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Abstract

We consider estimation of the frequency at which an unbounded spectral
density diverges and derive its asymptotic properties. Next we apply these
results to estimation of parametric models whose spectral densities have this
property. A Gegenbauer autoregressive moving-average model, which is a
generalization of a fractional autoregressive moving-average model, is an ex-
ample.
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1 Introduction.

Estimation and testing of a periodical structure in time series have been
discussed for a long time. Especially estimation and testing of frequen-
cies of trigonometric components in a regression model have been consid-
ered by Fisher [5], Whittle [25], Grenander and Rosenblatt [9], Hannan [10],
[12], Walker [23],Chen [1] [2], Lin and Kedem [16] and many others. While
Damsleth and Spjgtvoll[3], Quinn [17], Wang [24], Kavalieris and Hannan
[15] considered estimation of the number of these components.

The regression model with deterministic trigonometric functions has been
useful to analyze many time series in the natural science. However it is unable
to deal with some data whose periodicities and amplitudes are not exact
and are likely to change rather than remain constant, though exhibiting a
periodical structure.

~ On the other hand Gray et al. [8] proposed a new model called a Gegen-
bauer autoregressive moving-average(GARMA) model to analyze time series
with persistent periodical behavior. This model is a stationary process and
has an absolutely continuous spectral distribution function but its spectral
density diverges at some frequency X in [0, 7).

Hence its sample function exhibits a strong periodical behavior but its
periodicities and amplitudes can change over time unlike those of a regression
model with deterministic trigonometric functions so that a GARMA model
can be an alternative model for analyzing data having properties described
above.

And a GARMA model includes a fractional autoregressive moving-average
(FARMA) model whose spectral density diverges at the origin A = 0 as a
special case. A FARMA model is proposed by Granger and Joyeux [7] and
Hosking [13] and is one of long-memory time series models to which much

attention has been paid both recently.



In this paper first we discuss estimation of the frequency of unbounded
spectral densities. We estimate this frequency by the value which maximizes
the periodogram in the same way as that of a deterministic trigonomet-
ric component in some of the papers cited above and derive its asymptotic
properties. Next we apply it to estimation of parametric time series models
including a GARMA model.

Section 2 contains our model, notation, basic assumptions and the pre-
sentation of the main thorem and its proof. In Section 3, we apply the
theorem in Section 2 to estimate parameters of time series models. Lemmas
and propositions which are necessary to prove the theorems in Sections 2 and

3 are compiled in Section 4.

2 Model and theorem.

First we state assumptions and introduce notation. Let {X(t)} be a Gaus-
sian stationary process with mean 0 and spectral density f(}) and covariance
function (k) = Cov(X (1), X(t +R)) = Ju e f(N)dA for h = 0,£1,%£2,. ..,
where II = [, 7). And f(}) is assumed to have the form

0 = 727

m, S [0,7('], (1)

where 0 < g < mand 0<d<1/2.
Further the following assumptions are imposed on f()).

Assumption A.

(A1) FO) = f(=)), Ael-m0).

(A2) g(A) is positive in [0, 7] and continuously differentiable in (0, Ao) and
(Xo, 7) and right(left) continuously differentiable at A= 0(m).

(A3) g(X) satisfies

lg'(\)/g(M] = O(1/|A = dol).
Then we note that f()) diverges to infinity as A — Ao
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Here we introduce some notation. First let Ir(A) be the periodogram

B(3) = 7l 2 X () explit )

Next set
A€ = [0, )\0 - 6] U [/\0 + €, 7l'],

for € > 0. And define the maximum of the normalized periodogram in A, by

_ Ir(})
Mre = 08X 500

Finally C,C}, C, and so on stand for general constants being independent of

T but are not always the same constants in each context.

Now we shall consider estimation of Ay. Let 5\T be the value of X In
[0, 7] which maximizes I7()). We use Ar to estimate Xg. Then we have the

following result.
Theorem 2.1 Under Assumption A, for any o € (0,1),
T*(Ar — Ao) 2= 0 as T — co.

Proof. We can assume )y = 0 without loss of generality. For any ¢ > 0,

put
e(T) =¢/T".
Then we have
P[T*|Az| > €] = P[|Ar| > e(T)] (2)
< P[Ir(0) < max It (N)]
((T)

< P[Ir(0) < My ) max27rf( )

< PlI7z(0) < CMTe(T)G(T) 2

= P[I7(0) < C My (mye(T) %%, limpo oo My o7y/log T < 12],

where the third ineqaulity follows from (1) and Assumption A and the last
equality follows from Proposition 4.1 in Section 4. By Egoroff’s Theorem,
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for any n > 0 and any sufficiently large T', the last term of (2) is bounded by

P[I7(0) < Ci My e(T) ™, Mrqry/logT < Co] + 1

< PlIz(0)/T* < Clog T/(Te(T))*] + n,

where C, satisfies C, > 12. The assumption implies that logT/(Te(T))*
converges to 0 as T — co. Then it follows from Proposition 4.2 in Section 4

and Pélya’s theorem([Serfling [19], page 18] that
P[I7(0)/T* < Clog T/(Te(T))*"] — 0 as T' — oo.

Hence the proof is completed.

Remark 2.1

(i) The Gaussian property of {X(t)} is essential only for evaluating the mo-
ment generating function of the periodogram of the proof of Propositon 4.1.
Propositon 4.2 still holds without the Gaussian property if the central limit
theorems can be proved for 3 X (t) sin Mgt and 3 X (t) cos Aot[see for example
Theorem 3.1 of Yajima [27]].
(ii) For a deterministic trigonometric component in a regression model ,
T(Ar — Xo) converges to 0 almost surely as T — oo and the limting dis-
tribution of T%/2(Xp — Xo) is a normal distribution if Xo # 0, 7(see Hannan
[12]).

