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Abstract

A common observation among economists on many economic time se-
" ries including major financial time series is the asymmetrical movement
between the downward phase and the upward phase of their sample paths.
Since this feature of time irreversibility cannot be described by the Gaus-
- sian ARMA, ARIMA, and ARCH time series models, we propose stationary
and non-stationary Simultaneous Switching Autoregressive (SSAR) mod-
els, which are non-linear switching time series models. We discuss some
properties of these time series models and the estimation method for their
unknown parameters. The asymmetrical conditional heteroskedasticity can
be easily incorporated into the SSAR models. We also report a simple
empirical result on Nikkei 225 spot and futures indices by using a non-
stationary SSAR model.
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1. Introduction

In the past decade, several non-linear time series models have been proposed
by statisticians and econometricians. Granger and Andersen (1978), for instance,
introduced the bilinear time series models. In statistical time series analysis,
Ozaki and Oda (1978), and Tong (1983) proposed the exponential autoregressive
(EXPAR) model and the threshold autoregressive (TAR) model respectively. In
particular, considerable attention has been paid to the TAR model in the past
decade by statisticians and econometricians and several related applications have
been reported. The statistical details of many non-linear time series models in
statistical time series analysis have been discussed by Tong (1990). Several non-
linear time series models have also been proposed for the econometric analyses
of time series In particular, considerable attention has been focussed on the au-
toregressive conditional heteroskedasticity (ARCH) model, which was originally
proposed by Engle (1982) and has been used in many empirical studies. Exten-
sions of the standard ARCH model and related issues have been discussed by
Nelson (1991) and Hamilton (1994).

In this paper we shall propose an alternative class of non-linear time series
models, which we shall call the Simultaneous Switching Autoregressive (SSAR)
time series model. This model is a kind of Markovian switching time series
model with a quite distinctive structure of simultaneity. We propose this class
of statistical models because we believe that the class of Gaussian Autoregres-
sive Moving-average (ARMA) time series model and Gaussian Autoregressive
Integrated Moving-average (ARIMA) time series model cannot describe one im-
portant aspect in many economic time series, that is, the asymmetrical movement
in the upward phase (or regime) and in the downward phase (or regime). It has
sometimes been argued that major economic time series display some kind of
asymmetrical movements over various phases of the business cycle. In particular,
a number of economists have observed the asymmetrical pattern in the upward
phase and in the downward phase for major financial time series including stock
prices. This feature of economic time series can be regarded as one form of the
time irreversibility discussed in statistical time series analysis : see Chapter 4 of
Tong (1990).

Eatlier, we introduced the simple stationary SSAR time series model and
discussed its statistical properties in some detail (Kunitomo and Sato (1996)).
Let {y;} be a sequence of scalar time series satisfying

Aygr +orve iy 2 Y
(11) Yt = ’
By + oz iy <y
where A, B,o; (0; > 0,i = 1,2) are scalar unknown coefficients, and {vi} is a

sequence of i.i.d. random variables followed by N (0, 1). If we impose the coherency
condition given by
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we have the Markovian representation

(1.3) Yo = Yeo1 + [01 1o >ry) + 021 {wycrye P TYem1 + v

where r is an unknown parameter and 1} is the indicator function. When
01 = 0y = o, then this model becomes the standard AR(1) model if we re-
parametrize A = B = 1 — or. As we have shown, even this simplest univariate
SSAR model, called SSAR(1), provides some explanations and descriptions of a
very important aspect of the asymmetrical movement of time series in two dif-
ferent phases (Kunitomo and Sato (1996)). This characteristic of economic time
series has been observed by a number of economists. However, as far as we are
aware there has not been any useful time series model incorporating this feature
explicitly in the econometric literature. The main point of our studies (Kunitomo
and Sato (1994,1996)) was to link the stationary non-linear time series models to
the disequilibrium econometric models. We also investigated the conditions for
ergodicity and the basic properties of the stationary distribution in the stationary
SSAR model.

This paper extends the basic SSAR model (denoted by SSAR,,(p)) discussed
by us (Kunitomo and Sato (1996)) in two important directions for econometric
applications. First, we shall allow the disturbance terms in the SSAR model
to be auto-correlated and have a finite order moving-average (MA) structure.
By this extension the SSAR model can exhibit more complicated patterns of
auto-correlations among economic time series and their differenced data. Second,
and more importantly, we shall consider a class of non-stationary SSAR models,
which is one type of the I(1) processes and hence useful for application to major
financial time series. In the past analyses of financial time series data, the linear
non-stationary time series models have often been used because the movements
of most financial time series are usually too volatile as the realizations of station-
ary time series. We shall put forward one convincing economic reason why the
non-stationary SSAR model introduced in this paper is interesting and useful in
its applications to financial time series. Although it has been a fairly common
observation among many economists that many financial time series including
stock prices have asymmetrical movements between the upward phase and the
downward phase, it is not possible to describe this kind of asymmetrical pattern
by the standard linear non-stationary time series models including the ARIMA
time series model and the standard ARCH model proposed by Engle (1982). The
stationary and non-stationary SSAR models we shall propose have the property
of asymmetrical movement of time series in the two phases. Hence they can
easily be extended to handle the asymmetrical conditional heteroskedasticities.
The non-stationary SSAR model could also be called a simultaneous switching
integrated autoregressive (SSIAR) model, because it can be regarded as a simple
non-linear extension of the standard ARIMA model.



In Section 2, we shall introduce the general SSAR model, which can be sta-
tionary or non-stationary, and discuss several important examples of its possible
applications. We shall also investigate the basic properties of a non-stationary
univariate SSAR model with time trend. Furthermore, we shall discuss some gen-
eralizations of the SSAR model and some implications for modelling asymmetrical
conditional heteroskedasticities. Then in Section 3, we shall discuss one justifi-
cation for the non-stationary SSAR model from the view of financial economics,
and apply the non-stationary SSAR(1) model with time trend to the analysis
of Nikkei 225 spot and futures indices. In Section 4, some concluding remarks
on our econometric approach to the non-stationary and non-linear time series
modelling will be given. Proofs of theorems will be gathered in the Appendix.

9. Stationary and Non-stationary SSAR models

2.1 The SSAR model

In this section we shall consider the multivariate simultaneous switching au-
toregressive (SSAR) model with moving-average (MA) disturbances. In the fol-
lowing representation the order of the autoregressive part is one without loss of
generality. This is because we can consider the p-th order multivariate SSAR
model similarly, which can also be re-written in a first order multivariate auto-
regressive form by using the standard Markovian representation well known in
statistical time series analysis.

Let y, be an m x 1 vector of time series variables. The model we consider in
this section is represented by

uy + Ay, + Diu if e,y > €. Y1
(2-1) yt e )
p, + By, + Dyu, if ey, < €Y1

where €/ = (0,+--,0,1) and g} (i = 1,2) are 1 x m vectors of constants, 4 and
B are m x m matrices, and D; (i = 1,2) are m x n matrices.
The disturbance terms {u,} are a sequence of I(d) process in the sense that

(2.2) Ay = Z C;vij,
—
where Cy =TI,
(2.3) ‘ 2 G < +oo,
7=0

~ and {v,} are a sequence of martingale differences with E(v|Fi-1) = 0 and
(24:) E(vtv;ift_.]) = ﬂt (a.s.) .

In the above notations the o—field F,_; is generated by {y,, uss <t — 1}, A
is the difference operator, I(d) denotes the integrated linear stochastic process
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(d > 0), and £2; represents the conditional covariance matrix. Although the order
of the moving-average (MA) terms in (2.3) can be +co in the general case, we
shall only deal in this paper with the finite MA case when C; = O (7 > q)- The
distinction between m and n can be useful when we deal with the higher order
SSAR models. ; v

The most important feature of this representation is that the time series vari-
ables may take quite different values in two different phases or regimes. This type
of statistical time series models is called the threshold time series model in the
recent time series literature. However, since the vector time series and two phases
at time t are determined simultaneously, we shall refer to this type of time se-
ries models as simultaneous switching autoregressive (SSAR) time series models.
It will appear later in this paper that this simultaneity has not only important
economic interpretations, but also casts new light on the non-linear time series
modelling.

