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ABSTRACT

Consider likelihood ratio test of a simple null hypothesis in a multiparameter
exponential family. We study the asymptotic expansion of the null distribution
of log likelihood ratio statistic to an arbitrary order. Bartlett correctability of
the O(n~1) term is well known. We show that higher order terms exhibit a
simnilar simplicity. Moreover we give a combinatorially explicit expression for all
terms of the asymptotic expansion of the characteristic function of log likelihood
ratio statistic.
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1. Introduction

It is by now very well known that likelihood ratio statistic is Bartlett correctable.
We briefly summarize basic references on Bartlett correction. The first general treat-
ment was given by Lawley (1956). Later Hayakawa’s extensive calculation (Hayakawa
(1977), Hayakawa (1987)) gave a proof of Bartlett correctability. Cordeiro (1987)
showed that Hayakawa’s 1977 calculation is consistent with Lawley’s result. Barndorff-
Nielsen and Cox (1984) derived Bartlett correction from Barndorff-Nielsen’s formula
(Barndorft-Nielsen (1983)) on conditional distribution of the maximum likelihood es-
timator. Bickel and Ghosh (1990) gave a Bayesian proof of the Bartlett correction
(see also Chapter & of Ghosh (1994)). See Takemura and Kuriki (1995) for more on
Bartlett correction.

Bartlett correction is concerned with the term of order O(n™') . Here we consider
asymptotic expansion of the null distribution of log likelihood ratio statistic to an
arbitrary order.

Among various asymptotically chi-square statistics, the null distribution of the
likelihood ratio statistic exhibits remarkably simple asymptotic expansion. For the
term of order O(n™!) this simplicity results in Bartlett correctability. However higher
order terms show similar simplicity and there seems to be a beautiful combinatorial
simplification hidden in the asymptotic expansion of likelihood ratio statistic. In
Takeuchi and Takemura (1989) we have showed this for the case of one-parameter
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exponential family. In this paper we generalize our previous result to the multiparam-
eter exponential family. Furthermore we give an explicit expression of general order
terms of the asymptotic expansion of the characteristic function of the likelihood ratio
statistic.

A fundamental work of Bickel and Ghosh (1990) has showed that in general the
asymptotic expansion of the characteristic function of the likelihood ratio statistic
possesses the remarkable simplicity stated in our Theorem 2.1, whereas our treat-
ment is restricted to exponential family. The proof of Bickel and Ghosh (1990) is
based on Bayes argument and does not use any structure of higher order moments
and cumulants of the derivatives of log likelihood function. One drawback of their
approach is that one can not obtain explicit forms of asymptotic expansion from their
argument.

Our framework in this paper is restricted to the case of simple null hypothesis of a
multiparameter exponential family. On the other hand we can derive explicit forms of
asymptotic expansion. Actually our Theorem 2.2 below gives combinatorially explicit
forms of all the terms of the asymptotic expansion.

Even in the simple framework of exponential family we need fairly complicated
combinatorics and tensor notations (McCullagh (1987)). One of the main purposes
of this paper is to show what kind of combinatorics are involved in higher order
asymptotic expansion of the null distribution of likelihood ratio statistic.

2. Main results

In this section we will show the main results of this paper without proofs. The
proofs as well as some other results are given in Section 3.

Suppose that n ii.d. samples are observed from the p-dimensional continuous
exponential family with the density function

f(l’, 9) = exp{(x, 6) - w(g)}’ (1)

where z = (11,...,%,), 8= (0%...,07), and (z,0) = b mft.
Consider the likelihood ratio test for testing

H:0=6" against K:0 €6,

where €° is an inner point of the p-dimensional natural parameter space 0. We
discuss here the asymptotic expansion of the null distribution of twice the log likeli-
hood ratio test statistic 2log A to an arbitrary order of n. The results are described
in terms of the characteristic function.

