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Abstract

We study the problem of testing a simple null hypothesis on multivariate nor-
mal mean vector against smooth or piecewise smooth cone alternatives. We show
that the mixture weights of the x? distribution of the likelihood ratio test can
be characterized as mixed volumes of the cone and its dual. The weights can be
calculated by integration involving the second fundamental form on the boundary
of the cone. We illustrate our technique by spherical cone and cone of non-negative
definite matrices.
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1 Introduction

We first state our problem and then give outline of the paper. In Section 1.2 we prepare
basic material from convex analysis.

1.1 The problem

We consider the problem of testing a simple null hypothesis on multivariate normal mean
vector against a convex cone alternative in the following canonical form. Let Z € R? be
distributed according to the p-dimensional multivariate normal distribution Np(p,I) .
Let K be a closed convex cone with non-empty interior in RP . Our testing problem is

Hy:p=0 vs. Hi:p€K. (1)

The main objective of this paper is to study the null distribution of the likelihood ratio
statistic for K with smooth or piecewise smooth boundary using techniques of convex
analysis and differential geometry.



Tn addition to (1) consider a complementary testing problem
Hy:p€ K vs. Hy:p€ R (2)

In describing the complementary testing problem we need to use the dual cone K* of
K:
K*={y: {y,z) <0, Vx € K},

where (, ) denotes the inner product.

For z € RP let zx denote the orthogonal projection of z onto K and xg- denote
the orthogonal projection of z onto K* . Then the likelihood ratio test of (1) is equivalent
to rejecting Hy when

% = 12| (3)

is large and the likelihood ratio test of (2) is equivalent to rejecting H; when

? (4)

is large. We consider joint distribution of %3, and X}, under Hy.

The statistics %2, and ¥2, in (3) and (4) are called chi-bar-square statistics, and
known to have a finite mixture of the chi-square distributions when Hp is true. In this
paper we call the mixing probabilities as the weights. Generally, it is not easy to derive
the explicit expression of the weights. Here we list some examples of K whose weights
are known explicitly or can be easily calculated numerically.

5&2 = HZK*

Ko = A{plm < <}
Ky = A{plm<p, §=2,....0}
i T .
K3 = {IUIIL . #JSH‘HI . MP) ]:la"wp_'l}
J P17
. Hi .
Ki = [{plg— >cosy
{ Il j
K, = {M :pxpsymmetric| M is non-negative definite}.

The cones K; and K, are defined by the partial orders referred as simple order and
simple tree order, respectively. The corresponding weights can be given by the recurrence
formulas (Section 2.4 of Robertson et al. (1988)). In particular, the weights for K, are
known to be expressed in terms of the Stirling number of the first kind (Theorem 2.4 of
Robertson et al. (1988)). The cone Kj is the dual cone of —K, , and the corresponding
weights are derived directly from the weights of K; due to this duality.

The three cones K;, K, and Kj are polyhedral, i.e., the cones defined by a finite
number of linear constraints. On the other hand, K; and Ky are non-polyhedral. Ky
is spherical cone which is smooth in the sense of Section 2.2 with no singularities except
for the origin. K5 is a piecewise smooth cone in the sense of Section 2.3. In section 3 we
show that the singularities of Kj exhibit a beautiful recurrence structure. The weights
for K, and Ky were given by Pincus (1975) and Kuriki (1993), respectively.

For the polyhedral cone, the geometrical meaning of the weights is clear, since the
weights can be expressed in terms of the internal and external angles. Compared with the



polyhedral cone, the meaning of the weights for non-polyhedral cones is not clear. In this
paper we clarify the geometrical meaning of the weights in the case that the boundary of
the cone is smooth or piecewise smooth.

In Section 2 we prove our basic theorem relating the weights to the mixed volumes
of K and its dual K*. For smooth or piecewise smooth cones we express the mixed
volumes as integrals involving the second fundamental form on the boundary of the cone.
In section 3 we apply our technique to the case of multivariate one-sided alternative on
covariance matrices and clarify geometrical meaning of the problem.

1.2 Preparation from convex analysis

Here we summarize basic results from convex analysis. These results are taken from
Webster (1994). Let U = U, be the closed unit ball and K be a convex set in RP . For
A >0, A-neighborhood of K or outer parallel set of K at distance X is defined as

(K)x= K + \U,

where the addition is the vector sum. The Hausdorff distance between two non-empty
compact convex sets K, Ky is defined by

p(Ki, Kp) =inf{A > 0: K; C (K2)» and Ko C (Ki)a}
Endowed with the Hausdorff distance, the set of compact convex sets becomes a complete
metric space (Theorem 9 of Gruber (1993)).

A polytope is the convex hull of finite number of points. Any compact convex set can
be approximated by polytopes.

Lemma 1.1 (Theorem 3.1.6 of Webster (1994)) Let K be a non-empty compact con-
ver set in RP and let € > 0. Then there exist polytopes P,Q in RP such that
PCKCQ and p(K,P)<¢ p(K,Q) <e.

We deal with convex cones which are not bounded. However uniform convergence on
any bounded region is sufficient for us because we are concerned with the standard normal
probabilities of the cones. Let K be a convex cone and denote K(ny = KNAU . In view
of the fact that polytopes are bounded polyhedral sets (Theorem 3.2.5 of Webster (1994))
the next lemma follows easily from Lemma 1.1.

Lemma 1.2 Let K be a closed convex cone in RP and let A = 0, € 2 0. Then
there exist polyhedral cones P,Q in RP such that P C K C Q and p(Ky, Poy) <
e, p(Kiny, Q) Se.

Now we introduce the notion of mixed volumes. Let K, Ko be two compact convex
sets in RP and let v,() denote the volume in R?. For »,A >0 consider the volume
v, (vK; + AK3) . Then the following lemma holds.

Lemma 1.3 (Theorem 6.4.3 of Webster (1994)) v,(vK1+AK3) is a homogeneous poly-
nomial of degree p in v and A, i.e.,

'L‘p(llKl ~+ )\I(Q) = I/p’!}%o(Kl, Kg) + pl/”“]/\vp,l(Kl, K2) + -+ /\p’U()’p(Kl, KQ)
p . .
.. (p> N il K K,

=0 t
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where vy o(Ky, Ka) = vp(Ky) and vop(Ky, Ky) = v,(K>) .

vy (K1, Kp), i = 0,...,p, are called mized volumes of K; and K, . In the par-
ticular case v = 1 and K, = U , i.e., when we are considering the outer parallel set of
Ky, vpii(K5,U) is called quermassintegral of K, and (’2’) ViK1, U) Jwp—i 18 called

intrinsic volume of Kj , where
m (5)

= T )

is the volume of the unit ball U, in R?. It is also known that mixed volumes are con-
tinuous in Ky, K, with respect to Hausdorff metric (Theorem 6.4.7 of Webster (1994)).

