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Nonparametric Restrictions of Dynamic Optimization Behavior Under
Risk: The Case of Time-Additive Expected Utility

Kazuya Kamiya and Hidehiko Ichimura'

ABSTRACT

In this paper, we investigate nonparametric restrictions of dynamic opti-
mization behavior under risk for the case of finite horizon and discrete time
period with one good per period. In order to find the restrictions of an
optimization behavior on observed data, we follow the revealed preference
tradition: we ask what conditions must the data satisfy in order for the
data to be compatible with an optimization behavior? The classes of utility
functions investigated in this paper are (A) time-additive expected utility
functions and (B) time-additive expected utility functions with a constant
discount factor.

17 his research started in the summer of 1992 when Ichimura was visiting the Depart-
ment of Economics, Osaka University. The research continued at the Institute of Monetary
and Economic Studies, the Bank of Japan between September of 1992 and April of 1993,
during which he was a visiting scholar at the institute. He is grateful for the hospitalities
he received at the institutes,



1 Introduction

We investigate nonparametric restrictions of dynamic optimizatior behavior
ander risk for the case of finite horizon and discrete time period with one
good per period. When a utility function is specified parametrically, Hall
(1978), Hansen and Singleton (1982), and Epstein and Zin (1989)(1991)
obtained some observable implications of dynamic optimization behavior
under a similar environment we are concerned. We wish to characterize the
observable implications that do not rely on a parametric specification of a
utility function.

The work suggests testable implications of the behavioral hypothesis and
also gives a method to verify whether particular demand data are compat-
ible with the optimization behavior. In addition the work is a first step
toward understanding what aspects of preference relations are identifiable
{rom observed data.

In order to find the restrictions of an optimization behavior on observed
data, we follow the revealed preference tradition: we ask what conditions
must the data satisfy in order for the data to be compatible with an optimiza-
tion behavior? An immediate question is, “which optimization behavior?”

A typical approach to modeling an individual choice in this environment
is to specify an additively separable utility function over time with a con-
stant discount factor and further hypothesize expected utility maximization,
but this is not the only approach. Clearly, there is no intrinsic reason why
utility functions should be additive over time and also there are behavioral
hypotheses other than expected utility maximization. In fact Epstein and
Zin (1989) and others specify a recursive intertemporal utility function and
consider non-expected utility maximization behavior, for example. Thus
there is no unique way to define a “rational consumer” whose preference
we attempt to reveal from given data. Therefore, instead, we define vari-
eties of classes of utility functions and, for each class, seek necessary and
sufficient conditions for data to be compatible with a utility function in the
class,i.e., the nonparametric restrictions on the data derived from the utility
maximization.

In this paper we consider state independent utility functions. The classes
of utility functions are (A) time-additive expected utility functions and (B)
time-additive expected utility functions with a constant discount factor.? In
Jchimura and Kamiya (1995), we deal with nonexpected utility functions.

2Precise definitions of these classes are given below.



Using these classes we define rationality; we say that a data set is time-
additive expected wutility rational if we can find a time-additive expected
utility function which is compatible with the data, for example.

In this paper, we present three theorems. Theorems 3.1 and 3.2 deal
with the case of time-additive expected utility and Theorem 4.1 deals with
the case of time-additive expected utility with a constant discount factor.
Theorems 3.1 and 3.2 can be considered as generalizations of Border’s results
(Theorem 2.4, 1992) on atemporal models. He showed that the agent’s
choices are compatible with the expected utility maximization if and only if
there does not exist a prior for which the choices are ez ante stochastically
dominated. Note that we employ a strong notion of rationality as well as the
weak notion of rationality of Border (1992). That is he just requires that
the choice maximizes expected utility while we may further require that
the choice is the unique expected utility maximizer. (For the discussion,
see Richter (1971)(1987).) For revealed preference approaches to decision
making under uncertainty in different frameworks, see Green and Osband
(1991) and Kim (1991).

He and Huang (1994) investigated an integrability problem in a contin-
wous time, finite horizon asset market model, where the asset price process
follows a general diffusion process. That is, for a given consumption-portfolio
policy, they provided a necessary and sufficient condition for it to be com-
patible with the maximization of some increasing, strictly concave, time
additive, and state independent utility function. Recall that we employ re-
vealed preference approach in a finite horizon, discrete time model and we
do not impose any restrictions on the underlying stochastic process. It is
worthwhile noting that our approach can be applicable to the case of an
infinite number of data as well as the case of a finite number of data. (See
Section 5.) Moreover, we deal with the case of a constant discount factor,
which was not investigated in He and Huang (1994).

The next section specifies the economic environment in which our con-
sumers make choices and the data we assume to observe. We then proceed
to provide necessary and sufficient conditions for a data set to be rational-
izable in Sections 3 and 4. Finally, in Section 5, we discuss extensions of the
resulis in Sections 3 and 4.



2 The Model

We consider a discrete time finite horizon dynamic optimization model (T
period model) with risk. We allow our data to be generated from general
stochastic processes and ask if they are compatible with time-additive ex-
pected utility maximization.