Hence the speed of convergence is slower for unbouded spectral densities.
On the hand the limiting distribution has never been derived as yet but is
conjectured to be nonnormal by the following reason.

We have, expanding I5(}) in the first two terms of its Taylor series, about

Ao
0 = I5(37) = Ix(he) + (A = Xo)I7(A1), Az = Xo| < [Ar = Xol-

Hence
. —TI () Tl+2d
T(Ar — Xo) = ”TE /T
IT()\T)/T2+2d

(3)
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Now let

T
Spi= Y X()t'sinhot, 1=0,12
t=1
T .
Cr;= Y, X(t)t'cosdot, 1=0,1,2.
t=1

Then the derivatives of the periodogram are expressed by

Ih(XNo) = 2T7Y[S10Cr1 — Cr0ST);

IE(Xo) = 2T [S7, + CF1 — Sr0St2 — CroCrpl-

Then we can show in the same way as Proposition 4.2 that the limiting

distribution of
T (C'T,o/Tllz, Cra /T3, Cr2/T°?, St/ T2, St /T3, ST,z/Tslz)

is a 6-dimensional multivariate normal distribution. Hence if it could be
proved that
[4(0r) — IA(0))/T? 25 as T — oo,

it would follow from (3) that the limiting distribution is nonnormal.

3 Application.

As an application of Theorem 2.1, we consider estimation of parametric time
series models. Let {X(t)} be a Gaussian stationary process with mean 0.

And its spectral density f(}; Ao, 8) is assumed to have the form

X g, 8) = ————
f( y N0y ) l)\’—>\0|2d,

X € [0, 7], (4)

where

6 = (61,6,...,6r) (€©CR"),

is a vector of parameters and d is a component of 6. We assume that the

parameter space O is a compact set.



In addition to Assumption A, we impose the following assumptions on
F(X; Xo, 8) and g(X; Ao, 8).

Assumption B.

(B1) If f(X;X0,61) = (X Ao, 62) almost surely with respect to Lebesgue
measure on [0, 7], then §; = 6, for any fixed Aq.

(B2) g(); Ao, 8) is a positive and continuous function of (X, Ag, #) in [0, 7]* x

(B3) g(A; Ao, 0) has the first partial derivative dg(A; Ao, 6)/06;(: = 1,2,... k)
and the second partial derivative 82g(); Ao, 6)/06:00,(i,7 = 1,2,...,k) with
respect to 8. And 9g(X; Ao, 0)/86; and ?g(X; Ao, 0)/06,6; are continuous
functions of (), Ao, 6) in [0, 7]* x ©.

(B4) For any suffciently small € > 0,

|62f‘1(k; Ao,
ar0Y;

6
)I S C‘/\ - A()'Zd—l_e.

(B5) For any sufficiently small € > 0, g(A; Ao, 8) and dg(X; Ao, 0)/06;(i =
1,2,...,k) satisfy
l9(X; 20, 8) = g(X; 45, 0)] < Clho — Mol

09; 00,

| < CPo = A7

uniformly in A and 6 on [0, 7] x ©.

Let 8 be the true vector of parameters. Now consider the estimation of
6, when )y is unknown. Then the exact ML procedure for 6, and Aq is very
tedious. Hence we propose a simpler procedure. Set

Ir(})

Ur(%,6) = [ flog F(3 20, 0) + 525

JdA.

Ur(Xo,0) is an approximate function for the exact log likelifood function
multiplied by -1. Now we substitute the estimator Ar of Section 2 for X of
Ur(Xo,8). And let O be the value of # which minimizes UT(S\T, g). Then we

have the following result.



Theorem 3.1

by 2> 6y, (T — o0).
Proof. First we shall prove that
p— }%[UT(AO; g) — UT()A‘T) 9)] =0, (5)

for any 6 in ©. We have

Uz(Xo,8) — Ur(Ar, 6) (6)
_ / (log £(X; ho, 6) — log f(X; Az, 6)) dX
+/ 10 20,6) = F1 (% Ar, 8)) 2 (j) dx.

Assumption (B2) assures that f~1(\; Ao, 8) is an uniformly continuous func-
tion of (A, Ao, ) in II x [0, 7] x ©. Hnece it is easily shown that the second
term on the right hand side of (6) converges to 0 in probability as T — oo.
While from (4),

log f(}; Ao, 6)
= logg(X; do,6) — 2dlog A — Aol. (7)

From Assumption (B2), the first term of (7) is an uniformly continuous func-

tion of (X, Ao, 8) in II x [0, 7] x ©. And

/" log | A — Ao|d)
0
= Aolog Ao + (m — Ao) log(m — Ag) — , (8)

which is a continous function of Ay. Hence the first term on the right hand
side of (6) converges to 0 in probability as 7' — oco. Then the proof of (5) is
completed.

Hereafter we shall prove the assertion by following the same procedure as

in Lemma 2 and Theorem 1 of Walker [22]. Let 6 be any other point of ©.



First it follows from Lemma 4.3 in Section 4 and (5) that
p- TIEEO[UT(S\% 8o) — Ur(Ar,6)]
= [ (10g £ ho,60) + 1) 2

—~p(60,8),  (say).