2 Weights of x? distribution as mixed volumes

In this section we first prove our basic theorem which states that the weights of ¥?
distribution are the mixed volumes of the convex cone K and its dual cone K* . Then
we apply the basic theorem to the case of smooth convex cone using the fact that mixed
volumes can be evaluated as integrals involving the second fundamental form on the
boundary of K . Qur result for the case of R? is very easily stated and connection to
the classical Gauss-Bonnet theorem will be discussed. We illustrate our result for the
smooth cone with the case of spherical cone. Finally we discuss the case of “piecewise
smooth” cone. Full treatment of piecewise smooth cone is needed to discuss multivariate
one-sided alternatives for covariance matrices in Section 3.

2.1 Basic theorem

Here we prove our basic theorem stating that the weights of %? distributions are mixed
volumes. Since the concept of mixed volumes applies equally to polyhedral as well as
smooth cones, our Theorem 2.1 covers both cases.

Theorem 2.1 Consider the testing problems (1) and (2). Let Kqy= KNU and K(y) =
K*NU and let vp_i(Kq), K(y), i =0,...,p, be the mized volumes of Kqy and Kf .
Then under Hy

P il Ky, K
<p>?1p (K (1))Gp'—i(az)Gi(b)$ (6)

P(%g <a, X <b) =) |

(< wih <0 =2 (7) 000
where w, is the volume of the unit ball in R? given in (5) and G,(t) is the cumulative
distribution function of chi-square distribution with g degrees of freedom.

Proof. Let P,,n=1,2,..., be sequence of polyhedral cones converging to K in the
sense of Lemma 1.2. For a given point x € R? let zp, denote the orthogonal projection
onto P, . Then it is easy to show that xp, convergesto Tg . At the same time the dual
cone P’ converges to K* and the projection zp; converges to Ty« . Since pointwise
convergence implies convergence in law we have

P <axn<b) = PZlf <ol Zk|* <)

= dim P(|Ze, | < a1 Z5; P < D). ()
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In view of the continuity of the mixed volumes, (7) shows that it is enough to prove our
theorem for polyhedral cones.

From now on let K be a polyhedral cone. In this case the weights of ¥? distribution
is well understood in terms of the internal and external angles. Therefore we only need to
verify that these angles can be expressed in terms of mixed volumes. Let F' be a (closed)
face of K and let 5(0,F) and (F,K) be the internal angle and the external angle
at I. See Appendix for more precise definition. Then it is well known that the joint
distribution of ¥2, and X3, is a mixture of independent x? distributions.

The mixture weight is expressed as

wi= Y A0, F)y(FK).

FeF(K)

dim F=d
where F(K) is the set of faces of K and dim F' is the dimension of the linear subspace
spanned by F (Wynn (1975), Section 2.3 of Robertson et al. (1988)).

Let F* be the face of K* dual to the face F of K. Then dim F* = p—dimF
and F is orthogonal to F* . Consider the orthogonal sum F & F* . For different faces
F,, Fy , interiors of the sets F1 @ Fy', F2 ® Fy are disjoint and R? is covered by these
sets

rF= |J FoF
FeF(K)

(Lemma 3 of McMullen (1975), Wynn (1975)). Then

vKoy +AKG, = (Ko +AKG)N( U FoF)
FeF(K)
= U FeF)n(Ky+ AK(yy)
FEF(K)
= U Fnvl)e (F NaU).
FeF(K)
Therefore
w(Ka + MK = 3 w((FNvl) @ (T NAU)).
FeF(K)
Because of the orthogonality
w(FOvl)@ (F NA) = waF Nvl) x vp_g(F* 0 AU)

v4waB(0, F) )\p_dwpﬂd’y(F, K),

where d = dim F' . Therefore

P
v (VK1) + AK() = Y2 VN waw, a0, F)v(F, K)
d=0dim F=d



and
(Z) vap-a( Ky, Kiy) = wawpa PO F)y(F K) = wawpa X Wa,

dim F=d
or .
(p) ’Upa-d,d(K(l)a K(l))
Wy = .
d Wdp—d
Therefore (6) holds for polyhedral cones. This proves the theorem for general cones as
well by the argument given at the beginning of the proof. ]

Remark 2.1 The argument of approzimating o non-polyhedral cone with sequence of poly-
hedral cones is also found in Theorem 3.1 of Shapiro (1985).

To characterize the set vK(1)+ AK(, the following lemma is useful.

Lemma 2.1 Let K be a closed convex cone in RP and K™ be its dual. Then for
i, A :Z 0,
vEay + MKy = (K +AU) N (K* +vU).

Proof. Note that vKqy = v(KNU) = K0 (¥U) and AKGy = K* N (AU) . Now
suppose that z € K NvU and y € KA. Then t € K, ye AU and z+y €
K + MU . At the same time v € vU, y € K* and z+y € K* + vU . Therefore
z+y e (K +AU)N(K*+vU) . This implies

(KnvU)+ (K*NAU) C (K+ )N (K" + vU).

To prove the converse let z € (K + AU) N (K* +vU). Since z € K* + vU there
exist z and y such that z =z +y and z € K|yl < v. Write z = zx + 2k~ and
y = Yk + yx- . Then
§ 2 <z = —yie P = Nyl
yi- P < Ilyl® < v*

liz — 2k~
= lyl* - |

Therefore zx € K NvU . Similarly zx. € K*NAU . Hence z = 2k + 2k € (KNvU)+
(K* N AU) and this implies

Iz

(K + AU) N (K" + vU) C© (K noU) + (K* N AU).
|

In evaluating mixed volumes, the p-dimensional volumes vp (K1) = vpo(K (), K{1y)
and vy (K, K{y) = vp(K(y)) have to be evaluated individually. Other mixed volumes
turn out to be easier to evaluate. Consider

(WK + AE () N (v ) 0 (AK)© (8)

where AC is the complement of A. By Lemma 2.1, = & K, ¢ K* belongs to the set of
(8) if and only if ||z —zk|| <A and ||z —zk-|| < v, ie.,  isnot more than A distant
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from the boundary surface 9K of K and |jzk|] < v . Therefore the evaluation of mixed
volumes is reduced to the evaluation of quermassintegrals, or more precisely, the volume
of “local parallel sets” defined below in (9). In the case of polyhedral cones, the evaluation
reduces to the evaluation of lower dimensional internal and external angles. On the other
hand in the case of smooth cone the evaluation reduces to integral of principal curvatures
on the boundary surface 0K .

2.2 The case of smooth cone

One of the main cbjectives of this research is to characterize the weights of ¥? distri-
butions for cones with smooth boundaries. Although the characterization by the mixed
volumes in Theorem 2.1 applies to smooth cones, the definition of mixed volumes is not
necessarily easy to work with for computational purposes. Here we can use the result
that the volume of local parallel set of a smooth cone K can be expressed as an integral
of principal curvatures on 0K . See section IIL13.5 of Santal (1976), Section 2.5 of
Schneider (1993a), or Schneider (1993b). We summarize the result below.