Let Mt (X) denote the set of all Borel probability measure over a com-
pact set X C R, where R is the set of real numbers. The domain of
the agent’s choice is the cartesian product of M;(X), i.e., MF(X)T =
M;(X) x -+ x M{f(X). The data consist of a finite number, ¥, of choices

S a

T
in the first period, y! = (m%,...,m%),...,y” = (m{v,...,mg), and cor-
responding feasible sets, B!, .., BY, from which these choices are made,
ie., y* € B*,n =1,...,N. We assume that B1,...,BY are all subsets of
M (X)T. Tet D = {(", B}y
The following example illustrates a typical case we have in mind. Typi-
cally, a feasible set B™ is spanned by a finite number of assets.

Example 1

An agent wishes to choose consumption schedule, z; (t =1, 2), over two
periods (T = 2) in period 0, knowing that he/she receives income of Iy and
I, in the two periods, respectively. No consumption takes place in period 0.
The agent can transfer a consumption good in period 1 to the consumption
good in period 2 only by holding a security, in the amount of s;. The
prices of the consumption good and the security are p; and ¢; (t = 1,2),
respectively, and we assume that income Iy, the price of the consumption
good, and the price of the security ¢; (¢ = 1,2) are all random at t 1. More
specifically, we define two sigma-algebras Ay and A, such that Ay C Ag,
and assume that Ii, p1, g1, 1, and s; are measurable with respect to Ay
and that 5, pz, g2, and z2 are measurable with respect to Ag. The first
period budget constraint is

P11+ @151 = I,
and the second period budget constraint is
paz2 = I + qas1.

Given random variables ¢; and go, measurable with respect to Ay and Az,
respectively, we assume that the agent chooses A y-measurable functions 7
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and s; and an Ag-measurable function £z from all possible such random
variables that satisfy the budget consirainis. The set B! denotes the sub-
set of M;H(X) x M(X) that corresponds to the pair of random variables
(z1,%2). (Note that the number of data is one in this example.) The agent
chooses y* = (m},m}) € B.

3 Time-Additive Expected Utility Rationalization

In this section, we consider the following time-additive expected utility func-

tion:
T
> [ widm,
t=1

where my, t = 1,...,T, is a probability distribution of the t period con-
sumption.

DEFINITION 3.1 A set of functions ug: X — R,t=1,...,T, 13 said to be a
weak time-additive expected utility rationalization (WTAR) for D if

1. fort=1,...,T, u is strictly increasing and continuous,
2. formn=1,.., N,

T T
E/utdm? > Z/utdmt for (m1,...,mg) € B".
t==1 =1

DEFINITION 3.2 A set of functions uy: X — R,t=1,...,T, is said 1o be a
strong time-additive ezpected utility rationalization (STAR) for D if

1. fort=1,...,T, u; 1s strictly increasing and conlinuous,
2. forn=1,..,N,

T T
Z/utdm? > Z/uidmt for (mq,...,mg) € B\ {(mT,...,mp)}.
t=1 t=1

Remark 1. In Definition 3.1, the feasible set B™ may contain other
maximal elements that are not chosen, while, in Definition 3.2, the choice is
the unique maximizer.

Let 75 B™ be the weak* closed, convex hull of B®,n = 1,..., N. (For the
definition of weak* topology, see the appendix.) Note that €0 B™ is equal



to the weak* closure of the convex hull of B™. (See, for example, Dunford
and Schwartz (1958)).

We use the following notations.

C(X): the set of continuous real valued functions on X with the sup
norm.

M(X): the set of finite countably additive Borel signed measures on X.

U - the set of strictly increasing real valued functions on X.

T : the set of nondecreasing functions on X.

U,: the set of continuous members of U.

T.: the set of continuous members of U.

For m; € M(X),i = 1,...,k, and &; € R =1,...,k, Zﬁ;lagm; €
M (X) denotes the measure such that, for all Borel set E C X, the measure
of Eis 5, o;mi(E). Let

A:{mEM(X)queffc, udmzo},

and denote the T-fold Cartesian products of A and M(X) by AT and
M(X)T, respectively. Also let

N N
G:{(E:a"(m‘a*mm;*),'..,za“m-—maa)) | (75, ..., 7)€ @B,
n=1

n=1
nr::1,,..,N,a::(al,...,ozN)ESN},

where SV is the (N — 1)-dimensional unit simplex.
Note that G is clearly weak* compact and convex. Let

en G = {(mi,...,mr) € M(X)x--xM(X) | (7, ..., mr) € G,3X >0,
(ml,...,mT)::(A'i“n“l,...,)\?n‘z"T)},

the cone generated by G.> Note that clearly cn G is convex since G is convex.
Let ¢l {cn G) denote the weak* closure of cn G.

Example 2 Let T =1, N =3, and X = {1,2,3} C R. A probability
distribution on X is represented by a vector (z1,72,33) € 53 where S° is
the two dimensional unit simplex. Suppose we have the following data:

B! ={(1/2,0,1/2),(0,1,0)},  m'=(0,1,0),

In general, for a set K in a linear space E, cn K denotes the cone generated by K,
ie,. en K ={z € Ej3z’ € K,Ja > 0,z = az'}.