From Lemma 4.4 in Section 4, u(fo,6) > 0. Let K(6,0) be any positive
constant less than u(fo,6). Then

TIEI; P{{Ur(Ar,60) — UT(XT,G)] < —K(8,0)} = 1. (9)

Next we show that there exist a sequence of random variables { Hsr(61)} and

a function Hs(6;) which satisfy

|UT(5‘T>92) - UT(S\Tyel)l < Hsr(61), (10)

for any 61, 62(€ ©) such that |8, — 01| < § where

p— 711_{{.10 Hsr(61) = Hs(61), (11)
for any 6 > 0 and
We have
UT(:\T;92) — Ur(Ar, 81) (13)

= —2(d, —dl)/ log |A — Az|dA
II
+ /H (log g(; Ar, 62) —log g(X; Ar,61)) dA

b [ (7050 8) — 1705 1)) 2

dA.
2T

Hence if we put
Hyr(6:) = 26| /Hlog I = Ag|dA| + 2 M5 (61) + Mi(61)72(0),
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and

Hs(8:) = 26 /H log | X — Ao|dA| + 27 Ms1(61) + Ms2(61)r(0),

where

Ms1(8:)= sup  |logg(Xw,6;) —logg(Aw,b1)l,
Aw,|02—6,|<8

Msa(6) = sup  |f'(Xw,82) — T (A w,61)),
A""’1|9'A-"'el|<‘5

T
Fr(0) = 3 X(t)*/T,
t=1
then it is easily shown by Assumption (B2) and (13) that Hs7(6:) and Hs(6:)
satisfy (10),(11) and (12).
Then the result follows from (9),(10),(11) and (12) by the same argument
as in Lemma 2 and Theorem 1 of [22].

Remark 3.1

Walker [22] assumed in his original proof that
%III(IS E(H&T(gl)) = 0,

uniformly in 7" and

Tllm Var(H(;,T(Hl)) = 0,
for each §. However as is seen from his proofs of Lemma 2 and Theorem 1,
the same result still holds if Hsr(6;) and Hs(6;) satisfy (11) and (12).
Theorem 3.2 Let 8y be the inner point of ©. If 1/4 < dy, then

ﬁ(éT - 90) _& N(0)4FW—1(60))3

where
[ Blog S} )a, 8) Dlog F(2; Ao, 6)
W) = /H o6 o'

and dlog f(X; Xo,8)/00 is the k-dimensional random vector of the first partial

dA.

derivatives of log f(X; Ao, 8) evaluated at 6.
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Proof. Let Uf(pl)()\o, 6) be the k-dimensional random vector of the first par-
tial derivatives and U;Z)()\O,G) be the k x k£ random matrix of the second
partial derivatives of Ur(Xo,8) evaluated at # respectively. U;l)(iT,H) and
U?)(}T, 6) are defined similarly.

And let df~1(\; o, 6)/00 be the k-dimensional random vector of the
first partial derivatives and 82 f~1(A; Ao, 6)/0609' be the k x k matrix of the
second partial derivatives of f~1(}; Ao, f) evaluated at # respectively. And
0?log f(X; X, 6)/0606¢" is defined similarly.

Then we have

0 = UV, br)

= UD(Ar, 00) + U (O, 63) (67 — 60),

where 0% = 6y + r7(f7 — 6o) and 77 is a k x k random matrix. Strictly 77
is dependent on each component of U§~2)(5\T, 6%). But we do not express it

explicitly for notational simplicity. Hence

~

(67 — o)

~ -1 A
= = [v¥0r,67)] U (Oa, 60) (14)

First we shall evaluate the first term of (14). It follows from Assumptions

(B2) and (B3) by the same argument as in (5) that
p— lim U2z, 67) = U (o, 60)] = 0. (15)

While it is shown by the same argument as in Lemma 4.3

_ [ (22log (A do,80) | DFTM hoybo)
B /;1 ( 0606 + 2000 F(A5 X0, 00) | dA.

From Lemma 4.4,

/ dlog f(A; Ao, o) N 9f 1A, Ao, bo)
I 06 06

funm%ﬂdxzm (17)
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and

/n (82 log f(4; Ao, fo) 32f_1(>"/\O’go)f(A;Aoﬁo)) 4

9606 9606
Af 71 (A5 X0, 60) DF (X o, bo) _
+f ( > o0l dv=o0. (18)

Hence from (18), the right hand side term of (16) is equal to W ().

Next we shall evaluate the second term of (14). First we shall show that

p— lim 7/ [U57(Ar, 60) — U (M0,60)] =0 (19)
We have
T2 (U (Ar, 60) — U (Mo, 60)] (20)
Tm/ﬂ (8logf(a)\5/\T,90) ~ 6logf(a>\9; )\0,90)> "
-1(). 3 —1(}.
+T1/2/ﬂ (5f ()(;76)\1",90) _of (2:;‘0’90)> ITQ(:)d)"

From Assumptions (B2),(B3), and (B5), the first term on the right hand side
of (20) is bounded by

cT? (l A(log |A = Az| = log |A — Xo|)dA| + |Ar — )\Olzd—e> ,

with any sufficiently small ¢ > 0, which is shown to converge to 0 in probabilty
as T — oo by Theorem 2.1 and (8).
The second term on the right hand side of (20) is bounded by

CTY?| Ay — Xo|?<71(0),

which is also shown to converge to 0 as 7' — oo by Theorem 2.1. Hence the

proof of (19) is completed. Then it follows from Lemma 4.5 in Section 4 that
7208 (31, 80) 2 N(o, 47W (8,)). (21)

Finally we have the assertion by noting (14),(15),(16),(18) and (21).
Example 3.1
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We give two examples which satisfy Assumptions A and B. The first one
is a GARMA model proposed by Gray et al. [8]. The spectral density of a

GARMA(p, q,u, d) model is expressed by

0.2 ei)\ 2
10200 = 5 ey

where

a(z) = 1—oz—...—ap2?,

B(z) = 1=Ppriz—...— 2%

and all of the roots of a(z) = §(z) = 0 exist outside the unit circle and there

are no common roots and
p(2) = |1 = 2uz + 22|,

with |u| <1 and Ao =cos™'uand 0 <d < 1/4if Ao = 0,7 and 0 < d < 1/2
if)\o?éo,’ﬂ'.

