95-F-22

Multimarket Contact, Imperfect Momitoring,
and [mplicit Collusion
by

Hitoshi Matsushima
University of Tokyo

October 1995

Discussion Papers are a series of manuscripts in their draft form. They are not
intended for circulation or distribution except as indicated by the author. For
that reason Discussion Papers may not be reproduced or distributed without the

written consent of the author.



MULTIMARKET CONTACT, IMPERFECT MONITORING,

AND IMPLICIT COLLUSION"

Hitoshi Matsushima

Faculty of Economics, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

February 1993

This version, October 1995

I am grateful to Michihiro Kandori and Noriyuki Yanagawa for their

helpful comments.



-2-

ABSTRACT

It is well known in the industrial organization literature that when
the demand is random and the rivals' choices of supply are unobservable, it
is difficult for oligopolistic firms to establish implicit collusion. We
will show in an infinitely repeated game with imperfect monitoring that
multimarket contact enhances implicit collusion: As the number of distinct
markets in which firms contact with each other increases, the optimal
supergame equilibria converge to full collusion. This folk theorem property
holds on almost the same condition as the perfect monitoring case with
respect to the discount factor, that is, even in the low discount factor

case.

KEYWORDS: infinitely repeated games, implicit collusion, imperfect

monitoring, multimarket contact, the folk theorem, low discount factor.
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1. INTRODUCTION

In a real economic environment, large enterprises produce a group of
products, and even single-product firms operate in many distinct geographic
markets. As a result, firms may contact with each other in multiple markets.

In this paper, we will explain that multimarket contact enhances the

possibility of implicit collusion among the oligopolistic firms.

In an oligopolistic industry, the rival firms somefimes make the cartel
agreement, without explicitly contracting, to earn the excessive profits by
keeping the market price higher than the competitive price. The possibility
of implicit collusion in a self-enforcing way is well-described by perfect
equilibria in a model of infinitely repeated games, provided that firms are
patient enough and compete each other in infinitely many periods (see

Friedman (1971)).1

It, however, is well known in the industrial organization
literature that when the market demand fluctuates randomly and the rivals'

choices of supply are unobservable, it is difficult for firms to detect

secret price cuts by the opponents, which seriously hinders implicit
collusion (see, for example, Stigler (1964)). Green and Porter (1984)
modelled the 1long-term quantity-setting duopoly as an infinitely repeated

game with imperfect monitoring, where single-product firms cannot observe

the opponents' choices of supply but can observe the realized market-
clearing price which is a random variable depending on their choices of
supply as well as some unobservable noisy factor. In this paper, it will be
shown that multimarket contact dramatically eliminates the incentive for
firms to make secret price cuts.

The possibility that multimarket contact fosters implicit collusion and

several related empirical evidences were first raised by Edwards (1955).
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Bernheim and Whinston (1990) presented a systematic analysis in infinitely

repeated games with perfect monitoring where firms can observe the rivals'

choices of supply directly. They showed that when firms differ in their
costs of production across markets, multimarket contact develops the spheres
of influence fostering implicit collusion. Multimarket contact serves to
pool the incentive constraints and relax binding incentive constraints by
shifting the slack enforcement power in the collusive markets to the
competitive markets. However, multimarket contact never enhances implicit
collusion with perfect monitoring, when markets and firms are identical.

In this paper, we will give an alternative reason why multimarket
contact fosters implicit collusion. We assume imperfect monitoring and
assume that the number of distinct markets is large enough. A supergame
strategy profile will be constructed, which approximately sustains the fully
collusive payoff vector. According to this strategy profile, firms continue
to collude in all markets as long as the number of markets in which the
competitive price occurs is less than some threshold level. Once this number
is more than or equal to this threshold level, they stop to collude and
start to behave competitively in all markets forever from the next period.

It will Dbe shown that this strategy profile can be a perfect
equilibrium provided that the number of distinct markets is large enough: As
the number of distinct markets increases, the optimal perfect equilibria
converge to full collusion. Surprisingly, this permissive result holds on
almost the same condition as the perfect monitoring case with respect to the
discount factor. Hence, we can conclude that multimarket contact totally
eliminates the obstacles of imperfect monitoring, and full collusion can be

approximated by perfect equilibrium outcomes even in the low discount factor
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case. This permissive result needs no technological asymmetry among firms
like the one in Bernheim and Whinston (1990).