B? = {(1/3,0,2/3),(0,3/4,1/4)}, m? = (0,3/4,1/4),
B% = {(1/3,1/3,1/3),(0,1,0)},  m®=(0,1,0).

Then G is the convex hull of vectors (0,0, 0), (1/2,0,1/2)--(0,1,0), (1/3,0,2/3)—
(0,3/4,1/4), and (1/3,1/3,1/3) - (0,1,0). (See Figure 1.) In this example,

A is the cone spanned by (—=1,1,0) and (0,—1,1). (See Figure 1.) In the
example, G A = {(0,0,0)} holds. By the convexity of G and A, and the
separating hyperplane theorem, there exists a vector (s, az, a3) such that

6121 + a272 + agzs < 0 for (z1, T2, 1133) €eG

and
@1Z1 + G99 + G3T3 > 0 dor (171,3'}2,(63) €A \ {(0,0,0)}.

Let u(1) = a1, u(2) = az,u(3) = az. Then, for (1/2,0, 1/2) - (0,1,0) € G,
(1) %u(l) +0u(2) + %u(s) < 0u(1) + 1u(2) + 0u(3)

holds. Similarly, for (1/3,0,2/3) — (0,3/4,1/4) € G and (1/3,1/3,1/3) —

(0,1,0) € G,

2) %u(l) +0u(2) + gvu(:}) < 0u(1) + Ju(2) + iu(S)

1 1 1
(3) w3-u(1) + gu(Z) + é-u(?») < 0u(1) + 1u(2) + 0u(3)
hold. On the other hand, for (—1,1,0) € A and (0, -1,1) € A,
—1u(1) + 1u(2) + 0u(3) > 0 and Ou(l)— Iu(2)+ 1u(3) >0

hold so that
(4) »(1) < u(2) < u(3).

holds, i.e., u is strictly increasing. By (1)-(4), v is a WTAR for the data.

The above argument seems to indicate that G( A = {(0,0,0)} is suffi-
cient to imply the existence of a WTAR. The example in Figure 2 is a counter
example to this conjecture. In the example, G[1A = {(0,0,0)} holds but
there does not exist a WTAR. Since we require a strictly increasing utility
function, A\ {(0,0,0)} must be strictly separated, i.e.,

a1z1 + azzy +azza >0 for (El,xg,zg) €A\ {(0,0,0)}.



We need more restrictive condition to guarantee this. When X consists of
three elements, it is easy to see that cl (cn G)(1A = {(0,0,0)} is necessary
and sufficient for the existence of a WTAR, where cl (cn G) denotes the
closure of cn G. In general, when 7> 1 and X contains infinite number of
elements, a similar condition is necessary and sufficient for the existence of
a WTAR.(See Theorem 3.1.)

The following definition is a generalization of ex ante mixture undomi-
nation in the case of T = 1 of Border (1992).

DEFINITION 3.3 G is said to be ez ante mizture undominated if

cl (cn G)ﬂAT = {(07' .. 70)}a

where 0 denotes the zero measure.

THEOREM 3.1 The data set D has o« WTAR if and only if G is ex ante
mizture undominated.

Proof. See the appendix.

In order to have a STAR, we need to strictly separate any points in G
other than the origin from the separating hyperplane itself. The following
condition, which says that the origin is an extreme point of G, guarantees
this.

DEFINITION 3.4 G is said to be irreversible if there do not exist (my, . .. ,TAT )
(mf,...,mp) € G\{(0,...,0)}, >0, and § >0 such that amy+ fmi =0
forallt=1,...,T.

THEOREM 3.2 Suppose that B™ C MX),n=1,...,N, is a weak* closed,
conver set and that cn G is a weak™ closed set. Then the data set D has a
STAR if and only if G is ex ante mizture undominated and irreversible.

Proof. See the appendix.
Both of the theorems show that we may interpret the separating hy-

perplanes as the time-additive expected utility function with appropriate
properties. Below, we sketch the reasons why this may be so.



Note first that for each weak* continuous linear functional ¢ on M(X)7,
there exists (u1,...,ur) € C(X)T such that

T
&(my,...,mp) = Z/utdmt for all (my,...,mr) € M(Xx)T.
t=1

(See the appendix.) In the proof of Theorem 3.1, by using ¢l (en YN AT =
{(0,...,0)}, we show the existence of a weak* continuous linear functional
¢ on M(X)T which separates G and A7. That is there exists (uy, ..., ur) €
C(X)T satisfying

(M LT, fudm <0 for (m,...,mg) € cl(cn G) and
(2) L, fudmy >0 for  (my,...,mr) € AT\ {(0,...,0)}.

Thus, for (m1,...,mr) € B™,(ms,...,mr) — (m},...,m}) € G holds
so that, by (1),

T T
Z]utdm? > Z/utdmt for all (mq,...,mr) € B™.
t=1 t=1

Note that (2) guarantees that u¢ € Ue; for the details, see the appendix.