If we put
P*|B(EPA = ol
9(X; 20, 0) 21| a(e)|2p(e)
_ BN = Kol
—2mfe(e)|(22 sin (A 4 Ao)/2) sin( X — Xo)/2)2’
and

6= (aly~~-wapaﬁl)"')ﬁq)daaz)’a

where d = 2d if \g = 0,7 and d = d if A # 0, m, then we can show by an
elementary calculation that f(A; Ao, 8) and g(A; Ag, 8) saitsfy Assumptions A
and B. |

The second one is a model for a ”signal” observed with ”"noise”. Dunsmuir
[4] and Hosoya and Taniguchi [14] considered estimation of an autoregressive

signal with white noise.

14



Here We consider a GARMA-type signal with ARMA(p,q) noise. And
the spectral density is expressed by

o; aalB(e)P
F520,8) = 22530 T anfale )P
If we put
o, aalBle?)PIA = Ao
g()\7 A0) 9) - 2_7; (1 + Ufla(ei")lz )
and

9=(Oél,...,0(p,ﬁ1, )ﬁqad)gwan)

then f(}; Ao, 8) and g(A; Ao, 0) satsify Assumptions A and B.

4 Lemmas and propositions.

Lemma 4.1 Let {(T)} be any sequence of positive constants such that
limy o €(T) = 0.
Then for any A € Agry and any 6 > 0,

E[Ir(N)] . _ [ 1+|log(Te(T))| 1
27 FO) 1“0( Te(T) +ﬂawwy

and the convergence is uniform on Agr).
Proof. First we have
[BLz (] = 20 f )] < [ 1£() = FQ)Er(w = Ndw, — (22)
where Kr(w) is proportional to Fejér’s kernel,
Kr(w) = ——] Eexp (1tw)|

Now we shall prove the result in a similar way as in Robinson [18]. We only
consider the case that A € [Ap + ¢(T), 7] since the assertion for the case that

A € [0, X — €(T)] can be proved similarly.
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We partition the integral on the right hand side of (22) into
[ 17@) = FO)|Kr(w = Xdw

A+e(T)Hf2 Ate A—e(T)/f2
IRy st
A—e(T)[2 A+e(T)/[2 A—e lw—X]>€

|f(w) = fFON)|Kr(w = A)dw,

where ¢ is a sufficiently small fixed constant.

(23)

Now we shall evaluate each integral of (23). It follows from Assumption

A that

2dg(}) lg' (V)]
I)\ — A0|2d+1 lA —_— AOIZd
SR D

|F' (V]

And define Dy(w) by
T
Dr(w) =Y exp(itw).
t=1

Then it follows from (1) and (24) that

At+e(T)[2 VK RY
[ opy M) = SOV E (e = o
A+e(T)/2

A

1 _ ~ _)\
’\'G(T)/Zrélfgk+c(1‘)/2|f(w) /A_C(T)/2 |lw = M E7(w = A)dw

< ClA=Xo—e(T)/2]7% /”‘(TW [Dr(w = A

d
A—¢(T)[2 T v

< C(TT))™ A = do| ™ ( [F raus | ;(TT)’ ’ %dw)
< CHO + [log(Te(T)/(Te(T)).
Next
L 1) = )R (= Ao
oo 1
< (e S0+ 1) [0 et
< CIM/TLD)).
Next

A—e(T)/2
[T @) = SO K = X)du

—€
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A—e(T)/2
< /A F(@) Ep(w — N)dw

—€

A—e(T)/2
+£(N) /A Ko(w — \)dw.
For the second term on the right hand side of (27), we have

A—e(T)/2
2 A Kr(w — N)dw (28)

—-€
€

— ) / 2y K ()

< CfW/NTT))

Next we evaluate the first term on the right hand side of (27). First consider

the case that A\g > 0. We have

/ R ) K (w = Ndw (29)

—€

_y D2 —2d -2
< CT / |w = ho| 2w — A|"2dw

A—e¢

= o7 / A = Ao — o] 2w 2dw.
(T)/2
IfA— )X >e¢ forany 6 > 0,

/ :TW I = ho — 0|0 2duw (30)

< odry | '

Ao
A= X — w72 dw
S CG(T)——I-—él)\ _ A0|_2d+6

< Ce(T)PF (V).

On the other hand, if A — Ag < ¢, for any é > 0,

/€ A= Ao — w| w2 dw (31)
e(T)/[2
A=A :
= / 0()\ — X —w) M wdw
«(T))2
+ (w— X+ Xo) 2w 2dw
—A0

< C'e(T)”l_‘S/ o()\ — do — w) M dw
0

+C S (w— X4 X)W dw
A—Xo

17



IN

C[G(T)_l_é(/\ _ Ao)_2d+5 4+ ()\ . )\0)—2‘1—1]

< Ce(T) 2 f(N).

