

F(pPP) 48 50 55 59 68 70 71 71

n=5 F@EPT) 47 48 54 59 68 70 71 71
k=20 F(3SB) 40 41 46 52 67 70 71 7l
oy =5.0 FOLS 59 55 67 81 168 222 293 329

F(pF®) 51 53 6.3 74 131 158 185 19.6

n=5 F@EPT) 51 53 63 74 131 158 185 19.6
k=20 F(38) 49 50 61 72 131 158 185 196
oy =10 FOLS 59 55 67 81 168 222 293 329

Table 6. Powers (%) of two-stage GLS F-tests F' (PEB), F(pFT),
F(p“B) and the OLS F test FOLS for Hy : Bo = B1 = 0 in the simple
regression model with n = 5, k = 20 and 0, = 5.0

Bo = b1 0.00 0.005 0.01 0.03 0.06 0.1
F(pPP) 48 72 157 883 100.0 100.0

0% =00 F@FT) 47 7.1 153 88.0 100.0 100.0
F(pGB) 4.0 6.0 13.0 854 100.0 100.0

FOLS 52 7.9 171 89.9 100.0 100.0

F(pPP) 55 8.0 155 832 100.0 100.0

03 =005 F(pFT) 54 7.9 153 831 100.0 100.0
F(p®B) 4.6 6.7 13.3 80.7 100.0 100.0

FOLS 6.7 9.6 185 869 100.0 100.0

F(p*?%) 638 82 120 53.1 985 100.0

02 =05 F(@P’T) 68 82 120 53.1 985 100.0
F(p%B) 6.8 81 11.9 53.0 985 100.0

F(pPB) 7.0 78 107 41.5 940 100.0

02 =10 F@T) 70 7.8 10.7 415  94.0 100.0
F(p®B) 70 78 107 415 940 100.0




15

3.3. Two-Stage Prediction

Now we treat the problem of predicting
T; —-:ic’i.'ﬁ+vi, i=1,...,k

This issue is discussed in Peixoto and Harville (1986) and is related to the small-
area estimation which has received considerable attension in recent years. For the
details, see Battese et al.(1988), Prasad and Rao(1990) and Ghosh and Rao(1994).

In the case of known p, the best linear unbiased predictor of 7; is given by

() =%/ Blo) + 7= o e = % B0))
Since p is unknown, two-stage predictors are considered. We look into the MSE
performances of the two-stage predictors 7;(5%7), 7; (pFT), 7:(pP) and the OLS
predictor 7;(0).

The simulation experiments of the MSE’s are done for the simple regression
model (2.7) and their results are reported in Table 7. It is revealed that the two-
stage predictors have common risk performances and the risk of 71(0) gets larger
for larger 0% while it is the smallest at 0% = 0.0. These properties are quite the
same as in the estimation of S.

Table 7. Risks of two-stage GLS predictors 71 (PEB), #1(pFT), 11 (p°B),
and the OLS predictor 1(0) for 71 in the simple regression models
with o, = 5.0

o4 00 001 005 01 05 1.0 40 90
#(pFBy  0.05 006 0.07 008 010 010 010 0.10

n=10 #(sPT) 005 0.06 007 008 010 010 010 0.10
k=3 #(p9B) 006 0.07 007 008 009 010 010 0.10
#(0) 0.04 004 007 010 034 065 188 5.8
#(pFB) 0.13 0.14 016 020 034 042 047 049
n=2 #(pPT) 014 015 017 019 033 041 047 049
k=10 #(p%B) 018 0.19 020 022 032 038 046 049
#(0) 007 008 011 0.16 049 090 256 7.52

#1(pFF) 0.02 003 0.06 008 015 017 019 020

n= #(pFPT) 002 003 0.06 008 015 017 019 0.20
k=20 +(pB) 0.03 004 0.06 008 015 017 019 020
#(0) 0.01 0.02 006 010 047 094 278 8.33
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4. Confidence Intervals

