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Double Shrinkage Estimators of Ratio of Variances
T. Kubokawa and M.S. Srivastava

University of Tokyo and University of Toronto

The problem of estimating the ratio of two variances p = 0% /0%, of normal distri-
butions with unknown means are treated relative to the Kullback-Leibler loss function in
a decision-theoretic framework. Using Stein’s truncated estimators 1/6257 and 6257 for
1/0? and o2, respectively, it is shown that the unbiased estimator of p is improved upon
by the double shrinkage estimator §7% = 4257 /65T which is shown to be an empirical
Bayes estimator. A generalized Bayes estimator which is better than the unbiased one is
also obtained. Interpreting 67F as a linearly combined estimator of two single shrinkage
estimators with a random weight, some other improved combined procedures with double
shrinkage are proposed. The risks of the estimators are compared by Monte Carlo simula-
tion method. A generalization to the convex loss functions and to the distributions with
monotone likelihood ratio properties is given. Improvements to the usual F-statistic as an

estimator of p are also given.

Keywords and phrases: Point estimation, ratio of variances, shrinkage estimation, inadmis-
sibility, Stein’s truncated rule, monotone likelihcod ratio properties, exponential, inverse
Gaussian distributions, convex loss.



1. Introduction

Let S, So, X1 and X, be independent random variables where for 4 = 1,2, S;/ 0% has
chi-square distribution Xfm with m; degrees of freedom, and X; has multivariate normal
distribution N, (i, 02l,,) with unknown mean p;. Such a problem arises paturally in
many situations. For example, suppose we wish to compare the two mean vectors when
p1 = ps in the situation considered above. If the ratio of the two variances is considerably
different from one, then we must consider test-statistics designed for Behrens-Fisher prob-
lem. On the other hand, if the ratio of the two variances is not too much different from
one, we may continue using the usual test-procedures designed for the equal variance situ-
ations. Also, if possible, in future experiments more observations should be taken from the
population with the large variance as recomended by Carter, Khatri and Srivastava(1979).
The estimation of the ratio of two variances is also needed in estimating the power of the
usual test for testing the equality of two variances. Thus, it seems desirable to estimate
the ratio of the variances p = 02/0?. We consider the general situation when p; need not
be equal to pp and where we use the information available from sample means. We shall
denote our estimator by 6(Si, Sz, X1, X2) where X; denotes the normalized sample mean
so that it has variance o?. We consider Kullback-Leibler loss function

Lgr(6/p) =6/p—logb/p —1, (1.1)
which is motivated from the Kullback-Leibler information loss
h(z,d) } ,
lo —~ > h{x, 6)dz,
/ { Ehiz,p) | M0

h(z, p) being the density function of F' = S,/S5;. Every estimator will be evaluated by the
risk function R(w, 8) = F,[Lk1(6/p)] for unknown parameters w.

The uniformly minimum variance unbiased estimator is given by 6 = {(m1—2)/mz} F,
F = S3/51, which is also the best among the class of estimators cl’, ¢ > 0, in the sense
that it has minirnum risk with respect to the loss (1.1). Our interest is to improve upon gy
by use of the information contained in X; and X5. Gelfand and Dey(1988) applied Stein’s
arguments to get umproved estimators. Let

Wi = |1X111?/51, Wa = [1Xa]*/ Sz,
—(1+W1)}a

mi+p—2

7711“2

(;1 = Gl(Wl) = min {1,

M2 (14 W)

Go=G3(Wy) =min< 1, ——— .
2 2(Ws) { ———— }
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Then 1/0%? and 0% can respectively be estimated by Stein estimators for the Kullback-
Leibler loss functions

1 my—2 1 {.{1& SHW&WH”
= = |min ,

63T 5 Gy mi—2 my+p —2
S . Sy 5 Xoll?
&gST:——%ngnun{—g,-2+ll zﬂ“}.
Mo Mo My +pg

Using these estimators, Gelfand and Dey (1988) proposed two estimators ¢; and é; for p,
given by

61 = 60/G1, (12)
62 = 60Ga, (1.3)

where 69 = {(m; — 2)/mq}F. Since these estimators use shrinkage estimators for only
one of the parameters in the ratio, they may be called single shrinkage estimators. The
estimators 6; and é, have shrinkage in the opposite directions. This causes some technical
dificulty in deriving an improved double shrinkage estimator using both || X1]|? and || X2||?
in the shrinkage. Kubokawa(1994b) recently succeeded in proposing one such an estimator

given by
O3 = 61 + by — bg (1.4)
= b1 + (G2~ 1)do (1.5)
1
_ _ 1.
0o + (G]_ 1) o, ( 6)

which dominates both §; and &, and hence 6y. The second terms in (1.5) and (1.6) may
be interpreted as an adjustment for over-shrinkage in §; and 6, respectively.