Theorem 2.1 The characteristic function

o) = B> ]6%) (2)



is expanded as

with € = (1 — 2it)" 7

n?
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p(t) =€ {1% =t - }

where f;(€) is a polynomial of degree j in & .

According to the same argument of Lemma 6 of Takeuchi and Takemura (1989), next
corollary is proved immediately.

Corollary 2.1 2log\ has the Cornish-Fisher type erpansion
1 1
2mAﬁJY&+#Mm+m&WHM},

where Y is a random variable distributed according to the chi-square distribution
with p degrees of freedom, and B;(Y) is a polynomial of degree j—11m Y.

Remark 2.1 deg Bi(Y) =0 (i.e. Bi(Y) = By = const ) implies the Bartlett cor-
rectability of order O(n™'), since

82~ Y +0(n).

Remark 2.2 Theorem 2.1 and Corollary 2.1 are multivariate versions of Lemma 5
and Lemma 6 of Takeuchi and Takemura (1989), respectively.

Remark 2.3 The asymptotic expansion in Theorem 2.1 is valid up to an arbitrary
order because for our case the log likelihood ratio statistic is a smooth function of the
sample mean X . See Chandra and Ghosh (1979).

Furthermore we derive an explicit expression of the asymptotic expansion of the
characteristic function to an arbitrary order. We treat log(t) instead of p(t),
becanse log(t) is somewhat of simpler than ¢(t) . For the notation of set partition
see Appendix A.

Theorem 2.2 Let

’dnb
0=60
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be the cumulant of the distribution of (1), and let

IR = @biai/)jﬂd)m < Yoy



where ¢ = (;;)"" is the inverse matriz. Put ¢y = Py, and ! =ik for a
set of indices J = {4,4,k,...} . Then, the logarithm of the characteristic function in
(2) is expressed as

log p(t) = log £ + Z}T DR | D DL AERER A L I
B;

023 U neerty i=1 I;
;123

N 1 5 e $i—1; v—28—h
S e, oz () T (1 - €70 6

i=1

with £ = (1 — 2it)~1 ; where I = {i,j,...} is a set of running variables such that
|I| = v ; the summation Y.z, is over the partitions

L = L\~ g, € P(L)

such that |I;| > 3 ; the summation 3p, is over the partitions
B; = Byi|- - |Bis,|ai1| | Qin—2s; € P(I)  (vi = |Li])
such that |Byl =2, [vi/2]>si>lLi+1,
B; Vv I = 1(I;),

and the summation Y.. is over the partitions

C=C,| - |Ch € P(A)
such that |Ci| > 2,

CV A4, =1(4) with A; = {ai1, -, Gin—2s,} , A=Ujz1 Ai§

and s=32 8, =" 1. (For A=0, we assume h=0 and ignore Y .)

Remark 2.4 In the expression (3), the indez set I is partitioned doubly, i.e. LI, €
P([) and I’ill v |Iil,~ & ’P(lz) s 1= 1?...,1,& .

Remark 2.5 The highest degree of the polynomial Tl (1 — £574)EV2" in £ s
v—s—1-—h.

Listing out all terms up to O(n™?) we obtain the following corollary.



Corollary 2.2 The asymptotic ezpansion of logo(t) up to the order O(n%) is as
follows:

logg(t) = log€E + - 01(6) + 50a(6) + O™,
ale) = (- f){éwz’ijj _ é];éi(g)wnji/}jkk 4 2R Y,
€)= (1 OEgu I — (O 165
___%é(:s,gbiijkwjkll 4 qpiklyidkty | %(24wiijk¢jklwlmm + Qi qallykmm
160k Tk gt 30qsHTk M 307kl i kimy
“1}6( Ay kb kL mmpinn 10qji ikLqrmn gpimn
Gk qlkmn b g gt in iy |

“Jf“(l _ §2>{_'Zéw”“kk + 21‘8‘( ul)nggk,l[)kll + 4wzz]kl?j}1kl)

