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1 Introduction

Consider the problem of pairwise linear discriminant analysis among m pop-
ulations in R". For each pair of populations, we have a discriminant hyper-
plane. Then R™ is divided into regions by m(m — 1)/2 such hyperplanes.
Fach region is indexed by an ordering of m populations, with the nearest
population assigned the rank 1, the second nearest the rank 2, and so on.
Therefore, we can regard pairwise multiple discriminant analysis as a gener-
ation process of rankings or orderings among m populations. This connec-
tion between multiple discriminant analysis and rankings seems to have been
rarely discussed in the literature. We discuss related concepts in the existing
literature in Section 1.1. For a survey of statistical analysis of ranking data,
see Critchlow [4] and Fligner and Verducci [6].

Let the m populations be N(g;,X),7 = 1,...,m. For simplicity, we con-
sider the canonical case, namely, we assume that the prior weights for the m
populations are equal and that the common covariance matrix ¥ is known
and therefore ¥ = I (the identity matrix) without loss of generality. These
assumptions are not restrictive because in general, distances to the popu-
lations are just measured by Mahalanobis distance. Thus, in the canonical
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case, the discriminant hyperplane between populations 1 and j is the bisector
of the line segment connecting p; and g;.

There are m! possible orderings among m populations. On the other
hand, since each of the m(m — 1)/2 hyperplanes cuts K" into 2 half-spaces,
the apparent maximum number of possible regions is 27"~/ However,
since we are considering partition of R™ by hyperplanes, it can be easily ver-
ified that the number of regions can not exceed Y7 ("‘(""Tl)/ 2). Moreover,
because there exist sets of three discriminant hyperplanes which necessarily
share a common (n — 2)-dimensional intersection, the maximum number of
regions generated by discriminant hyperplanes is indeed m!. Now the ques-
tion is whether all the m! orderings are generated. It is easy to see that when
the space is small compared with the number of populations, more precisely,
if n < m — 1, then some of the m! orderings are not generated. Here arises a
question: (Q-1) How many regions arise for given n and m? A more difficult
question is: (Q-2) How can we characterize non-arising regions?

We review some related concepts in the literature in Section 1.1, and
illustrate our problem with simple examples for n = 2 in Section 1.2. Basic
terms and the notation are introduced in Section 1.3. Then in Section 2, we
consider the question (Q-1) and give formulae for the number of regions. The
number of bounded regions will be given there as well. Next, in Section 3,
we take up (Q-2) and give some basic characterization of non-arising regions
in the general case. For the particular case n = m — 2, we can completely
characterize non-arising regions. Namely, regions corresponding to the reverse
orderings of bounded regions do not arise; furthermore, whenn = m — 2, this
characterizes non-arising regions. In Section 4, we prove several results of
independent interest.

1.1 Survey of various related concepts in the litera-
ture

Here we review various concepts in the literature which are closely related to
our framework.

Voronoi diagram. The Voronoi diagram finds application in wide ar-
eas such as spatial interpolation, models of spatial processes, point pat-
tern analysis, and locational optimization. It is defined as follows: Let



P = {py,...,Pn,} be a set of points in R", where 2 < m < oo and p; # P;
for ¢ # j. Then,

V(p,) = {z € R : |lz — p|| < |z = p;ll for j #1}

is called the n-dimensional Voronoi polyhedron associated with p;, and the set
{V(p)),...,V(py)} is called the n-dimensional Voronoi diagram generated
by P.

Mathematically, the method of the Voronoi diagram is equivalent to the
pairwise linear discriminant analysis. In other words, each Voronoi polyhe-
dron is the union of the closures of the regions in this paper in which the
corresponding population is given the rank 1. Furthermore, the Voronoi dia-
gram is generalized in a variety of ways. One generalization which is closely
related to our theory is the (ordered) order-k Voronoi diagram (Okabe, Boots,
and Sugihara [12]). Our regions in pairwise linear discriminant analysis of m
populations are the interiors of the “ordered order-m Voronoi polyhedrons.”

For a comprehensive treatment of the Voronoi diagram, the reader is
referred to Okabe, Boots, and Sugihara [12].

Permutahedron. The permutahedron Il,_; € R™ is defined as the
convex hull of the m! points in R™ whose coordinates are the orderings of
{1,2,...,m}. Two vertices of Il,_, are connected by an edge iff the cor-
responding orderings differ by an adjacent transposition. Thus, the metric
version of Kendall’s 7 (Critchlow [4], Section ILB) is the minimum number
of edges that must be traversed to get from one vertex to another.

Part of I1,,—; is in the dual relation to the arrangement of discriminant
hyperplanes of m populations in this paper.

For more information on the permutahedron, see Thompson [19], [20] and
Ziegler [24].

Ideal vector/point model. Ideal vector model and ideal point model
have been studied in social choice theory, psychometry, marketing science,
etc.. In these models, m objects or items 1,2,...,m are judged in terms of
n kinds of attributes. Bach attribute corresponds to a coordinate axis, and
each object i is represented as a point z; in R". In ideal point model, the
“ideal point” p is supposed to exist, and the m objects are ranked according
to the Euclidean distances to p. Specifically, i is ranked better than j iff



llz: — p|l < ||z; — p||. In ideal vector model, on the other hand, the “ideal
vector” d is supposed to exist, and the m objects are ranked according to
the projections onto this direction. Specifically, ¢ s ranked better than j iff
(d,x;) > (d,z;), where (, ) denotes the inner product.