Now consider the case that Mg = 0. If A > ¢, for any 6 > 0,

A—e(T)f2

A F(@) Kr(w — \)dw (32)
< et [0 (O —w)
< /e(T)/z( w) *w  dw

IA

A
CT1¢(T)™1~* / (A — w) "2 du
0

IA

CT—] €(7’1)—1—6 )\—Zd-l-&

IN

CTr(T) 18 ().
On the other hand if A < ¢, for any 6 > 0,

/ R DK (w = \)dw (33)

-€

IN

A—e(T)/2
or! / () — w) 2w~ 2du
0

0
+CT“1/ () = w) " (—w) *dw
A—e¢

IN

A
CT‘le(T)"l”‘s/ (A — w) ™ dw
0

+CT! /oo(w — )"y dw
A

IA

CT~1[€(T)_1_6A—2d+6 + )\—1—2(1]

< CTH(T)'7°f(N).
From (27),(28),(29),(30),(31),(32),and (33), we see
A :G(T)/z 1f(w) = FO)Er(w = N)dw < CT'(T) 0 f(X). (34)

Finally we have

A‘”‘M>€ |f(w) = FON|Kr(w — A)dA (35)
C

< ([, flere+ 100)
C

Then the result follows from (23),(25),(26),(34) and (35).
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Lemma 4.2 Let € be any sufficiently small positive constant and 6 be any
constant with 0 < 6 < 1. Then there exist a constant K and an interval
Ar = [ar, br] almost surely which satisfy the following properties (1) ~ (iv);
(i) Ar C A,
(i1) For any A € Ar,

O My < Ir(A)/(27f(N)),

(iii) The length of Az, by — ar, satisfies,

K(1-19)
Tetig et = 170D

(iv) A is dependent on T,¢€,6 and a sample path, but K 1is independent of
all of them.

Proof. We shall prove the assertion by following the procedure developed
by Lemma 3.1 of Turkman and Walker [21]. Let A; be the value of A which
satisfies

Ir(X)

Mre= 5=~

’ 27Tf(A1)

We cam assume that ); € [0, Ao — €] without loss of generality. Consider the
case that 0 < A\; < )Xo — € since the assertion for the case that A\; = Ao — €
and A\; = 0 can be shown similarly.

First assume that there exists A, in [\, Ag — €] such that

Ir()2)
21 f(A2)

Hereafter let A, be the first point to the right of A; which satisfies (36). Then

Ir(\1) Ir(X2)

OMrp. =

(36)

(=M1 = 3 p0) ~ 20700 0
d Ir())
< Qo= M) max |oro o0

0 LIS
< 0= 0 (s 7+ o)
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It follows from (1), Assumption A and Theorem 3.1 of [21] that

Ir(Y)
FreIn
max, 3,] f(A)
min[AI,A2] f(>‘)
< CTe My,

[Tif] (38)

IA

CTMr,

While from Assumption A, (1) and (24),

(M)

< CeMr.. 39
WD Y 770 R (39)

Then from (37),(38) and (39),
(1—0)Mr. < C(Ay = M)(Te* + e )Mr,.

Hence there exists a constant K such that

K(1-96)
Temgen = 27

And we can put ar = A; and by = As.
Next assume that

9JMT,6 < _'.[_T_(.%\_)_.

2rf(A)’
for any A € [A, Ao — €]. If there exists A, € [0, A;] which satisfies (36), by
letting ), be the first point to the left of Ay, it is shown similarly that ar = A,
and bp = Ao — € have the desired property. Otherwise we can put ar = 0

and by = A\g — €.

Proposition 4.1 Let a be any constant such that 0 < a < 1 and {e(T)} be
any sequence of positive constants such that imp_.. (T) = 0
and imy_o T%€(T) > 0. And let B be any constant with f > 2+ 2da and 6
be any constant with § < 1/4.
Then
lim sup (8 Mrer) — BlogT) = —oco, a.s.

T—o00
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Proof. We shall prove the assertion by following the procedure of Lemma

3.2 of [21].

We can assume that A\g = 0 without loss of generality. The assumption

implies €(T)™ = o(T¢(T)~?¢). Then from Lemma 4.2, for any § with 0 <

§ < 1, there exist a constant K and an interval Ay = [ar, b7](C A1) such

that
K(1-9)
Te(T) = =770
and
Iz(})
< AV
HMT,C(T) = 27rf()\)’

for any A € Ar.
Let « be a positive constant, being specified later. Then

K(1-6)
Te(T)24

/AT exp (07 Mr 1)) dA
[ etz /20
/Aem exp(yIz(N) /27 f(X))dX

exp(6yMr.«1))

IN A

IA

Hence

Blexp(8vMr )] € S0 [ Bexp(ylz(3)/2x/ (0)d)

((1-0) Ja
Now we evaluate the right hand side term of (40). Let

Cr(}) = T_1/2iX(t)cos)\t/\/wa()\),
Sr(A) = T"llzZT?X(t)sin)\t/\/wa(/\).

Then

exp(yIr(A)/2mf(A))
= exp[y(Cr(A)*+ Sr(})?)]

%[exp(%CT()\)Q) + exp(2757(})*)]:

IA

21
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Now define

U?r,c,x = Va”(CT()\)),

0'%,5) = Var(Sr(})).

Then if we choose § such that 1+ § < 1/«, then it follows from Lemma 4.1
that

o7 or < E(zl:(?;))zl—ko(l),

Ir(})
27 f(})

ohsa < E( ) = 1+o0(1),

uniformly in A on Ay 7).

While if 4y0%.;, < 1 and 4y0% g, <1,

E[exp(27Cr(V)?)] = (1-4y03.,)7?,

E[exP(Q’YST()‘)Q)] = (1"4’)’0%,5,,\)—1/2-

Hence if T is sufficiently large and v < 1/4,

Elexp(2vCr())*)]
Elexp(2ySr(M)*)] = 0(1),

fl

Q
—~~

[RY
N

and consequently
E exp(yIz(3)/27 f(X)) = O(1),

uniformly in A on Aqr).
Then it follows from (40) that

Elexp(8vMrr))] < CTe(T)™* = O(T1**%).