1 iidk 1,3kl ijkl, ikl 1 Jyitik gkl lm iigk, gt 1k
. 2 ] )1\ o i, My QiR ity kmm
+48(3?({ P PR .) | 15(0¥ 1/)”1/)” + 3y
+4T/}z]qu/)zjkwlmm + Gwimkwﬂmwklm + Gwzjklwz]mwklm)
_+_;_1_1§(3w'iij¢jkl¢klmwmnn_}_wiijwjklwkmm,l/]lnn + 6wiij¢jlclwkmnwlmn

_,rng'jkwijl,(/jkmnwlmn + Qwijkwilmwklnwjmn)}.

Here we use the notational convention

which is also used in Takemura and Kuriki (1995).

Corollary 2.3 In the univariate case, i.e. the case of p =1, the expression of the
asymptotic ezpansion reduces to the following formula:

log (1) = log £

1 1 15}
(1 — EMZgy — —Ka2
L g~ Sons?
1 1 25 1 . 109 25
2l L e — ks — —hg 9 40 4
+n2{( §)8(Jge — Jgrisia = ghe T grans’ = ks )
1 7 i 25 5 '
1 — &) (— s Ao 2 20 2, 9 4}
+(1 = &)( 48n6+ 48/£5/~63+ 12&4 48K4I€3 +- 16&3 )
+0(n™%)

with
1 L
Ky =Y Y112,

)



The result in Corollary 2.3 is consistent with the result in Lemma 5 of Takeuchi and
Takemura (1989).

3. Proofs

Our proof is organized as follows. First we give stochastic expansion of log likeli-
hood ratio statistic in terms of the sufficient statistic to an arbitrary order. Next we
characterize asymptotic expansion of the log density of the sufficient statistic to an ar-
bitrary order. Combining these two expansions we prove our Theorem 2.1. Theorem
2.1 can be proved by looking at only main order terms of the asymptotic expansions.
Then we proceed to prove our Theorem 2.2 by considering explicit forms of all the
terms of these expansions.

3.1. Asymptotic expansion of log likelihood ratio statistic

Let 6 be the maximum likelihood estimate and ¢(z) be the dual function of
$(6),
P(x) = l'neaxﬁ(:c,ﬂ) = Ingxx{(x, 8) — (6)},

where

Uz, 0) = log f(z,0).

Let X be the sample mean of n i.i.d. observations from the distribution (1). Then
twice the log likelihood ratio statistic is written as

2logh = 2n{lX,0) —£(X,6°}
= 2n{p(X) - ¢(z°) — (X —2",6%)}, (5)
where z¥ = Epo(X) since
#(z°) = (a°,6°) — ¥(8").
Denote normalized sufficient statistic as
Z = +/n(X - 2%,
Expanding (5) in Taylor series in terms of Z we obtain
2logh = 2 { 41—¢i«"'zizj + -—3-——<,ff"3"’ﬁzizjZ,c
2 3/n
1

1 37kl r; ijklm
+ 'Zl“"'/}'i(,b Jkl/.’;iZjZkZl + 5"";;7_};¢ Ikl ZlZJZkZlZm + .t }



where
m

T o gk = O
¢ = " (2") = aw,;alfj@x_kfj ¢(x) "

We want to express ¢, ¢i* .., in terms of the higher order cumulants ¥ij..
of the sufficient statistic defined in Theorem 2.2.
Note that
z;(0) = 9 (0) and @(z) = ——8—<,/>(:c)
T of . Ozx;

are inverse transformations of each other. Therefore

Put

Tr/)ij = (1/)27') ) Tpijkm = W"‘W%’” ©+ Yaprys

Using the well known result on differentiating the inverse matrix

a9 .. L
0 (0) =~V b, (6)
we obtain 567 9
¢ijk - ﬂ%ww(g) — _wknﬁiawﬂwaﬂw — Mwijk' (7)