Let K be a closed convex set with smooth boundary 0K . For a relatively open
subset S of AK the local parallel set of S at distance X is defined as

ANK,S) = {z | 25 € S and 0 < ||z — zx|| < A}. 9)

Let H = H(s) be the positive semidefinite matrix of the second fundamental form at
s € 6K with respect to an orthonormal basis. The principal curvatures Ki,...,Kp-1 are
the eigenvalues of H . Denote the j-th trace of H ,ie., the j-th elementary symmetric
function of the eigenvalues of H , by

tr; H = tr; H(s) = b fiy Ky, J=1,...,p— 1, (10)
1<y <...<i; <p—1
trgH = 1,

and let ds denote the (p — 1 dimensional) volume element of JK . Then we have the
following lemma.

Lemma 2.2 (Formula (2.5.91) of Schneider (1993a))

v(AN(K, S)) = i )\33_- \/Strj__lH(S)ds. (11)

=1

We now apply Lemma 2.2 to our problem. Let K be a closed convex cone with
smooth boundary and tr;H(s) be defined by (10) on the boundary OK . Consider the
base set

S={s|s€ 0K and 0 < ||s|| < v},

then A,(K,S) equals to the set of (8) except for the boundary, i.e.,

int A, (K, S) = int{(vK ) + AK{) N (vK@)© N (AK7)).



Note that for each s € 8K , 0K contains a half line starting at the origin in the direc-
tion of s . Therefore the principal curvature for the direction s is 0 and tr,_ 1 H(s)=0.
Other principal directions lie in the tangent space T (9K N o(lU)) , where [ = ||s]| . Fur-
thermore because of the cone structure the integration on 0K can be reduced to the
product of integration on 9K NoU and the 1-dimensional integration with respect to [.

Theorem 2.2 Let K be a closed convex cone with smooth boundary. Then the mized
volumes p—i; (K1), K{l)), 1<i<p-—1,in (6) of Theorem 2.1 is expressed as

1

TN tr;— H d y
i(p — ) JOKNOU rie H(u)du

p x
<i)v”‘i’i(K<l>’ Kpy)) =
where du denotes the (p— 2 dimensional) volume element of oK NoU .

Proof. Let [ =||s|| for s € 0K . The halfline in the direction of s and T,(OKNO(IU))
are orthogonal and the volume element of 9K N(IU) is P=2dy . Therefore

ds = dl x (I""2du).

The principal curvatures are inversely proportional to [, i.e., ki(s) = ki(u)/l, where
u = s/l . Therefore

tr; H(s) = 1" 7tr; H(u), L= ||s||, u=s/l.

Then

H{s)ds = Vw—lp‘ddl H(u)d ——~Vp—j H(u)d
trj. a8 = - tr, = tr;-. u.
[S" rj-1H(s)ds o li—1 /afmatf -1 H (u)du p - J Joknau -1 H (u)du
By (11)

p=l Nippi

vp(Ar(K, 8)) = 2

—— tri_H(u)du.
j:_lj(p~—j) OKNAU rj-1H (u)du

Therefore

D
vp—ii(Kay, Kipy) = == trj_ H(u)d
(j) Up—3, (K1), K1) ilp — ) Joxnou rj- H(u)du

and this proves the theorem. B

Remark 2.2 Theorem 2.2 is stated in terms of K . However because of the duality of
K and K*, equivalent statement can be made in terms of K*.

Remark 2.3 (The case of R® and the classical Gauss-Bonnet theorem,)
For p = 3 the mized volumes take particularly simple form. Furthermore Shapiro’s
conjecture (Shapiro (1987)) reduces to the classical Gauss-Bonnet theorem. Let

P(j(%l S: a, )ﬁ? _<_ b) = ’U}3G3(&) -+ ’LUQGQ((L)Gl (b) -+ lel(a)G‘z(b) + ’LUgGg(b).



Then clearly

total area of K NoU total area of K* NoU
w3 = , W= s

4 47

where Am s the total surface area of the unit sphere OU in R? . By Theorem 2.2

1 1 7
wy = - / troH (u)du = —-—/ 1du
2wywy Jarnau 41 JoKnaU
total length of the curve 0K NoU

47

and considering K*

w total length of the curve OK* N oU
1 = .
4r

On the other hand by Theorem 2.2

1
wy = —— u)du,
Y7 4 AKHBUK( )

where k(u) = triH(u) is the geodesic curvature k(u) of the curve dK NOU on OU .
Since the Gaussian curvature is 1 on OU , the the classical Gauss-Bonnet theorem states

2 = / k(u)du + (total area of K NoU ).
dKNAU

Therefore
1
5 = wy + ws,

which is a particular case of Shapiro’s conjecture.

Remark 2.4 Shapiro’s conjecture is known to hold for polyhedral cones. Because of the
continuity of mized volumes, Shapiro’s conjecture holds for smooth or piecewise smooth
cones as well.

Example 2.1 The case of spherical cone (Pincus (1975), Akkerboom (1990))

. ﬂ.
K= {u= (i) | g 2 cosv}, 0<9 <5

This is the spherical cone K, mentioned in Section 1.1. Using our geometric approach
the weights of %* distribution can be obtained in a straightforward manner. Let

F(z) = Fzy, ..., 1) = 22sin® ¢ — (25 + -+ - + ) cos” . (12)
Then the boundary 0K of K can be written as

8K = {z | F(z) =0, z; > 0}.



By our Theorem 2.2 we consider a point s € 9K, ||s|| = 1. Because of spherical symmetry

with respect to xs,...,z, we take s = (cos,sine, 0, . .. ,0) as a representative point.

The values of tr;H(u) are the same for all v € 9K N QU . The outward unit normal
vector at s° is easily seen to be

N, = (—siny, cos 9,0, ... ,0).
Consider the rotation of coordinates (21,...,%p) = (Ur, .- -, Up)

Uy = —sin ) 1 + cos Y T,
Uy = cos P T, +sinyY Ty,

U =T, 1=23,...,p

Note that uy is the coordinate for the direction of s . Substituting the inverse rotation

T, = —sint uy + CosY Uy , Tp =COSYP Uy +sinyY up into (12), 0K can be written as
F = z?sin®¢ —z5cos’ ¢ — (254 + mf,) cos® ¢
= —ulcos ) — wpupsin2¢p — (uf + -+ u?) cos® 1 (13)
= 0.

The particular point s® expressed in the new coordinates is
w’ = (ul,...,up) = (0,1,0,...,0).

Now we want to calculate the elements of the second fundamental form

62’1}4

_Z > 14
Ou;0u; 7= (14)
Recall that s° itself is the principal direction with zero principal curvature and wug is
the coordinate for this direction. Therefore actually we only need to calculate (14) for
i,j=3,...,p. (Or one can easily verify that derivatives with respect to uy are indeed 0.)
Now regard (13) as an equation determining u;, in terms of ug,...,u,. Taking partial

derivative of (13) with respect to u;, © 2> 3, we have
8}? (9’[1,1

au«l
0= = = —2——1; 08 20 — ——1y 5in 21) — 2u; cos? 9.
Bu; By, Y b i

Differentiating this once more we obtain

2 2

d°uy o 0°uy .
0= ~2%iau~;ul cos 2 — eaz;—é@-uz sin 21 — 20;5 cos® 1,

where §;; is the Kronecker’s delta. Evaluating this at u® = (0,1,0,...,0) we obtain

: 1 1
H(u®) = di oo .
() = diag (O’ tany’ " tan "(/JJ)

-2

D

(.
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Therefore |
9 — 2
ter(uO) = (p j )»——-.ww.