Ideal point model is related to our theory in the following way. Suppose
the m objects @y,..., &, € R" are given. If we are given an individual’s
or a group of individuals’ preference among the m objects in the form of an
ordering o, then the individual’s or the group of individuals’ ideal point must
lie in the region C, in this paper. On the other hand, it is shown in Section
4.3 that given the m objects, the set of rankings which can occur in ideal
vector model coincides with the set of rankings corresponding to unbounded
regions in this paper. Because of the above connection between discriminant
analysis and ideal point/vector model, we use the words “population” and
“item” interchangeably from now on.

Variations of ideal point model. Various models based on ideal point
model have been considered. Here, we briefly review unidimensional un-
folding model, multidimensional unfolding threshold model, and ideal point
discriminant analysis model.

Unidimensional unfolding model has been employed in the study of social
choice problem. In this model, m options Oy, Oy, ..., On, are ranked by indi-
viduals. It is supposed that a “unidimensional underlying continuum,” called
the joint scale, exists, and that the m options are located on this continuum.
Each individual I has an ideal on the joint scale, and he or she ranks the
options according to the distances of the option points from this ideal, with
nearer options being more preferred. Different orderings can be generated
by varying the location of the ideal point. These orderings are said to be
compatible with the underlying joint scale, and they are called admissible
orderings. Unfolding is defined as follows: given a set of individuals’ order-
ings, we wish to determine the joint scale on which individuals as well as
options are located such that the given individuals’ orderings are consistent
with the orderings determined by this joint scale, although this is not always
possible. Mathematically, this model can be considered a special case of our
theory—pairwise multiple discriminant analysis among m populations in R%.
Admissible orderings correspond to arising regions in this paper. For uni-
dimensional unfolding model, sce Coombs [3], Luce and Raiffa [9], and van
Blokland-Vogelesang [21]. This unidimensional model was extended to the
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multidimensional case by Bennett and Hays [1] and Hays and Bennett [7].

Multidimensional unfolding threshold model was proposed by DeSarbo
and Hoffman (5] for the analysis of binary choice data in marketing research.
Each of the binary data indicates whether a particular brand was chosen
by the respondent or not. The model is stochastic, and the dichotomous
variable y;; generating the binary data is defined through the unobservable
latent “disutility” variable D;; :

Dyj = |lp; — &;|I” + €ij,

where p;, € R" is respondent i’s ideal point, x; € R™ represent brand j,
and €; is a stochastic error component. Now, respondent 4 chooses brand j
(yi; = 1) if and only if respondent 7’s latent disutility for brand j is less than
or equal to some individual threshold value d;

Yi; = 1 lff Dij S d,‘.

Ideal point discriminant analysis was proposed by Takane, Bozdogan,
and Shibayama [18]. Subjects are classified into one of mn criterion groups
1,2,...,m. It is assumed that subject ¢ is represented as a point y; in R", and
that criterion group k has an ideal point a; in the same R” which represents
the prototype of the group. Here, y;, € R" are supposed to be constrained as
linear functions of the vectors z; € RP of predictor variables:

Y, = BZ@‘,

where B is an n x p matrix of weights. Now, the probability that a par-
ticular subject 4 belongs to a particular criterion group & is assumed to be
a decreasing function of the distance between the corresponding points ¥,
and a. Specifically, the conditional probability py; that subject i belongs to
criterion group k given the observation on z; is

Paii = wgexp(—d¥)
T T wexp(—d2)’

where wy, is a bias parameter for group k, and di, = ||ly; — ai||?. This model
is a special form of ideal point model combined with Luce’s [8] biased choice
model. The special feature of this model lies in that subject points are
constrained as linear functions of the vectors of predictor variables. For
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extension and application of ideal point discriminant analysis, the reader is
referred to Takane [15],[16], and [17].

Arrangement of hyperplanes. The problem of counting chambers,
i.e., regions, in hyperplane arrangement becomes much harder when degen-
eracy is allowed. Zaslavsky [23] gave a formula for the number of regions
in an arbitrary arrangement of hyperplanes. He introduced the method of
deletion and restriction to obtain a recursion formula for chamber counting
problems. By proving that the Poincaré polynomial evaluated at 1, 7(A, 1),
satisfies the same recursion, he obtained a beautiful result (Lemma 2.1): The
number of regions is equal to (A, 1).

Tn this paper, we make extensive use of the general theory of hyperplane
arrangements. For a full treatment of the theory, the reader is referred to
Chapter 1 and 2 of Orlik and Terao [13].

1.2 Examples

In order to understand our problem, it is best to investigate simple examples
in R2.

If there are three populations, we have (g) = 3 discriminant lines as
illustrated in Figure 1. In Figure 1, we can see all the 3! = 6 orderings
appearing. Note that three lines necessarily intersect in one point so long as
the arrangement is non-degenerate or “in general position.”

Now consider the case m = 4. We know that for any three of four popu-
lations the situation is as in the case m = 3. It it is not clear, however, how
these (g) = 4 sub-arrangements intertwine with one another to produce the
whole arrangement. If four points are placed as in Figure 2, then we have
the corresponding arrangement of lines as shown in Figure 2. We see that
only 18 out of 6! = 24 regions arise in this case; the non-arising regions are

(1,2,34) (1,3,2,4)
(2,1,3.4) (2,3,1,4)
(3,1,2,4) (3,2,1,4),

where (1,2,3,4), for example, is the corresponding ordering of the region

where 1 is the nearest population, 2 is the second nearest population, etc..
We can explain why these regions do not occur as follows. By looking at

Figure 2, we see that population 4 is “neutral,” so 4 can not be the farthest
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Figure 1: Discriminant analysis of three populations in R%.

population from any point of R2. Thus, the orderings with 4 in the last slot
do not appear, and these are just the orderings listed above.