In order to express further derivatives of ¢ it is convenient to use the notational
convention (4). Now differentiating (7) successively using (6) it is easily shown that

= g giiaylafs), (8)
¢ijklm — w_,{/)ijklm + wz’jkawlma[lol — _L/}ija@bkaﬁqf/)lmﬁ[l}a]‘ (9)

(b'ijkl

The general order term ¢~ can be characterized using terminology of graph
theory. For illustration consider ¢%™ of (9). The three terms of the right hand
side correspond to the trees in Figure 1, Figure 2, and Figure 3 respectively. The
fixed indices %,7,k,... correspond to the leaf edges (edges connecting the terminal
vertices) of the tree and the running indices «, 5, ... correspond to the intermediate
edges connecting non-leaf vertices. Note that each running index appears twice using
our notational convention (4). The numbers of symmetric terms, i.e. 10 for the second
term and 15 for the third term, correspond to the number of different trees. It should
be noted that in counting different trees, the leaf edges are labeled with fixed and
distinct abels i,7,k,.... On the other hand the non-leaf edges are not labeled.

Consider undirected unrooted tree T with m leaf edges ai,...,a,, . Here we
use indices ay,as,..., to make our description of the tree consistent with the set
theoretic notation of Theorem 2.2. We denote the corresponding terminal vertices
bY Za,s---Za, to make the notation consistent with the notation of the generalized



Figure 1 Figure 2 Figure 3

Hermite polynomials in Appendix B. Furthermore let n be the number of non-

terminal nodes denoted by zi,...,7,. Let d(z) denote the degree of vertex z,
i.e., the number of edges connected to the vertex. Then d(ze,) =+ = d(2a,) = 1.
Further more we only consider a tree such that d(z;) > 3,...,d(zz) 2 3.

As mentioned above, in counting non-isomorphic trees, we consider that the leaf
edges ay,...,a, are labeled and these labels are fixed and distinct. However the
non-leaf edges are considered non-labeled.

In summary we consider the following set of trees.

Tlay,...,am;n) = {7 with n non-terminal nodes of degree > 3

and m labeled leaf vertices ay,...,am }

Note that since there are exactly n — 1 edges connecting non-terminal nodes
Z1,...,%n, we have

h d(zy) + -+ d(zn) —m > 3n—m
2 2
Therefore 1 <n<m—2,and
T(ag,...,am) = U™ 2T (ay, - . ., Gm; 1)

is a finite set.

Let a tree T € T{ai,...,am;n) be given. We arbitrarily label the n — 1 edges
connecting non-terminal nodes by bi,...,bp 1. Let A; be the set of leaf edges
connected to xz; and let B; be the set of non-leaf edges connected to z; . Then
(Ay,...,A,) is a partition of {ay,... ,am} and each b; belongs to exactly 2 of
Bi,....By. b, ...,by_1 correspond to the running variables o,B,... in (8) and
(9).

To this 7 we can associate a term of the form

?/)AlBl . d)Aan

using the summation convention (4). Now we can describe general order term as
follows.



Lemma 3.1

-2
(ﬁal.“am — 7%; (_1)n Z ,wALBl . u/)Aan
n=1 T(atyam;n)

Proof. The proof is by induction on m . Assume that the lemma holds up to a
particular value of m . Then
d ,

¢a1...amam+1 — 8xam+1 ¢a1...am — wamﬂamﬂ __?___(i)al...a,m'

Consider differentiating a term of ¢* %™ corresponding to a particular tree. For
the purpose of proof we need to write out the terms explicitly without using the
summation convention (4). Note that in original quantities our summation convention
is written out as

Now without loss of generality consider

P20 | o Omy '(//a’l...a;nlblv..bnl'(/}blbll apbe (10)

There are three types in differentiating (10) with respect to fa (Figure 4). The
first type is differentiating ¥q;..a1, b1ebny corresponding to a particular non-terminal
vertex x . Differentiating this we obtain