Hence

o0

> Elexp(8yMz,ry — Blog T)]
T=1
S CZT1+2da—ﬂ < oo.

t=1
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Hence

exp(8yMr. 1) — BlogT) — 0 a.s.,

as T — o0.

Finally we have the assertion if we put 6 = 6.

Proposition 4.2 As T — oo,

Ir(Xo) _13_>{ hd)x*(1) , =0,
T2 h(d)x*(2)/2 , X #0,m,

D .. e g
where — implies convergence in distribution and

2mg(Ao)L(1 — 2d)

hd) = (1+ 2dT(1+ d)T(1—d)’

Proof. {X(t)} is a Gaussian stationary process. Hence if Ao = 0,, the
result follows immediately from Theorem 2.2 of Yajima [26].

Next consider the case that Ay # 0, 7. We have only to show

lim Var(ET: X (t) cos \ot) /T2 = h(d)/2, (41)
7}1_{20 Var( ZX (t) sin Aot) /T +2¢ = h(d)/2, (42)

t=1

T T
q!im Cou(>" X (t)cos Aot, y_ X(t) sin Agt)/T**2¢ = 0. (43)
oo t=1

t=1

First we show (41). We have

r
Var( ZX cos Aot)

t=1

- 4/ (t 1 > (exp(i( A + Xo)t) + exp(i(A — Xo)t ))) (44)

X (Z_:l(exp(——i()\ + Ao)s) + exp(—i(A — Ao)s))) f(N)dA.

Now we evaluate each term of (44). First we can show in the same way as

Theorem 2.1 of Yajima [27] that for any ¢ > 0,

lim /H IZexp (GO + Ao)t)[2F(N)dA /T2 (45)

T—00 =1
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= lim- |Z exp(i(A + Xo)t)|2f(A)dN/ T+

T—oo |A+/\o|<c =

= Jim " |Eexp GX)2F(N = Xo)dA /T 2
e ¢ =1
= g(Xo) lim Zexp (A2 A|724d N/ T2
T—o0 JAIL <c =1
= h(d),

where the last equality follows from Theorem 2.2 of [26].
Similarly

Jim [ 15 exp(i(A = 2 S (VAN/T'+ = h(d). (46)

Next consider
/ zexp (A+Ao)t))ZeXP i(X = Ao)s)) F(A)dA

= { [ / ] (47)
|A+Ao|<c [A=Xo|<c A +Xo|>c, A=A |>c

(}:eXp (i(A + 20)t))( Zexp( —i(A = Xo)s)) f(A)dA.

s=1
Then by Schwarz’ inequality,

Zexp )\+)\0)t))(2exp —1(A = Xo)s)) (48)

A Xol<e i

( )d)\/T1+2d|
< 1, | el AP T

+Xo |<c t=1

MU | (PO = QST

+lol<e =3

The first term on the right hand side of (48) is bounded and the second one
converges to 0 as T — oo. The other integrals of (47) can be evaluated

similarly. Hence

T

Jim (O exp(i(A + o)t)) Eexp i(A — Xo)s)) F(X)dA/T**2? (49)
—oo oy

= 0.
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Similarly
Jim (0 expli(h = 20)9) (35 exp(=i(A + do)s)) SOV/T(50)
= 0.

Then We have (41) from (44),(45),(46),(49) and (50). (42) is shown similarly.
Finally (43) is shown in the same way as (49). Then the proof is com-
pleted.

Now we prepare some lemmas on Uz(Xo,f) in order to prove thoerems

stated in Section 3.

Lemma 4.3 Under Assumptions A and B,
qllm UT()\(), 9)

- . £ 20, 60)
- /H(logf()\,)\o,e)—{-f(/\;Ao’g))dA, a.s.,

and the convergence is uniform on ©.

This lemma is obtained by the same argument as in Lemma 1 of Hannan
[11].
Lemma 4.4 Under Assumptions A and B,

. f()‘) >‘0> 90)
/H (log F(0 X0, 8) + SOl ) )

2 / (log f(A; Xo, 6o) + 1)dA,
I
and the equality holds if and only if 6 = o.

This lemma follows immediatley from Theorem 1 of Taniguchi [20] and As-
sumption (B1).

Lemma 4.5 Under Assumptions A and B, as T — oo,
12U (N, 80) = N(o0,47W (6)).
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Proof. From Assumptions (B2) and (B3),

Uz (X, 6o)
— / (alogf(A)AO)GO) + af—l()‘;AO’HO) IT()‘)) d.
11

08 o6 2
Next it follows from (17) that -

Af~H(X; Ao, bo) (IT(/\)

U3 (Mo, 60) = /n a0 o

For )y = 0, the result has already been proved by Giratis and Surgailis [6].

- f(>‘; Ao, 90)) dA.

We shall show by following their procedure that the result still holds for the
case that Ag # 0.

First we evaluate the bias term. Let

0 -1 )\, )xo,go It (A
mT=T1/2/H f (ae ) (E TQ(W) —f(A;AO,H)) dA.

Hereafter we put f(A) = f(X; o, 60) and h(X) = 8f~1(X; Ao, 6o)/08 for nota-

tional simplicity. Then
iy = T“1/22—17; [ 101w+ NP F@)A) = h(w))dwd

Hence

IA

|mer]

o112 fn Dr(w + NPF(@)IA(A) = A(w)|dwd) (51)
< o1 /[O,WP(IDT(w + NP + [Dr(w = NP f(@)|h(w) = h(X)|dwd).