However, we can not explain non-arising regions in this way for all m and
n. Even when m = 4,n = 2, there are cases in which this simple explanation
is impossible. In fact, the four points in Figure 3 induce the arrangement
of lines in Figure 3. This arrangement is of a different type from the one in
Figure 2, as can be confirmed by noting that the non-arising regions are not
that type of regions with a particular population assigned the last rank.

On the other hand, note that the numbers of non-arising regions do co-
incide in both cases, i.e., six regions do not occur in Figure 2 and Figure 3.
This number seems to depend only on m and n. This can be proved using
the general theory of hyperplane arrangements (Section 2).

Now, let us have a closer look at Figure 3. We may make the following
observations:

1. Two neighboring regions differ by a pair of adjacent items, i and j, say;
when one gets from one region to the other, the adjacent transposition
(i,7) occurs. The items ¢ and j correspond to the discriminant line
containing the line segment or the half line which one has to traverse
when passing between the two regions.
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2. A line segment connecting arbitrary points of two regions is one of the
shortest paths in terms of orderings. This means that the number of
crossings of borders needed to go from one point to the other, provided
that one does not pass through terminal nodes (i.e., the points of in-
tersections of discriminant lines) is equal to the minimum number of
pairwise adjacent transpositions needed to transform one correspond-
ing ordering to the other. This is just Kendall's 7 between the two
orderings.

3. Each terminal node is indexed by an ordering of blocks. The types
are ({,7}, {k,1}), ({4, 4, k},1), and (i, {5, k,1}). Here, the order of items
within a block, namely, the order of items in braces, is irrelevant, but
the order of blocks is relevant.

4. Around each terminal node, there arise all regions whose corresponding
orderings are obtained by giving arbitrary orders to items that are
ranked together in the same block at that terminal node.

Observations 2 and 4 are verified in the general case in Sections 4.1 and 4.2,
respectively. ‘

1.3 Terminology and notation

Here, we make some basic terms precise and introduce the notation. We first
explain the concepts concerning rankings.

A ranking of m items {1,2,...,m} can be expressed as an ordering of
them. The ordering o = (41,42, .. .,%m) corresponds to the ranking in which
item 7, is ranked first, item i, is ranked second, and so on. The rank given
to item i by o is denoted by o71(i). Note that o denotes an ordering and
not a “ranking,” ie., (c%(1),...,07(m)), in the terminology of Thompson
[19],[20]. For an ordering o = (i1, ...,im), its reverse ordering, denoted by
~0, 18 (im,...,%). A partial ordering m corresponds to a partial ranking, in
which ties are allowed. Here we follow the convention that the order of items
in braces is irrelevant; in parentheses it is relevant. So the partial ordering
x = ({2,4},3,1), for example, corresponds to the partial ranking in which
items 2 and 4 are ranked first, item 3 is ranked third, and item 1 is ranked
last. We attach the adjective “full” to ranking (ordering) when we want to
emphasize the distinction from a partial ranking (ordering).
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Next we list some basic definitions from the theory of hyperplane arrange-
ments. They are taken from Orlik and Terao [13].

A hyperplane arrangement A is a finite set of hyperplanes in V = R". A
is called centered if NgesH # 0. In particular, it is central if each hyperplane
contains the origin. The intersection poset L = L(A) is the set of nonempty
intersections of elements of A endowed with the partial order defined by

X<YeYCX.

The rank function on L is defined by 7{X) = codim(X ). Maximal elements of
L(A) have the same rank, and the rank of A, 7(A), is defined to be the rank of
a maximal element of L(A). Let L, = L,(A) = {X € L(A)| r(X) = p}. The
Hasse diagram of L has vertices labeled by the elements of L and arranged
on levels L, for p > 0. An edge in the Hasse diagram connects X € L, with
Y € L,y if X < Y. Define the Mobius function v as follows:

V) =1,
V(X) = “'EV§Y<X V(Y) ifvV<X.
The Poincaré polynomial of A is defined by

(A4, 1) = 3 v(X)(=t)",
XeL
where ¢ is an indeterminate. A chamber is a connected component of R™\ Uges H.
A face P is a chamber of AX for some X € L, where A% is the restriction of
Ato X :
A¥ ={XNH:HeAAx and X NH# 0},

with Ax = {H € A: X C H}. However, we use the term “region” instead of
“chamber” when dealing with a chamber of A" = A itself. The set of faces
endowed with the partial order <j:

P<;Q+>QCP,

where P denotes the closure of P, is called the face poset of A,

Now we specialize to the arrangement of discriminant hyperplanes in the
pairwise linear discriminant analysis among m populations N(g;, I ), 1 =
1,...,m,in R".
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Denote by
}L']', 1§j<i§'m,

the discriminant hyperplane between populations ¢ and j, and consider the
arrangement of discriminant hyperplanes

A={H,~j:1_<_j<i§m}.