Various methods of constructing confidence intervals for the variance com-
ponents and the ratio have been presented in the literature. For the ratio of
variances, exact confidence regions were obtained by Hartley and Rao(1967) and
Broemeling(1969). For the ‘between’ component 0?2, Healy(1961) established the
exact confidence interval by utilizing an artificial randomization device in addition
to the experimental data. Although an exact confidence interval only based on
S; and S; may be desirable, the problem is said to be difficult to settle because
the confidence interval of o2 are truncated at zero and it is not easy to obtain
the exact coverage probability. Thereby a variety of approximate intervals was
proposed and discussed. Of these, Boardman (1974) investigated and compared
their coverage probabilities through simulation experiments and concluded that
Moriguti-Bulmer’s interval (Moriguti(1954), Bulmer(1957)) and Williams-Tukey’s
interval (Williams(1962), Tukey(1951)) should be used.

We here treat the balanced case ny = --- = ny = n in the model (1.1) where
the distributions of S; and S, are given in (1.8), and we propose some confidence
intervals for 02, 02 +no? and o2.

4.1. Confidence Intervals of 02 and o2 +no,

For the interval estimation of o2, Tate and Klett(1959) derived three types
of intervals: the shortest unbiased confidence interval, the minimum length con-
fidence interval and the equal tailed confidence interval. While the criterion of
minimizing the length of a confidence interval is needed for a location parameter,
it may not be appropriate for the scale parameter. In the interval estimation of
the scale parameter, it may be reasonable to request minimizing the ratio of the
end points of a confidence interval. We shall call such a confidence interval the
Minimum Ratio Confidence Interval (MRCI), which is, in this case, given by

MR = [—S—l— E—E] (4.1)

e 3
rvay; rag

where a; and ay (a1 > ag) satisfy
a1 —az = log(a1/az), Plraa <xj Sva]=1-a

for the confidence coefficient o, 0 < o < 1. This MRCI IM® s identical to the
shortest unbiased confidence interval where various values of a; and ay are given
in the tables of Lindley, East and Hamilton(1960). It is interesting to note that
IME is also motivated from the Kullback-Leibler loss for the unbiased estimator
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52UB = G, /v, that is, the set of the form

{oz; S;év - log-‘gé-éz —~1<a; —loga; —1=az — logas — 1, az < al} (4.2)

€ [

is identical to IME as easily shown.
For improving on IM® by use of S, consider the confidence interval of the

B @) BE]

which has the same ratio of the end points as I%. Then we can get the following

form

theorem which can be proved by combining the proof of Theorem 1 and Section 3
of Kubokawa (1994a).

Theorem 3. Assume that
(a) y(w) is nondecreasing and lim,,—,co%(w) = v
(b) Y (w) satisfies the inequality:

a aw _az_ agw.
pos (53 ) P (5807) 2 1o (5) 2 ) 09
where f,(z) designates the density of X2 and F,(z) = fg fa(t)dt.

Then Plo? € I.(¥)] > Plo? € IM®]| uniformly for every w = (02,02).
Define 1o(w) by a solution of the equation

poa (50) P (5) = (5837) 2 G553)

1 (w) = min {u—l,-—l—ii”——}.

v+k—1
The discussions given in Section 3 of Kubokawa (1994a) can show that Po(w) and

and let

1 (w) satisfy the conditions (a) and (b) of Theorem 3, and we get the improved
confidence intervals I.(1) and

1 S 5+ 8 1 . S1 S1+ 852
IMR*__I — 1 1 2__ — e & |,
@) { i {1/ v k—1["a T v vHk—1]

Similar to Section 2.2, it can be shown that I.(¢o) is the generalized Bayes
confidence interval among the interval estimators of the form I.(3), (4.3), against
the improper prior distribution 7~ '¢~tdnd¢ for n = 1/0% and { = 02/(0% +no?).
That is, 1o(w) is a function of maximizing the posterior probability

1 pay/S1d 1
/ / £(k_1)/2-1n(u+k—1)/2—1e~§(Sl+532)77d77d£.
az2/S1¢
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Similarly, the Bayes solution against the improper prior 57~ 1dn with unknown fixed
€ is given by

(ag —a1)(1+&w)  1+4+&w
(v + k — Dlog(az/a1) v+k-1

"be (wa g) =

so that the MLE of £ in the marginal distribution, {M% = min{(k —1)/(vw), 1}, is
substituted to get =B (w) = & (w, EMLY just being 11 (w). In this way, MRx —
I.(¢1) is interpreted as an empirical Bayes confidence interval.