'
Am 410G, 4 ;
Iy .
1P wal...amlam“bl...bn

In terms of the tree this amounts to adding a leaf edge am41 and connecting it to
z . The second type is differentiating "% corresponding to a particular non-leaf
edge o . By (6) this results in

e I
m

This amounts to adding a new vertex on the edge o and and connecting a new leaf
edge @m41 to the new vertex. The third type is differentiating ™% . Asin the case
of the second type this results in

_wam*AI%WLwalmwa’lcfzwcwﬁa; o
2%m

This amounts to adding a new non-terminal vertex on the leaf edge a; and connecting
a new leaf edge a,,4+1 to the new vertex.

We see that differentiation of (10) generates terms corresponding to different
trees in T(ay,...,ams;n) O T(ag, ... qmi1; 0 + 1). To see that all trees of
T{a1,...,am1) are generated, consider removing the leaf edge a4 from a tree in
T{ay,...,am+1;n) . Then we obtain a tree in Tlay,...,am;n) or T(ay,...,Gm;n—
1) . Therefore by the induction assumption on m , we see that the above process of
adding the new leaf edge a,,,1 generates each tree of T(ay,...,am+1) exactly once.
This proves the lemma. E]



Type 1 Type 2 Type 3
Figure 4

Remark 3.6 Lemma 3.1 is a particular form of multivariate Lagrange inversion for-
mula. Corollary 2 of Haiman and Schmitt (1989) already gave the same type inversion
formula in the case that (v;;) is identity matriz. However, our proof is more direct
and brief than Haiman and Schmitt (1989) which needs preparations in incidence
algebra.

3.2. Asymptotic expansion of log density function

The second step of our proof is to characterize a general order term of the Edge-
worth expansion of the log density logp,(z) of the sufficient statistic Z . The princi-
ple of the Edgeworth expansion is given in Section 5.2.2 of McCullagh (1987). However
here we need to characterize a general order term more explicitly and determine its
combinatorial coefficient.

The log density function of Z given by McCullagh (1987) is

¢ 1 ..
1 1 .
g
! ! ijkl 1 ijk, ) imn
= | S hgga(2) + ™ higi g (2)[10]
n\ 4! 6!

1 | m 1 11 mno
R~ ( EW‘IM hijklm(z) + :(—'w ]Mz/) hijklvmno(z)[g’s]

1 .. |
-+‘—9—'qj;’v"kwlm""(p"pq’ll'ijk,lmn,opq(Z)[280])
T )

Here h’s are the generalized Hermite polynomials given in Appendix B. The explicit
expression of logp,(z) of any order of n is given as follows.
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Lemma 3.2 The logarithm of the joint density function of Z 1s

1 .
log p,(2) = const - -é;»z/ﬂ Zi%;

1 iy ) | ‘
+> = D>, n s0=2wph gl (2), (12)
vz3 . 11!--Iyﬁe~;>(1)

where I = {i,j,...} is a set of running variables such that | =wv.

Remark 3.7 Takemura and Takeuchi (1988) gives the essentially same expression
for the log density logp,(z) in the univariate case.

From Lemma 3.2, the term of order n~3m=2) is shown to be a polynomial of
degree m in z. Next lemma is concerning the coefficients of the leading terms (i.e.
the terms of degree m ) of this polynomial.

Lemma 3.3 The terms of order n~3(m=2) s g polynomial in z of the form:

1
<-~W¢>““"“"‘zal “-+ 24, + terms of degree m —2,m —4,....

Proof. As explained in Remark B.2 the highest degree term corresponds to s = u—1
in (24) and the summation over partition can be reduced the summation over trees.
Fix m = v — 2s and the indices ay,...,a,-25 in (24). For a particular partition
I, ..., I, and particular values of by,...,bs , the summand in the RHS of (12) is

1 _1ps -
o 3 2)(—"1) 1"/)11 T Tpluz/)blbz Wby 1baZay " B (13)

!