4 Time-Additive Expected Utility Rationalization
with a Constant Discount Factor

As in the previous section, we consider a set of data D = {(¥", B")}f:;1
(B" c MF(OT, gy =(m},...,m}) € B") ,n = 1,..., N. In this section,
we only employ the weak notion of rationality.

DEFINITION 4.1 A pair of a function u: X — R and a real number vy > 0 is
said to be a weak time-additive expected utility rationalization with a constant
discount factor (WT ARC) for D if

1. w is a strictly increasing continvous function,

2. foralln=1,...N,

T T
> /udm? >3 7 /udmt forall  (m,...,mr) € B
te=] t=1
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The following example shows that some data sets are WTAR but not
WTARC.

Example 3

For simplicity we consider the implication of the WTARC in the certainty
case. Let T = 2. Suppose such a representation is possible for (z1,22) and
if we find (z1,9), 21 > 22 and (zf,5), 2] < 75 such that

u(z1) + yu(zs) > u(z2) + yu(z1)

and
u(z}) + yu(z}) > u(ey) + vu(zy).

Then we have a contradiction. Thus the following data is not WTARC. The
data consist of two observations. In the first observation a consumer faces
price (p1,p2) = (1,2) with income 4 and chooses (z1,%2) = (1,1.5). In the
second observation the consumer faces price (p1,p2) = (1,1/8) with income
4 and chooses (z1,22) = (35/9,8/9). Note that (1.5,1) is in the first feasible
set and (8/9,35/9) is in the second feasible set inducing a contradiction as
observed earlier. Clearly this is WTAR.

In the proof of Theorem 3.1, we constructed the set cl/(cn G) and proved
the existence of a linear functional (u,...,ur) which separates cl(cn G)
and AT. In this section, we need to separate two sets by a linear functional
which has the form (%, vyy,.. .,7F"tu). In order to prove the existence of
such a linear functional, we first construct the following set.

Let Go € M(X)7T be a set satisfying

(1) G C Ga,

(i) G4 is weak* closed and convex,

(iii) (m1, ..., mr-1,0) € Go implies (0,m1,...,m7-1) € Gq, and
(iv)((),...,(),\_@/,(),...,(})e G, forsomet € {l,...,T}implies(o,...,0,\_@_},0,...,0) €

S

t
Goforallse {1,...,T}

Le:c G be the intersection of all of such ~Ga,’s, Le., G = No Ga- Note
that G is not empty. Obviously, (i) G C G, (ii) G is weak* closed and
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convex, (iii) (m1,...,mz-1,0) € G implies (0,m1,...,mp1) € G, and (iv)

(0,...,0,&J,0,...,0)6 G for somet € {1,...,T}implies (0,...,0, m ,0,...

N~
t s

Gilorallse{1,...,T}.

Then if G satisfies certain conditions, there exists a linear functional
which separates G and AT. It will be shown that among such function-
als, there exists a linear functional which has the form (u,vu,.. T ).
Clearly, (iv) is necessary for the existence of a functional which has the above
form. By the following discussion, the readers may understand the reason
why (iii) is necessary. For simplicity, we consider the case T = 3. Suppose
there exists a linear functional (u,yu, v%u) separating G and A3. Then, for
(mlme’O) € G)

,0) €

/udm1+7/udm2+72/ud0 < 0 implies /ud0+7/udm1+72/udmz < 0.

Thus if (u, yu, y?u) separates G and A® then it also separates G and A%,
Form, m' € M;t(X), m strictly first order dominates m!, denoted mF'm/,
if [udm > [udm' holds for all u € U..

DEFINITION 4.2 G is said to be ex ante mizture undominated if cl (cn G) NAT =

{{0,...,0)}.
THEOREM 4.1 Suppose

(a) for some n, there ezist (mi,...,m7), (m},...,m%y) € B™ such that
moFmh, mpFmg for t = 1,...,T — 1, m&Fmb, and miFmy for t =
1,...,T =1, hold,

(b) for some n, there exisls a measure My € M (X) such that m{ Fmy
and (m’f,...,m?__l,mt,rrl,?,H,‘L.,m’j“) € B* forallt=1,...,7,

(¢) for all (my,...,mr) € G\{(O, ... ,0)}, there exists t such that my # 0
and (0,...,0,m,0,...,0) € G.

Then there exisis ¢ WTARC for D if and only if G is ez ante mizture
undominated.

Proof. See the appendix.

(2) and (b) are obviously satisfied in standard security market models.
Using the concept of equilibrium price measure, (c) is satisfied in stan-
dard security market models when the security price processes do not al-
low for arbitrage. (For the equilibrium price measure, see, for example,
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Dothan [1990].) The reason is as follows. The nonarbitrage condition guar-
antees that the feasible set can be expressed by a price functional gener-
ated by the equilibrium price measure. Suppose the choice (m7%,...,m%)
satisfies the feasible constraint with equality for n = 1,..., N. Using the
representation of the feasible set by a price functional, it is easy to show
that (7, ...,7m7) € B™ implies that 3t, (m7,..., m{_y, M, Miyyy .-, Mp) €
B*. Hence (ma,...,mr) € G\ {(0,...,0)} implies that 3¢, m¢ # 0 and
(0,...,m¢,...,0) € G. Then let

= = {(mi,...,mr) € M(X)T\{(0,...,0)} | 3t,(0,...,mu,...,0) € G).