As mentioned earlier this value is the same for all w, ie, tr;H(u’) = tr;H(u), Yu €
0K M oU . Furthermore

OK NoU = {z |z, :coszp,x§+-'-~+x,2,:1~cosgq/1:sin2'g/)}.

Therefore the (p — 2 dimensional) total volume of 0K NoU equals to the total surface
volume of sphere of radius siny in RF7', e,

Up-2(0K NOU) = vp_o(d(sinpUp_1)) = (p — 1) sin? > wp_1.

Combining the above results the weight for %2 distribution is

P 4 . B 1 p—2 - Y P2
(i)vpm@,z(Km, Kfyy) = ) (7 3 1) - X (p—1)sin” "¢ wp
~1)! o .
= Z,—(!prﬂlsm” =14y cos'™! . (15)

Further manipulation of (15) shows that

U»-iiK 7K* — 2 BB:E,% : :
(p) pisi B (1)) - l(p >~——£ 2 .*) sin?P =1 cost P,

0 WiWp—i 2\i—1/B(, 221

which coincides with the result given by Pincus (1975).

2.3 The case of piecewise smooth cone

Here we consider an intermediate case between the polyhedral cone and everywhere
smooth cone, namely a cone K whose boundary 0K consists of both smooth surfaces
and edges. This case is rather complicated but we need a full treatment of these cones
to be able to discuss one important natural example of testing multivariate one-sided
alternative for covariance matrices in Section 3. We could not find a ready reference of
the needed theory (Theorem 2.3 below) in standard books on convex analysis. Therefore
we give a sketch of the proof of Theorem 2.3 in Appendix.
To fix ideas let us consider a generalization of Example 2.1.

Example 2.2 Let K be defined as

K:{ueRplﬂlg—H-ZCOS’(/)l and -«l-l%ﬂzcosv,bz },

where

T
cos? Py +costihy <1, 0< ¥y <

L i=1,2, p>3.
5 b Pz

In this ezample K = KN Ky where

Kir:{y,lfjﬂzcoswi}, i=1,2

11



are cones of Ezample 2.1. Note that 0K is no longer smooth at OKNOK,y . At a point
s of the common boundary 8K, N 0K, , the outward unit normal vector is no longer
unique and contribution to the mized volume from s € OK, NOK, can not be expressed

as an integral with respect to the volume element of the p — 1 dimensional surface of
0K .

Let K be a convex set. For each point s on the boundary 9K of K, the normal
cone N(K,s) is defined as

N(K,s5) ={y | (g, 2= 5) <0, Vz € K} (16)
(see Section 2.2 of Schneider (1993a)). Define
Dn(0K) = {s€ 0K |dim N(K,s) =m}, m=1,...,p.

Then
0K = Di(0K)U...UDy(0K).

In Example 2.2, D4 (0K) = 8K, N 8K, and D;(0K) consists of 2 relatively open
connected components relint(8K; N 8K), relint(0K, N 0K). Other D;’s are empty.
With Example 2.2 in mind, we make the following assumption on convex set K and we
call such K piecewise smooth.

Assumption 2.1 Dp,(9K) is a smooth p—m dimensional manifold consisting of finite
number of relatively open connected components. Furthermore N(K,s) is continuous in
s on Dp(0K) in the sense of Lemma 1.2.

Let s € Dp(9K) . In a neighborhood of s we take an orthonormal system of vec-
tors €1, ..., €pms Vpemi1, .-, Np Where ey, ..., ¢ m constitute an orthonormal basis
for the tangent space T5(Dpm(0K)) and Np_ji1,..., N, constitute an orthonormal ba-
sis for the orthogonal complement Ty(D,,(0K))* of Ty(Dm(9K)) . Clearly N (K,s) C
T,(Dn(9K))* .

Let

HE 4,j=1...,p—m, a=p—m-+1,...,p
be the element of the second fundamental tensor with respect to the chosen coordinate
system. For a unit vector v in Ty(Dp(0K))*

p
v= 3  UaNa, o] = 1,
a=p—m+1
define )
hﬁ'j(ﬁ, ’U) = Z UaHiaj.
a=p—m-+1

Furthermore let

tr; H{s,v) = Z Kiy (8,0) -+ - Ky, (5,0), j=1,...,p—m,
1< <. <iySp—m

12



where K1(s,0),...,Kp-m(s,v) are eigenvalues of the (p—m)x (p—m) matrix H;i{s,v),
i.e., the principal curvatures against a particular normal direction v at s.

We now generalize Lemma 2.2 to the case of piecewise smooth convex set. We use the
same notation as in Lemma 2.2

Theorem 2.3 Let K be a piecewise smooth closed convez set satisfying Assumption 2.1.
Let dsp_p denote the (p—m dimensional) volume element of Dn(0K) and let dvm—
denote the m — 1 dimensional volume element of the surface OU, . Then

v P 1
ALK, S)) = )\J—;J/ / e H (50 Ut ) A0t | A5y
Up( A( )) Tglz;?l j Sr‘tDm(E)K)[ N(Koym)3U r; (ép vy U 1) Upr, 1] Sp
(17)

For a sketch of the proof see Appendix. From Theorem 2.3 we obtain the corresponding
result for our problem.

Theorem 2.4 Let K be a closed convex cone satisfying Assumption 2.1. Let dup_m-1
denote the (p—m—1 dimensional) volume element of Dn(0K)YNOU, m=1,...,p—1.
Then the mized volumes vp_ii(Kay, Kfy), 1 <@ <p—1, in (6) of Theorem 2.1 is
expressed as

P (T * N __ 1
(i)v;o—z,@(.]{(l)a I{(l)) - z(p . 7’)

xfgf

[ I D (8K)NAU [/N(K,u,,..m_l)ﬂaU

tri.,mH(up_m_ L vm_,]_)dvm_l] dtp—m—1-
(18)
Proof. It is easy to show that
N(K,s) = N(K,u), =||s||, u=s/l
As in the proof of Theorem 2.2
6 H (s, 0) = ttjomH (u,0) /U,
Therefore in (17)

trj»—mH(Sp*m’ Um-—1>dvm—~1

1
- imm /N(K,up-m_l)ﬁaU

[V(K,s)ﬁ&(]

trj~mH(up—»m~la Um—l)dvm——l'

Moreover
dsp_m = dl % (P Ny 1)

13



Therefore for S = {s|s € 0K and 0 <||s|| < v}

0 H(S0—rss Urpy1 ) AUy 1 | 55—
/stm(aK) [/N(K,s)méw j=mH (Sp-m, Um—1)dm 1] p—m

v . .
= / =314 / ( / ) H (1 V1) 01 it n
0 m (BK)NBU LI N(K o 1)NOU

I/p "_j

p—7 /Dm(ax)may [/N(K,u,,«mwl)nau

trj—mI—I(up—m»——l ’ Um—l)dvm—-]] dup-m—-l .