Writing [; = A;B; we see that (13) corresponds to a particular tree in Lemma 3.1.
It is clear that all the trees in Lemma 3.1 appear in this form. The remaining question
is how many times a particular tree 7" is counted in

Z wh . q/}luhh,m,h (Z)

Iyl [y €P(T)
;123

Remove the labels of leaf edges ay,...,an, from T and let T be the resulting non-
labeled tree. There are v! ways of placing v indices in T . On the other hand there
are m! ways of permuting among ai, ..., an . Therefore T is counted v!/m! times
and the coefficient of z,, ... 2,, 18

vl 1

_._,..______(bal‘”am — __L¢al...a"1
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This proves the lemma. 0

3.8. Proof of Theorem 2.1

From Lemma 3.2 and Lemma 3.3, the log density of Z can be written as

1 .
log p,(z) = const — -2-<25”Zi2j

101,

+ (gt a)

1 L ikt

+;L“<_Zf¢ Zﬂﬂk&“’f%(@)*‘“‘a (14)

where g¢;(z) is an even (odd) polynomial of degree j in 2 for j even (odd, respec-
tively). Using (14), the characteristic function of 2ZlogA is

o(t) = /exp{?it log A + Ingn(Z)}dZ
1
x  [exp{-(1-2it) 3077z
1

. 1
¢ * iz + —=

'“(1 - QZt) md) ]kiZiZjZkZl + “Ir—ZCIQ(Z) + - }dz

(1 - 2it)

Letting (1 — 2it)~! = ¢, and making a change of variable z:=¢ 3z, we have

1
o Lgig . 2 .. 1 1
(p(t) x f% . /6 50 22 exp{_mﬁb”kzizjzk + :/_._r__iql(gzz)

- 1 1
"—21%¢”klzizjzkzl + ;l‘(h(fzz) +- '}dz' (15)

Theorem 2.1 now follows by expanding the exponential function in (15) and integrat-
ing term by term using the fact

Lgiig g,
/e 5425 o 2y dz = 0.
R ———

odd times

3.4. Proof of Theorem 2.2

The key idea is that the integrand in (15) is nearly equal to exp{logp.(z)} by
formally setting n 1= n&™'.
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Let m=né'. Then ¢(¢) in (15) can be written as
./exp{logpm(z)
]— 1 1 1

= & Ep [GXP{VIE (Ql(féz) - §%Q1(z))
1 1

+ <612(§ z) — g2z ) + - I] (16)

where E,,[-] denotes the expectation operator with the sample size m . Since q1(2)

is a linear polynomial without constant terms, and ¢2(z) is a linear polynomial
without linear terms, we see that

(€
(&

P

ks

p(t) = §

2) —€Eiqu(z) =0,
z) —&qa(2) = (1 - £)q2(0).

1
2
1
2

Hence (16) reduces to

[Nas]

elt) = ¢ ~Em[exp{%(1—€)42(0) + O(n“z)”

{142 0- 900 + 0}

e

Remark 3.8 The Bartlett correction coefficient 1s By = —(2/p)g2(0) .

Using this technique, we can give an explicit expression of the characteristic func-
tion of any order of n. Let hy _;(z) be the generalized Hermite polynomial from
which the terms of the highest degree (i.e. degree EJ 1 =2(1 — 1)) are removed.
Let

Fre i (236) = (€ 2) — €8 Eim DR, (2), (17)

In terms of h’s in ( 7), (16) is written as
0=l
1
2‘77 ,Jh” + Z'n n]hw

1 1 . . .-
K 7% b + o nn’ *hi jkl3] + g;nivﬂn’“hi,j,k +H (18)

where
v v
ok Ly-2) , ijk
rr] (ZV PR o n“"i(v“‘ )’l[) 7K... if v 2 3 ,
= 0 if v=1,2.