We now consider the basic question whether the stochastic process defined
by (2.1), (2.2), and (2.3) is meaningful in a proper statistical sense. The general
answer to this question is negative and we need some additional conditions on
the unknown parameters in the SSAR model. This issue has been called the
coherency problem. We say the non-linear time series model (2.1) is coherent
if and only if the correspondence between {y,} and {u.} is one-to-one given the
initial condition Fo. (See Gourieroux et. al. (1980) and Section 4 of Kunitomo and
Sato (1996) for the detail.) The conditions of e[y, > ey, ; and ey, <e Y.,
can be rewritten as

(2.5) e Diu;> e, (I, — Ay, — € 1y
and
(2.6) e Dyu; < e, (I,— By, ,— ety

reépectively. When m = n, a set of conditions on the coherency for the SSAR
model can be summarized by a 1 x m vector d' and a 1 x (1 + m) vector »' :

1 1
(27) ——E{m.Dl = ——-e'ng = d, y
Jq dg
and
1 / ! 1 / !
(28) “[_emul) em(I'm - A)] = ——[—emu’Z) em(I'm - B)]
g1 T2
fomrd 7”

bl

where o; (i = 1,2) are unknown scale parameters and d'd = 1 for normaliza-

tion. We then have the following proposition, a proof for which is given in the
Appendix.

Theorem 2.1 : Suppose (i) m=n, (it) o, > 0 (i = 1,2) ,|D1D;| > 0, and
(iii) the conditions (2.7) and (2.8) hold. Then the correspondence between two

stochastic processes {u;} and {y,} defined in R™ is one-to-one given the initial
condition Fy.



This proposition means that the SSAR model consisting of (2.1), (2.2), and
(2.3) is coherent as an econometric model under the assumptions in Theorem 2.1.
Hence the number of structural parameters in the SSAR model is less than the
number of parameters appearing in (2.1), which can be regarded as a reduced
form representation. When m = n = 1, we do not need (2.7) because it is
automatically satisfied. In this case we use the notation o; = D; >0 (1=12)
without loss of generality.

We define the indicator functions by

1
(2.9) IV = leLy zeny, )
and
2
(2.10) | [ = e, y,<eny, .} »

where 1y,} = 1 if the event w occurs and 1} = 0 otherwise. By the use of this
notation, it is often more convenient to rewrite (2.1) in the following form:

(2.11) y, = u(t) + Ay, + D(t)u.,
where . ,
(2.12) W)= 310
(2.13) At)=AIP + B,
and ,
(2.14) D(t) =Y 1{"D;.

i=1

There are several special cases of (2.11), which are interesting from the viewpoint
of possible econometric applications. Here we shall make mention of only three
examples in the class of the SSAR models we introduced.

Example 1 : Consider the SSAR model when d = ¢ = 0. This is the
case which we have investigated in some detail (Kunitomo and Sato (1996)). We
assumed that the disturbance terms {u,} are a sequence of martingale differences
with conditional homoskedasticity, i.e.

(2.15) E(uyFi1) =0,
and
(2.16) E(weui|Fioa) = I,

where F,_; is the o-field generated by the random variables {y,,u,;s <1 — 1}.
We investigated the conditions for the ergodicity and basic properties of the
stationary distributions and their moments (Kunitomo and Sato (1996)). In
particular, the necessary and sufficient conditions for the ergodicity when m =
n=1are A< 1 B <1, and AB < 1. It should be noted that the conditions
|A| < 1 and |B| < 1 are sufficient, but not necessary for the geometric ergodicity
of the stationary SSAR model. This illustrates one of interesting differences
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between the linear time series models and the non-linear time series models.
There are interesting economic interpretations for these differences. For instance,
we originally introduced the stationary SSAR model from the reduced form of
a disequilibrium econometric model (Kunitomo and Sato (1996)). It seems that
the conditions for ergodicity in the disequilibrium econometric model are much
weaker than those for the corresponding equilibrium econometric model.

Example 2 : We can illustrate some possible applications by using the
multivariate SSAR models. For this purpose, we take d = 0, m = 2, py = py = 0,
and e, A = e} B = (1,0), for simplicity. Then by using the coherency condition
(2.8) we have the representation

(2.17) Ay, = a(t)r'y,_, + D(t)u;,

where a(t) = (0,— 2 196, and a 1 x 2 vector 7 and o(j = 1,2) are
unknown (constant) parameters. We further take D(t) = (di; (1)), dua(t) = oy,
dyo(t) = ogl)It(l) + 052)152), and dy,(t) = dai(t) = 0. Then the vector » could be
called a co-integrated vector in a non-linear sense because the stochastic process
defined by

'
Ty =1TY,

is ergodic and stationary if and only if *:

(2.18) a<l,b<lab< 1,

where a = 1—6;1'0'51) and b = l—e'zrcrgz) . We then have the 2-dimensional SSAR

model in which the first variable of y, follows a linear (1) process, the second
variable follows a non-linear I{1) process, and two variables are co-integrated
in a non-linear sense. This situation may be interesting for some applications
in financial time series (see the discussion in Section 3.3). When A = B and
D, = D,, the form of (2.17) has been called the error-correction representation
of a non-stationary linear time series model (see Engle and Granger (1987), for
instance).

Example 3 : When d = 1, the stochastic process defined by (2.1), (2.2),
and (2.3) is non-stationary. In subsequent analysis in this paper we shall mainly
forcus on the non-stationary and univariate case, that is, the SSAR model when
m =n = d = 1. Thus we are extending the stationary SSAR model discussed in
Kunitomo and Sato (1994a,b) to a class of the non-stationary SSAR time series
models. Since the integrated autoregressive moving-average (ARIMA) process
has been a useful class of non-stationary time series models, we can call the
stochastic process under consideration a simultaneous switching autoregressive
integrated moving-average (SSARIMA) process. In Section 3.2, we shall argue
that there are compelling reasons why the non-stationary SSAR model we in-

1Gince the proof in the present case is similar to that of Theorem 2.3 in Section 5, we omit
the detail.



troduce as Example 3 is useful for some applications to analyzing financial time
series.

9.9 Characterization of a non-stationary SSAR model

When {u} in (2.2) is an I(1) process, the stochastic process {y,} is a non-
ergodic process. Hence there are basic questions on the properties of the stochas-
tic process defined by {y,} when d = 1. By using the representation of (2.11),
the time series model for {Ay,} can be written as

(2.19)
Ay, = DO)A[D ()™ p(t)]
+ DA)D(t-1)"" Ay,

— DOWD A (In— ANy — D (= D7 (I — Al = 1))yo]
+ D(t)Au,.

Further when m = 1 we can simplify some coefficients by the coherency con-
ditions (2.8). In this case we have the relations p(t) = —roD(t), and 1 — A(t) =
riD(t), where # = (ro,r1). Hence we have the following characterization result

on {Ay;:}.

Theorem 2.2 : Suppose d = m = 1. Define the non-linear transformation of
{Ay:} by »
(2.20) T(ay) = D (1) By

Then the transformed stochastic process {T'(Aye)} satisfies
(2.21) T(Ay;) = A(t — )T (Aye-1) + Dug .

The time series model defined by (2.21) has been called the first order thresh-
old autoregressive (TAR) model with MA disturbances in the non-linear time
series analysis. From this result we know that {Ay,} is slightly different from
the TAR(1) model with MA disturbances, which has been known to be useful for
application in statistical time series analysis.

From the above discussions, we can deduce some properties of the differenced
time series {Ay.}. We can thus investigate the univariate non-stationary SSAR
model when d = m = 1 in further detail. In the empirical application we shall
report in Section 3, we also include the time trend variable in the univariate SSAR

model. Thus the non-linear and non-stationary SSAR model to be considered is
given by

Ap + At + Azyt—1’+ oyuy (G ye > ye1)

By + Bit + Baypq +oous (i 9 < 9e-1)



where we take o; > 0 (¢ = 1,2). Then by the same argument used to obtain (2.8),
we can derive the coherency conditions for this model. The resulting conditions
can be summarized by

A B A B 1-4, 1-B
(223)—_—0‘:'—_9'=r0)“”_}"=_—‘1=7'1; 2..*-: 2:7‘2.
o 02 o1 o o1 0o

Since {y,} is a non-ergodic process, we need to investigate the stochastic process

defined by (2.22). For this purpose it is convenient to use the indicator functions

IV = I(Ayt > 0) and I = I(Ay, < 0). Also we use the notation of D(t) =
I(l) + 0’2.[t and re-write the disturbance terms {u;} as

(224) U = Ayt -+ 7o + Tlt + rolYs—1 -

1
D(t)
Then, given the information avallable at t — 1, there are four phases for Ay; at
t to be considered depending on It and It_ (z = 1,2). By taking the difference
operation in (2.24) and re-arranging each term, we have the representation

1
(225) . Ayt D(t) {""T’] -+ ( 2 + m) Ayeg + Aut}
Hence the stochastic process {Ay;} has the representation

'4

Al + Aszt-—l -+ 0'1Aut (lf Ayt—-l Z 0, Ayt Z 0)

A] + ( ) Bszt 1+ U]Aut (if Ayt-—l < 0, Ayt Z 0)
(2.26) Ay = <
| B+ (2) Asdyems + 2Au, (f Ay >0, Ay, <0)

By + ByAysq + 020, (f Aye1 <0, Ay, < 0)

\

By this form of representation, we notice that the differenced process {Ay;} from
the SSIAR model has not only the simultaneous switching characteristic, but
also a characteristic of the threshold type time series model. When d=1 and ¢ is
finite, {y;} has Markovian representation. More generally, the stochastic process
{A%y,} has similar characteristics when the underlying process {u.} is an I(d).
For the stochastic process {Ay;} defined by (2.26), we can establish the necessary
and sufficient conditions for its ergodicity. A proof is set out in the Appendix.