Each element of L = L(A) can be indexed by a partition I of m indices
into blocks, and X < Y for X,Y € L corresponds to the fact that the
corresponding partition of X is a refinement of that of Y, i.e., each block
of the latter is a union of blocks of the former. Specifically, to X € L
corresponds the partition of {1,2,... ,m} into equivalence classes under the
equivalence relation ~x defined by

i~x j <> X C Hy,

where we agree that H; = V and H;; = Hj; for ¢ > j. Note that ¢ ~x J
means that z € X is equidistant from g; and p;. The element of L indexed
by a partition I is denoted by X;. The Hasse diagram of “non-degenerate”
(see Section 2 for definition) discriminant analysis with m = 4,n > 3 is given
in Figure 4. The Hasse diagram remains the same for n < 3 except that
vertices of rank greater than n are not present.

We rank the m populations according to the distances to p;. The popu-
lation i with the nearest g, is ranked first; j with the farthest p; last. Thus,
each region is indexed by a full ordering. Note that a region is open in R™.
The region indexed by an ordering o is denoted by C,, and the ordering
corresponding to a region C is denoted by o¢. On the other hand, a face of
dimension less than n is indexed by a partial ordering. The face correspond-
ing to a partial ordering = is denoted by Pr. Elements of L of rank n, if they
exist, are called terminal nodes. Each terminal node can also be considered
a face, and thus it can be indexed by a partial ordering. In other words, if
X, € L is of dimension zero, the order among the blocks of the partition I
is uniquely determined.

Regions fall into two types: bounded regions and unbounded ones. This
distinction plays an important role in the characterization of non-arising
regions. Also, as was mentioned in Section 1.1, there is a connection between
unbounded regions and ideal vectors. An unbounded region is, by definition,
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a region which is not contained in any ball Bzo) = {# € R" : |l -
zol] < r},0 < 7 < oo,®e € R It is shown in Lemma 3.2 that in the
non-degenerate pairwise linear discriminant analysis, an unbounded region
recedes in a certain direction, i.e., there exists a direction d € R, ||d|| = 1,
such that the points td are contained in the region for all sufficiently large
t>0.

2 The number of regions

In this section, we give expressions for the number of regions. However, before
we state the theorems, we need to discuss the notion of non-degeneracy of
discriminant hyperplanes.

We say that the discriminant analysis is non-degenerate if the following
two assumptions hold.

(A-1) The points g, ..., i, € R" are in general position.
(A-2) The points

(H’u “#‘1”2)3 ' 7(“‘[m7 ”bu‘mHQ)

in R**! are in general position.

Equivalent assumptions are made in other contexts. See, e.g., Section 3
of Naiman and Wynn [11].

Remark 2.1. When m < n + 1, the m points &y,...,x, € R" are said
to be in general position iff for any set of scalars aj, ..., a, with 3;a; = 0,

Zaiwi:() == aq; = 0, V3.
H

This is equivalent to saying that the m—1 vectors &y, ..., 1%y are linearly
independent.
When m > n + 1, the m points xi,..., %, are said to be in general

position iff any n + 1 of them are in general position.

14



Remark 2.2. When m < n+ 1, (A-1) implies (A-2) as follows. For any
set of scalars a;,...,a, with 3 a; =0,

3 ai(a), ll=l*) =0

implies
Zaimi = O,
and thus,
a; =0 for 1=1,2,...,m.

So (A-1) alone suffices in this case.

Remark 2.3. Assumption (A-1) is invariant under affine transforma-
tions. On the other hand, (A-2) is invariant only under rigid motions. First,
consider moving the origin to an arbitrary point p, € R". Then we require
that

(1 = sy e = Boll®)s - (1 = By b = t10ll)-
are in general position. By noting that

bt = poll? = Nawill® = 2mm8: + proll”
we have for any set of scalars {a1,...,an,} satisfying 3, a; = 0,
S ailpthy Iml) = 0 = 2 aip = o, [l = moll”) = 0.
i i
Furthermore, it is easy to see that (A-2) is invariant under rotations in R™.
Now we are ready to state the main results of this section.

Theorem 2.1. The number of regions appearing in the non-degenerate
discriminant analysis of m populations in R is given by

CO+61+""%"CTL7
where ¢g = 1 and

G = > ivig- ik, k> 1.
1<y <ig < e <ip K1

15



Here,
(—=1)™*cpr = s(m,k), k=0,1,....m

are the Stirling numbers of the first kind (Macdonald [10], Section 1.2, Berge
[2], Section 1.5):

=)t —2) - (t=m+1) =3 s(m, k)t
k=0

As will be seen from the proof of Theorem 2.1, each ¢k, k = 0,...,n, is the
sum of the absolute values of the Mobius functions at rank k :

= Y (~DuX).

X (X)=k

However, in general there exist elements of L of the same rank which are
indexed by different types of partitions of {1,...,m}, e.g., {{1,2},{3,4}}
and {1,{2,3,4}}. The following theorem identifies the contribution of each
type of partitions of {1,...,m}, that is, each partition of the positive integer
m.

Theorem 2.2. An alternative expression for the number of regions is

— m!
L E 1k19k2 o ombm by kol -kt

kZm—-n (1":1’2}‘72,,,_’771}‘!)1)
where the second summation is over all (171, ... m*) such that

m =k + 2ky + -+ + mky,
k,=0,1,2,...,
ki+ky+ -+ kn=k.

Example. For n = 2,m = 4, ¢; in Theorem 2.1 are

C1 :6, 62211,
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so the number of region is
1+4+cy+cy=18.
The summation in Theorem 2.2 is over
(1hs,... 4k) = (11,20,3,49), (1°,22,3°,4%), (1%,2",3°,4%), (1*,2°,3°,47),
$0 the number of regions is again

§+3+6+1=18.