Other possible double shrinkage estimators are considered in this paper. We recall
that single shrinkage rules §; and 6, are based on two parts of the dominance results :

(R.1) the estimator (mq —2)/S5; of 1/0% is improved on by 1/6257

(R.2) the estimator S5/my of 02 is improved on by 6257
These results have been studied in many papers. See Kubokawa (1994a,b) for bibliography.
Here, the interesting issue is: Does combining (R.1) and (R.2) give a further dominance
result 7 In other words, we want to investigate whether the etimator (S2/m2)/(51/(m1—2))
of p = 0%/0% can be improved upon by the multiplication of the improved procedures
1/6%5T and 6257 as

STR _ &25T _ G2 - min{ S, /ma, (S2 + || X2||%)/(ma + p2)}
25T (G4 min{S;/(mq — 2), (St + || X1]2)/(m1 + p1 — 2)}

(1.7)
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The answer is affirmative, and the main purpose of the paper is to provide its justification.

In Section 2, we obtain conditions which ensure that the double shrinkage estirnator

dominates both of the single shrinkage ones relative to the loss function (1.1). This result is
easily exploited to develop two kinds of procedures: One is the truncated estimator 67 and
the other is a smooth estimator 6*. Bayesian properties of these rules are demonstrated:
6TH is empirical Bayes and 6* is generalized Bayes.
For another possible choice, it will be reasonable to consider a linearly combined
estimator of §; and §,, which is also discussed in Section 2. It is interesting to point out
that the estimators 63 and §7F can be expressed as a linear combination of §; and é§, with
random weights. Other possible combined estimators are proposed and their improvements
on g are analytically verified. In order to compare the risk performances of the improved
estimators, simulation results are presented in Tables 1 and 2. They reveal that 6*® and §*
have uniformly smaller risks than others, and that 6* is the best estimator with significant
improvements for \; = ||y;|[?/0? far from zero. In particular, 67 and 6* are better than
83 and so we propose the use of §7F and 6*.

Some results of Section 2 are extended in Section 3 to the general convex loss func-
tions and to the distributions with monotone likelihood ratio properties, including normal,
lognormal, exponential, pareto and inverse Gaussian distributions. As a result, we get an
improved double shrinkage estimator in the general situation. In Section 4, we discuss im-
provernents of the usual F-statistic as an estimator of p, which is the best among a class of
estimators ¢/’ with respect to the loss function proposed by Bilodeau and Srivastava (1992).
It is analytically demonstrated that for this loss, the F-statistic 6 = (S2/m2)/(S1/m1)
is dominated by

min{Sz/maz, (S2 + || X2|*)/(m2 + p2)}

(5FTR:5F TR, W TRy : .
(wl 1/2 ) nun{Sl/ml,(S1 +HX1”2)/<m1+p1)}

(1.8)

2. Derivation of improved double shrinkage rules
Comnsider a class of double shrinkage estimators given by

P2 (Wa)
1 (Wh)

6(d1,¢2) = F, (2.1)

where

JF::LS’Z/'S”L WTZ::HX'l“z/S’U i:1727

and ¢; and ¢, are positive and absolutely continuous functions. Single shrinkage estimators
are written by

b1(h1) = b(¢1,m3 ") = {map1(W1)} ~'F, (2.2)



and
62(p2) = 6((ma — 2)71, 2) = (my — 2)da(Wo)F. (2.3)

From Kubokawa(1994b), we first note that for ¢ = 1,2,

(S.7) the estimator g is dominated by the single one é;(¢;) if the following conditions
hold:

(S.i.a) ¢;(w;) is nondecreasing and limy,, oo (w;) = {m; +2(i — 2)} 71,

(S.2.b) ¢i(w;) > ¢f (w;), where

BT P 0 L 2B (1 4 2) B D) g
i \Wi Fvi [U:"le(w,’Uﬁ)] m; + p; + Q(Z — 2) j(;ﬂt z%i“l/(l N Z) m!'-;pi ‘F(i_l)dzv

where v; = S;/0? and F;(y) is a distribution function of the chi-square random variable
X?)i'
Our main assertion is to indicate that double shrinkage estimator 6(¢1, ¢2) dominates

single shrinkage ones, which is ensured by the above condtions in (S.1) and (S.2) as shown
in the next theorem.

Theorem 2.1. The estimator 6(p1, p2), given by (2.1), is better than 61(¢1), given
by (2.2), if ¢po(we) satisfies the conditions in (S.2) and if ¢1(w1) is nondecreasing and
p1(w1) < (my — 2)7L Also 6§(¢1,p2) is better than b63(¢s), given by (2.8), if ¢1(w;)
satisfies the conditions in (S.1) and if ¢o(we) is nondecreasing and po(wy) < my ' .

Corollary. Assume that ¢1(w1) and ¢2(wsa) satisfy the conditions in (S.1) and (S.2).
Then 6(¢1,¢2) dominates both of 61(¢1) and 62(¢p2) , and hence superior to 6.