Theorem 2.3 : Suppose (i) the order of MA terms q on {Aus} is a finite
number, (i) the coherency condition (2.23) holds, (11i) the density function g(v)
of {v:} is everywhere positive in R', and () sup,s, Ef|v|]] < +oo. Then the
Markov chain defined by (2.26) for {Ay:} is ergodic if and only if

(227) Ay < 1, B; < 1, AyBy <1 .



For the precise definition and discussions on the ergodicity for Markov chains
on a general state space, see Tweedie (1975), Liu and Susko (1992), or Meyn and
Tweedie (1993). It is interesting to see that the conditions given by (2.27) are
identical to the ergodicity conditions for the stationary SSAR(1) model derived in
our previous work (Kunitomo and Sato (1996)). However, for current purposes,
no additional conditions as we used then on {v;} are necessary.

The non-stationary SSAR given by (2.11) is a complicated stochastic process.
In order to get some idea of its statistical properties, we did a set of simulation for
the simplest case. When m = d =1, the simplest SSAR model can be re-written
as

Alyemy — p) o i 9o 2 4
(228) Yy — B = )

B(ye—1 — p) + o2ug iy < i
where we re-define p as a location parameter and o; (i = 1,2) as scale parameters.
In our notation (2.28) corresponds to (2.22) with A = Ay, B = B,, and A; =
B, = 0. The disturbance terms {u;} follow the random walk process satisfying

(229) U = Up—1 + Ug

The innovation terms {v,} in (2.29) are independently and identically distributed
random variables and follow N(0,1). The condition on coherency in this case is
given by

2.30 = =r .
(2.30) - el

For the sake of simplicity, we set = 0 in our simulations. Although there are
four unknown parameters A, B and o; (i = 1, 2) in (2.28), there are only three
free parameters A, B and r.

We took several sets of values on these parameters and did a set of simulations
in a systematic way. From these we present just three simulated time series data
cases in Figure 2.1, which were generated from the same set of random numbers
used for {v;} in (2.29). The middle one among three cases shows the sample
path of the simulated time series when A = B = 0.5, which means that the
non-stationary SSAR(1) model is actually the standard ARIMA(1,1,0) model.
When A # B, we notice some asymmetrical patterns in the sample paths of the
simulated time series. For economic time series, the case when A = 0.8 and
B = 0.2 may be the most interesting one. Even though we use a very simple
non-stationary SSAR model, we can get very interesting asymmetrical patterns
on the sample paths of {y;} along the simulated random walk of {u;}. This aspect
can not be easily realized by the linear non-stationary time series models such as
the ARIMA model. Since the dominant factor in the present case is the random
walk part, however, it is generally more difficult to distinguish the asymmetrical
case from the symmetric case than in the stationary SSAR models. We have
investigated the sample paths of the time series generated by the stationary SSAR
models in a previous study (Kunitomo and Sato (1996)).
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2.3 Maximum Likelihood Estimation

The SSAR model is quite complex as a statistical model in its several aspects
when m = n and d > 1. The first aspect is its similarity to the threshold au-
toregressive model in that the present state variables depend on the past realized
values of time series. Another aspect is that there is a simultaneity between the
present phase and the present value of the time series variables. The last aspect
is that the SSAR model when d > 1 is a non-linear and non-stationary stochas-
tic process. As we discussed for the simple stationary SSAR model (Sato and
Kunitomo (1996)), the standard least squares estimation method for data set in
each phase separately gives inconsistent estimates for its unknown parameters.
In addition, our simulations showed that the bias of the least squares estimator is
numerically quite significant in most cases. This aspect is quite different from the
estimation problem for the standard TAR time series models. The main reason
for this is because there is an important simultaneity involved in the SSAR mod-
els. Instead of the least squares method, we are proposing to use the maximum
likelihood method for the non-stationary SSAR model in this paper.

We shall consider the case when m = n and d = 1. We set the initial conditions
such that 9o = v_; = --- = v_, = 0 and Ay, is fixed for the simplicity. Then
the Jacobian of the transformation from {Au,,2 <t < T} to {Ay,,2 <t < T}
is given by

T
(2.3 (A — Ay)ls = [T ID@)
t=2
The Jacobian of the transformation from {v,2 <t < T} to {Au,2 < t < T}is
one provided that (2.2) is an invertible MA process.
Under the assumption that the disturbance terms {®.} are independently and
normally distributed random variables, the conditional log-likelihood function
when d = 1 for {Ay,, 2 <t < T} given the initial conditions can be written as

(2.32) log Lr(8) = —-(I—::z—ll@log 27

2 .
351 log | D;2(8) D]

1=1

-
[

T
T
5 vi(6) 2(6)" 0.(6)

R

-~
N

where {v,(8)} are {v,} rewritten from (2.1) and (2.2) as functions of {Ay,},
12(9) is the covariance matrix of v, whose diagonal elements are ones, and 8 is a
vector of structural parameters as appeared in the original SSAR model. When
m = n = 1, we use the notation o; = D; (7 = 1,2) and the parameter vector is
given by 8' = (ry, 72, 01,02,¢1,++,Cq).

11



The maximum likelihood (ML) estimator 0,11 can be defined by the maximum
of log L7(8) with respect to the unknown parameters in @, where the parame-
ter space @ is restricted by the coherency conditions given by (2.7) and (2.8).
By using 64 and the initial condition, we can also estimate other parameters
such as ro. The asymptotic properties of the ML estimator in the non-stationary
SSAR model when m = n = d = 1 can be established, that is, the ML estima-
tor is consistent and asymptotically normal. A proof of this is provided in the
Appendix.

Theorem 2.4 : For the non-stationary SSAR model given by (2.22), suppose
(i) the sufficient conditions for the coherency in (2.23) and the ergodicity in
Theorem 2.8 hold, (i) the disturbances terms {v;} are independently distributed
as N(0,1), (iii) the MA order q is a finite number and (2.2) is invertible, and (iv)
a; >0 (i=1,2). Also suppose (v) the true parameter vector 6o is an interior point
of a compact set @q in the parameter space @. Then the ML estimators 8y, of
unknown parameters in @ are consistent and asymptotically normally distributed
as

(2.33) VT (8112 — 6) 4 v, 1]
provided

1] 0%log Lr(8)
T et

is a positive definite matriz.

We do not have a simpler form of the information matrix 2 at present. Then

we need to use

1 [ 0%logLr(0)

T {"W} 19,2
as its consistent estimator for statistical inferences.

We have also investigated the finite sample properties of the ML estimator
in a systematic way. Because their mathematical expressions are intractable,
we have utilized simulation procedures. We generated the simulated time series
{Ay,} and {y;} for the non-stationary SSAR model when d = m = 1and ¢ =10,
ie. the SSIAR model without time trend. We used the standard normal random
numbers for the disturbance terms {v;}. Then we obtained tables of the sample
mean of the ML estimator from 5,000 replications. Among many tables, we show
the numerical results only for the case when T' = 100 and T' = 500 in Table
1. The numerical values of the means in our tables should be accurate to two
digits at least. From these tables, we find that the bias of the ML estimator is
negligible when the sample size is about 100 and the estimates based on the ML
estimation are reliable. These findings are very similar to those from our previous
investigations on the ML estimation method on a stationary SSAR model (Sato

2We conjecture that the asssumption of its positive definiteness can be removed because we
can show it in a simple case.
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and Kunitomo (1996)). Thus there is strong support for the use of the ML
estimation method for the stationary and the non-stationary SSAR models. . . .