Let 1r()) be a periodic function with period 27 defined by

1

- el
Trpp ©

Pr(A)
Then
|Dr(N)| £ CTHr(X). (52)
By (52), the last term of (51) is boundend by

cT1? T2hp(w — N)2f(w)|h(w) — h(N)|dwdA

(0.x]?

= cTV? / T24hp(w — N f(w + M) [A(w + Ao) — A(A + Ao)|dwd)

[=Xo0,m=20]?

cr2 [/ + + + ] (53)
O=2]2 | Jl=20.0]x0m=xo]  J0m=Xolx[-20,0]  J[=20,0]2
T2n(w — N2 f(w + M) (@ + Yo) = h(A + Ao)ldwd.

IN
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Now we evaluate each integral of (53). Consider the first integral. For w < A,

by Assﬁmption (B.4)

|h(w + Xo) = R(X + Ao)l

IA

Lo, 10h(r)/0rll =
< Ol 1w - ),
for any sufficiently small € > 0. Hence

f@+ Xo)lA(w + Ao) = A(A + o) (54)
< Clwl—zdlwl(zd—-l—-e)(l—é)lw _ >‘l1_6
= Clo|™*w =",
where 0 < § < 1,8 = 6(1 4 ¢ — 2d) — e. We can assume that 0 < ¢’ < 1.
Similary for A < w
Fw + Xo)|A(w + Xo) = A(A + Ao)] (55)
< Clw‘—zdl)\l(Zd——l—e)(l—«S)lw _ >‘|1—-6
— Cl>\|—1+6‘|w _ )‘ll—é'
From (54) and (55),

-1/2 2 2
CT /[o,r—w T2 hr(w — N2 f(w + o)
x |h(w + o) — A(X + Xo)|dwdA
< cT7\? /H T2w| ' |w = A" (1 + Tlw — A|)2dwdX.  (56)
Then it is shown by the same argument in Lemma 4 of [6] that (56) converges

to 0 as T — oo.

Next consider the second integral of (53). We have

OTE [ Tl (e Dol o) = KO Do

T2 T24hp(—w — )2 f(—=w + Xo)|AM(—w + Xo) —
c /IWX[OJ_M] br(=w = N2 f(=w + Ao) | A(—=w + o) — A(A + Ao)|dwd)
< cr\”? / T2hp(—w — A2 F(=w + Xo)|A(—w + Ao)|dwd
[O,A()]X[O,W-Ao]
Mol aik / T2hp(—w — N2 f(=w + Ao)|B(L + Xo)|dwd. (57)
[O,Ao]x[o,ﬁ'—ko]
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From Assumptions (B2), (B3 ) and (4), the first term of (57) is bounded by

T2 /[ ST+ T+ N2 w] 24 w|2dwd
0,7

CcT e /[’0 - u”(1 4 u + v) dudv, (58)

for any sufficiently small ¢ > 0. Then (58) converges to 0 as T' — oo since
the integral is bounded with respect to T'.
Similarly the second term of (57) is bounded by

cr-? /[0 T T+ N2 w2 AP dwd

0,7

Also (59) converges to 0 as T — oco. Hence the second integral of (53)
converges to 0 as T' — oo.
Similarly the third and fourth integrals of (53) converge to 0 as T' — oo.
Then we have
112130 |mz| = 0. (60)

Next we shall show

T/? / " h(Y) (I—T(—Al - Efl(l)) dr = N(o,47W (6y)). (61)

- 27 27
Let b(t) = J; e"*h(A)dA. And let Ry and Br be the T' x T' Toepliz matrices

with (t,s) elements, 7(t — s) and b(t — s) respectively. Then it suffices to

show that
Jim Tr(ReBa)?/T = (2x)° [ (FORO))"d) (62)

Since if (62) holds, the assertion (61) for the case that Ao # 0 also follows
from Theorem 2 of [6]. We show (62) by following the proecedure of Lemmas
5 and 6 of [6].

First for any measurable set A(€ II*), let

,UT(A) = T—.l /A DT(—$1+$3)DT(£B2—$3)DT(—$1 + ZL‘4)DT(:L‘2 - .’L‘4)d$1d11}2d$3d$4,
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be a signed measure on II*. And put

F(21, 22,23, 24) = f(21)f(22)|(za)l|R(24)],

and
Sk; = {zell|f(z;) 2 K)}, (=12),
Sk, = {=el¥a(z;)| > K)}, (7=3,4),

for K > 0 and @ = (1, 72, 23, 4). And put

;= /m F(z1, 72,23, 24)1(Sk;)dlpr (@), (5 =1,2,3,4).
Then by noting the proof of Lemma 5 of [6], it suffices to show that

lim limsup [; =0, (j=1,2,3,4), (63)

K-—o00 T — 00
in order to prove (62). By symmetry, we have only to prove (63) for j = 1.
First by transforming variables ,if necessary, we can change the domain

of the integral of I; from II* to [0, 7]* and ,hence, the definition of Sk, to
Sk = {z €[0,7]*|f(z1) > K)}-

Then since f(z;) is bounded outside of z; = X, Sk, C {2 € [0, 7]*||z1 —
Xo| < €} for some ¢ = ¢(K) with the property that limg .o €(K) = 0. Next

we have

{z € [0,7]*]|z1 — dol < ¢} C ULs{z €[0,7]*[le1 — ol <o = ol/2}
U{z € [0, 7]*|e > |z1 — Xo| > nzgi(la:; — Xol/2}

= B3;UB,UW, (say).