This paper might be the first attempt to derive the folk theorem with
low discount factor in the proper imperfect monitoring case with diffuse
information. Several authors have attempted to prove the folk theorem with
imperfect monitoring. All of them, however, have commonly assumed that the
discount factor is close to unity. (see Radner (1986), Matsushima (1989),
Fudenberg, Levine and Maskin (1994), Abreu, Milgrom and Pearce (1991),
Kandori and Matsushima (1994), and others).

In order to detect firms' global deviation, the law of large numbers
plays the central role: A firm hesitates to deviate at a time in many
markets, because it would be almost surely detected through the statistical
test mentioned above. The use of the law of large numbers, however, is not
sufficient to derive the equilibrium property. A firm may still have
incentive to deviate locally in a small number of markets, because it would
be difficult to detect it in the imperfect monitoring case. We will present
an idea how to specify the threshold level so as to eliminate this incentive
to deviate 1locally, which is the central issue in the proof of the main
theorem from the technical view-point. By choosing the threshold level in an
appropriate way, a firm hesitates to deviate in a small number of markets,
for fear of getting the global punishment in all distinct markets from the
next period.

For simplicity of arguments, we will consider a symmetric prisoner-
dilemma game only. This is essentially the same game as the one presented by
Radner, Myerson and Maskin (1986), where all of perfect equilibria are

bounded away from full collusion uniformly in the discount factor.



The organization of this paper is as follows. In Section 2, the
symmetric prisoner-dilemma game is introduced. The strategic aspects in all
distinct markets are commonly described by this same game. In Section 3, it
will be shown that full collusion is approximately attainable, if the
discount factor is close to unity and the number of distinct markets is
large enough. In Section 4, we present the main theorem and give the sketch
of its proof, by using two numerical examples. The complete proof will be

given in the Appendix. Section 5 gives further discussions.
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2. THE MODEL

2.1. PRISONER-DILEMMA GAME

A symmetric prisoner-dilemma game G = (N,Al,A ,u, ,u is introduced,

2’71 2)

where N = {1,2}, A1 = A2 = {c,d}, and

u,(c,c)

c,c) 9

ui( 1, ul(d,d) = uz(d,d) = 0,

ul(d,c) = uz(c,d) =1 + M, ul(c,d) = uz(d,c) = - L,

M>0,L>0,and 1 >M - L.

Let u(a) = (ul(a),uz(a)). Action profile (d,d) is the unique Nash

equilibrium, and the associated payoff vector u(d,d) = (0,0) is Pareto-
inferior to the efficient payoff vector u(c,c) = (1,1). One interpretation
is that in a quantity-setting duopoly, each player i (firm i), 1 = 1,2,

simultaneously chooses either a small supply ai = ¢ (cooperation) or a large
supply a; = d (defection).

We assume imperfect public monitoring. That is, each player i cannot

observe the opponent's choice of action aj, j # i, and players commonly

observe a public random signal w which depends on the action profile acA.
Let @ = {L,H} denote the set of possible w. Players observe w = L with
probability p(a) if they choose a=A, where 0 £ p(a) £ 1, p(d,c) = p(c,d),

and p(c,c) < p(d,c). We must note that ui(a) is the expected payoff.

In a quantity-setting duopoly, public signal w is the market-clearing
price, where w = L 1is the low (competitive) price and w = H is the high
(collusive) price. Because of the demand uncertainty, the market-clearing

price fluctuates randomly according to the probability function p(a). Hence,
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the realized market price gives a noisy information about whether the rival

firm behaves competitively or cooperatively.

2.2. MULTIMARKET CONTACT AND REPEATED PLAY

Multimarket contact is introduced as follows. Two firms are active at a

time in the same multiple duopolistic markets h = 1,...,m. Each market is

modelled by the identical prisoner-dilemma game defined in the preceding

subsection. In the h-th market, firm i chooses a?i{c,d}, and observes public

signal th{L,H}.