2.4 Asymmetry with Conditional Heteroskedasticity

In recent econometric analysis of financial data, considerable attention has
been paid to the autoregressive conditional heteroskedasticity (ARCH) model,
which was originally proposed by Engle (1982). The critical argument against
using the standard ARCH model seems to Jie in the fact that the original ARCH
model cannot represent the asymmetrical nature of volatility functions of some
financial time series. Several generalizations on the original ARCH model and
other approaches have been proposed. For instance, see Bollerslev (1986), Nelson
(1991), and Harvey and Shepard (1993) on the related problems and technical
difficulties in the previous studies.

In this respect, the SSAR modelling provides a natural way to handle the
asymmetry with conditional heteroskedasticities. In order to illustrate this point,
we take the simple case in (2.1)-(2.4) when m = d = 1 and ¢ = 0. Let € (=
E(v?|F,—1)) be the conditional heteroskedasticity function of disturbances {v;}
for the stochastic process {Ay;} represented by

(2.35) Ay = D(t) {—7’1 + (—rz + "D'(Z}:—ﬁ) Ay + ut} ,

where E(vt) = 0. If we further assume that

p
(2.36) Q=1+ ol
e=1
and the unknown coefficients {o;,j = 1,-- -, p} satisfy some restrictions on the
stationarity and the positivity of conditional variances of {v:}, we implicitly in-
clude an asymmetrical conditional variance function for {Ay;}. In this way the
ARCH type models for the symmetric conditional heteroskedasticity can be easily
incorporated into the SSAR modelling and the resulting volatility function for the
original process can be asymmetrical in two phases. If we want to have an efficient
estimation procedure of the ARCH effects, the likelihood function in (2.32) when
m =n = d = 1 should be modified by simply substituting 072(8) (i = 1,2) and
v,(6)29:(8)~1 for D;(8)D; and v,(8) 2(#)'v:(8), respectively. The structural

. . . . I3
parameter vector in this case is given by 8" = (r1, 72, 01,02, €1y "5 Cqy X1y " " o).

3. An Application to Financial Data

3.1 Financial Time Series

The main reason to introduce the non-stationary SSAR model is its applica-
bility to economic time series data. Especially, there has been growing interest
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among econometricians and statisticians in the last decade to investigate financial
time series data by using statistical time series analysis. There have been several
interesting features in financial time series data. First, many financial time series
such as stock prices, bond prices, interest rates, foreign exchange rates, and their
derivatives are often too volatile to use the stationary time series models of sta-
tistical time series analysis. The results of the prediction based on the stationary
linear time series models have therefore been unsatisfactory. Furthoremore, there
is considerable reason in financial economics to believe that there is a martin-
gale measure for the stock prices : see Harrison and Kreps (1979). Second, the
distributions of prices and yields are often not well approximated by the Gaus-
sian distribution. It has often been found by econometricians that the kurtosis
calculated from the stock returns is much larger than 3. Third, the estimated
volatility functions for many financial time series are not constant over time. This
leads to the idea that the conditional variances of time series are not constant
over time. Fourth, some financial time series including stock prices exhibit asym-
metrical movements between in the up-ward phase and in the down-ward phase.
These features are not consistent with standard linear time series models such
as the autoregressive integrated moving average (ARIMA) process and the stan-
dard autoregressive conditional heteroskedasticity (ARCH) process, which have
sometimes been used in recent econometric applications.

We should stress that the non-stationary SSAR model introduced in Section
2.2 has statistical properties that are consistent with all of the above observations
on many financial time series. Thus we hope that the non-stationary and non-
linear time series model we introduced in Section 2 will potentially be useful for
applications in many financial data.

Before presenting our empirical application, however, we have examined the
asymmetrical property by using a set of Japanese stock indices data as the pre-
liminary data analysis. For this purpose we have used time series data set of the
Nikkei 225 spot index from January 1985 to May 1986 and the Nikkei 225 futures
index from January 1990 to August 1991 as we shall explain in Section 3.3. We
first fit the non-linear regression model

(3.1) Ay = o + B Ay Ly + Br Bysy + e
where By, A7, and B7 are unknown regression coefficients and {v;} are the dis-

turbance terms with E(v|Fi—1) = 0 and E(v}|Fi—1) = 0. The signed lagged
explanatory variables are defined by

Ayt = Ayi-1 %f Ay—1 20
=1 0 if Ay <0

and

- 0 if Ayt—l 2 0
Ayia = { Ayey if Ay <0

3We have estimated other non-linear regression models including the case when (Ay;~;)?
and (Ayi—_l)2 are in the explanatory variables, for example, by using the full data sets explained
in Section 3.3. Since the estimated results are similar, however, we have omitted the details.
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In particular, if 8 = 7 = B, the asymumetrical terms in the model disappear
and we have an AR(1) model for Ay;. ‘ S

Using the time series data of the Nikkei 225 indices, we have estimated (3.1)-by:
the standard least squares method and the results of our estimation are summa-
rized in Table 2. Frora Table 2, we find that the estimated unknown coefficients
B; and i are significantly different in the spot index equation. The F-value for
the hypothesis

Ho: Bf =57

is 8.306. Furthermore, the estimated coefficient of Bi is significantly different
from zero while the estimated coefficient of i is not significantly different from
zero. In order to see the degree of model fitting, we have calculated the value
of AIC (Akaike’s information criterion) in each case. The value of AIC for the
regression is —4090.4 while the value of AIC for the AR(1) fitting is —4084.1.
We have found that the estimated models with Ay;"; and Ay;_; are better than
those with only Ay, in many sample periods for the spot index by the minimum
AIC. Therefore we tentatively conclude that by using the model given by (3.1),
we have picked up an asymmetrical property in the spot index data.

On the other hand, the estimated unknown coefficients BT and By are not sig-
nificantly different in the futures index equation. The F-value for the hypothesis
Hy: B = By is 0.19. The value of AIC for the regression is —3237.97 while the
value of AIC for the AR(1) fitting is —3239.78. (The t-value for the estimated
coefficient is 2.57.) We also have found that the estimated models with Ay,
and Ay, are not better than those with only Ay;—y in many sample periods
for the futures index. Because these estimated results from the threshold type
regressions are typical, we tentatively conclude that there are some differences in
the non-linear aspect discussed between the spot index and futures index, which
may be of interest to financial economists.

3.2 A Simple Model of Stock Prices

In this section we first discuss a simple econometric model of stock prices,
which leads mathematically to the non-stationary SSAR model. The main reason
for the following discussion is mot to develop the financial economics, but to
illustrate why the SSAR model is useful and applicable to many financial time
series. For this purpose, we slightly modify the well-known economic model in
the micro-market structure literature of financial economics developed by Amihud
and Mendelson (1987).

Let the intrinsic value of a security at time t and its observed price be V; and
P, respectively. We distinguish the intrinsic value of a security and its observed
price. There are some economic reasons why they can be different : see Amihud
and Mendelson (1987) and its references to the the recent literature on micro-
market structures in financial economics. Since the two values V; and P; can be
different, we can introduce a partial-adjustment model when the intrisic value V;
at t deviates from the observed past price P,y at t — 1 as follows
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(Vi = Prey) i Vi— Pa 2 0
(3.2) Pt and 'Pt—l = ,
v 92(‘/! - Pt—l) if Vt - P < 0

where V; and P, are in logarithms and the adjustment coeflicients g; satisfy g; >
0(i=1,2).

We note that we have modified the adjustment process used in Amihud and
Mendelson (1987) in two ways. First, we have omitted the contemporary noise
factor in the right hand side. We did this because of the resulting simplicity.
Second, we have allowed the adjustment coefficients g; (i = 1,2) to take different
values. There could be intuitive economic reasons why they can be different t
Because there are new shocks or news available at ¢ in financial markets, V; could
be different from P,_;. When V; > P;_;, the intrisic value at ¢ 1s above the past
realized price and there is economic pressure mainly from the demand side to make
the price go up. When V; < P._, on the other hand, there is economic pressure
mainly from the supply side to make the price go down. Since there are two
main forces during the actual price determination process in financial markets,
the two coefficents ¢; (i = 1,2) could be different. Instead of discussing their
details, however, we simply point out that this formulation covers many cases
which are theoretically or practically interesting in financial economics. When
g1 = g2, (3.2) is reduced to the standard linear adjustment model. Further, when
g1 = g2 = 1, V; = P, and the intrinsic value of a security is always equal to its
observed price. Hence, by using the formulation we have adopted in (3.2) it is
possible to examine from the observed time series data if these conditions are
reasonable descriptions of reality.