It follows that

(s
g} e —4)

J
X Z / [/ trj—mff(up-m—laUm_l)dvm—l] dup~—m-—1
= I p(oK)noU LIN(K - 1)NOU

and this proves the theorem. i

Example 2.2 (continued)

Using Theorem 2.4 we evaluate the weights of %? distribution. First we consider
Dy (8K) = relint(0K; N OK) Urelint(0K, N OK) . Note that relint(0K; N0K) = 0K, N
int K, . Therefore

relint (0K, NOK) N AU = {x | 1 = costhy, Ty > cosVg, llz]| = 1}.
Now consider the following ratio of volumes

vp_o({(za, ..., Tp) | T2 > cOStp, 5 + - + T3 = sin” 1 })
p2({(22, -, 2p) | €5 + -+ + 2k = sin® Y })

This is obviously equal to the following incomplete beta function
1 /1

5 cos? 2/ sin® ¢
The contribution to the weights from 8K, NAK NOU is just as (15) multiplied by

with ¢ = 1y . Similarly the contribution from dK;NOK NU is (15) multiplied by B2
with 1 = 1)y , where

w3 (1 — u)" 7 du. (19)

B

1 /!t 1 P4
Gy = — “2(1l —wu) 7 du. 20
/2 2 Jeos? a1/ sin? 1o v ( U) Y ( )

Tt remains to evaluate the contribution from 9K, NOK, . Consider a representative point
s% = (cos 9y, cos iy, 7,0, ...,0),

where

T = \/1 — cos? Py — cos? . (21)
The outward unit normal vector to K, at s is

i cosy CosY
ny = (—— sin Yy, _______/,)i’ —szr,ﬁ, e ,O).
tant; tany,

14



Similarly the outward unit normal vector to Ky at s0 s

cos Y . cos Py
-, —sinty, ——71,0,...,0
(hm 1y’ % an yq )

The normal cone N (K, s°) is the positive combination of these two vectors
N(K,s% = any +bng, a,b>0.

The inner product of these two vectors is

1
tan i, tan vy’

<n17n2> = =

Let
T cosy

—_— =, 0,...,0).
sin, siney’ )

Then N,, 1, N, form an orthonormal basm of Ty(Dy(8K))* . Now consider the rotation
of coordinates ba‘%ed on Np_i, N, and 0

Np“1 == T, Np = (0, -

~siny —-—% o
u = 0w G z2
usg cos Y cos ¥y T 3

g Gz 13 Ty

= 921 G2 923 )

931 932 933 I3

and u; = 2;,%=4,...,p with the inverse transformation

T g1 921 931 Uy
oy = g2 G2 932 Ug
Zs3 13 923 933 Uus

s¥ in the new coordinates is
7 0 e
W = (0,0,1,0,...,0).

Now consider (12) for K; and Kj:

0 = F =asing? — (a2 + 22) cos® 1 — (uj + - +u2) cos® iy, (22)
0 = Fy,=alsine— (27 + 23)cos’ i — (ug + -+ u )cos2 ho. (23)
In (22) and (23) z1, 22,5 are functions of u,ug,us, ie., x; = Z? L g5i%; - We regard

(22) and (23) as a system of equations for determmmg Uy, Ug in terms of wug,...,up.
Furthermore as in Example 2.1 we can ignore differentiation with respect to uz and we
differentiate (22) and (23) with respect to ug,...,u, . At v°

dU] L 8'u2

0= ()u IU‘)_%

v > 4.

?
uO

15



Therefore 5
L1 . .
= — >4, 7=1,2,3.
s (A TR ,
Using this it can be easily shown that 0 = 0°F/ (Ou0uy), t,J > 4,

=0,

u0

reduces to .
0= -2 O cos ¢y sin Yy — 26;; cos 9
T ooy T T TR
and 0 = 02F,/(du;0u;) evaluated at u° reduces to
0— O%uy cos?ay
- auiauj tan ’gbl
Solving (24) and (25) we obtain

0%uy T cos Py 0
- — 2(5” CcOSs 11)2.
Ou;0u; siny

821111_ . 1 ..
du?  tanty’
Puy  cos’ iy
Ou? sin 1
All the other second order derivatives evaluated at u® are 0.
Let 1
vis
By = _—— — <y < .
0 = Aarceos ( tan 1, tan ng) 2 0=
Then v € N(k,s%), ||v|| =1 can be written as
v = cosON,_1 +sin 0N, 0<6 <ty
Therefore
H(s®,v) = diag(0, h(8, %1, ¥s), .- ., h(6, %1, ¥2) ),
p—3
where 1 9
h(6, 1, 1) = c08 f———— + sin B V2
i tan 7,(/)1 sin ”Q/)]
and we obtain

ter(SO, ’U) = (p —j_ 3) h(9, 7,[)1, wg)j.

— 3 bo )
tr; H (2" =(P77) [ ne idp,
/N(K.,so)my rH(z", vi)dv, ( i ) A (0,1, ¢2)
The value of (26) is the same for all s € 0K, N9K, N AU and

Therefore

vp-3(0K1 NOK, NOU) = (p — 2) 7P 3wy

Therefore the contribution from JK; NIOK, to the mixed volume (i)vp_i,i(K (1)
obtained as

p—3y 1 bo N2 _ oy.p-3
(i~2)i(p-~i)/o h(B, v, ) ~2d0 % (p — 2)7P 3w, .

16
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Summarizing the above calculations the mixed volume is

p TR p—1)! o pein —
(,-)”zwi;i(f‘(l)a m = E%G;':'“Z.)lepmx(ﬂﬁln” =Lapy cos' ™y
+ 8, sin? " Ly cos' ! 4hy)
(i-DE—-2)! ,-

bo .
3wy h(, 1, 1) 2db.
oo e [ hO )
where 7 is defined in (21) and f;, 3, are defined in (19),(20). Note that the last term
vanishes for ¢=1.

3 The cone of non-negative definite matrices

In this section, we treat the cone of non-negative definite matrices, which is a typical
example of the piecewise smooth cone. We reveal the “recurrence structure” of the singu-
larities of the cone of non-negative definite matrices which plays an essential role in the
derivation of the mixed volumes and the weights of ¥* distribution.

3.1 Testing problem and ¥’ statistic

Let A = (a;;) bea pxp symmetric random matrix whose components are independently
distributed as agz ~ N{p,1) and v2a; ~ N (v/2 pij, 1) (4 < j) . The joint density of
A is
1
2P/ ZmeZ
where M = (j;;) is the mean matrix.
Let K be the cone formed by the p X p non-negative matrices, i.e.,

1 ,
exp{ — ;étr(A - M)z},

K={W s pxp|W > 0},
where > denotes the Lowner order. The likelihood ratio tests we consider here are
IfoM:O VS. Hli.MEK, (27)

and
Hy: MeK vs. Hy: M e 8,,, (28)

where S, is the set of p x p symmetric matrices.
The test statistics are shown to be

— 2 v — p. ¢
Xo1 = Z l; and Xiz = }: L (29)
;>0 1;<0
where {; > -+ > I, are the eigenvalues of the random matrix A . In this case, the

marginal distributions of x3, and X%, under H, are the same because of the facts that
the distribution of —A is equivalent to A and that K is self-dual, e, K*=-K. In
our previous paper, Kuriki (1993) gave an expression for the weights {wy} as well as a
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method to evaluate them numerically. In this section, we will see that the weights derived
by Theorem 2.4 give the same results as Kuriki (1993).