We will introduce the infinitely repeated game with multimarket contact

denoted by Gw(m,é), where m is the number of distinct markets, and &=(0,1)

is the discount factor. In each period t, firm i chooses

(a%(t),...,a?(t))EA? and observes (wl(t),...,wm(t))edn. Formally, let Si =

{c,d}nl denote the set of firm i's choices, and ¢ = o denote the set of

o]

signal profiles. A strategy for firm i in Gm(m,é) is defined by 01: U @t -

t=0

Si’ where @0 = {¢0}, @0 is the null history,

ot = (9(1),...,0(t))=0", o(1) = (

ty o 1,.t t
0, (¢°) = (ay (9 ),...,o‘;‘(fb )),

and 0?(¢t)EA. is firm 1i°

i s choice of supply in period t + 1 in the h-th

market given history @t up to period t. It must be noted that a firm's

choice in a market depends on histories in all markets. Let d = (01,62),
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Vi(O,é) denote the normalized expected payoff for firm i1 induced by strategy

profile d, and v(g,6) = (VI(O’G)’VQ(G'G))'

For every ¢t, let Ui: ¢ denote the strategy for firm i in period t + 1

¢

induced by d, given history ¢t, and let o} _ = (q, | ,,% | .). A strategy
i ¢t 1 ¢t 2 ¢t

profile ¢ 1is a perfect equilibrium in Gw(m,é) if for every t and every ¢t,

every i = 1,2, and every player i's strategy Gi’

v.(a} .,8) 2 v, (d',0,] . ,6).
i ¢t 1177 ¢t

(In a general formulation, a strategy for player i may depend on private
histories of her own actions as well as public histories of signal profiles,
and may be a mixed strategy also. The perfect equilibrium property in our
definition is robust in the sense that there 1is no mixed strategies
depending on private histories as well as public histories which violate the
incentive constraints. Moreover, in Section 3, we will construct strategy
profiles with public randomization, and use the similarly defined perfect

equilibrium concept.)

2.3. BASIC RESULT: PERFECT MONITORING

Before starting the analysis of the imperfect monitoring case, it might

be helpful to consider the perfect monitoring case at the outset, in which

each firm directly observes the opponent's choice of action. We define a

strategy for player i, so-called a trigger strategy, as follows:
1 m . .
Choose (ai(l),...,ai(l)) = (¢,...,c) in period 1.

For every t > 1,
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choose (a§(t),...,a?(t)) = (¢,...,c) in period t if player i
observed ((c,...,c),(c,...,c)) in all previous periods,

and
choose (a;(t),...,a?(t)) = (d,...,d) in period t, otherwise.

If both players conform to this trigger strategies, they obtain the
efficient normalized payoff vector (m,m) in every period. Moreover, the
trigger strategy profile is a perfect equilibrium, if and only if players

are patient enough to satisfy

(1) 6 2

(If a firm deviates in a market, then the opponent firm, according to the
trigger strategy, will choose d forever in all markets from the next period.
Hence, choosing d in all markets in all periods is the best strategy among
all deviating strategies, which gives this deviant firm the normalized
payoff (1 - §)m(1l + M). This value is less than or equal to m if and only if
inequality (1) holds.) Since the one-shot Nash equilibrium payoff vector
(0,0) 1is the minimax point in the prisoner-dilemma game, the repetition of
(d,d) in all markets is regarded as the severest equilibrium punishment for
both players. These observations say that inequality (1) 1is not only
sufficient but also necessary for the attainability of full collusion, even
though all strategies other than trigger strategies are taken into account
(see, for example, Abreu (1988)).

We must note that the necessary and sufficient condition (1) is
independent of the number of markets m. This corresponds to the irrelevance
result presented in Bernheim and Whinston (1990, section 3), which says that
in a symmetric model multimarket contact gives no influence on the

possibility of implicit collusion.
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3. IMPERFECT MONITORING AND LEAST UPPER BOUNDS

From now on, we will investigate the imperfect monitoring case. We

denote by x(m) the maximum of 2{m - zp(c,c)m} with respect to z 2 0 subject

to
z{p(d,c)kp(c,c)m*k - p(c,c)m} 2 kM for all k = 1,...,m.
That is,
= _ Mp(c,c)
x(m) = 2{m STdc) - p(C’C)}.