Then (63) follows from that

Jim [ Faur(@) =0, =32) (64
and
limlim sup | Fd|pr(x)] =0. (65)
e—0 Tooo JW
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Now we shall prove (64). Let @ = 2d and § = —a + 6 with any sufficiently
small § > 0 Then by noting (B2) and (B3), for any v with 0 < v < 1, it is

shown in a similar way as in (5.9) of [6] that

/. Fd|ur(@)

IA

2 4
crtt [ T e = dolla; = dol #lai = 2" d'

3 4=1;=3

IN

CT4U_1/ |.’B1 — /\0|_0|$2v - )\ol_almg — Aolvvl—ﬂ
[0,
x|zg — zo|Plz1 — 24”2 — 23| zy — 4| d e
— CT4U—1/ —-a —a v—1-4

307 —o]t |21] }|x2| |2]

X|$4‘_ﬁ|$1 —_ $4Iv_1l.'L‘2 — m3|”'1|x2 - $4|U_1d433

IN

CT4v-—1/ |$1|—a|m2|—a|m3‘v—1-ﬁ

14

Xl$4|_ﬂl$1 - $4|v—ll$2 - $3lv_1|5112 - $4iv—1d433. (66)
Then it is shown by the same argument as in Lemma 6 of [6] that (66)
converges to 0 as T — oco. Hence the proof of (64) is completed. (65) is

shown in a similar way as in Lemma 6 of [6]. Now we obtain (62). Finally

the assertion follows from (60) and (61).

References
[1] Chen, Zhao-Guo(1988).Consistent estimates for hidden frequencies in a

linear process. Adv. in Appl. Probab. 20, 295-314.

[2] Chen, Zhao-Guo(1988).An alternative consistent procedure for detecting
hidden frequencies. J. Time Ser. Anal. 9, 301-317.

[3] Damsleth, E., and Spjgtvoll, E.(1982).Estimation of trigonometric com-

ponents in time series. J.Amer.Statist. Assoc. 77, 381-387.

[4] Dunsmuir, W.(1979).A central limit theorem for parameter estimation
in stationary vector time series and its application to models for a signal

observed with white noise. Ann. Statist. 7, 490-506.

30



[5] Fisher, R.A.(1929).Tests of significance in harmonic analysis.
Proc.Roy.Soc.London, A125, 54-59.

[6] Giratis, L., and Surgailis, D.(1990).A central limit theorem for quadratic
forms in strongly dependent linear variables and its application to
asymptotical normality of Whittle’s estimate. Probab. Th. Related Fields
86,87-104.

[7] Granger, C.W.J., and Joyeux, R.(1980).An introduction to lomg-
memory time series models and fractional differencing. J. Time Ser.

Anal. 1, 15-29.

[8] Gray, H.L., Zhang, N-F., and Woodward, W.A.(1989). On generalized
fractional processes. J. Time Ser. Anal. 10, 233-257.

[9] Grenander ,U., and Rosenblatt, M.(1957).Statistical Analysis of Station-
ary Time Series. Wiley, New York.

[10] Hannan, E.J.(1961).Testing for a jump in the spectral function.
J.Roy.Statist. Soc. B23, 394-404.

[11] Hannan, E.J.(1973).The asymptotic theory of linear time series models.
J.Appl. Probab. 10, 130-145.

[12] Hannan E.J.(1973). The estimation of frequency. J.Appl.Probab. 10,
510-519.

[13] Hosking, J.R.M.(1981).Fractional differencing. Biometrika 68, 165-176.

[14] Hosoya ,Y., and Tanuguchi ,M.(1982). A central limit theorem for sta-
tionary processes and the parameter estimation of linear processes. Ann.

Statist. 10, 132-153.

[15] Kavalieris, L., and Hannan, E.J.(1994).Determining the numbers of

terms in a trigonometric regression. J. Time Ser. Anal. 15, 613-625.

31



16] Lin, T-H., and Kedem, B.(1993 .Asymptotic analysis of a mutiple fre-
p
quency estimation method. J. Multivariate Anal. 46, 214-236.

[17] Quinn, B.G.(1989).Estimating the number of terms in a sinusoidal re-

gression. J. Time Ser. Anal. 10, 71-75.

[18] Robinson, P.M.(1994).Log-periodogram regression of time series with

long range dependence. To appear in Ann. Statist.

[19] Serfling, R.J.(1980).Approzimation Theorems of Mathematical Statis-
tics. Wiley, New York.

[20] Taniguchi, M.(1979).0On estimation of parameters of Gaussian stationary
processes. J.Appl.Probab. 16, 575-591.

[21] Turkman, K.F., and Walker, A.M.(1990).A stability result for the peri-
odogram. Ann. Probab. 18, 1765-1783.

[22] Walker, A.M.(1964).Asymptotic properties of least-squares estimates of

parameters of the spectrum of a stationary non-deterministic time series.

J.Aust. Math. Soc. 4, 363-384.

[23] Walker, A.M.(1971).0n the estimation of a harmonic component in a

time series with stationary independent residuals. Biometrika 58, 21-36.

[24] Wang, Xiaobao(1993).An AIC type estimator for the number of cosinu-
soids. J.Time Ser. Anal. 14, 433-440.

[25] Whittle, P.(1952).The simultaneous estimation of a time series harmonic

components and covariance structure. Trab. Estadist. 3, 43-57.

26] Yajima, Y.(1988).0On estimation of a regression model with long-memory
8

stationary errors. Ann. Statist. 16, 791-807.

[27] Yajima, Y.(1991).Asymptotic properties of the LSE in a regression

model with long-memory stationary errors. Ann. Statist. 19, 158-177.

32