Since (1) G € (EU{(0,...,0)}), (i) EU{(0,...,0)} is weak* closed and con-
vex, (iii) (m,...,mr-1,0) € ZU{(0,...,0)} implies (0,m1,...,mr-1) €
ZUH(0,...,0)}, and (iv) (0,...,0,@/,0,...,0) e ZU{(0,...,0)} for some ¢

t
implies (0,..‘,0,\1&,0,...,0) € ZU{(0,...,0)} forall s. Thus G N (E U{(O,

G holds. Hence (c) holds.

5 Concluding Remarks

In this section, we discuss extensions of our results in Sections 3 and 4.

First of all, Theorems 3.1 and 3.2 can be easily extended to the case of an
infinite number of data. Suppose that the set of observation, 2, is a compact
Hausdorff space. Let B : O — M (X)T be a feasible correspondence,
ie., Bw) C M{(X)T is the feasible set at observation w. Let y : Q-
M(X)T be a choice function, ie., y(w) = (m1(w), ... ,mp(w)) is the choice
at observation w. Then the set of datais D = {(y(w), B(w)) | w € Q}. The
set G can be defined as follows:

G = U{(J((w) —mi(@)dh, ..., [(Rr(w) - mr(w))dr) | X € M(Q),
(M1(w)...,mr(w)) € T Bw)},

where the integral is the Gel’fand integral and M(€2) denotes the set of all
Borel probability measure over (2. As in Section 3, the concepts of mixture
undominatedness and irreversibility can be defined. The following theorem
can be easily proved using similar arguments as in the appendix and in
Border (1992). The proof is left for the readers.

THEOREM 5.1 Suppose B is a continuous correspondence. Then the data
set D has @ WTAR if and only if G is ez ante mizture undominated.

12
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THEOREM 5.2 Suppose (a) B is a continuous correspondence, (b) B(w) C
M(X)T,w € Q, is a weak* closed, conves set, and (c)cn G 15 a weak* closed
set. Then the data set D has a STAR if and only if G is ez ante mizture
undominated and irreversible.

Similarly, Theorem 4.1 can be easily extended to the case of infinite
number of data. Let Go C M(X)T be a set such that (i) G C Ga,
(ii) Go is weak* closed and convex, (iii) (m1,...,mr-1,0) € G implies
(0,m1,...,mr-1) € Gaq, and (iv) (0,.. ,\17,1_10 .,0) € G4 for some

te€{1,...,T} implies (0, .. ,...,O)EGQ for all s € {1,...,T} .

\VJ
s

Let G be the intersection of all of such G,’s, i.e., G= Na Ga ,
The {ollowing theorem can be easily proved using the arguments in the
appendix and in Border (1992). The proof is also left for the readers.

THEOREM 5.3 Suppose cn G is weak* closed. Moreover, suppose

() for some w, there exist (my,...,mr),(M},...,m7) € B(w) such that
mT,FmT(w), my(w)Fm; fort = 1,...,T — 1, mp(w)Fmy and mi Fmy(w)
fort=1,...,T =1,

(b) for some w, there exists a measure my € M (X) such that m} F'm,
and (m},...,m{_{,me, Py, ..., mp) € B® for allt=1,...,T,

(r) for all (ml, mT) € é, there exists t such that my # 0 and
(0,...,0,m¢,0 L0) € G.

Then there exists @ WTARC for D if and only G is ex ante mizture
undominated.

In economics, the utility functions are often assumed to be concave. By
eplacing AT by a suitable cone in the definition of mixture undominat-
edness, we can prove the existence of a WTAR, a STAR, and a WTARC
with concave utility functions. (For the fefinition of such a cone, see Border

(1991).)

Clearly, there is no intrinsic reason why utility functions should be addi-
tive over time and also there are behavioral hypotheses other than expected
utility maximization. In fact Epstein and Zin (1989) and others specify a
recursive intertemporal utility function and consider non-expected utility
maximization behavior, for example. In Ichimura and Kamiya (1995), we
give a necessary and sufficient conditions for the existence of a nonexpected
utility rationalization.
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6 Appendix

The weak* Topology on M(X)T
First, we explain the topological dual of C(X)T = C(X) x -+ x C(X).

"~

(For the details, see Schatten (Chapter 1,1950). ) It is well~k:2xown that
the topological dual of C(X) is M(X). We introduce a norm on c(x)T
in such a way that a sequence {(ff,...,f})}:f__l in C(X)T converges to
(fr,..-, /3 € C(X)T if and only if limgo ff = ff forall t =1,...,T.
For example, ||(f1,..., fr)]| = 2?23 ||fell , where || f¢| is the sup norm of ft,
satisfies the condition.