The same arguments can be applied to construct a confidence interval for
02 +noZ. The MRCI is given by

Sg 52
ﬁﬂ%‘hk—nm’wﬁ1wJ (45)

v

where by — by = log(b; /by) and Plo? + no? € IME] = 1 — a. The following
theorem guarantees the existence of better confidence intervals within the class of

52 51 SQ 51

= | — et —_— —_ . 4°6
leto(9) [m¢<&)’m¢<&>} (46)
Theorem 4. Assume that

(a) p(w) is nondecreasing and ¢(0) = (k — 1)L,
(b) d(w) satisfies the inequality:

i-m (i) o (stg) = L (G} o () 0

Then Plo? +no2 € Ioyy(¢)] > Plo? +no? € IMF] uniformly for every w.

€

Let ¢o(w) be a solution of the equality in (4.7), and let

¢1(w) = max {(k -7 ;—%1—_"_—1} .

confidence intervals

From Theorem 4, it can be verified that they present improved confidence intervals
I e+v (¢0) and
Iﬁls* = letv (¢1)a

and that they are also the generalized Bayes and the empirical Bayes confidence
intervals, respectively.

The expected values of coverage probabilities of (/2#, I}#*) and (/, MR MR

are given in Tables 8 and 9 based on the simulation experiments with 50,000 repli-

cations. TMF* and TMB* have highest coverage probabilities at 0% = 0.0. In

particular, I é‘f_ﬁ* has a higher gain in coverage probability than [ MEx,
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Table 8. Coverage probabilities (%) of the confidence intervals /, MR and
IMEB* for the variance component 02 in the balanced case

o5 00 01 05 1.0 30 90
n=38k=3 IME 950 950 951 951 951 951
v=3 JMRx 960 960 0958 956 953 95.1
n=2k=6 IME 951 951 951 951 951 951
JMBx 961 96.1 960 958 953 95.1
n=3k=3 IME 951 951 951 951 951 951
v==6 JMR« 959 959 956 955 952 95.1

Table 9. Coverage probabilities (%)of the confidence intervals / MR and

IMEx for 62 + no? in the balanced case

0% 00 01 05 10 30 90
n=3k= TME"7950 950 950 950 95.0 95.0
v=3 [MB« 986 985 981 975 959 951
n=2k=6 IMF 951 951 951 951 951 951

v=3 [MB+ 976 975 969 963 953 95.1
n=3k=3 IMRE 949 949 949 949 949 049
v==6 IMRx 988 987 985 981 961 94.9

4.2. Confidence Intervals of o7

As stated in the beginning of Section 4, the simulation study by Boardman
(1974) implies that Moriguti-Bulmer’s and Williams-Tukey’s confidence intervals
have desirable coverage probabilities for the confidence coefficient. ‘We here treat
the Williams-Tukey type confidence interval of 02 for the simplicity of the form and
derive several other confidence intervals by using the method of Williams (1962).

Let J denote an equal-tails confidence interval of the ratio (o2 + no2)/o2,

J= Sy S
o clSl’@Sl ’
where P(x?_,/x% < ¢2) = P(x}_,/x? 2 ¢1) = a/2. Then the William-Tukey
type confidence interval is provided by

_ (S2—c St (S2—eS "
I’l‘;VT - [ n(k —11)b1 ’ n(k — 1);)2 :l ’ (48)

given by
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where z+ = max(z,0). From Williams(1962) or Figure 1, it is seen that

o2 +no
P(o2 € I¥T) > P(02 +no? € I} and —*——* € J)

o2 +no?
= P(0? +no? € Ay +P(£»ﬁ eJ)
[+
02 +no?