The proof is given later. A class of estimators given by the theorem includes two
interesting types of estimators. Letting

¢1 Hwy) = G(w1)/(m1 —2) and  ¢LF(wy) = Galwa)/ma,

we can see that ¢{%(w;) and ¢ZF(w,) satisfy the conditions in (S.1) and (S.2). Also
the conditions are satisfied by ¢3(w;1) and ¢%(w;). Hence we get two double shrinkage
estimators improving on the single shrinkage ones:

T F’
T E(Wy)

«_ P2(W2)
¢1(W1)

F,

6TR

where is proposed in (1.7).
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We shall provide Bayesian properties of 677 and §*. First, it is demonstrated that
7; have the following prior distributions due to Kubokawa, Robert and Saleh(1992):

lem 1
127 | iy Ts ™ -/V.p, (07 ’-—_”1 /;]"11),> ’

T

ni ~ i dn, (2.4)

where 1;, 0 < 7; < 1, is an unknown hyper-parameter and u;|7; designates the conditional
distribution of u; given n;. Then the posterior distribution of 7; is given by

Pi mitpy .
T T L = B (Sl X )

ni | S Xi ~ 1% ? e

The Bayes estimator of p = /7. for the loss (1.1) is

—1 1

§% = (Blp™'1D]) " = (Elr|D]|ERT|D]) (2.5)

where D = (S1, S2, X1, X2) and E[|D] denotes the posterior expectation of 7, and 72.

Here,
T/7,2+p2
Elm|D] = = ,
= X
_ St -+ 1| X1
EnYD) = X, 2.6
71D} = T (2.6)

Since 71 and 7 are unknown, they need be estimated from the marginal distributions of

(Si, Xi), i = 1,2, which are given by
RUA | T

pif2
' (Si + il | X;[2)(matpo) /2 6

= 1,2

The MLE of 7, is 75 = min{p,S3/(m2||X2||?),1} and the adjusted MLE of 7 is 7; =
min{p; Sy /{(m1 — 2)||X1||*}, 1} where m; is replaced with m; — 2. Substituting 7; and 7,
into (2.6), we get an empirical Bayes estimator, which is identical to §7% given by (1.7).

For the generalized Bayesness of §*, following Brewster and Zidek (1974), suppose the
prior distributions (2.4) and that

T ~ 7-1."“11(0’1)(fr,l-)d’riy 7= 1, 2, (27)

A similar argument can show that E[n;'|D] = ¢31(W1)S1 and 1/E[na|D] = ¢5(W2)S2,
which can be verified to satisfy the conditions in (S.1) and (S.2). Hence we get the double
shrinkage and generalized Bayes estimator 6* = 6(¢7, ¢5) improving upon the single ones.
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Other possible candidates for double shrinkage estimators are obtained by taking
linear combinations of §; and 6. Such an estimator is of the form &by + (1 — )bz for
0 < o < 1,and from the convexity of the loss function, it can be seen to be superior to éo.
Since the optimal value of o depends on two noncentrality parameters, it is reasonable to
take random weight & based on W, and W,. Here it may be interesting to note that the
double shrinkage estimators 63 and 67 % can be written as a linear combination of ¢, and

62, namely,
. . . 1-Gy
63—01(51+(1—0[)(52 for a——l_GlG,
: G (1— 71)
TR _ » oA A 2 1
8= &b+ (1—a)sy for a= 1o,

in the case of G1G, # 1. When G = G5 = 1, & may be defined to be any constant since
61 = 6, = 8. The random weight @& shall take a value close to one when W is quite small
and W, is relatively large. Taking this aspect into account, we may consider the following
weight functions:

Go(W-
= 01(W1)2(+ (i)z(W2) (28)
s = mair (1) 29)
ET (1 W)+ o (14 Wa)
Giz = (m2/p2)Wa (2.10)

(m1/p1)Wi + (mz/p2)We

For i = 1,2,3, let 6¢ = &;6; + (1 — &;)8,. In general, it is not ensured that the random-
weighted combination estimators will have superior properties. For a weight with a specific
monotonicity, however, the superiority is guranteed as shown in the following theorem.

Theorem 2.2. If weighting function r(wiy,w2) is nonincreasing in w1 and nonde-
creasing in weq, then the estimator

§€ (1) = r(Wi, Wa)by + (1 — r(Wy, W2))d2 (2.11)
dominates by relative to the loss (1.1).

The proof is given at the end of this section. Theorem 2.2 implies that the random-
weight combined estimators 6{, 6§ and 6§ given above have smaller risks than ép.