An element in the topological dual of C(X)T naturally corresponds to an
element of M(X)T. Indeed, for a continuous linear functional ¢ on C (X)7,

W(flw-wf’f) ::Qo(fl10’*'~)0)+"'+(p(0)~",O)fT)) for (fla*”)fT) € C(X)T

holds so that, by the definition of the norm on the space, there exists
me € M(X),t = 1,...,T, such that ¢(0,...,0, f¢,0,...,0) can be wiitten
as [ fedmy for all f; € C(X). Thus

T
(p(fl,,..)f‘j') == E/ftdmt for (f1,.,.,fT)E C(X)T
=1

holds.
Conversely, an element of M (X)7T corresponds to an element of the topo-
logical dual of C(X)T. Indeed, obviously

.
fidm

is a continuous linear functional on C(X)7T.

Then the dual space of C(X)T can be identified with M(X)T. Thus we
can introduce the weak* topology on M(X)T using C(X)T. A weak* con-
tinuous linear functional £ on M (X)7T can be identified with some function
(f1,..., fr) € C{X)T, since

Emy,...,my) = £(m1,0,...,0)+ -+ £(0,...,0,mT)

14



holds and, by the definition of weak* topology, each £(0,...,0,ms,0,..., 0)
can be written as [ fidm; for some f; € C(X).

Proof of Theorem 3.1

Obviously, the conditions are necessary for the existence of a WTAR.
Below, we prove the sufficiency of the conditions.

I each B™ is a singleton, then obviously there exists a WTAR. Thus, in
what follows, we assume that at least one B™ has more than one element.

We use the following lemmas.

LEMMA 6.1 (Border (1992)) Fizug € Uc. Then B ={m € A | fuodm =1}
is o weak® closed conver base for A. That is 0 ¢ B and A is equal to
{#m| g >0,m € B}.

LEMMA 6.2 For b, € M(X), let by be the element of M(X)T such that the
1-th coordinate is by and the other coordinates are 0. Then

T
BT = {Zﬁtbt]ﬂ =(f1,...,07) € ST be € B}

f=]

is o weak¥ closed conver base for AT, where ST is the (T' — 1)-dimensional
unit smplex.

Proof. Let r
F::Eé'(U{bt]bteB}).
t=1

By Lemma 6.1 and Border (Lemma 5.10,1992), BT = F holds so that
BT is weak* closed and convex. Obviously, (0,...,0) ¢ BT. Finally,
if (my,...,m7) € AT then by Lemma 6.1,there exist v, > 0 and by €
B,t = 1,...,7T, such that m; = ybe,t = 1,...,T. Thus (m1,...,m7) =

(= (Ths E{;bt) .

Q.E.D.

By cl(cn GY A = {(0,...,0)} and the separating hyperplane theorem
(see, for example, Dunford and Schwartz (v.2,7,10,1958)), there exists a



linear functional (ui,...,ur) € C(X)T strongly separating cl(cn G) and
BY, i.e., for some c € R,

T
}:futdmt <c for (mi,...,mr) € cl(cn G)
t=1

and

T
qu,dmt >c¢  for (m1,...,mr) € BT.
t=1

Since BT is the base of AT and cl(cn G) is a cone,
1) TE, fudm; <0 for (my,...,mr)€ cl(en G)
and

) T Judme >0 for  (my,...,m7) € AT\ {(0,...,0)}

hold.

Since, by Lemma 6.2, m1 € B implies (m,0,...,0) € B7, then, for all
m1 € B, fuidmi > 0 holds. Thus, by Border (Corollary 5.4,1992), u; is
strictly increasing. Similarly, for all t = 2,..., T, us s strictly increasing.

Finally, for (my,...,mr) € B™,(my,...,mp) = (m7, .. .,m%) € G holds
so that, by (1),

T T
E/utdm? _>__ Z/Utdﬂ%t.
t=1 t=1

Proof of Theorem 3.2

First, we prove the necessity of the conditions. Obviously, if there
exists a STAR, then G is ezr ante mixture undomonated. Suppose that
there exists a STAR, (u1,...,ur), and that G is not irreversible. Then
there exist m = (mi,...,mr) € G\ {(0,...,0)},m' = (my,...,my) €
G\ {(0,...,0)},a > 0,8 > 0 such that am + pm' = {(0,...,0)}. By the
weak® closedness and convexity of B™ and the definition of G, there exist a =
(al,...,a¥) e S¥ b = (b,...,b") € SN, m™ = (m},...,m}) € B", and

mm = (mf,...,mP)e B*,n=1,...,N,such that m = TN ar(mt—m")
and m' = 2N 7™ — m™). Since m # 0,m' # 0, and (uy, .. L,ur) is a
STAR,

T T

n n n = 7l —_—

a Ed/mdmtlzg E /utdm, n=1,...,N
t=1

t=1

16



with at least one strict inequality, and

T T
b"Z/utdm? }_b"Z/utdﬁzﬁn n=1,...,N
t=1 t=1

with at least one strict inequality. Thus

T T
aZ/utdmt+ﬂZ/utdmi <0
t=1 t=1

holds. This is a contradiction. Thus G is irreversible.
Below, we prove the sufficiency of the conditions.
We use the following lemma.