2
O¢

— P(0?+no? e IMEor e J)

> 1-2a,

so that the confidence coefficient of IV T is guaranteed to be more than 1 — 2a.

By employing I é‘f{?* instead of [ é‘j{ﬁ, we can propose the confidence interval
; 515 5
VT = 1,(¢1) = M5 (g, st M) (g, msyt|, @)
nby nby

which has the same ratio of the endpoints as )i T for S5 > ¢15;. From Figure 1,

it is noted that the positive region of I)VT* is larger than that of J AU

Using [ é"f R jpstead of J with the same idea as above, we can get another type

of a confidence interval based on (IME JME) given by
+ +
7 L (R N S Lf_ S Sl (4.10)
n | (k—1)b1 va n | (k—1)b2 vrvag
Also the confidence interval based on (JM£*, 1 MR+ is given by
I = 17 (61,91) (4.11)
1 [ 61(3) Wy (2 T $1(8L) )1 (2 '
= - S2 - Sl y 52 - Sl )
n bl a9 7 b2 ay

which has a larger positive region than IAT as demonstrated in Figure 2.
The simulation results are given in Table 10. It is revealed that IAT and IAT*
have higher coverage probabilities than IVT and I WT* and that both of / WT* and

IAT* have two peaks in coverage probabilities at 0% = 0.0 and near o4 =0.5.
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Table 10. Coverage probabilities (%) of the confidence intervals VT [WT*
IAT and IAT* for the variance component 02 in the balanced case

o 0.0 00l 005 01 05 1.0 30 90
IWT 975 952 957 960 963 962 958 95.5

n=3 IWT * 975 0953 961 969 983 981 96.6 935.5
k=3 IAT . 99.3 986 986 985 975 97.0 964 95.9
v=3 IAT* 99.3 98.7 989 99.2 993 989 972 959
IWT 975 952 955 96.0 969 969 965 96.1

n=2 IWT* 975 953 958 965 98.0 97.8 96.7 96.1
k=6 IAT 99.0 987 988 989 986 981 97.2 96.5
v=3 IAT* 99.0 99.0 99.1 99.3 996 99.0 974 96.5
IWT 975 0952 056 958 96.0 958 955 95.2

n=3 IWT * 975 053 962 968 983 982 964 95.2
k=3 IAT 997 98.7 985 983 97.3 96.8 96.1 95.6
v==6 IAT* 99.7 97.0 974 978 988 98.7 96.8 95.6

APPENDIX

Proof of Theorem 1. Since lim,_,o(w) = ™!, from the IJERD method of
Kubokawa (1994a,b), we have

Rl(w;Slv‘l) — Ry(w; 519 <%~))
_ S1 So S So o0
2\{% () -eeie (520) -} A
N d 51 Sz 51 52
-5\ [ &% w(“s‘l)““gazw(‘sit)“l}dt}'

Let v =S1/0%, u; = 82 /(02 + \;02), and 0; = 1 + ;02 /02, and denote the density

functions of v and u; by f and g;, respectively. Carrying out the differentiation in
(A.1) gives

o[ {5 sy o (20)4]
/ // { B (26; uzt/t)}(zﬂ'ui/v)lﬁ' (S6;uit/v) dt

f ()9, (u;)doll;du;.