We now provide Monte Carlo simulation results for the risk function of estimators

b6, 61, b2, 03, 6TF, 6*, 6C, 65 and 6§ treated in the above discussions. The simulation
1y 09 3



8

experiments are done in the cases of my = mg = 3;p1 = p2 = 3,10;0% = 0% = 13\ =
1] |2 /02 = 0.0,0.5,1.0,5.0,10.0; Ay = ||p2]|*/0F = 0.0,0.5,1.0,5.0,10.0. Tables 1 and 2
report the average values of the risks based on 50,000 replications. From the tables, it is
revealed that §TF and 6* have smaller risks than others, and that 6* is the best estimator
with significant improvements for ); far from zero. Among combined estimators, 6§ and
&S are better than 67 and also superior to 6y and 6. It is of interest to point out that §TF
and 6* have uniformly smaller risks than 63. It is also indicated that the risk gain of 67 is
much greater than that of ;. This may arise from the unstableness of the denominator
of 8y in comparison with the numerator. That is, the simulation result for &1 and 69
implies that stabilizing the denominator yields a more improvement than stabilizing the
numerator. Although §* has a complicated form including the ratio of integrals, it can be
expressed by the incomplete beta functions ratio (-, ), for the integrals are written as

w/(1+w)

/ 2%/(142)*tPdz = / %1 —z)’2dzx
0

0
= B(a+1,0 - 1)Iw/(1+w)(a +1,8-1).

When a table of values of the incomplete beta functions ratio is available, one can employ
6% in a practical use. In this way, 7% and &* derived in this paper have superior risk
performances to others as in the simulation results, and so we propose the use of 67 and

o,

We conclude this section with giving the proofs of the theorems.

Proof of Theorem 2.1. We shall prove that 6(¢1, ¢2) dominates éz(¢2). Since parts
of the results in this section are extended to the general convex loss functions in Section 3,
we here prove it for such a general situation. Let L(t) be a positive and convex function
such that the first derivative [/(t) is strictly increasing and L(1) = 0. To evaluate the risk
difference of two estimators, we exploit the IERD(Integral Ezpression of Risk Difference )
method proposed by Kubokawa(1994a,b). Noting that ¢1(c0) = (my1 —2)~", we observe
that

R(w, 52(¢2) — R(w,6($1, b2))

R
-Er (ffgv?f)i) )

-n [ a G




= E, U;Oo I (Mﬁ E) . 22V2) 1 (W E% dt}

¢1(tW1) P1(tW1)? P )
. 10 , [‘/,0 F (/)Q(WZ)
> E, [ A L (W . (th)) W W )dtJ (2.12)

since I/ and ¢, are nondecréasing and ¢2 < m;*. We here consider the following condi-
tional expectation given ||X,||?/05 = ¢

Then it is sufficient to show that Iy(c) < 0 for any positive c.

Let v; = S;/0? and u; = ||X;||?/02 for i = 1,2. Then v; and u; have respectively
central chi-square xZ, and non-central chi-square x>, ();) distributions with noncentral-
ity parameters \; = ||u;||?/0?, whose densities are designated by g;(v;) and fi(u:; \),
respectively. Based on these random variables,

tul /Ul)
Io(e) = B | g — i ) vaus Gituajor) o,
ole) = /// (m2¢1(tul/v1) v1 vy ¢1(tua /v1)?
X f1(u; Ar)g1 (v1)durdvi bz (b%)} (2.13)
Making the transformatior wy = (t/v1)uq with dwy = (t/v1)duy gives

_ vz ® o ve/ur  vawivr ¢ (wr)
fole)=E U//i L (mqul(wl)) v 2 ¢pr(wr)?

w101

fl(————- A1)g1 (v1)dtdwi dvi o (i—) ] . (2.14)

Making again the transformation z = (wyv1)/t with dz = (wyvy/t%)dt yields

_ s (vl Ve ¢ (wy)
we=ee[f [ [ (mmawl))m #1(w1)?

X f1(z; A1)g1(v1)drdvr dwy ¢ (5) ]

2
¢1 (wl) Frrive / '{72_/}7_1_”— 2% . ) _c_
&1 (wr)? )2 [L ( - ) o Fi(wyv1; Ao (’Ug)] dwy, (2.15)

Moy (w1)
where £y (y; Ay) = [ fu(z; M)de

Letting ]
o= o (P
1(v1) [ <U1m2<;/>1 (w7 Va2 - lvl
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we see that 1 (v1) has one sign change, that is, there exists a point v1g such that G (v1) >0
for v1 < v1p and G1(v1) < 0 for vy > vio. Thereby, Gl(vl)vflﬂ (wivy : 0) has one sign
change at v;g. Combining this fact and the monotonicity of Fy(z; A1)/F'(z;0) guarantees
that the following inequality holds:

F A1
o |:G1 (vl)vlel(wlvl; 0) M)]

Fi(wyvs; 0)_

Fi(wiv105 A1) } (2.16)

< E» 1 P (wr 0)] -
< F [G1<’U1)’Ul Fl(Uh'UlyO)] { Fl(u)1@10;0)

From (2.15) and (2.16), it is seen that [y(c) < O if we can show that
Erive LI _ ’UZ/'Ul ) ?_Z_F w1 )2 (i)} <0 217
[ <m,2q§1(w1) vy (wiv)9 ve )| T (2.17)

for Fy(y) = Fi(y;0). Letting

V2
vimad (w1)