In recent financial economics, there has been a convention that the logarithm
of the intrisic security value {V;} follows an integrated process I(1) with a drift,

(3.3) Vi=Viaatoec+p

where 4 represents the expected daily return and {e:} are a sequence of random
variables generated by the linear stationary stochastic process possessing a MA
representation.

By combining (3.2) and (3.3), we obtain the representation of AF; as

(3.4 AP, = g0 — WAP + g0+ 0ei,

where g(t) = gllt(l) + gzlt(z) . In this representation, It(l) = 1 if and only if
V, — P,_; > 0. But then (3.2) implies that It(l) = 1if and only if AP; > 0. Hence
(3.4) is a special case of the non-stationary SSAR model we have discussed in
Section 2.1 whenm=n=d=1

4There are also institutional factors such as the tax system, short-sale restrictions, trading
and commission rules, and other regulations in major financial markets. Usually these factors
determine the actual transaction costs. :
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By using Theorem 2.3 in Section 2.2, we have calculated the ergodic region
for the process {AP,} with respect to the adjustment coefficients g; (i=1,2):
see Figure 3.1. We mnote that the ergodic region when g1 # g, is quite large in
comparison to when g, = g,. This figure may be useful when we interpret the
empirical results reported in the next sub-section.

3.3 An Empirical Analysis of Spot and Futures Indices

In this section we shall report an empirical result using the time series data in
the Japanese financial markets. In our data analysis we have used time series data
set of the Nikkei 225 indices which are the most popular stock price indices traded
in Japan. They are the daily closing data of Nikkei Spot and Futures indices from
January 1985 to December 1994. Trade on Nikkei index Futures started at the
end of 1980s at the Osaka Stock Exchange, so we have used the data for Nikkei
Futures from January 1990 to December 1994 °. All data were transformed into
their logarithms before the estimation of the non-stationary SSAR model. It may
be of some interest in financial economists to compare the time series movements
of the spot price index and the corresponding futures price index.

Using these data, we have estimated the first order non-stationary univariate
SSAR model with time trend given by (3.4), which could be written as SSIAR(1).
The estimation of structural parameters in the SSIAR(1) model was conducted
by the ML method under the assumption of the normal disturbances. Since we
cannot obtain an explicit formula for the ML estimators of unknown parameters,
we have used a numerical nonlinear optimization technique with the coherency
restrictions on parameters given by (2.23). In the actual estimation we took
g = 0 because we could not find any significant MA terms in most case. The
resulting estimation results are summarized by Table 2. We should note that the
estimated values of g; and g, correspond to 1 — A; and 1 — By, respectively. LK
in figures stands for the maximized log-likelihood functions. For the purpose of
comparison, we also have estimated the standard ARIM A(1,1,0) process from
our time series data set. In order to make a comparison, we have calculated the
likelihood ratio statistic LR(A = B) for testing the null hypothesis

H() : A2=B2.

Under the assumption of the Gaussian disturbances, the likelihood ratio statistic
LR(A, = B,) is asymptotically  distributed as x(1). Thus this test statistic

5To be more precise, we have constructed the discounted futures series from the original
futures data. We have done this by using the monthly average of inter-bank interest rates.
The main reason for this adjustment procedure was because the published futures series are
discontinuous before the delivery dates roughly once in every three months for the Nikkei 225
futures series. See the report of Bank of Japan (1993) for the details of problems on the stock
futures market and data in Japan. Nevertheless, we have found that the following empirical
results have not been much affected by the above procedure.

6The asymptotic distribution can be derived by using the standard argument in time series
analysis and Theorem 2.4.
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gives us useful information on the asymmetrical movements of stock prices. The
estimated results have been summarized in Table 3 and Figure 3.2.

There are several interesting empirical observations. First, the spot stock
price index sometimes shows sharp asymmetrical movements either it is in the
upward phase or in the downward phase. This phenomenon has been evident
in 1985 and 1987. Actually we already knew that there was a sharp decline in
October of 1987. During these sharp downward phases, the estimated values of
the adjustment coefficient d» = 1 — B, are often greater than 1, which indicates
that there were some over-reacting movements in the stock markets. On the other
hand, the estimated coefficient d; = 1— Az is less than one in the up-ward phases
and we could not find any over-reacting movements in the same periods. Second,
all of the x2—statistics for the futures stock index are not very large from 1990
to 1994. This suggests that the futures stock index does not show any significant
asymmetry in two phases in comparison to the spot price index. There could
be some economic interpretations for this observation. Third, after starting of
the active trade of stock index futures in the Japanese financial markets, there
have not been many occasions as was the case previously when the asymmetrical
movements of the price indices are evident. In particular, we could not find many
over-reacting movements in the downward phases by looking at the estimated
adjustment coefficients in this period.

Following the estimation of asymmetrical movements of time series by the
SSAR modelling, we can calculate the estimated residuals. In order to see the
significance of the conditional heteroskedasticity in our data set, we have estl-
mated the first order ARCH model (ARCH(1)) and calculated the likelihood
ratio statistic for the hypothesis Ho : a; = 0 from the residuals. Among 7 sub-
period the ARCH effects are significant in 4 cases with 1% significance level by
using the x? distribution. We have often observed strong evidence for the exis-
tence of significant conditional heteroskedasticity. It seems that the asymmetrical
volatility function based on the SSAR models often fits the data of the Nikkei
Index better than the standard ARCH model fitting. In this case the resulting es-
timated volatility functions for the Nikkei Index are asymmetrical in two phases.
However, we should emphasize that the standard ARCH modelling can be easily
implemented in the SSAR modelling.

These empirical problems and findings may have some implications for finan-
cial economists. Needless to say, these observations from our empirical results
on the Japanese financial markets are preliminary and further considerations are
needed. But clearly it has not been easy to detect these features of the finan-
cial time series data by using the existing methods and the linear time series
modelling in particular.

4. Conclusions

In this paper we have focused on one important aspect in many financial eco-
nomic time series, which has been often ignored in the past econometric studies.
We have argued that the asymmetrical pattern in the movements of time series
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between the upward and downward phases often observed by economists can not -
be represented properly by the stationary and non-stationary linear time series
modelsf'i,ncl'uding the standard ARMA, ARIMA, and ARCH processes, which
have been used in many empirical studies in the past.

We have therefore introduced the class of simultaneous switching autoregres--
sive (SSAR) models, which is one type of non-linear switching time series models.
It has the distinctive properties of simultaneity and time irreversibility. Since
we have already investigated the stationary SSAR model (Kunitomo and Sato
(1996)), we have focussed on the non-stationary SSAR model and investigated
some of its properties in the univariate case. In this paper we have proposed the
maximum likelihood estimation method for estimating the unknown parameters
in the SSAR model. We hope that the results reported in this paper may shed
new light on the time series properties often observed by many economists and
statisticians.

We have also tried to show that there are some natural reasons why the
non-stationary SSAR model introduced in Section 2 is a useful tool to analyze
many financial time series in financial markets. We have illustrated this issue
by suggesting a very simple model for stock price movements in Section 3.2.
The point is that if we permit the intrisic value of security to be different from
the observed price and have an adjustment process, the result is a new non-
linear time series model. Then the estimated coefficients in the upward and
downward phases can be different, and we can get some interesting information
from the estimated adjustment coefficients and the resulting x? statistics. We
have illustrated this advantageous aspect of our modelling approach by examining
the movements of the Nikkei stock index and the Nikkei futures stock index from
1985 to 1994 in the Japanese financial markets. Of course, there can be many
possibilities to describe financial time series by non-stationary and non-linear time
series modelling. At least we can conclude that the non-linear and non-stationary
models we introduced in this paper give a class of interesting econometric and
statistical models, which are useful for possible applications.

However, there are several important issues that remain to be solved. In
this paper we have only investigated some special cases of the non-stationary
SSAR model. In particular, there are some interesting situations when we have
multivariate non-linear time series as illustrated in Example 2 in Section 2.3. Also
we have shown that the conditional heteroskedasticities such as the ARCH model
can easily be incorporated into the SSAR modelling and the resulting volatility
function can be asymmetrical in two phases. Since there can be many non-linear
time series models as we indicated in the Introduction and Section 2.4, however,
the comparison or the discrimination of the SSAR models from other linear and
non-linear statistical models will be necessary. Further studies will be necessary
on these problems.

5. Mathematical Appendix

In this appendix, we gather some mathematical details which we have omitted
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in the previous sections.