Before we prove the theorems, we state two lemmas.

In general, a face is called relatively bounded when it goes to infinity
only in the directions of the relative vertices, i.e., the minimum-dimensional
elements of L. For a formal definition of relative boundedness, see Zaslavsky
[23], p. 25.

Lemma 2.1. (Zaslavsky [23], Theorem A, C). Let n(A, t) be the Poincaré
polynomial for hyperplane arrangement A. Then the number of regions is
7(A, 1), and the number of relatively bounded regions is (—1)" (A, —1).
In particular, if A is centered, the number of relatively bounded regions s
zero.

In the non-degenerate discriminant analysis of m populations in R™ with
n < m — 1, we have r(A) = n, so the relative vertices are of dimension zero.
Thus, in this case, the set of relatively bounded regions is equal to the set of
bounded regions

Lemma 2.2. Let A be the arrangement of discriminant hyperplanes
in the non-degenerate discriminant analysis of m populations in R". Then,
L = L(A) is isomorphic to the poset (partially ordered set) L, of partitions
of {1,2,...,m} into k > m — n blocks. Namely, I € Iy—n — X1 € L is
bijective and I is a refinement of J iff X1 < X;. Furthermore,

nX)=m-%

for all X € L.
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The proof will be given in Appendix.

Proof of Theorem 2.1. First, consider the case n > m —1. In this case,
because we are considering the non-degenerate case, we have by Lemma 2.2
that L(A) is isomorphic to the intersection poset of the braid arrangement
in R™ (Orlik and Terao [13], Proposition 2.9). Thus, we obtain

m~-1

I+t

i=1

= 1+Clt -+ 02t2"|""' +Cm-ltm417 (1)

(A, t)

i

where Cp = Elﬁil<i2<“'<ik§m"1 iliz e ik.
In the case n < m — 1, we have

rnX)<n, X€L.
Therefore, we ignore terms of order greater than n in (1) and obtain
(A, t) =1+ cit+ -+ cot™

Here we used the fact that the Hasse diagram is the same for all n > 1 except
that vertices of rank greater than n are not present.
Putting together both cases, we obtain

(A t)=1+cit+ - 4 cpt”

regardless of whether n > or < m — 1. Thus, by Lemma 2.1, the number of
regions 18
144+

Q.E.D.
Proof of Theorem 2.2. Consider the partition (1%1,...,m*") of the
integer m with £k > m — n parts:
\...._..Z,._.../ \._.._;,..._-./
1 m

= k1+2k2+"“+mkma
k = k1+"‘+km, kir‘oalﬁz’“'w
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and let X be one of the corresponding elements in L, e.g., the element in L
indexed by the partition

{{1},...,{k1},{k1+1,k1+2},...,{k’1+2k‘2~—1,k11+2k‘2},...}

of {1,...,m}.
For this X, we have

V(X) = (—1)br (1 = 1) (m = DY)
by Berge [2], Section 3.2, and
'I"(X) =m~—(k1+-~-+km)

by Lemma 2.2. Therefore, by noting that v and r take the same values for
all X € L that correspond to the same (1%, ... m*=), we have

m!
w(A ) = 3 > (L) (mlYemky ! k!

k>m—n (1k1,.. mkm)

x(_l)(lc1+~-+km)+m((1 _ 1)!)k1 . ((m . 1)!)km
x(_t)m_(kl+"'+km)

3 ™ m! (k1)
1k okl k! '

k2m-n (1% .. mkm)

il

where the second summations are over all (1%1,..., m*) such that

m = ky + 2kg + -+ - + mkn,,
k=ki+-+kn,
]Ci:O,l,Q,....

Thus, the number of regions is

k>m—n (1k1,.. mkm) = .

Q.E.D.
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By comparing the coefficients of the Poincaré polynomials in the proofs
of Theorems 2.1 and 2.2, we obtain as a byproduct the well-known formula
(Macdonald [10], Section 1.2):

(~1)m*s(m, k) = 5 m;

k km « . )
(1k1 v"'amkm)tkl—l-n--}-km:k 1 ]2k2 e kl‘kQ! km?

Now, as mentioned earlier, the distinction between bounded regions and
unbounded ones becomes essential in the characterization of non-arising re-
gions.

Theorem 2.3. The number of bounded regions in the non-degenerate
discriminant analysis of m populations in R™ withn < m — 1 is given by

{cn —Cpe1+Chn—---—c1+1 mnieven,
Cp — Cpne1 + Cna—-+-+c —1 n:odd.

Ifn > m — 1, all the m! regions are unbounded.

Proof. First consider the case n < m — 1. Recalling that the Poincaré
polynomial is

W(Aa t) = cntn + cn—ltn_l +--t+at+ 17
we have by Lemma 2.1 that the number of bounded regions is

(—1)" (4, - 1)
(“D"((-1)"ea+ (=) Tepa + -~ +1)
Cn ""cn~1+'cn~2 .

Next, when n > m — 1, the arrangement is centered, so the number of
relatively bounded regions, and hence the number of bounded regions, is zero
by Lemma 2.1.

Q.E.D.
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3 Characterization of Non-Arising Regions

In this section, we address the second question (Q-2) in Section 1, i.e., char-
acterization of non-arising regions. We continue to deal with the problem of
non-degenerate discriminant analysis among m populations in R". In char-
acterizing non-arising regions, the distinction between bounded regions and
unbounded ones is important.