In this section we assume that p(c,c) > 0, and

(2) x(m) 2 m(1 + M —‘L), and x(m) 2 0.

Since 1lim x(m) =2and 1 >M - L, there exists m such that for every m 2 m,

mT e m

inequalities (2) hold.
In the same way as Radner, Myerson and Maskin (1986), we can check that

x(m) 1is an upper Dbound of all perfect equilibrium payoff vectors, in the

sense that for every 6£(0,1) and every perfect equilibrium o in Gm(m,é),

L(5,6) + v, (6,6).

x(m) 2 v

(Similarly, we can check that x(m) 1is an upper bound of all perfect

equilibria with and without public randomization also.) Since x(m) < 2m, all
perfect equilibria has an uniformly inefficient upper bound.

We will show below that x(m) is the least upper bound also. Fix a real

number q=[0,1] arbitrarily, which will be specified later. We define a

strategy profile with public randomization as follows:

Choose ((c,...,c),(c,...,c)) with probability 1 in period 1.
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If the strategy profile continued to choose ((c,...,c),(c,...,c)) from
period 1 through period t - 1 and players observed ¢(t-1) # (L,...,L) in

period t - 1, then

choose ((c,...,c),(c,...,c)) with probability 1 in period t.
If it continued to choose ((c,...,c),(c,...,c)) from period 1 through period
t - 1 and players observed ¢(t-1) = (L,...,L) in period t - 1, then
choose ((d,...,d),(d,...,d)) with probability q,
and
choose ((c,...,c),(c,...,c)) with probability 1 - q in period
t.
If it chose ((d,...,d),(d,...,d)) in period t - 1, then
choose ((d,...,d),(d,...,d)) with probability 1 in period t.

According to this strategy profile, both firms continue to supply the
small amounts in all markets as long as they observed the high price in at
least one market in all previous periods. On the other hand, if the low
price occured at a time in all markets, then, with probability q, both firms

stop to behave collusively and continue to supply large amounts in all

markets forever from the next period.z’3
According to this strategy profile, firm 1 obtains the normalized

expected payoff

<
]

(1 - &)m + 6{1 - qp(c,c)m}v., that is,
i

(1 - &)m
1 -6 + 8qpl(c,c

o
)
If a firm chooses d in k markets and chooses ¢ in m - k markets in

period 1, and conforms to this strategy profile from period 2, then it

obtains the normalized expected payoff

(1 - 6)m + k) + 6{1 - ap(d, ) p(c,c)" Iy,



-18-

v, ot (1 - 8)kMm - qu(c,c)m{( - 1}Vi

k
. m, pl(d,c) .k p(d,c) k-1
=V, o+ hgl[(l - 8)M - éqp(c,c) {(m) - (-—p(c’c)) }v, ]
S v, + k{(1 - &M - éap(c,c) mpld,c) gy,

p(c,c) i
where the last inequality 1is. derived from the fact that p(c,c) < p(d,c).

Hence, this strategy profile is a perfect equilibrium if inequality

(4) (1 - 6)M - 6ap(c,c) (gfg—g% - 1)y, £0

is satisfied. On the other hand, if this strategy profile is a perfect
equilibrium, then the deviant's payoff for k = 1 must be less than or equal

to Vi’ that is, inequality

mp(d,c)
p(c,c) l)Vi s vy

v, + (1 - 6)M - éaplc, o) (RS
must hold. Since this inequality is equivalent to inequality (4), one gets
that inequality (4) 1is not only sufficient but also necessary for the

perfect equilibrium property. Equality (3) and inequality (4) imply that

(1 - 6)M
(5) IO

where

m {p(d,c) - p(c,c)}m _
[ p(c,c) Ml

B(m) = p(c,c)

mp(d,c) - p(c,c), x(m)
TR R A

= p(c,c)™
(The last inequality is derived from the fact that x(m) 2 0.) There exists ¢
in the interval [0,1] which satisfies inequality (5), if and only if players
are patient enough to satisfy

M

(6) 5 2 N+ B’
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where the right hand side of (6) is in the interval [0,1], because B(m) > 0.