The testing problems (27) and (28), and the corresponding distributions of ¥3, and
%%, in (29) arise as the limit of the likelihood ratio tests for the multivariate variance
components in multivariate one-way random effects model with equal replications when
the block size goes to infinity. See Kuriki (1993) and the references therein.

3.2 The second fundamental form
We identify S, with RPP*+D/2 by the map

W = (w;;) € Sp + (Wit,. -+, Wpp, V2w, ..., \/iwp_l,p) € Rrlrt1/2
and the corresponding inner product

tr W]_I’VQ = Z W14 W + Z(ﬁU11ij)(\/§U)2ij) (30)

1<g
for Wy = (’Ujlij) , Wy = ('11)23'1‘) c «Sp . Define
Srp={W € 8, |rank W =r},
and

S, = SpnK
= {WeS§,|W>O0, rankW = r}.

8,1, is the smooth surface of the boundary 0K of K. S, r=1,...,p—2,

form singularities of 9K . This can be shown by identifying the normal cone at any fixed
point Wy € &1, .

The spectral decomposition of Wy is Wy = HyoAoHy' , where Ay = diag(lye, ..., lro)
with g > -+ > l,g >0 and Hyp is a p xr matrix such that Hyg'Hyg = I, . Let Hy
be a px (p—7) matrix such that Hy = (Hio, Hy) is p x p orthogonal.

Lemma 3.1 The normal cone (16) of K at Wy € S, is
N(K,Wy) = {—=HyYaHy'|Ye > O}

_ {MHOYHO’IYz(g 122),%220}

with the dimension

dim N(K,Wy) = (p—r)(p—r+1)/2,

Proof. Put

M(Wo) = { — HY Hy' |V = (g gz) Y > O},

From the definition of

. . Yy, Yio\ (Zi—Ae Z
( N gV 11 Y12 11— N i
N(K,Wo) = { — HoY Hy' | (er’ Y22> ( iy Zzz) >0, ¥Z € K},

18



it holds obviously that
N(K, W) D M(Ws).
The proof of the converse is as follows. Fix a point in S5, as
. ’
vy =) (1 37) (35)
such that
— HyVHy ¢ M(W,). (31)

Case 1) If Vi is not non-negative definite, there exists —X < 0, a negative eigenvalue
of Vs, and the corresponding eigenvector v . Putting

s (Mo O
Zw(O vv’)EK’

we see that

tr{V(Z - (1(})9 g) )} = 'y < 0.

Case 2) If Vi1 # O, we can choose € >0 such that

Z:(Ao""{f‘/u O

o o) ek

and

ew{V(z - (1})" g) }} = —eui? <o

Case 3) If Vi3 = O and Vi # O, we can choose a sufficiently small number € > 0

such that A I "
o+ Ir —EVi2
Z= ( “5V12I €2V12'V12) €K

and
o 0
The three cases 1-3 above cover (31) and we obtain

N(K,Wy) C M(Wy).

tr{V(Z — (A" O) )} = 9 tr Vi, Vig' + €2 tr VigVauVia' < 0.

This completes the proof. [

Remark 3.1 We see that the normal cone at each point of singularity of K is a lower
dimensional replica of the original cone K .

Now we proceed to derive the second fundamental form at Wy . In order to do

Xu X12) of &, in the

this we introduce a local coordinate system X = (r5) = ( Sy
X1z X

neighborhood of Wy as
S, 3 W = Wy+ HXH
. ; Ao+ X1 Xl?) (Hm')
= (H ).
(o Ho) (0™ ) it
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We note here that for a p x p orthogonal matrix H , the transform W — HWH'
is orthogonal and preserves the inner product (30), because tr(HWH')(HW,H') =
tr Wy W, . So, the new coordinate system X | ie., (21,...,Tpp, Voxie, ..., \/_2-:3;,,_1,,9) , 18
also orthonormal.

Here we can take 9/dzy; (r+1<i<p), 8/0(V2ry) (r+1<i<]
an orthonormal basis of N(K, W), and therefore, 9/0z; (1 <1 < 7)
(1<i<r, i<j<p) asan orthonormal basis of N(K,Wy)" = Tw,(S,) -

In the neighborhood of Wy, W € S, is equivalent to

Xop = X12' (Ao + X11) 7' K19,

because Ag+X1; is positive definite in the neighborhood of Wy . Fix W = —HygY Hyp' €
N(K,Wp) . Then, the second fundamental form with respect to the normal direction W

becomes
82 tr (YXzz)

3((%’)151’9, (\/éxij)lgig'r, i<jgp)2
The (k —r,l —r)-th element of Xy is

H(W,, W) = (32)

Wo

o = (Xio'(Ao+ X1) X 0w
Tu
= (x1x  Zeg) (Mo + X))o

Ty

), rel<k<l<p  (33)

Differentiating (33) twice with respect to (i)i1<i<r , (\/il't'j)lgigr, i<j<p » and putting

& iy _ 0y 1+0m
(V2x4)0(V2x) we o 2 7
1<i<j<r,r+1<k<I<p.So
92 tr (Y Xgs) 5
o220 2z) o ho "

with Y = (ywm) , and other contributions are zero. Now we have established the following
lemma.

Lemma 3.2 The non-vanishing part of the second fundamental form at Wy = HygAoH1g' €
Sj’“p with respect to the direction W = —HaY Hy' € N(K, W) is

NS 035 _
H(Wy, W) = ('l"‘ ’ykl) =A7' QY.

i0
Here Hy = (Hyg, Hy) 18 p X p orthogonal, and ® denotes the Kronecker product.
Let A= diag(l], e ,ip_,‘) be the eigenvalues of Y . Concerning the m -th trace
trmH =t (A @ Y) = tr(Ag ™' ® A),

the following lemma holds.
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Lemma 3.3 For A = diag(l)<i<, and A = - diag(li)1<icpr

det (l J) 1<i,5<r . det’(igj)lﬂingp_r
hcicicrlli =) Thcicjepr(li — ;)

det(A)pmrtrvrz,(AO”l ® ]\) = E

(2.9

where the summation 3 4 s over the set of integers
(qb v gy, ‘71: R 7@p-~r) € Qr,p("‘m + T(p - T) + T(T - 1)/2)

with

r
Qr,p(n):{(q15"'aQT7(jl7"'7q_p~—7') EW;D'QI > "'>€Ir» (_1-1 > > (jp-r? quzn}

and m, denotes the set of all permutations of {p—1,p~2,...,0}.