Proof of Theorem 2.1 : Let Y(]'R, (i = 1,2) be the partition of the sample

space for y, in R™ given g, which is defined by the indicator functions I§i) (1=
1,2). We can then successively define Y(th) (j =1,---,2") as the partition of the
sample space for {y,,1 < s < t}in R™ by I®) (s = 1,---,t;7 = 1,2). By this
sequence of partitions of the sample space, we have r‘liYS(), = ¢ and U,-Y% =R™
for any ¢t > 0.

Next, we use the indicator functions

(1) _
(A1) Ji7 = Lier Diuze,dn-A)y, ~€npt,)
and @

2
(A.2) Ji7 = l{e;nD,ume’m(Im-A)yf-:‘e'ml"'x} ’

Let U(f'% (i = 1,2) be the partition of the sample space for u; in R™ given y,,
which is defined by the indicator functions Jgi) (1 = 1,2). We can also successively
define Ugfg (i =1,---,2%) as the partition of the sample space for {u,,1 <s <t}
in R™ by J® (s =1,--,t;1=1,2) for any ¢ > 0. Then under the assumptions
of Theorem 2.1 it is straightforward to show that ﬂiUgig = ¢, U,-Ugig = R™,
and the correspondence between Ygfg (i =1,--+,2") and Uﬁg (6 =1,--+,2 is
one-to-one. Q.E.D.

Proof of Theorem 2.3 : We shall use a method similar to the one used
by Liu and Susko (1992) for the TAR(1) model with MA disturbances, which
is based on a fixed-point theorem. However, we note that substantial changes
in their method are necessary and we can establish stronger results than theirs
because of the different features of the non-stationary SSAR model with MA
disturbances.

(i) Sufficiency : Let z¢ = Ay, and define (1 + q) x 1 vector X by

T
Ut

(A.3) X, = Vg—1

Vi—g+1
Then we consider the Markovian representation for {X,}. For the sake of sim-
plicity, we set r; = 0. The condition z, > 0 is equivalent to v; > a,_ X1,
where .
(A4) at—l = (7‘2 _— -D—(;___l—)-smcla_CZy"',—cq)

and {c;,1 < j < ¢} are the MA coefficients of {Au.}. From (2.25) we have the
representation

(A;S) Xt = H(Xt—la vt) 3
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where
—D(t)a;_ X -1 + D(t)ve
Uy

(A.6) H(X ,,v)= (I

Yi—g+1

We use the criterion function
q

(A7) G(§) = 3_h(&)

=1

where h(&) = |&| and &= (&, -, &)
If we use a sequence of compact sets K, = [-n,n] x --- x [~n, nl,n =1,2,---
then inf&Kc G(&) — +o0 as n — +oo. For t > g, : ,

(A8)  BIGENX] = Bih(e)+ 1 hlvesy) K]

1=0

< ki + E[E[M(z)| X ]| -+ | Xo]

because E[|v:]] < +oo, where k; is a positive constant.

| Let-
(Ag) Qi1 = Elh(z¢)| X 1] |
= E{h[—D(t)a;_lxt_l+D(t)vt|X¢_1]} .

We first consider the case when z;_; = z > 0. In this case from (2.26) we have
two phases at ¢t given z > 0 and

1 /
. —(ry — —)z + € 241 + z|g(2)dz
oroeerm 0 5+ i )

(A10) Qs = o /

1 '
- —(ry — =)z + € 241 + z|g(2)dz
2/;<(72—'j,1‘1‘)$"c’z(_.1[ (2 0'1) t—1 ]g( ) )

where € = (c1,+++,¢,) and 2¢—1 = (ve-1," * , Vt—g). Then by using (2.23), we have
v ,

A11) Qqies < ka(1 y Az [ )d

( ) Q-1 < 2 +§lvt ) + Az 22(72_‘;17”_6,/2“1 g9(z)dz

o)A |
— [ 22 4.2 z)dz,
(0’1 2 z<(r2—:}1—)m—-—clzf_1 g( )

where k; is a positive constant. We note that we have the inequality

(A.12) ~2p, <.

J1
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This is because A;B, < 1 and the coherency condition (2.23) implies

1 1 -
(A13) O0<rm<<—+— .
‘ g1 02
Then we take §; = max {A,, —(02/01)As}. When 243 = z < 0, we can use
the similar arguments and take 6; = max {B,,—(01/02)B:}. Then by taking
§ = max{6;,8,} , we have the relation

(A.14) E[G(X )| X ¢-1] < k3 (1 + qu ivt_,-l) + 6G(X 1) ,

=1

where 0 < § < 1 and kj is a positive constant. By repeating this procedure, we
have

t—1 q
(A.15) E[G(X )| X o] < ks E & (1 + Z’?t—k—j) +8'G(Xo)

k=0 7=1
where mx = E[|uk|]]Z(k > 0) + |vs|I(k < 0). Hence we have established the
boundedness condition on the criterion function

(A.16) sup E[G(X )| Xo] < +oo.
t>1

Next, by using the following Lemma A.1 and a similar argument to Lemma
2.1 in Liu and Susko (1992), the Markov chain defined by (2.26) in the SSIAR(1)
model satisfies the additional key condition in Liu and Susko (1992) (their As-
sumption 2.1). Thus there exists a finite positive invariant measure for the Markov
chain {X,} by Theorem 1.1 of Liu and Susko (1992). Also because we have as-
sumed that g(v) is everywhere positive in R and (2.26), we can show that the
Markov chain is irreducible. The proof of Lemma A.1 is the result of a straight-
forward calculation using (2.26) and is therefore omitted.

Lemma A.1 : Let {v;} in the SSIAR model given by (2.22) be independently
and identically distributed random variables with the density function g(v), which
is everywhere positive in R. Then given (AY—1, Vp—1,*** Vig) = (20, 21575 Zq),
the conditional probability

(A.17) Pr{Ay; < z|Ays—1 = 20, V-1 = 21, * ", Vtmq = Zq}

is a continuous function of 2’ = (20,21, *, 2q)-

(ii) Necessity : Without loss of generality we take ¢ = 0. The essential part
of the proof is similar to that for the TAR(1) model given by Chan et. al. (1985).
However, there is one aspect in which we have to modify their proof for our model.

We have to consider the situation when the values of parameters are on their
boundaries. For an illustration, we consider the case when A; = 1, A; <0 and
B, < 1. By using the coherency condition in this case these conditions imply
1—oyrg =1, —o1r; < 0, and 1 — gar; < 1. Then we have 017, = 0, oyr; > 0,
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and o,r, > 0. However, they are contradictory when o; > 0 and o4 > 0. Other
boundary cases can be treated similarly. Q.E.D.

Since we shall use some probability convergence arguments in the proof of
Theorem 2.4, we need some results on the existence of moments for {Ay;}. For
this purpose, we prepare Lemma A.2, which is also of independent interest.

Lemma A.2 : In the SSIAR model given by (2.22), assume (i) the coherency
conditions (2.23), (ii) the ergodicity conditions (2.27), and (iti) sup;y, Ellv|*] <
+oo for some k > 1. Then

(A.18) sup E[|Ay|*] < +oo .
£>1

Proof of Lemma A.2 : The method of proof is similar to that for the
sufficiency part of Theorem 2.3 and we shall first show (A.18) for k& = 2. Let
z¢ = Ay,. Then from the assumptions we made in Lemma A.2, E[|z:]] < 40 by
(A.16) in Theorem 2.3. We take the criterion function g(X) = |z|2. We consider
the case when z;_; = z > 0 and evaluate E[z?|F;_1]. We use the truncation
argument by the event z;_; > M for some M > 0. Then

(Alg) E[&'I?‘Z‘t_l, Vi—-1,""" Ut—q]

1 ) 2
2
= 0 ~r—~—-:z:+cz_+z] 2)dz
1 /ZZ(M_#”_C,M[ (ra— )z + €21 +2| 9(2)

01

1 ) 2
+o*2/ [—r———m cz_+z} z)dz
2 z<(rz~-‘-rlT)x-C,Z1..1 ( 2 0'1) + -1 g( )