LEMMA 6.3 (Phelps (Theorem 11.6,1966)) Suppose K is a closed, locally
compact, convex cone in a locally convez space E such that K \(—K) = {0}.
Then K has a compact conver base H.*

By the irreversibility of G, K = cn G and E = M(X)7 satisfy the condi-
tions of the above lemma. Indeed, since we assumed the closedness of cn G,
en G —(en G) = {(0,...,0)} immediately follows from the irreversibility
of G. Thus there exists a weak™ compact convex base H of cn G.

We have so {ar shown that AT and cn G have weak* closed convex bases
BT and H, respectively, and H is weak* compact. Then, by (cn GHNAT =
clen G)(AT = {(0,...,0)} and the separating hyperplane theorem (see,
for example, Dunford and Schwartz (v.2,7,10,1958)), there exists a linear
functional (u1,...,ur) € C(X)T strongly separating H and BT, ie., for
- some ¢ € R,

7
E/utdmt<c for (my,...,mr)€ H
t=1

and
T

\/utdmt >c for (my,...,mg) € B7.
t=1

Since H and BT are the bases of cn G and AT, respectively,
(1) }:?.:,1 fudme <0 for (my,...,mr) € cn G\{(0,...,0)}

#Note that, in Phelps (1966), the definition of a base includes its convexity.
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and

) TE, fudme>0 for  (mi,...,mr) € AT
holds.

Since, by Lemma 6.2, m; € B implies (m;,0,...,0) € BT, then, for all
my € B, [u;dm; > 0 holds. Thus, by Border (Corollary 5.4,1992), u is
strictly increasing. Similarly, for all ¢t = 2,...,T, u, is strictly increasing.

Finally, for (my,...,m7) € B™\ {(m},...,m})},(m1,...,mg)—(m},...,mp) €
G holds so that, by (1),

T T
Z/utdm? > Z/utdmt
t=1 t=1

holds for all (my,...,mz) € B®\ {(m},...,m})}.

Proof of Theorem 4.1
First, we prove the sufficiency of the conditions.
Let
Gy ={me M(X)|(m,0,...,0) € G}.

By the ez ante mixture undominated condition, ¢ (cn G1)() A = {0}. Thus,
by the same argument as in the proof of Theorem 3.1, there exists a linear
functional u € C(X) such that

(1) Judm <0  for m € cl{en Gy)
and

(2) fudm >0  for m € A\ {0}.
As in the proof of Theorem 3.1, u € U..

Let
T'= {(/udml,...,/udmgp) I(ml,..,,m;r)eé}.

LEMMA 6.4 T is o closed convex set such that T(YRT, =@ and (0,...,0) €
or.s

SFor a set KX ¢ RY, 4nt K and 8K denote the interior of I and the boundary of K,
respectively.
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Proof. The convexity and closedness of I' immediately follow from the
convexity and weak* closedness of G. Note that, by (0,...0) € G c M(X)T,
(0,...,0) € T' ¢ RT holds.

First, we show that int I' # @. Since, by the assumption (b) and
the property (ii) of G, there exists a data (y™, B") such that, for some
(m3,...,m5) € G,mf =mpP,t=1,...,T—1,and mjFm} hold. Thus there
exists a real number by > 0 such that (0,...,0,—br) € I'. Similarly, there
exist positive real numbers by, ..., bp—y such that (0,...,0,—b;,0,...,0) €T
fort=1,...,T—1. Thus, by the convexity of I'and (0,...,0) € ', int ' # ¢
holds.

(0,...,0) € 8T {follows from (c). Indeed, if (0,...,0) ¢ 0T, then there
exist (a1,...,ar) € RT and m = (m1,...,mz) € G\ {(0,...,0)} such that
at > 0 and [udm; = a¢, t = 1,...,T. By (c), there exists ¢ such that
[ udm; < 0 holds. This is a contradiction.

By the assumption (b) and the property (ii) of G, there exists a measure
my € M(X) such that (0,...,0,74,0,...,0) € G and [udm; < 0 for ¢ =
1,...,7: Let [udm; = —a;. Then (0,...,0,-a;,0,...,0) € T holds for ¢ =
1,...,T. Thus, by the convexity of T, (0,...,0) ¢ int T implies TN R%, =
o.

Q.E.D.

Let

T T
Q:{QERzI Zatzl,}:atctg() for all (e1,...,cp) €T}
t=1 =1

By the above lemma and the separating hyperplane theorem, @ is a nonempty
closed convex set in RT. Then let

T-1
G’*(a) = {(Z g1ty CT) € R? I (Cl, .. .,CT) € 1‘}.

t=1

We use the following Lemma.

LEMMA 6.5 For all o € Q, (i) G*(«) is a closed conves set, (ii) (0,0) €
G*(w), (i5) R2 C en G*(@), and (iv) (0,0) € 8G*{a).