Making the transformations (¢/v)u; = w; and 1/t = z in order, we observe that
the r.h.s. of (A.1) is equal to

/. ' //1m {v B -@D—(—i;—w;—)} (BO;wi/t) ¢ (BOsw;t)
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v\*¢ ‘
({) f();g; (vw;/t) dtdvll;dw;

_ / / {vw w(zziwz-_)} (S03ws) & (Siw7) (A2)

1
o' f(v) / 2L gs (wive) dedvll;dw;.
0

Since 9 (w) > 0, it is concluded that the r.h.s. of (A.2) is nonnegative if

Jo vt f(v) fol 21, g, (wivz)dzdv

J7 vt f(v) fol xe“lﬂigi(wivx)dmdv'

PY(BOw;) = (A.3)

Since §; > 1 and ¢ (w) > 0, it follows that ¢ (X0;w;) = ¥(Sw;), which, from (A.3),
gives the sufficient condition that i)(Xw;) is greater than or equal to the r.h.s. of
(A.3). Integrating out the r.h.s. of (A.3) with respect to v yields po(Xw;) given by
(2.3). Hence the inequality (A.3) is guaranteed by the condition (b) of Theorem
1, which is established.

Proof of Theorem 2. Since ¢(0) = (k — 1), observe that

Ro(w; Sa(k — 1)71) — Ro(w; Sa¢ (%—)) (A4)
. 1 d Sg Sl 52 Sl
=-F [/ a {az T Mo2? ('é“t) ~log o oz (S‘t> B 1} ““]

:///1 1 Yy vy vt \ g
o | o(sd) L+Mrf B0, $0;u;

S (w)ILig; (u;)dvIl;du;

for 7 = 02/02. Making the transformations (t/%0;u;)v = w and w(l/t) =y in
order, we can rewrite (A.4) as

f (EHiuiw/t)Higz- (u;)dtIL;du; dw

= ///;oo {(p(lw) — ff’;;}d(w)zeiui (A.5)

F(Ebu;y)Lg: (u;)dyll;du;dw

so that since ¢ (w) > 0, the Lh.s. of (A.4) is nonnegative if

o(w) < — ) S22 (D03us) f (20;uiy)Ligs (us) dyTidu,
=L (B6w)? /(1 + M) f(S0;uiy)igi (ui)dyTlidu;

(A.6)



23
Letting s = Eleui and z; = u;/s, we see that

8§~ X;f:—17
z; ~ Beta(m;/2,5j2m;/2)

and s and z; are independent. Let @@ = 20;z;, being independent of s. The r.h.s.
of (A.6) can be rewritten as

EQ[ [ Qsf(Qsy)g(s)dyds]
O] [ Qs /(1 + Mn) £ (@sy)g()dyds]
E9| wijsf(s:L)g(s)dsdm]
EQ[Q/(1+ MT) fQoz) [ s2f(sz)g(s)dsdz]’

(A7)

where g(s) is a density of x?_,. Since Q) and ) 5‘1’0 [ 6% f(sz)g(s)dsdz are monotone
in the opposite directions, we can show the following inequality holds for the
denominator of the r.h.s. of (A.7):

E® [ - +QMT / o: / 2 f(sw)g(s)dsdw}

gEQ{ - MT] [ / ) / 2 sx)g(s)dsda:]. (A.8)

Here observe that

Y
Q| @ _ 1 ! N7 Elz A9
B [1+M‘r] 1+MT+1+MT; i Blzi) (4.9)
1 1 S T

= =1
1+MT+1+M7‘ k—1 ’

since M = Y \m;/(k — 1). Combining (A.6), (A.7), (A.8) and (A.9) gives a

sufficient condition as

( wifsf(s:t) g(s)dsdz]
ow) < EQ| fQ [ s2f(sz)g(s)dsdz]

(A.10)

Furthermore the r.h.s. of (A.10) can be shown to be greater than or equal to

inf fg:u f sf(sxz)g(s)dsdx
Q fcc;u [ s2f(sx)g(s)dsdx

} = info{do(Qw)} (A11)

where the equality can be obtained by integrating out the Lh.s. of (A.11) with
respect to s. As noted below Theorem 2, ¢o(w), given by (2.4), is a nondecreasing
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function and Q > 1. Hence ¢o(Qw) > ¢o(w). Combining this inequality, (A.10)
and (A.11), we get the sufficient condition that ¢(w) < ¢o(w), which is just the
condition (b), and the proof of Theorem 2 is complete.
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