When n < m — 1, we embed our R" in R™~* and regard the m points
Yy, .., M, 8s those in R™1. By treating the discrimination of m populations
in R™ as the degenerate one of m populations in R™ ! we gain a better
insight. Our idea is similar to the method of coning discussed in Orlik and
Terao [13], Section 1.2.

Theorem 3.1. In the non-degenerate discriminant analysis among m
populations in R™ with n < m — 1, we have the following facts.

1. If an ordering o arises as an unbounded region, so does the reverse
ordering —o in the opposite direction.

2. If an ordering o arises as a bounded region, then the region correspond-
ing to —o does not occur.

First, we state two lemmas.

Lemma 3.1. In the non-degenerate discriminant analysis among m pop-
ulations in R™™1, the intersection of all the discriminant hyperplanes consists
of exactly one point, say O,:

dlm(ﬂ Hij) = 0,

i>]

and all the m! orderings occur as convex cones with O as their vertices. In
fact, if we translate O to the origin, the closure of each region is a polyhedral
COnver cone.

The proof is easy and omitted. More general version of this lemma is
proved as Theorem 4.2.1.

21



Lemma 3.2. If C is an unbounded region in the non-degenerate dis-
criminant analysis among m populations in R™, then C recedes in a certain
direction, i.e., there is a direction d € R, ||d|| = 1, such that

td € C for all sufficiently large t.

Moreover, d can be taken so that it is not parallel to the hyperplanes.

Proof. Express C as

m(m — 1)
5 .
Then, it is obvious that C is convex and that its recession cone C'is

C' = {zeR":C+axCC}
= {z€R":(ai,z) >0, 1 <i<m},

C={zeR" :(ayz)>b, 1<i<m}, m =

where C' + & is the translate of C by z : C+x = {y +x : y € C}. For
the notion of recession cone, see, for example, Rockafellar [14] or Webster
[22]. Now, since C’ is the same as the recession cone of C, the closure of
C, (Rockafellar [14], Corollary 8.3.1), and C is an unbounded, closed convex
set, we have that C" # {0} (Rockafellar [14], Theorem 8.4). Thus, thanks to
the assumption of non-degeneracy, the interior of C’ is non-empty:

intC’ ={x € R" : (a;,z) >0, 1L <i<m'} #0,
and for any d € intC’, we have
td € C for all sufficiently large ¢t >0

and
(a;,d) #0, 1 <i<m.

Q.E.D.

Proof of Part 1. Embed our R® in R™~! and perturb the m points
(Nllvoa- ’U)

: (2)

(p,0,...,0)
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slightly in R™~* such that discriminant analysis among perturbed points are
non-degenerate. For example, let the m points in (2) be perturbed as

(p1,0,...,0)

(”,114»1707 L ,0)
(“/1:,—{-‘2761’ 09 R ao)
(I’L"n+37 O’ €9, 07 .. 70)

(,-dma 0, s 707 6m—n——l)~

Note that if |le;]l,. ., ||€m-n-1]l are sufficiently small, then the face poset
restricted to R™ remains the same. A similar argument is made in Remark
3.5 of Naiman and Wynn [11]. We denote the hyperplanes in R™ ! obtained
by this perturbation by H;;.

Then, the situation is as in Lemma 3.1, and the embedded R" is an affine
subspace which does not pass through the origin. Thus, R™ can be expressed
as

o+ M
where ¢y # 0, ¢g € R™™!, and M C R™! is a linear subspace of dimension
n.

As shown in Lemma 3.2, if an ordering o arises as an unbounded region

C, in R", then, C, recedes in some direction d, ||d|| =1 :

Ad € R, ¢y +td € C, for all sufficiently large ¢ > 0.

Here, d can be taken so that it is not parallel to the hyperplanes H;;.

Now, take an arbitrary vector d, ||d|| = 1, in M which is not parallel to
the hyperplanes Hm, and consider the region C’ containing d in R™~1, where
o is the corresponding ordering of this region.

Since d € C, and C, is open, we have for all sufficiently large ¢t > 0,

C ~
—ig +deC,
so that, with C, being a cone,
co+td € éo.
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This implies
co+td € Cy,
where C, = C, N R™ is the region in R™ indexed by the same ordering o as
C,.
It follows that o arises as an unbounded region in R". Also, —~¢ occurs as
an unbounded region in the opposite direction since —d is contained in C_,.
The converse is also true, that is, if an ordering o arises in the direction

d in R™ which is not parallel to the hyperplanes H;;, then, d is contained in
C, in R™!:

o +td € C, for all sufficiently large t = d € C,.

This can be shown as follows. If d ¢ C,,then d € C., for some o’ # o, and
thus
¢y + td € C, for all sufficiently large ¢

as shown above. This contradicts the fact that
¢y + td € C, for all sufficiently large ¢,

which proves our assertion.
It follows from the assertions above that if ¢ occurs as an unbounded
region, so does —¢ in the opposite direction.

Q.E.D.

Proof of Part 2. Suppose that —¢ arises in R” = ¢o + M. Then, there
exist & and y € M such that

Co +& € Co- ..(; 6'01 (3)
co+y € C,CC,. (4)

Here, C, and C, are the region in R™ and R”‘:l, respectively, which corre-
spond to o, and the same is true for C_, and C_,.
From (4), we get
~cp~y € Cy. (5)
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Since €, is a convex cone, we have, by adding (3) and (5), that
r—YyE éa .