Go(vy) = BV [L’ ( ) vlel(wlvl)ivz} :

we see that G2(v2) has one sign change at some point vyg. Since ¢2(c/v2) is nonincreasing
in vy, the same argument as in (2.17) establishes the inequality

, c . c
EY? [Gz(?)z)’vzd)z (L)} < B [Ga(v2)va] - ¢2 (‘“) ; (2.18)
U2 V20
which yields a sufficient condition
s | pr (02000 N V2 o] o 2.19
E [L (7’ﬂ2¢1(wl)> ” 1(11)1?)1)} < U ( . )

Since L, (z) = 1 —1/z, the condition (2.19) is expressed by

mapy(wy) > B2 [%Fl (wl'f"l)} [E [Fi(wivi)],

1(wi) > £ ['%Fdwwl)} JE* [Fy(wivr)] (2.20)

the r.h.s. of which is equal to ¢}(w1) given in the condition (5.1.b). Hence the first
assertion is proved.

Similarly, we can show that 6(¢1, ¢2) dominates 61(¢1) where in this case, we need
to restrict the loss function to (1.1). For the general convex loss, we could not utilize an
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inequality similar to (2.18) so as to approximate the risk difference. In any case, Theorem
2.1 is established for the loss (1.1).

Proof of Theorem 2.2. From the convexity of the loss function,

E{Lg (61 + (1 — &)b2,p)]
< ElaLkr(61,p) + (1 — &) Lrr(62,0))
= El6&{Lxr(b1,p) — Lrr(b0,0)}]
+ E[(1 — &){ Lk (62, ) — Lrcr(00,0)}] + E[Lx (0, p)]
= Iy + I + I3, say. (2.21)

It suffices to show that I; < 0 and I, < 0. To show I; < 0, we write

» 1) 6 1) 0
Lir(61,0) — Lxr(60,p) = —2 _log—2> ° 0

pG1 pGy  p &%
bo (1 4
= — [ = — 1] +loglCy. 2.22
2 (g 1) +loxc (2.22)
From the monotonicity of »(w1,ws),
112 2
E|r | wy, ﬂ:’f{“ﬁ_ Solwi| < E{r|wy, [LX2]] !wl E [Sgiwl} (2.23)
Sy Sy

which implies that

E [r(wl,Wg){ég (3— - 1) +],ogG1}lw1}
P Crl

<FE [’r‘(wl,Wg)iwl] E H%g (Elq - 1) +logG1} }wl}

= FE [r(wl, WZ)IUMJ

ol fme ) o] o

which is not positive as verified by recalling Stein’s original method (1964) for the domi-
nation.
For I, note that

! o
Lrr(62,0) — Lrr(bo,p) = _pg (G2 — 1) —logGy, (2.25)
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and that

e ()} 2o

The remainder can be shown similarly to the case Iy < 0, and therefore the theorem is

ZEll (H%Iﬁ.?wz)lwglE[:;;Iwg}. (2.26)

J

proved.

3. Generalization of distributions and loss functions
The results of Section 2 are extended to distributions with monotone likelihood ratio
properties and to the general convex loss functions.

Let Sy, S2, 71 and T4 be independent random variables where for ¢ = 1,2, v; = S;/0;
and u,; = T;/0; have densities

9i(ily;>0p and Ay (Ui M) ljuy >k (0) (3.1)

for unknown real parameter \;, real function k;()\;), k;(0) = 0, and the indicator function
f1). Then we want to estimate the ratio of the scales p = 03/ by an estimator ¢ relative
to the convex loss function L(6/p) where I/(t) is strictly increasing and L(1) = 0.

The best multipliers ¢; and ¢y of the estimators ¢252/(¢1.51) are defined by solutions
of the equations

Erive [L (62”2> } =0, (3.2)
o

€101
Ev¥2 (I (equg) vg] = 0. (3.3)

For improving on §y = ¢253/(¢151), consider a class of estimators

{p2(Wa) /1 (W1)}S2/ S, if Wy >0,W,>0;

_ J {ea/p1(W1)}S2/ 5, if Wy>0,W, <0;
801,92) = \ {4y (Wa)/c1} 52/, it W, <0,Wa >0 (3.4)

(ca/c1)S2/51 if W, <0,W; <0,

where W; = T;/5;, i = 1,2, and ¢4, ¢4 are positive and absolutely continuous. To establish
the dominance, we assume that

(A.1) Hi(z; )/ H; (33) is nondecreasing in z > 0 for 7 = 1, 2
where Hy(z; M) = [ hi(u; M) sk, )du and Hy(z) = [ hi(u)du for hi(u) = hy(u;0).
Note that (A.1) is guaranteed if

(A1) hy(z; \;)/h;s(x) is nondecreasing in z > max (0, k;(\;)).