13



Expanding the exponential function in (18), taking the expectation E.[-], and then
taking the logarithm, we get

log (t) = log €2 + 7 Eyu(hi)
R ~ 1 . . ~ 1. - -
+—é—'n”~7E,,,(lzij) + -QTnszEnl(izi,j) + gnzrﬂcumm(hi, hj)

T N 1 3 oy N
=" * By (hijr) + gﬂW’kEm(hi,jk)[?)] + g 77" Em(hijx)

3!

| . 1 . . s =
+§Tn’n”kcumm(hi, hj)[3] + §n‘n?n’“cumm(hi, hjx)[3]

1 .. e -
g e (hy by, ) + - (19)

where cum,, denotes the cumulant when the sample size is m . The general terms
of (19) is expressed as follows. Let I = {i,7,...} be a set of running variables such
that |I| =v. Then

1
log p(t) = log €% + 3
v>3 V- iR
i >3

H Z 77111 . 771,‘[1: Cumm{ﬁlllr'wlul gos ey ﬁ]ul»..,]ulu } . (20)

=1 Ligbe g €P UL
435123

h’s in (20) are also expressed explicitly in terms of the set partition. According
to (24) in Appendix B, it holds that

Blil’-wliii = E(_l)Sid’Bn e wBisi Zai """ Raiv;—2s; (Ui = IIi!)’ (21)
B;

where the summation ¥, is over the set partition
B; = Ba|- - |Bis;|ai| - - |Gi;-25; € P(Li)
such that |Bj| =2, [vi/2] > s > (L — 1)+1, and
BV Iiy| - Iy, = 1(L;).

(Note that the summation 3 s, not over s; > i —1 but over s; > (l; — 1) +1
because the leading terms were removed.)
Putting

7 7 1 Ly, —20)T
hli}’“'aIi(i = h’]'i,la'u,[ili (£2Z) - 52('07’ l)h]il,v..,lili (Z)

14



as well as (21) into the cumulant in (20), we have
CUIn'm{hllla-“vIlll }Llula . ulu}

— H Z(_l‘)siwl}” . Q/)Bi% ((S% —28;) _ 5:1;(1),‘*“2&‘))
=1 B;

Xcummr{zall T zal'ui«Zsl yeresZay T zautm«?.w}' (22)

Remark 3.9 In the summation Y. in (22), the contribution of s; = li is zero. So
we can restrict the summation Y.z, to be over s; > I+ 1.

Finally, we have to evaluate the part of the generalized cumulant in (22).
Let A; = {a,. .., QGn-2s1 and A = Ui, A; . From Section 3 of McCullagh
(1987), the generalized cumulant in (22) is written as

(’u'mm{’dﬂll e zala;1—2317 e 7Zau1 Tt Zauuu-—-%u}

h
_._1_ C:|—2
Hm 2 | J| )rl/)cj

j=1

il R
(ng™!) 1@ Dy, e,

(n&~ )”%("—2"‘%)1/}01 Y, %)

i
Y o

where the summation is over the partition
C=Cy--|CheP(A)

such that |C;| > 2 and
CV Aql--- |4, = 1(A);

and s =37 8, l=311.
Combining the equations (20), (22), and (23), we complete the proof of Theorem
2.2,

Appendix A. Set partition and lattice

Let I be a finite set of indices, and let P(I) denote the set of all partition
of I. Partial order < is defined by Z; < T, if Iy € P(I) is a sub-partition
of I, € P(I). It is well known that the poset P(I} forms a lattice, in which
the least upper bound and the greatest lower bound (V,A) are well defined. Let
1(I) and O(I) be the greatest and the least clements in P(I) , respectively. For
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example, P(I) = {iljlk, iljk, jlik, klij, ijk} for I={i,j,k}, and iljlk = 0(1),
ijk = 1(I) . See Section 3.6 of McCullagh (1987) for more.