If we note that

z—yEM,
it follows from the proof of Part 1 that o appears as an unbounded region in
R", which is a contradiction.

Q.E.D.

Remark 3.1. Part 1 follows immediately without embedding R™ in
R™-1 . Given an unbounded region C, take a vector d as in Lemma 3.2,
and note that the line {td : t € R} intersects each hyperplane exactly once.
However, the proof stated above is used also in the proof of Part 2.

Remark 3.2. When n > m — 1, Part 1 remains true by Remark 3.1.
Also, Part 2 is trivially true by Theorem 2.3 in this case.

When n = m — 2, we have a complete characterization of non-arising
regions.

Corollary 3.1. In the case n = m — 2, the set of non-arising orderings
is precisely the set of the reverse orderings of bounded regions.

Proof. By virtue of Part 2 of the theorem, it is sufficient to prove that the
number of non-arising regions is equal to that of bounded regions. Thanks
to Theorems 2.1 and 2.3, the former is

m!»(cn+cn_1+~-+cl+1),

and the latter is
Cn_cn‘1+cn—~2’

Thus, the proof will be finished if we show that
m! = 2(cp + Cna ).
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Putting t = —1 in the identity
(L)1 +20) (L4 (m = Dt) = cuat™ 4 Caat™ - Fat + 1,

we obtain
0= —cp-1+ Cm—2 — Cm-3 + Cm—qg — ",
and hence,
m! = Cm*l+cm-2+”"+cl+1

= Cm-1tCm2t- - +0 + 1+ (_Cm—l + Cmn—2 — Cm-3 + Cm—g — *° )
= z(cm—»2 + Cm—q + )
= 2cp + g+ )

This completes the proof.
Q.E.D.

For the case n < m — 3, it seems difficult to completely characterize the
non-arising regions.
4 Miscellaneous results

In this section, we prove several results of independent interest.

4.1 Relation to Kendall’s 7

First we consider the relation between Kendall's 7 and a line segment in our
discriminant arrangement.

Theorem 4.1.1. Let 7(0¢,0¢) be Kendall's 7 between the two order-
ings corresponding to regions C and C’'. Then, T(0¢,0c) coincides with the
number of hyperplanes meeting o line segment connecting C and C'.

Proof.
roc,o0) = #{(,7): (0540) — 05" (D) eaH () — 0 (1) <0, i >}
#{(i,§) : C and C' are on the opposite sides of H;j}
= #{H;:®cxo N Hy # 0},

i
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where o and ¢ are arbitrary points of C and C', respectively.

Q.ED.

4.2 Regions around a terminal node

Next we give a characterization of regions around a terminal node.

Theorem 4.2.1. Consider the non-degenerate discriminant analysis
among m populations in R" with n < m — 1. Let ¢ be a terminal node

and let 7 = (71,...,Tm-n) be the partial ordering corresponding to @. Let
\mi| = l;,i = 1,...,m—n. Then, around x, there are 127" 1! regions. These
regions are obtained by giving arbitrary orders to items inmy, ..., Tm—n inde-
pendently.

Proof. Consider the terminal node X; which is indexed, without loss of
generality, by the partition

I:-:{{1,2,...,[1},{11+1,...,11+lg},...,{m——lm_n+1,...,m}}.

Here, the order among the blocks is uniquely determined. Thus there corre-
sponds a partial ordering. Assume, without loss of generality again, that the
corresponding partial ordering is

7r:-:({1,2,,.~.,ll},{l1+1,...,l1+lg},...,{m——Zm~n~|—1,...,m}).

First, we want to show that any region corresponding to the full ordering
obtained by giving some order among the items in each block of 7 occurs
around X;. It is sufficient to see that the region C, corresponding to the
ordering

O'x(l,“.,ll,ll +1,...,h+Zg,..n,’l’ll~"lm._n+1,...,m)

arises around X;.
Now, consider X € L which corresponds to the partition

I'= {{1},{2,.,.,11},{11 +1,...,0 +12},..,,{m—lm_n+ 1,...,m}}.

Considering the number of blocks of I’ and the refinement relation between
partitions I and I', we see that in the non-degenerate case, X is of rank
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n — 1, or of dimension 1, and contains Xj. That is, Xp is a line passing
through the terminal node Xj.

Some of the partial orderings occur which are obtained by giving partic-
ular orders among the blocks of I', as chambers of the restriction of A to
the line X, i.e., as one-dimensional faces. In other words, they arise as line
segments or half lines. Moreover, the two of them whose closures contain
the zero-dimensional face P, = X, i.e., <; P, are those two which do not
contradict the order among the blocks of =, that is,

= ({1},{2,....u1}, {l 41, b+ bl m = laen + 1,..,m})

and

({2,...,l1},{l},{l1+1,~..,l1+l2},..,,{m—~lm_n+1,..,,m}),

of which we take the former 7'
Next, consider X;» € L which corresponds to the partition

"= {{1},{2},{3,... 0L}, {h +1,.. ., & b}, {m = lpen +1,...,m}}

In a similar fashion, X is of rank n — 2, or of dimension 2, and includes the
line X, that is, X;» is a plane including the line Xp.

Some of the partial orderings occur which are obtained by giving par-
ticular orders among the blocks of I”, as chambers of the restriction of A
to the plane X, i.e., as two-dimensional faces. Moreover, the two of them
whose closures include the one-dimensional face Py, i.e., <; P, are those
two which do not contradict the order among the blocks of ', that is,

= ({1}, {2},{3,.. ., Lbp, {h+ 1, L + b}, ... {m—lmn+1,...,m})
and

({1}, 3,.. b 2h{h+ 1, b+ b {m = lnen + 1,...,m}),
of which we take the former 7.