The following dominance results due to Kubokawa(1994b) hold under the assumption
(A1)
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(SG.1) The estimator &y is dominated by the single shrinkage estimator 61(¢1) =
0(p1, ) if

(8G.1.a) ¢1(w) is nondecreasing and lirmy,, -0 1{w1) = c1,

(SG.1.b) EY**2[L/(cqua/p1(wr)v1)(ve/v1)Hi(wiv1)] < 0.

(8G.2) b is dominated by é2(¢2) = 6(ec1, ¢2) if

(5G.2.a) ¢o(ws) is nondecreasing and lim,,, ,coP2(w2) = c2,

(SG.2.b) E*1¥2[L/(¢ho(wa)va/c1v1) (v /v1) Ha(wavs)] > 0.

The same arguments as in Kubokawa(1994a) and the proof of Theorem 2.1 can be
exploited to show

Theorem 3.1. Assume (A.1). Then,

(1) The double shrinkage estimator 6(¢1, p2), given by (3.4), dominates 62(¢ps2) if the
conditions in (SG.1) are satisfied and if po(w2) is nondecreasing and ¢o(w2) < co.

(2) If the conditions in (SG.1) and (SG.2) hold, then 6(¢p1,¢2) is better than bg.

(8) If L(z) is specified by L(z) = z —logx — 1, then 6(¢1, p2) dominates 61(¢1) under
the conditions in (SG.2) and if ¢1(w1) 18 nondecreasing and d1{wy) < 1.

Note. It is not easy to prove part (3) of Theorem 3.1 for the general convex loss
functions.

The proof is omitted. In the case where L(zx) = z — logz — 1, the conditions are
simplied as follows: Let

¢ (wr) = E* [v7 " Hy(wiv1)]/E” [Hi(wiv1)]
¢5* (ws) = E"*[Ha(wav2)]/ E"?[vg Ha (wo17)).

Then (SG.1.b) and (SG.2.b) are replaced with ¢;(w1) > ¢§* (w1) and ¢a(w2) > ¢5* (w2),
respectively. Denote

¢TT (wy) = min{c1, E” [ha(wiv1)]/ E” [orha (wiv1)]}

dSTE (wy) = min{cy, EV2[vaha(wave)]/EV? [ho(wava)]}

for ¢; = Efv;*] and ¢z = 1/E[vy]. It is easily checked that ¢§™*(w1), ¢5* (we), ¢FTE(w1)
and ¢57F(wq) satisfy the conditions in (SG.1) and (SG.2) if the following assumption
holds:

(A.2) H,;(dyz)/H;(dpz) is nondecreasing in z for 0 < dy < d; and 7 = 1,2.
This assumption is guaranteed if

(A.2") hi(diz)/hi(d2z) is nondecreasing in z for 0 < dy < dg and ¢ = 1,2,
which also implies that xzh;(x)/H;(z) is decreasing. So under the distributional assump-
tions (A.1) and (A.2), we get two kinds of double shrinkage estimators 6(¢$*, ¢5*) and

6(p¢TE ¢S$TE) improving both of single shrinkage ones for the loss (1.1).
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The assumptions (A.1) and (A.2) are satisfied for normal, lognormal, exponential,
pareto and inverse Gaussian distributions. For the exponential distributions, see Kubokawa
(1994b) and Madi and Tsui(1990). For the inverse Gaussian distribution, Kourouklis(1995)
recently proved that it satisfies the assumptions (A.1) and (A.2), and so we get improved
double shrinkage estimators.

4. Improvement on the F-statistic as an estimator
In the previous sections, the improvements on the unbiased estimator 6y = {(m1 —
2)/mo}F, F = S3/S4, are dealt with. This is not a usual F-statistic, which is given by

6§ = —F (4.1)

and is of the natural form such that the numerator and the denomenator are divided by
their degrees of freedom.

In this section, we consider improving on 6 relative to the following loss function due
to Bilodeau and Srivastava(1992):

O+ F 6+ F

Lps(6,0, F) = —1 -
Bs(6,0; F) o+ F ng+F

1, (4.2)

which satisfies the convexity and Lgg(p, p; F') = 0, but depends on the data through F. It
is easy to see that &% is the best of estimators cF for the loss Lgg(é, p; F'). For improving
on 6§, consider a class of the estimators

65 (p1,3) = ol W= |1X:11%/S;. (4.3)

The single shrinkage estimators are defined by 6f (1) = {mey1 (W)} "1 F and 6 (v2) =
mypa(Wa)F'.

The conditions for dominance (SF.7) are described for ¢ = 1,2 as

(SF.7.a) ¥;(w;) is nondecreasing and lim,,, o 9;(w;) = m; L

(SF.4.b) ¥ (w;) > ¥ (w;), where
L [0+ )" de

mi+py

¥7 (i) = — ——,
mi + P [ 2911+ 7)) s

Then the following results are obtained for the loss (4.2).
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Theorem 4.1.

(1) For i = 1,2, & is dominated by the single shrinkage estimator & (1;) under the
conditions in (SF.4).