Let q=[0,1] be specified so as to satisfy inequality (5) with equality, that

is, q = a - om Then, one gets from equality (3) that
6B (m)
- m - Mp(c,c) . _
Vi TR S - ple.o)’ f.e., vy +v, = x(m).

This implies that if players are patient enough to satisfy inequality (6),
then this strategy profile is a perfect equlibrium and the sum of the
normalized expected payoffs induced by it is equivalent to the upper bound
x(m). Hence, x(m) is regarded as the least upper bound.

As the number of markets m increases, the average payoff vector per
market

Mp(c,c)

Mp(c,c) )
m{p(d,c) - p(c,c)}

“m{p(d,c) - p(c,c)}’

(1 1 -

converges to the efficient payoff vector (1,1). Hence, full collusion can be
approximately attained by a perfect equilibrium if and only if the number of
markets m is sufficiently large and players are patient enough to satisfy
inequality (6).

However, we would like to say that the positive result presented above
is not satisfactory: First of all, inequality (6) is much more restrictive
than inequality (1), the necessary and sufficient condition in the perféct
monitoring case. Moreover, the right hand side of inequality (6) converges
to unity as m increases, which implies that inequality (6) requires the

discount factor & to be near unity in the case of large m. (Since lim
mtw

mp(c,c)n1 = 0, one gets

p(d,c) - p(c,c)
p(c,c)

lim B(m) = )™ - Mp(c,c)™] = o,

mte

[lim {mp(c,c
mTewe
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which implies that the right hand side of inequality (6) converges to unity
as m increases.)
4. FOLK THEOREM WITH LOW DISCOUNT FACTOR

We will present the main theorem as follows:

THEOREM 2: Suppose that inequality (1) holds strictly, that is,

M
5 > s 1
Then, for every large enough m, there exists a perfect equilibrium G[m] in
X
G (m,8) such that
im] |
rim Y& _—28) (g q)
m
m7T®

Theorem 2 says that full collusion can be approximately attained
through multimarket contact on almost the same condition as the perfect
monitoring case.

The proof of Theorem 2 is constructive: Fix a positive integer

r(m)s{1l,...,m} arbitrarily, where the function r(m) will be called the

threshold function. We define a strategy for player i Oi = O}m] by

a. (¢%) = (c,...,c),
i
for every t 2 1,
t . h
Oi(¢ ) = (c, ,c¢) if #{h: w () =L, h =1,...,m} < r{(m) for
all r =1, ,t,

and
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oi(¢t) - (d,....d) if #{h: o' (x) =L, h = 1,...,m} z r(m) for
some T = 1,...,¢t
According to d = O[m], each firm continues to choose c in all markets as

long as the number of markets h in which wh = L occurs is less than the
threshold r(m). Once this number is more than or equal to r(m), both firms

immediately stop tob behave collusively and continue to choose d in all

markets from the next period.4

All we have to do is to specify the threshold function r(m) so as to

satisfy that the above defined G[m] is a perfect equilibrium and V(O[m],d)
is approximately efficient for every large enough m. In order to avoid a
long struggle with the difficulty of this specification, we will start with
the following two numerical examples with moving support, which might be
helpful to understand the logical core of the proof. The complete proof of
Theorem 2 will be presented in the Appendix.

Consider the first example, Example I, which may be the easiest case to

check the properties in Theorem 2. We assume
1
p(c,c) = 0 and p(d,c) = 5-

Players never observe signal L whenever they chose (c,c).
In this example, we shall specify
r(m) = 1.
Firms stop to collude immediately, once they observed the small price in one

[m]

or more markets. According to 6 = O , firm i obtains the efficient payoff
vector

vi(G,o) = m,

because signal L is never observed on the induced path.
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If firm i deviates from Gi by choosing d in k market and c inm- K
markets in period 1 and conforming to Gi from the next period, then it is

k and obtains the expected normalized

)

DO |

punished with probability 1 - (
payoff

(1 - 6)(m + kM) + 6(%)kvi(ﬁ,6)

- ey - enF s me (- ek - el - )Y
k ‘ 1h-1 1
=m+ ) [(1-8M-ém{(5) - ().
2 2
h=1
This value must be less than or equal to Vi(ﬁ,é) =m for every k = 1,...,m

if d is a perfect equilibrium. That is, it must be satisfied that for every

k = ]-) ’m9

X 1h-1 1
(7) YL@ - 6)M - sm{(3) - (5)°}] =0.