IN

BODI+20) (14 3 Pl + 202

+ASze_, / g(z)dz

ZZ(Tz-;lT)xt—l -C' 2 1,321>M

g .
+ (~——-Az) T, / , , 9(z)dz,
01 Z<(7’2—;—x-).l‘g_.1—'c Zi_1,x4-1>M

where kqy(M) is a positive constant depending on M > 0. There are three cases
to be considered for the coefficients of z2 ;. When 0 < r; < 1/0y, we have
—05/0y < —(03/01)Az < 0 and 1 > A, > 0. In this situation the second integral
in (A.19) can be small if we take a sufficiently large M. When ry = 1/0;, we
have —(0,/01)A; = A, = 0. When 1/0; < r; < (1/01) + (1/02), we have 0 <
—(02/01)A; < 1 and 0 > A; > —(01/03). In this situation the first integral in
(A.19) can be small if we take a sufficiently large M. Hence by taking a sufficiently
large M > 0, there exists §; such that 0 < 6; < 1 and
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(A.20) E[z?|zi—1,Ve=1,"" "> Viq)
q q
< hy(M)[(1+ zem) (14D Jveil) + R B e
=1 =1

Also when z;_; = z < 0, we use the truncation argument for the corresponding
integrals to (A.19) by the event z;_y < _M < 0 and we can find & (0 < 8, < 1)
for the above inequalities. Then we can take ¢ = max{6,6,} and 0 < é < 1. By
repeating this procedure on conditional expectations, we have

(A.21)  E[z}|F0)
t—1 q q
< ks(M) S 6FE[(1 4 zecam)(1 + 2 fveickl) + 2 vimiil Fol + 5'ag
k=0 i=1 1=1

where kg(M) is a positive constant depending on M > 0. Because we can show
that E[|z;_3v:-1]] is bounded by using the assumptions we have made in Lemma
A.3, we obtain that sup,., Ez7] < +oo.

Next, for an arbitrary k > 2, we take the criterion function G(X,) = |zf*
and use the induction with respect to k. The remaining arguments are similar to

those for k = 2. Q.E.D.

Proof of Theorem 2.4 : The method of our proof is similar to the one
used in Sato and Kunitomo (1994). However, substantial modifications are nec-
essary because the SSTAR model with the MA disturbances is different from the
stationary SSAR model in several important aspects.

(i) Consistency : Let the stochastic process {Au;(8)} be defined by

(A.22) Aui(8) = D(t) " Aye + 1+ [r2 — D(t — 1) Ay
which is identical to {Au,} in (2.25). We denote the vector of true parameter
values of 9’ = (7"1, 72,01,02,C1," ", CQ) as o;) = (TIO)a rg0)> 0(10)’ UgO)a CgO)7 ) CEIO))'

By substituting Ay, evaluated at @ = @ into (A.22), we have

(A23)  Aug(8,80) = D(t)'D{”Auy(6)
+ [r = D) DO
+ [ra = D)7 DVr8 1Ay (60)
+ (D) D DT — D(t = 1) )Aye-1(60),
' ’;'her; D = D(t) evaluated at @ = 8o and Ay;_1(8o) = Ay, evaluated at
_ 6,
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Let also Au(8,80o) = (Au;(6,6,),2 <t < T) be a (7' — 1) x1 vector. Then
we can write

(A.24) | 1 )f: (0, 8,)* = -;:Au (8,8,) £7'(8)Au(0,8,),

where 31(8) is the (T 1) x (T'— 1) covariance matrix of {Au;(6)} and v(8, 0o)
is defined by the right hand side. Under the assumptlon on the initial conditions
we have the decomposition ¥r(8) = K TKT, where K is a lower triangular

matrix with 1 in its diagonal elements by normalization and | ¥7(6)| = 1.
Let

(A.25) Q(8,8,) = phm ; ZZI( ogg; — = phm T2 th (8,6,)° .

t=2 =1

Because the probability limits in (A.25) exist under the assumptions we have
made, we shall consider the criterion function Q(8, 8,). First, we notice that
Q(8, 00) is a quadratic function of (ry,r2), and a concave function of (01,02)

by the following Lemma A.3. (The proof of Lemma A.3 is a result of direct
calculations.) Then for »' = (ry,72),

(A.26) %%lowo = (1) plim 228%(8,00) 5 ()1 Au(6, 6))

T —00 T 81'

= phm Z( Ayos( 00) )a}’Au,(Oo)

T—oo T 520

= 1) phm ZZ,Bs-t( Ayt 1( ) )vs(oo)a

T—oo T (55122

where v,(8o) = v,(0) evaluated at @ = @, 07’ is the (¢, s) component of 748),
and B,—; = e,(T— 1)K 'e,(T—1) (s > t) for a (T —1) x 1 vector e,(T" - 1) with
11in its t-th component and zeros in other components. By using the mvertlblhty
condition for the MA process, we have | 8| = O(p*) (0 < p < 1). Since v,(8q) (s >

t) are uncorrelated with F,_;, we can use the standard truncation arguments for
the last summation in (A.26). Then we have

0Q
A.27 -2 =0.
(A.27) 5, 10-6, =0
Let n; = 1/0; (1 = 1,2). Then

oQ
A28 e —
(A.28) o, lg-8,

. L 10Au(8,8
= (plim TZIP)-—M 9, — phm i,m—é(a——")—z;l(a)m(o,oo)

T 00
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1 &y
= o(plim T—ZIED) o\? phm Z IMw,(80)0%* Au,(8o)

T—oo £ =3 Toroo 1’ s,t=2

1 s
+ phm sl Z I(l) Ayt—l(OO)O—ftl” AUJ(OO) ’
T—o0 T s,t=2

where the stochastic process w;(8o) is defined by

(A.29)  wi(Bo) = Aug(Bo) — [ri © 4 1 OAy._1(80)]+ D5 Aye-1(8o) -

The thlrd term of (A.29) is zero by similar arguments to (A.27). Because Au,(8) =

Eq_o c, Dve_;(60) (c (c; ©) are the true MA parameter values), the probability limit
of the ﬁrst two terms is given by

(A.30) Q*(8o)

.1 1R
= ago)(phm T > Iy — o plim 7 S5 IMB,_w(80)v.(8o)

T—o0 s=2 T—o00 s=2 t=2

= (~o\) B[P {v, (80)" + &-1(80)vs(80) — 1}]

where

O A0 4 @ 4 DO}
(A31) 63_1(00) = Z Cj ’l}s_j(eo) + [ D ]Ays—l(OO) .

7=1

By using the normality assumption on {v;}, we have the relation

(A.32) /;Oo(v2 ~1—cv)p(v)dv =0,

where ¢ is a constant and #(-) is the density of the standard normal distribution.
We can also use the arguments for 7, as 7. Hence we conclude that

(A.33) an,lo g, =0(=12).

Lemma A.3 : Let g(®) be defined by

p
(A.34) g(e) = a;logz; — ' A=,

=1

where ® = (z;) is a p x 1 vector, z; > 0,a; > 0 (i=1,-+-,p), and A 15 @
non-negative definite matriz. Then

(A.35) glce + (1 —c)y) > cg(2) + (1 - c)g(y)

for any 0 < ¢ < 1, where y = (y;) is a p x 1 vector with y; >0 =1,-++,p).
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Next, we have to deal with the MA parameters in the SSIAR model. For this
purpose, we set r; = rE"’ and 0; = 050) (i = 1,2). Then by using (A.23), we have
Auy(6,80) = Aug(Bo). By applying Proposition 10.8.3 of Brockwell and. Davis
(1991), we have S - -

1 ™ (X8

(A.36) ,;1210 %Au (80) T7' (0)Au (80) = o~ /_7; -C—é;;‘)—gjdA ,

where Au(8y) = (Auy(8)) is a (T—1)x 1 vector and c(); 9) is the spectral density
function of {Au,(8)}. Then by using Proposition 10.8.1 of Brockwell and Davis
(1991), (A.36) is uniquely maximized at 8 = 8o. Hence the function Q(8,80) is
uniquely maximized at @ = 8. In addition, the probability convergence in (A.25)
and (A.36) is uniform in @y C @ with respect to 8. Then by applying Theorem
4.1.1 of Amemiya (1985), we have the consistency of @1

(ii) Asymptotic Normality : In order to prove the asymptotic normality of
the ML estimator in the SSIAR model with the MA disturbances under the
assumptions we have made, the most important step is the martingale property of
the partial derivatives of the log-likelihood function summarized in the following
Lemma A.4. The second step is to use the central limit theorem for martingales.
(See Hall and Heyde (1980), or Anderson and Kunitomo (1992), for instance.)
The rest of the proof is similar to the arguments used in Sato and Kunitomo
(1994) by making use of Lemma A2, For instance, it is straightforward to show

2

(A37) E [_M} _F [mog Lr(6) log L1(6)]
068086 08 50

Hence we omit the details. Q.E.D.