(2) The double shrinkage estimator 6 (11,12) dominates 65 (12) if the conditions in
(SF.1) are satisfied and if o(w2) is nondecreasing and 1y < m;’l.

(8) If all the conditions in (SF.1) and (SF.2) hold, then 6 (1,4) dominates 6f .

Note. Similar to Theorem 3.1, we could not establish that §F (11,%2) dominates
6% (1p1) for the loss (4.2).

The conditions in (SF.;) are satisfied by 9 (w;) and %7 %(w;) = min{m; ", (1 +
w;)(m; + p;) ™1}, which yield superior double shrinkage estimators 6% (1F, %) and

FTR _ sF(, TR ., TR “min{Sz/mz,(Sg+]|X2!|2)/(m2 +p2)}
O =) = L, (B £ XAl (e o)

(4.4)

Proof of Theorem 4.1. We first prove part (2). From the IERD method,
R(w, 67 (1) = R(w, 8" (%1,92))

)
= Eo :/1 {pf_F - wz(wz)/zpll(twl) T 1} { vz/sz(%zi Wlwl(twl)} }

o0 1 F diz(Wg) , A
= Eo /1 {{mzwluwl)}_l F1- p+F} wl(t'wl)’zwl(twl)wldf’} ’ (4.5)

since 93 < m; . Noting that —F/(p + F) and t2(||X2||?/S2) are monotone in the same
direction with respect to S;, we see that the r.h.s. of the inequality on (4.5) is greater
than or equal to

i = L F ) $i(twn)
P lpalWa) B [/1 {{mzwl (W)} +1 p+ F} INGTAL Wldt} o)

By making transformations similar to as in the proof of Theorem 2.1, the second expecta-

tion in (4.6) can be expressed as

N

where A(wq) = 1/{(matp1(w1))~1+1} and F;(y; A1) is a distribution function of || X1||?/c%.
Let G(v1) = EV2[A(w1) — va/(v1 + v2)|v1], then it is increasing in vy, so that

o {C(’Ul)lﬂ('ll)lvl)"_‘“——-————'-- } B [G(0y) Fy (wi01)] B [f_l_(_ww].;_)\l_)} .

By (w1U1)
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This implies that it is sufficient to show that

Fviva [Uz/('”l -+ Ug)f’-’l ('wlvl)]
Evivaluy [{vy +va) (wyv1)] ,

mgtpr(wy) > (4.8)

To approximate the r.h.s. of (4.8), let V = vy + vy and Z = v;/(vy + v2), which are
independent, and we shall prove that ’

E[(l - Z)Fl(’w1ZV)] < E[(1 - Z)VF}(’LUl.ZV)]
E[ZF(wiZV)] ~  E[ZVF(wizZV)]

(4.9)

which is equivalently written by

E* [122] E*[V] < E* [122 -V} , (4.10)

where E*[] is taken with respect to the probability measure

Note that given V, the conditional expectation of (1 — Z)/Z is represented by

E* [}_:_élvz }: E((1 = Z)Fi (w1 Zv)|V = o] (.11)

Z E[ZFi (w1 Zv)|V = ]

Differentiating the r.h.s. of (4.11) with respect to v, we can verify that £*[(1—-2)/Z|V = v]
is increasing in v if z f1 (z)/F1(z) is decreasing in x, which is also guaranteed for chi-square
distributions. So, for the Lh.s. of (4.11), we have that

E* [}-Z-ﬂ E*[V] = E*V |E*2IV -1—12;-Z-|VH E*[V]

< E*V E*ZIV L}__Z_;V} V]

= BV | B2V 1;41/‘1/”, (4.12)

which shows (4.10) or (4.9). Combining (4.8) and (4.9) gives the sufficient condition

Fviiva [’UgFl (wlvl )]
vz [Ul},wl (wl’Ul )]

map1(wy) > = mgy] (wr), (4.13)

which proves the first assertion.
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For part (1), we only need to verify that 65 (12) dominates 6. Observe that

R(w, &) R(w 83 (12))

4 om |
= Eu L/ {L( 12 (tW2) F, P,F)}dtj

| /ﬁ{ e W] (410)

p+F  mapa(tWy) +1

which is nonnegative if

? [{1’1+l?2 m1¢2(W2)+1} 2(w2v2; Aa)| 2

The remainder of the proof is quite similar to the above arguments, and, therefore we get
Theorem 4.1.
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Table 1. MSEs of &g, 8i, b2, 63, 675, 6*, 8¢, 6$ and 5§
for mi = mg = 3 and py = p2 = 3.