Proceeding in the same way, we arrive, after (I —1)+---+ (lpn—1)=mn
steps, at the n-dimensional face Pr) with

2™ e (1), AL+ 1) {l ) m = b 1 {m),
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which is the same as C,.

Next, we have to show that regions other than the ones stated in the
theorem do not arise around X;. In other words, there does not arise around
X aregion C; for which there exist 1 and j such that ¢ is ranked better than j
in 7 but the converse is true in 7. This can be easily verified by contradiction:
Take a sequence in C, converging to X, and note that the mapping

z e R |le—pl =l —pll € R

is continuous.
This completes the proof of Theorem 4.2.1

Q.E.D.

From an algorithmic viewpoint, we can enumerate all arising regions al-
lowing repetitions by using Theorem 4.2.1—inspect all terminal nodes and
list the regions around each of them. This is obvious because the closure of
each region contains at least one terminal node, which, in turn, is seen by
noting the following: In the non-degenerate case with n <m—1, for any set
of k < n discriminant hyperplanes Hj, . .. , Hy such that r(HiN- - ‘NHy) =k,
there exists a hyperplane Hy such that r(HoNH; N--- N Hy)=k+1.

4.3 Relation between ideal vectors and unbounded
regions

As mentioned in Section 1.1, the set of orderings which can occur in ideal
vector model coincides with the set of orderings corresponding to unbounded
regions in our theory. More precisely, we have the following theorem.

Theorem 4.3.1. Suppose we are given m distinct points @1,...,Tm N
R™. Then, for any direction d € R*,||d|| =1, such that (d,z:x;) # 0,1 <
i < j < m, we have that the two orderings o and oo defined by

o7l(0) < of'(y) iff (d,z:) > (d,@))
orl(i) < o03'(G) iff |td - il < |ltd — ;]

are equal for all sufficiently large t > 0.
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Proof. We have

ltd — z:|)2 < |ltd — 2;||? <= —2t(d,z:) + ||la:]|* < ~2t(d, ;) + 2512,
Since (d,@;) # (d,z;),i # j by assumption, for all sufficiently large t > 0,
this is equivalent to

(d, il!,') > (d, éL’j).

Q.E.D.

Remark 4.3.1. Part 1 of Theorem 3.1 follows immediately from Theo-
rem 4.3.1 as well.

5 Appendix

Here we prove Lemma 2.2.

Proof of Lemma 2.2. First, note that in general, the set of points
x € R™ equidistant from @, ®s,..., 2 € R":

weR: |a-o|' ===}

is equal to the set of points « satisfying

= - o i
dy—ah | 1] Nl
. r=z .
. 2 :
- e = i

Now, without loss of generality, consider the partition

(. hh{h+1,. b+ {m =41, mb], (6)
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withly 20> -2 >22>,== I, = 1, and the corresponding
system of linear equations:

/ Hy — i \ a2 — Ml 2 \
Bl — B, ll e, lI:— Iiml_xll:
“§1+2 - U§1+1 ||#11+2H - ||H11+1H
: 1 ‘ :
“§1+12 - ,"‘;14-12—1 €= 2 ||I~‘11+12HZ - HN11+12—1HZ
“51+-~+l;,1+2 - 1‘51+m+!;_,,+1 ||M11+~--+-1,;~1+2H2 - “Hh+---+l,~c_1+1|l2
\ I“'§1+"~+l,~‘ - il’;l—F-"-—i-l’-c«—l ) Hull-{-“"-}-ll"HQ - ““‘l;+-~-+l,~c»1“2 )

Then the following two assertions hold.

(A) If kK > m — n, the set of solutions to (7) is nonempty and when
considered an element X € L, its rank is given by 7(X) =m — k.

(B) If k < m — n, there does not exist a solution to (7).

We first prove (A). The number of rows of the matrix A on the left hand
side of (7) is

Lh=D+L-)++ -1 = (L= +le=D+ -+ —1)
= m—-k<mn,

and these row vectors are linearly independent by Assumption (A-1). There-
fore, a solutions to (7) exists, and the dimension of the solution space is
n — m + k. Thus, its codimension is

r(X)=n—-(n-m+k)=m-Fk,
and (A) is proved.

Next we verify (B). The matrix A is of size (m —k) xn with m—k > n, s0
its rank is n by Assumption (A-1). On the other hand, the (m — k)x(n+1)
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matrix (A, b) has rank n+ 1, where b is the (m—k) x 1 vector on the right
hand side of (7). This follows because any collection of n + 1 row vectors in
(A, b) is linearly independent by Assumption (A-2). Thus, there does not
exist a solution to (7). This establishes (B).

Now, if we denote by X; the set of solutions to the system of linear
equations corresponding to partition I, we have that (A) implies that Xy is
in L for each T € Z_n, while (B) implies that the mapping from Znn t0
L is onto. Moreover, if X = XJ for I,J S Im_n, then X; = XJ = XvJ,
where IV J is the finest partition of which both I and J are refinements.
Now, r(X;) = 7(X;) = r(Xpvs) implies I = J. Therefore, the mapping
I €T, n+— X; €L isoneto-one. In addition, it is obvious that X; < X
iff I is a refinement of J. This proves Lemma 2.2.

Q.E.D.
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