Appendix B. Generalized Hermite polynomial

Following arguments in Section 5.4.3 of McCullagh (1987), the contravariant ver-
sion of the generalized Hermite polynomials indexed by the set partition

= ’in...i151‘~~'|iu1...iuluEP(I)

is defined by

heot(2) = iy i i, (2)
= Z(_l)swblbz Tt ¢b23~1b232a1 T Zaypyas (24)
B

where the summation ¥ g is over the set partition
B = biby) - -« |bosrbaslan] - - |ajs-2s € P(I)
such that [|I]/2] > s>u—1 and
BvI=1(I).
This is an even (odd) polynomial of degree d = |I|—2(u—1) in z for d even (odd,
respectively).
Here we give some examples of the generalized Hermite polynomials which appear
in (11):
hijk = zizjz, — 2] 3],
hijie = ziziznz — 22kl 6] + i 3],
Bijkim = %2j26%1%m — %% 26Pim[10] + 2%k im[15],
hijisimn = —2i2;2%mWkn]9] + 20210jm rn[18] + 2i2j Wk Pmn[18]
=55Vt Wkn[9) — Vit jmPen 6],
hijkl,mno = "“zizjzkz7nzn1/)lo[12]
+zizjzm¢kn7ll)lo[36] + 'zizjzk"/)mnwlo[12] + Z’izmznwjkwloBG]
""Zéwjm"//'knwlo[24] - Zm'ﬁbijq,[)knwlo[?)(ﬂ - Zid)jkwlow'rnn[36]7
hijk,lmn,opq - ZiZjZlZoZp’t/ka’(/an[lfSQ]
’Zizlzoq/)jmr‘/)kpwnqml@ - ZiZszlbkowmp?/an[fSM] - Zizjzlwkm¢nowpq[324]
+Zi¢jﬂ/)kmwno"/)pq[324] + Zi"ﬁjl"/’kowmnwpq[lﬁm + Zﬁbﬂ’@bko’(/)mp’t/)nq[324].
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Remark B.1 The summation in (24) can be interpreted as follows: There are u
“slands” on the sea which are named by 1; , j=1,...,u. Inthe J -th island, there
are v; ‘“villages.” Suppose that s “bridges” are constructed between two villages.
(These two villages may or may not be on the same island.) The summation X5
means to sum over all distinct ways of constructing the bridges such that all islands
are connected by the bridges. This interpretation can be illustrated by considering
Rijkmn - In Figure 5 there are 2 islands I = {1,J,k} and I, = {k,l,m} . These
islands have to be connected at least by one bridge. Then there are 5 types of con-
necting 2 islands. The first type is connecting the islands with just 1 bridge and there
are 9 ways of doing this resulting in the term —zizi22mbinl9) - The second type 1s
connecting 2 islands doubly by 2 bridges resulting in the term 2200 jm Wk 18] with 18
possible ways of doing this bridging. For other 3 types see Figure 5.

Type 2
Type 1 ype
1 bridge 2 bridges
1
9 ways 8 ways
Type 3 Type 4
2 bridges 3 bridges
18 ways 9 ways
Type b
3 bridges
6 ways
Figure 5

Remark B.2 The highest degree terms in (24) are terms with s =u —1. For this
case the islands are minimally connected, i.e., if islands are considered as vertices and
bridges are considered as edges of a graph, then the graph is a tree with u wvertices
and s edges oq = (b1,b2), ..., 05 = (b2s—1, boy) . Furthermore consider moving non-
bridged villages @i,...,Gp-2s (VU = 2j=1 v; ) outside the islands and making these
villages non-leaf edges connected to the corresponding islands. Then we obtain an
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equivalent tree of the type considered in Lemma 3.1. For our problem it seems to be
easier to think using the metaphor of “islands”, “villages” and “bridges.” However
this terminology is not standard and we have used more standard terminology of tree
in stating Lemma 3.1. This process is illustrated in Figure 6.

Figure 6
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