Proof. Define the generating function by

r(p—r)

®(z) = 3 (=1)™z P det(A)P Tt (Mgt © A).
m=0
Then
(z) = det(A " det(zl, ® L., — Ay} ® A)

- nwrnn@~a
=1 i=1 g=1
r p-T

= Mee-0)

(le) cee .’Ell 1\

-1 ' | -~

1<i<j<r 1<i<j<p~r

Pt e, 1
By the Laplace expansion of the determinant in (34), we have

P(z) = E( 1) srir+D)+3 00 (p-g5) det(zli®)1<ij<r ) det(ig")lgi,zgpf
(9,9) HlSKJ'Sr(xli - xlj) H15i<j§p_r(li'—lj)

}:( 1) Ir(r+1) +Z (p—gq; x2§:IQJ_%T(7'+1)

(0:9)
y det(liqjhgi,jgr . d(,t(lq )1<1]<p T
ngi<j§r(li - lj) n1<zx1<p r( l )
‘omparing the coefficient of the term (—1)™z"®~")~™ we prove the lemma. a
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Remark 3.2 The polynomial det(l;%)/TI(Li — ;) is the Schur function, which is sym-
metric and homogeneous in I; (Macdonald (1995)).

Remark 3.3 Lemma 3.3 allows us to separate the integration with respect to 1; ’s and
the integration with respect to l; ’s. It also reflects the selfduality of K .

3.3 Volume element in S,

To evaluate the mixed volumes in virtue of Theorems 2.3 or 2.4, we have to know the
concrete forms of the volume elements of S,, or S,,NoU .

Before proceeding to derive the volume elements, we prepare several facts on Stiefel
manifold. Let V,, = {H; : p x r|H,'H, = I,} be the Stiefel manifold. Regarded as a
subset of RP" | the volume element of V,, is given as follows. Let H, be px(p—r) such
that H = (Hy, Hy) = (h1,. .., hr, Bpy1, ..., hp) is p x p orthogonal. Then the volume
element of V., is

roop
dHi =\ N\ hidh. (35)

i=1 j=it+1

The total (r(r —1)/2 +r(p — r) dimensional) volume of V., is

zrﬂ,pr/fz
Ur(r—1)/24r(p—r)(Vrp) = /)

where

T(p/2) = wr<r'1>/4r(§)r(?@-§i) . 1‘(7:132_1.)

(Muirhead (1982), pages 62-70).
Let

where A = diag(li)i<icr, h 2 -+ 2

S, can be written as follows.

l, , and H; € V,,. Then, the volume element of

Lemma 3.4 The volume element of S,, is

AW, , = 2re=Ditre=n/z T T 6P [ dls dHy,

1<i<j<r i=1 i=1
where dH; is the volume element of V,, defined in (35).

Proof. Proof is similar to the derivation of the second fundamental form in Section 3.2.
Fix an arbitrary point Wy € S,, and write Wy = HyoLoHyo', Lo = diag(lo,...,l0),
lig > - > l,q. We want to obtain the volume element at Wy . Fix some Hyy such that
Hy = (Hyp, Hy) = (h1,...,hp, Rrgr, ..., hy) 1s p X p orthogonal and take the elements
of W=H/WH,, We S, , as a local coordinate system.
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Now we consider the elements of diW = d(Hy'W Hy) where W (and hence Hy'WHy)
is restricted in S, . Write dH = (dH,,dH;) and dL = diag(dl,...,dl,,0,...,0).
Then

dw = d(HyW Hy)
= HydWH,
—  Hy(dH diag(lg, . .., Iro,0, ..., 0)Hy' + HodLH}
+H dlag(llo, e l,0,...,0)dH"YHy
= Hy'dH Ly +dL + Ly dHy'Hy.
It is seen that the (p —7) x (p — r) lower-right block consists of 0’s, i.e., dw;; = 0
(r+1 <14, j). Therefore under the chosen local coordinate system, we can take 0/0W;;

(1<i<r, i<j<p) as basis for the tangent space Tw,(Srp). Taking the exterior
product, the volume element of S,, at W, is evaluated as

dW = /\dwu/\ /\ d(V/2;;).

=1 j=i+1

Now as on page 105 of Muirhead (1982)

wn:dlm lg/LSTa

Wi = (L = )hj'dh;, 1<i<j<r,

Wij = Lihy'dh, 1<i<r, r+1<7<p.
Therefore

T T
dW = 2rr=D/4srle=n/2 TT (1 — 1) H P H dl; /\ /\ h;'dh;
1<i<j<r i=1 i=1 j=i+1

and this proves the lemma. [

Corollary 3.1 The volume element of S,,NOU is

AU,y = 2= D/4re=n/2 T (g — 1) Hl,-””’du,.(l) dHj,

1<i<j<r i=1

where dy,(l) is the volume element of the surface of the unit ball
{2+ + L2 = 1)

Remark 3.4 As mentioned in Muirhead (1982), we have to be careful that the sign of
each h; is not uniquely determined. If we integrate with respect to dH, over the whole
Vip , then the same W is counted 27 times. Therefore when integrating with respect to
dW,, , we hove to divide by 27, e.g.

1
(W)W, = — x 27r=1/4+r(p=r)/2 / H,LH (li—1) TT 4@ 1 di; dH
/S:‘,pg\ ) P o L xVn, g(H,LH)) 1§z‘I<Ij<r H H 1
with
Lyr={,....L)[L>->1 >0}
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3.4 Mixed volumes and weights of ¥* statistic

Now we can evaluate the weights of %2, and ¥%, in (29). In the case of our problem,
the double integral in (18) reduces to

. . . P -1 g . N
I (i) = /S . [ /; B el HA™ A) dUperper)dUsp,  (36)
where H(A"!,A) =A"'® A . Note that
SH,NoU = oLy X Vip
with
oL = {(ly,..., L)l > >0 >0, L+ +1>=1}.
From Lemma 3.3 and Remark 3.4, the integral (36) is separated into two parts as
Lp(8) = & Z/ det (167 ) 1<k j<rdpir (1) - / det iy i<k j<p—r@iip— (D),
(¢,4)

where the summation 3,z is over

(qla vy Gry (717 ey qP—r) & Qr,p("'i -7+ p(p + ])/2)7

and the constant is

-
o = 52" 06000 Vep) Vo-np-rin/z(Vo-rp-r)

op(p-1) /4 p(p+1)/4 37
- G D(R/2) o

Note that (37) does not depend on 7.
Then, the mixed volume in (18) is

- DMHplp+1)/2 —1—1} .
Up(p+1)/2—ii = ( ) {{5’((11)7 T 1))//2}! ! } er,p(Z),

where the summation %, is over
reR,()={r|0<i—(p-r)lp—7r+1)/2<r(p—-1}},

since tr,y H(A™',A) = 0 for m’ > r(p — 7). Then, from Theorem 2.1, we obtain the
weights of ¥2, and x%, as

Wp(p+1)/2—i
_ (p(p+1)/2) Vp(pt1) 2

¢ Wi Wp(p+1)/2 —q

! (plp+1)/2—1 op(p—1)/4
~i{plp+1)/2 ~~%}F( e 2 +1) 1(k/2)