Lemma A.4 : Let 8 be a vector of unknown parameters in the SSIAR model
given by (2.25) except ro . Then we have

0log L:(0) _ Olog Li-1(8)

where Fo_y is the a—field generated by {y,,s <t — 1o, <t - 1}.

A Sketch Proof of Lemma A.4 : Using the notationsin (i), the conditional
log-likelihood function for {Ay,,2 < s<t}is proportional to

(A39) L8 o« —log|Z(O)

1 t 2 . 1 ,
— 522]&’) log o? — ’Q‘ht(o) 3.71(0)h(8),

where h(8) is a (t — 1) x 1 vector with Au,(#) (2< s < t) in its s-th component,
and 37,(0) is the covariance matrix of h.(6). Under the assumption on the initial
conditions, we have | 3(8)| = 1.
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Take #; = o, for example. In this case

Olog L(0) (1) ¢ g1 gy OPe(8)
(A.40) _"—"59‘1'—— 01 sz;l-[ ht (0) Et (0) 60'1 3
where DAu,(6) . )
Us — g I £ ¢0)
(A.41) 3o, 01215 Ay, + 01213_1Ay,_1 .
By using (2.25), we have the relations
1
(A42) (DAY, = I0(0.(0) +E4(9))
and
oh
(A 43) b (0) 770) 5
t o 1\ 1\* )
- Tu@®) e,(t)K;les,(t)[—( ) DAy, + (_) 1D, Ayys] -
$x=2 s'=2 01 g1

Then by using the relation

(A49) B {a@)e (0K e, )[(~ ) (0(0) + Er(6)

1

1
+ (;——) I(l) Ayt—l]‘}-ﬁ—l }

= B{u(O) ()P w(6) + () Fis )

and (A.32), we have the martingale property

Olog L(8)
(A.45) E {TIT-M}

dlogL,_4(0) . 1
= ‘—O‘gg‘fﬁl + = [(v: (0) = DI + &a (0)(0) V| i
g1 aJ1

810g Lt_l(ﬂ)
80’1 '

For other parameters in 8, it is straightforward to show (A.38) by similar argu-
ments. Q.F.D.
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Table 1: The mean of the ML estimator of SSIAR model”

T = 100
B =08 B =0.2 B =0.0 B =-0.2 B=-15

A B A B A B A B A B
A= 0.7922 0.7921 0.7946 0.1844 0.7932 -0.0220. 0.7957 -0.2181 0.7984 -1.5410
0.8 (0.059) (0.058) (0.044) (0.169) (0.043) (0.203) (0.038) (0.230) (0.027) (0.475)
A= 0.1796 0.7912 0.1966 0.2011 0.1945 -0.0107 0.1915 -0.2006 0.2036 -1.5354
0.2 (0.173) (0.044) (0.117) (0.115) (0.110) (0.144) (0.100) (0.155) (0.061) (0.336)
A= -0.0215 0.7952 -0.0060 0.1943 -0.0062 -0.0045 -0.0008 -0.1966 0.0013 -1.5138
0.0 (0.203) (0.041) (0.133) (0.108) (0.130) (0.129) (0.117) (0.142) (0.070) (0.300)
A = -0.2159 0.7979 -0.2060 0.1958 -0.1957 -0.0028 -0.2032 -0.2049 -0.1933 -1.5185
0.2 (0.230) (0.038) (0.158) (0.099) (0.150) (0.120) (0.140) (0.139) (0.082) (0.291)
A= -1.5277 0.798 -1.5065 0.2031 -1.5052 0.0044 -1.4935 -0.2007 NA NA
1.5 (0.452) (0.027) (0.346) (0.063) (0.304) (0.070) (0.289) (0.083) (NA)  (NA)

7 In Table 1, A and B correspond to Ag and Bs respectively with A; = By =0 in (2.22). The
value in parentheses shows the root mean squared error. "NA” corresponds to the case when
it is not ergodic. We did not have investigated the ML estimator in this case.

T = 500
B =08 B =10.2 B =0.0 B =-0.2 B =-15

A B A B A B A B A B
K= 07963 0.7064 0.7987 0.1929 0.7998 -0.0014 0.7990 -0.2033 0.7996 -1.4972
0.8 (0.029) (0.028) (0.019) (0.072) (0.018) (0.087) (0.017) (0.101) (0.012) (0.210)
A= 0.1949 0.7982 0.1992 0.1997 0.2006 -0.0011 0.1997 -0.2024 0.2004 -1.5079
0.2 (0.075) (0.020) (0.052) (0.052) (0.048) (0.062) (0.043) (0.066) (0.027) (0.139)
A= -0.0042 0.7987 -0.0014 0.1998 -0.0063 -0.0014 0.0025 -0.1991 -0.0002 -1.4945
0.0 (0.084) (0.018) (0.061) (0.046) (0.061) (0.056) (0.053) (0.066) (0.031) (0.133)
A= -0.2046 0.7994 -0.1998 0.1986 -0.1987 0.0004 -0.2003 -0.1969 -0.2000 -1.5007
0.2 (0.100) (0.016) (0.072) (0.045) (0.063) (0.051) (0.061) (0.062) (0.035) (0.131)
A= -1.5146 0.7997 -1.5081 0.1992 -1.5015 -0.0020 -1.5035 -0.1996 NA NA
15 (0.193) (0.011) (0.149) (0.028) (0.132) (0.032) (0.126) (0.036) (NA)  (NA)
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Table 2: Estimated Results of Non-linear Regression

Spot Index Equation

[ pr
Estimate 0.3847 -0.0185
S.D. 0.0841 0.0864
t-value  4.572 -0.2137

Futures Index Equation

[ pr
Estimate 0.1626 0.0957
S.D. 0.0927 0.08955
t-value 1.7533 1.0683
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Table 3: Estimated Results: Nikkei Index

Spot 1985 — 1989

SSIAR(1) ARIMA(1,1,0)
period Az Bz LK Az("-"—‘ Bz) LK X2
1 1985.01.04-1985.09.10 | 0.207 -0.093 - 737.63 0.067 732.70 | 9.843 **
2 1985.09.11-1986.05.30 | 0.343 0.216 744.78 0.298 743.57 2.429
3 1986.05.31-1987.02.20 | 0.243 0.108 640.22 0.191 639.12 2.213
4 1987.02.23-1987.11.07 | 0.233 -0.951 555.16 -0.118 518.30 | 73.733 **
5 1987.11.09-1988.08.03 | 0.178 0.172 651.99 0.176 651.99 0.004
6 1988.08.04-1989.05.15 | 0.103 -0.093 732.00 0.027 730.34 3.326
7 1989.05.16-1989.12.29 | -0.028  -0.074  605.20 -0.047 605.13 0.130
* 10% significance — x2(1)
** 1% significance — x%(1)
Spot 1990 — 1994
SSIAR(1) ARIMA(1,1,0)
period Az Bz LK A2(= Bz) LK Xz
1 1990.01.04-1990.10.22 | 0.034 0.196 485.74 0.106 484.30 | 2.877
2 1990.10.23-1991.08.15 | -0.026 0.072 565.59 0.020 565.15 | 0.878
3 1991.08.16-1992.06.11 | -0.080 0.065 530.93 -0.005 530.00 | 1.847
4 1992.06.12-1993.03.31 | -0.011 0.026 527.12 0.006 527.06 | 0.121
5 1993.04.01-1994.01.24 | 0.040 -0.069 570.08 -0.013 569.57 | 1.013
6 1994.01.25-1994.12.15 | -0.151 0.066 693.63 -0.059 691.40 | 4.465 *
Futures 1990 — 1994
SSIAR(1) ARIMA(1,1,0)
period Ay B, LK Ay(= Bs) LK x*
1 1990.01.04-1990.10.22 | 0.199 0.240 505.53 0.219 505.43 | 0.206
2 1990.10.23-1991.08.15 | -0.020  -0.040 562.79 -0.030 562.77 | 0.035
3 1991.08.16-1992.06.11 | 0.076 0.172 551.36 0.126 550.83 | 1.045
4 1992.06.12-1993.03.31 | 0.059 0.006 538.57 0.033 538.45 | 0.236
5 1993.04.01-1994.01.24 | -0.027  -0.084 565.06 -0.053 564.93 | 0.257
6 1994.01.25-1994.12.15 | -0.103 -0.102 698.90 -0.103 698.90 | 0.000
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Figure 2.1: The sample paths of SSIAR(1)




Figure 3.1: The region of ergodicity
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Figure 3.2: Result of Nikkei Index 225 (continued)