Proof. (i) follows {rom the closedness and convexity of T'. (ii) follows
from (0,...,0) € I.
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Next, we prove (iii). By the assumption (a), there exist (cy,...,cr) €T
and (c},...,c) € T such that ¢, < 0,¢ = 1,...,T ~ 1, ¢r > 0, ¢ >
0,t = 1,...,7 — 1, and ¢/ < 0. Thus o € Q cannot have the form
(0,...,0,07) or (@1,...,ar-1,0). Thus, by the assumption (b), there exist
vectors (—a,0) € G*(e) and (0, —b) € G*(), where a and b are positive real
numbers. Together with the convexity of G*(«), this leads to (iii).

Finally, we prove (iv). By (0,0) € G*(«), it is suffices to prove (0,0) ¢
int G*(c). Suppose the contrary. Then there exist a real number a > Oand a
vector (cy,...,cr—1,0) € T such that (a,0) € int G*(«) and Zc oG =
a>0. By (cl, ...,¢p-.1,0) € T and the property (iii} of G, Zt-1 orep10e < 0
holds. This is a contradlctlon

Q.E.D.

By the above lemma and the separating hyperplane theorem, there exists
a vector (81, f2) € R% \ {(0,0)} such that

[1dy + Bada <0 for all (dl,dg) € G*(a)
Let
Q% () = {(B1, B2) € B3 | pr+P2 = 1, and V(dy, d3) € G*(ex), frdi-+Pada < 0}

LEMMA 6.6 (i) Q%(c) is a nonempty, closed, conver set and (1i) Q*(a) C
int R%.

Proof. (i) obviously holds. By the assumption (a), there exist vectors
(—a,b) € G*(o) and (¢, —d) € G*(a), where a,b,c, and d are positive real
numbers. Thus Q%(«) C int RZ.

Q.E.D.

LEMMA 6.7 For o € Q@ and (B1,8,) € Q*(a), let ¢ = 13! frovesr + Ba.
Then

= *l(ﬂla% oo )ﬁlaT) ,62) € Q
Note that, by the above lemma, & > O holds.

Proof. Obviously, Zz‘zl oy = 1. For all (¢,...,cr) € T, obviously
B4 ZZ,:I] oey10e + Bacr < 0 holds. Thus o’ € Q.

Q.E.D.
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Let © : Q@ x 52 — @ be
O(a, B) = £ (fraa, ..., Brar, B2),

where 2 = {f € R%|p1 + P2 =1}. Then let ¢ : Q — @ be
(o) = {0(a, 8) | B € Q*(e)}-

LEMMA 6.8 ¢ is an upper hemicontinuous correspondence with compact
conver values.

Proof. Since Q%(w) is closed, then, by ¢(a) C %, p(«) is compact. For
O(w, f),0(a, B) € (), and t € (0,1), there exists a real number s € (0,1)
such that '

1O(a, B)+ (1 - 1)0(a, ) = O(a,sf + (1 - $)B),

because © is a continuous function of B and the vectors of the first 7' — 1
components of O(«, ), (e, B), and O(a,s8 + (1 5)B) have the common
direction. Thus ¢(o) is convex.

Finally, we prove the upper hemicontinuity of ¢. By the continuity of
O, if Q2 is upper hemicontinuous then so is . Below, we prove the upper
hemicontinuity Q2.

We consider sequences {a?}(a? € Q,limge o9 = o) and {B9}(B? €
Q%) limgoo B9 = f*). Suppose f* ¢ Q*(a*). Then there exists a vector
(c1,...,¢cr) € T such that

T—1

ﬁ;‘ Z a:_},lCt + ﬂ;CT > 0.
t=1

Thus there exists § such that, for all ¢ > 7,
T-1
ALY afiic+ Bier > 0.
t=1

This contradicts f7 € Q*(a?). Thus Q2 is upper hemicontinuous.

Q.E.D.
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By the above lemma and Kakutani’s fixed point theorem, there exist
vectors a* € p(a*) and B* € Q*(a*) such that

(.., &g, o) = (§) 7 (BT 03, .-, BloT, B2)-
* = t—1
Thus, by of = (£*)™2ffa5, o = §rof holds. Similarly, of = (g-;) ot =
1 ﬁi E:‘L 5:_ f:. 2 f:. T-1
3,...,T, holds. By (l,a;,...‘, a;) €cn @, (1, R (/31.) ,...,(ﬁ‘.) €
cn Q holds. Let y = %}— Then (1,7,7%,-..,77 ') € cn @ so that the utility

function
T
Z’y‘"l / udmsg
t=1

rationalizes the data. Indeed, for (my,...,mr) € B®,(m1,..., mg)—(m7,...,mp) €
G holds so that, by the definition of T,

(/ wd(my — m2), .. ./ud(mT - m"j«)) €T

holds. Thus, by (1,7,7%,...,77 ") €cn Q,

T
Z'yt"l /udm? > Z'yt"l /udmt
t=1

t=1

holds.

Finally, ez ante mixture undominated condition of G is obviously neces-
sary for the existence of a WI'ARC.
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