X302, j[ det (b ) 1<k j<rdpn (1) - / . et )icnjsp-rdpp—r (1), (38)

r (qa p~r
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where the summations 3, and ¥, are over r € R,(i) and

(Qh cety Q'!‘a (71, MR Q\ZBAT) e Q?‘,P(—'i - + p(p _1_ 1)/2>?

respectively.
Corresponding formula by Kuriki (1993) is
'Lup(p—{»l)/?—z' ped dp Z Z /+ e"%’([12+'“+lr2) det(lqu)lsk,jgl‘ H dlk
RCT k=1
o o p=r
/ o3 B+, det(lZJ)lékJSP“‘T H dly (39)
E;——T k=1
where ]
dp

PRI T(k/2)

and the ranges of the summations ¥, and 3., are the same as in (38). Letting
P4+, =R? and B+ 4 l;z,ﬁr = R?, we have [[;_,dly = R""'dRdu,(I) and
- dly = Rr-"=1dRdu, .(I) . By integrating with respect to R and R using

o —L1R2 a-1 (Jé'+“1
o =% p(2
/o RY% 2" dR =272 ( 5 >,

we see that (39) coincides with (38).

4 Appendix

Internal angle and external angle

Let F be a face of a closed polyhedral convex cone K in RP. The internal angle
B0, F) of K at F is defined as

’Ud(U_ F)
Wy '

ﬂ(U,F) =

where vy is restricted to the linear subspace L(F) spanned by F. Let C(F,K) be
the smallest cone containing K and the linear subspace L(F) spanned by F and let
F*=C(F,K)*. F* can also be written as

F*={y:ye K* and (z,y) =0, Vx € F}.

Therefore F* is the face of K* dual to F of K. The external angle v(F,K) of K

at F' is defined as .
() = 20T o )
Wp—d
where v,_4 is restricted to the linear subspace spanned by F*. See McMullen (1975)
and Section 2.4 of Schneider (1993a) for more detail.
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Sketch of the Proof of Theorem 2.3

Let s € Dp(8K) and consider an infinitesimal spherical neighborhood B(s) C
Dn(0K) of s. The essential step of the proof is evaluating the infinitesimal contri-
bution of B(s) to v,(A\(K,S5)), ie.,

UpUsre o (N (K, 8') N AU)). (40)

The rest of the proof is just integration similar to the proofs of Theorem of 2.2 or Theorem
2.4. Therefore we only discuss evaluation of (40).

Let A be the radius of B(s). We we only need to evaluate terms of order O (v, (B(s)))
= O(AP™™) in (40).

Now take a point P in the relative interior of s + N(K,s) and let y = P — 5.
Consider y + D,,(0K) which is D,,(0K) translated so that it passes through P . Let
s' € B(s). Because dim N(K,s)+ dim D, (0K) =p and N(K,s) is continuous in s,
we see that y + D, (0K) and s + Ty(Dn(0K))* meets at one point Q(y,s’) in the
relative interior of s' + N(K,s'). (Since we are considering infinitesimal neighborhood,
we could have taken y + T,(D,,(0K)) instead of y+ D,,(0K)).) Now define

B(S, y) == U-S"’C'B(S)Q(y’ S’)'

B(s,y) is orthogonal to N(k,t) and the infinitesimal contribution of B(s) to (40) can
be evaluated as

Up[Ugren(s) (N(K, 8 ) N AU)} = /N(K’S)MU Vp-m(B(s, y))dy,
where dy is the standard volume element of R™ .

Now we explicitly evaluate B(s,y) by introducing convenient coordinates in a neigh-
borhood of s in RP. Write r = p—m . By translating the origin to s, we can assume
s = 0 without loss of generality. Furthermore by appropriate rotation we can assume
without loss of generality that the first r coordinate vectors

er=(1,0,...,0), ez =(0,1,0,...,0), ..., e, =(0,...,0,1,0,...,0),

constitute an orthonormal basis of Ty(D,(0K)) = Ty(D,,(0K)) and last m coordinate
vectors N,iq,..., N, constitute an orthonormal basis of T5(Dp(0K))" . Furthermore
we can assume that P =y + s =y is in the direction of N,;; and the coordinates of y
are just (0,...,0,0,0,...,0) where [ = ||y||.

A —

M
Under the above coordinate system, by the implicit function theorem we can write

Sra1 = Spi1(S1ye s 8r)y oovy Sp=5p(s1,...,8;)

for s € B(0). We see that under the above coordinate system individual elements are
already of order O(A) and we can ignore higher order terms.

Now for fixed sY,...,s" and infinitesimal scalar ¢ consider the point

s(t) = (ts9, ... 10 s (882, 18Y), L sp(ts, . ts)))
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in B(0). The tangent space Ty (Dn(0K)) is spanned by

(1,0,...,0, Oy (-c)),,..%(s(t))),

ds1 051
(0... | 0,1, 8%1-(5(15)), . gz(s(t))).
Therefore Ty (D (0K))* consists of vectors z such that
b 2 S () 4 g (a(t) = O
ot 2 () 4 25 6(0) =D

On the other hand the tangent space
To(Dp(0K)) = To(Dm(0K)) = Span(ey, ..., &)
translated to go thorough P =y is
{(s1,-+,8,0,0,...,0)}, 1=yl
Now (S1,.-+,80,0,0,...,0) meets s(t) + Toy(Dm(3K)) " iff

8'5'1'+2

(51 = 158) + S (6(0) 1 = 342 (1) + o2 (5(0) (—sr1al)

bk R (s(0)) (splt) =0

0811 O08r42

(eer"t53)+~5-s-( s = s () + 5 =(s()(=sr42(1))

bt () (a0 =0
Noting that
0Sa T %s. |
Da(s(t)) =13 —te 1), i=1 =r+1
. s(t)) %3,033-‘0834—0()’ i r,oa=7T+

and
sty =o0(t), a=r+1,...,p

we obtain the coordinates of Q(y,s(t)) as

. 0%,
e 0“ Z‘“’ 41 0 .
§i = t(si lj:1 0s;03; ‘osj) tot), i=1L...,r
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On the other hand the elements of the second fundamental tensor are just

2.
H® — _ O%5a
oW 65@851‘

Hence
(s +ZZHT“ N +o(t), i=1,...,r

So far we have assumed that y is in the direction of Ny . If y = lv, v =

S o i19alNa, |jvll = 1, then the same argument shows that coordinates of Q(y, s(t))
are .
= t(S? +1 Z Hij(O, ’0)82) + O(t).
=1
Therefore

v (B(s,y)) = |det(l, +1H(s,v))|v:(B(s)) + o(v:(B(s)))
(14 1k1(s,0)) -+ (1 + Uk, (5,0))ue (B(s)) + o(vr(B(5)))
= (14t H(s,v) + -+ "tr, H(s,v))v.(B(s)) + o(v:(B(s)))-

i

The rest of the proof is integration similar to the proof of Theorem 2.2 or Theorem
2.4 and omitted.
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