A A2 éo 01 o O3 6Tk o* 6¢ 68 65
0.0 1075 0851 1.040 0.740 0.729 0.743 0.823 0.756 0.757

0.5 1.075 0851 1039 0.748 0.737 0750 0.827 0.761 0.760

0.0 1.0 1.075 0.851 1.039 0.757 0.745 0.757 0.832 0.767 0.764
50 1075 0.851 1.050 0.807 0.798 0.811 0.864 0.802 0.794

10.0 1.075 0.851 1.066 0.837 0.833 0.866 0.885 0.824 0.819

0.0 1075 0.851 1.040 0.745> 0.740 0.737 0.837 0.765 0.774

0.5 1075 0.851 1.039 0753 0.747 0.743 0841 0.770 0.776

0.5 1.0 1.075 0.851 1.039 0.761 0.754 0.750 0.845 0.776 0.778
50 1.075 0.851 1.050 0.808 0.802 0.799 0.875 0.808 0.802

10.0 1.075 0.851 1.066 0.837 0.834 0.849 0.895 0.829 0.824

0.0 1.075 0.855 1.040 0.755 0.754 0.733 0851 0.777 0.793

0.5 1.075 0.855 1.039 0761 0760 0.739 0.854 0.781 0.793

1.0 1.0 1075 0.855 1.039 0.769 0.766 0744 0.858 0.787 0.795
50 1.075 0.855 1.050 0.814 0.809 0.789 0.886 0.818 0.815

10.0 1.075 0.855 1.066 0.842 0.839 0.836 0.906 0.838 0.834

0.0 1.075 0.921 1040 0.849 0.861 0.734 0938 0.868 0.904

0.5 1.075 0921 1039 0.852 0.862 0.735 0.939 0.871 0.902

5.0 1.0 1.075 0921 1039 0857 0864 0.737 0942 0.875 0.901
50 1.075 0921 1050 0.887 0.888 0.759 0.961 0.901 0.908

10.0 1.075 0921 1066 0.909 0909 0.789 0.978 0.918 0.920

0.0 1.075 0989 1.040 0936 0946 0.760 0.993 0940 0974

0.5 1.075 0989 1.039 0937 0945 0.759 0.993 0.942 0.972

10.0 1.0 1.075 0989 1.039 0939 0946 0.758 0.994 0945 0.971
50 1.075 0.989 1.050 0959 0961 0.767 1.010 0.97¢ 0.978

10.0 1.075 0.989 1.066 0979 0979 0.787 1.025 0.987 0.991




Table 2. MSEs of &, 61, 62, &3, 678, §*, 6, 65 and 65

for my = my = 3 and py = p2 = 10.
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A1

do

01

2

03

(STR

6*

8¢

Gy

0.0

0.0
0.5
1.0
5.0
10.0

1.075
1.075
1.075
1.075
1.075

0.749
0.749
0.749
0.749
0.749

1.016
1.016
1.016
1.025
1.039

0.593
0.600
0.606
0.651
0.689

0.566
0.572
0.578
0.624
0.669

0.530
0.536
0.541
0.584
0.635

0.673
0.678
0.682
0.714
0.743

0.602
0.608
0.613
0.650
0.682

0.605
0.609
0.612
0.641
0.669

0.5

0.0
0.5
1.0
5.0
10.0

1.075
1.075
1.075
1.075
1.075

0.750
0.750
0.750
0.750
0.750

1.016
1.016
1.016
1.025
1.039

0.596
0.603
0.609
0.653
0.691

0.574
0.580
0.585
0.629
0.672

0.530
0.535
0.540
0.581
0.629

0.683
0.687
0.691
0.723
0.751

0.608
0.613
0.618
0.655
0.686

0.616
0.619
0.622
0.649
0.676

1.0

0.0
0.5
1.0
5.0
10.0

1.075
1.075
1.075
1.075
1.075

0.751
0.751
0.751
0.751
0.751

1.016
1.016
1.016
1.025
1.039

0.600
0.606
0.612
0.655
0.692

0.582
0.587
0.593
0.634
0.676

0.530
0.535
0.539
0.579
0.625

0.693
0.697
0.701
0.731
0.759

0.614
0.620
0.625
0.660
0.690

0.626
0.629
0.632
0.658
0.683

5.0

0.0
0.5
1.0
5.0
10.0

1.075
1.075
1.075
1.075
1.075

0.778
0.778
0.778
0.778
0.778

1.016
1.016
1.016
1.025
1.039

0.645
0.650
0.654
0.691
0.724

0.650
0.654
0.657
0.686
0.717

0.541
0.544
0.547
0.574
0.608

0.765
0.768
0.771
0.795
0.819

0.672
0.676
0.680
0.711
0.737

0.706
0.707
0.709
0.726
0.745

10.0

0.0
0.5
1.0
5.0
10.0

1.075
1.075
1.075
1.075
1.075

0.829
0.829
0.829
0.829
0.829

1.016
1.016
1.016
1.025
1.039

0.713
0.717
0.721
0.751
0.779

0.730
0.732
0.733
0.754
0.779

0.566
0.567
0.569
0.586
0.610

0.835
0.837
0.839
0.859
0.879

0.741
0.745
0.749
0.775
0.799

0.786
0.787
0.788
0.800
0.815