2 2
h=1
. 1,h-1 1.h . .

Since (E) - (5) is decreasing with respect to h, one gets that
inequality (7) holds for all k =1,...,m, if and only if inequality (7)

holds for k = m, that is, if and only if

m

T i - om - (&M -GN = - em - m - )M
h=1
=0, or
' M
(8) 52 .
Ma1- ("

Since the right hand side of inequality (8) approaches as m increases,

M
M+ 1
we conclude that the properties of Theorem 2 hold true in Example I.

Next, consider the second example, Example II, in which we assume
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—

p(c,c) = 5 and p(d,c) = 1.

Players can not observe signal H when they choose either (d,c) or (c,d).
Fix r(m) arbitrarily, which will be specified later. Let f(r:m,k)
denote the probability that r is the number of markets in which signal L is

observed, 1i.e., #{h: wh -L,h=1,...,m} =r, provided that a firm chooses

d in k markets, chooses c¢c in m - k markets, and the opponent chooses ¢ in

all markets. In Example II,

. - (m-k)!  1,m-k <
f(r:m,k) = -T) 1 (r-K) ! (5) for k £ r, and
f(r:m,k) = 0 for k > r.
According to ¢ = G[M], firm i obtains
Vi(O,é) =(1-6)m+ 6 Y f(r:m,O)yi(d,G), that is,
r<r(m)
_ (1 - 6)m
vi(0,8) = T 7 f(r:m,0)°

r<r(m)

As the first step of the specification of r(m), we will require that

(9) lim { ¥ f(r:m,0)} =1, and
mte  r<r(m)
(10) lim rém) = p{(c,c).

mte

We must note that such a function r(m) exists. (Bernoulli's law of large

numbers says that for every £ > 0 and every n > 0, there exists m such that

for every m 2 m,

¥ f(r:m,0) > ¥ f(r:m,0) > 1 - n.
r<m{p(c,c)+%} 'mp(c,c)-r|<e

Hence, there exists a function r(m) which satisfies equalities (9) and

(10).)
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[m]

Fquality (9) says that for every large enough m, 0 = 0O realizes the

approximately efficient payoff vector, that is,

Vi(G[m]’é) 1-6
(11) i#g m N iii 1-6 T f(r:m0) 1.

r<r(m)

If firm i deviates from oj by choosing d in k markets and ¢ inm - k
markets in period 1 and conforming to Gi from the next period, then it is

punished with probability Y f(r:m,k) and obtains the expected normalized
rzr(m)

payoff

(12) wi(k,m) = (1-6)(m+ kM) + & ¢ f(r:mk)v,(0,6).
r<r(m) 1

Firm i has no incentive to choose d in k markets if wi(k,m) < Vi that 1is,

[m] .
v, (d ,8)
(13) a-00 M -6 L rrmk)r—

r<r(m) m

We must note that firms have no incentive to choose d at a time in a

nonnegligible number of markets if m is large enough. That is, for every ® >

0, there exists m such that wi(k,m) £ vi(o[m],d) for every m 2 m and for

every k satisfying k 2 #m. (The law of large numbers says that for every £’

> 0 and every n > 0, there exists m such that for every m 2 m,

(14) ) f(r:m,Kk)
rzm{(1-€)p(c,c)+=p(d,c)-£"}

[\

f(r:m,k) > 1 - n.
r2(m-k)p(c,c)+kp(d,c)-€'m

From equality (10) and by choosing ' < £{1 - p(c,c)}, one gets that for
every large enough m,

(1 - =)plc,c) + sp(d,c) - =" = p(c,c) + {1 - p(c,c)} - &’
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Hence, the left hand side of (14) is less than or equal to Yy f(r:m,k),
: r2r(m)

and therefore, Y f(r:m,k) is near zero for every large enough m. This,
r<r(m)

together with equality (11), implies that the right hand side of inequality
(13) is approximated by 1 - 6 for every large enough m. On the other hand,

the left hand side of (13) is more than or equal to (1 - &)(1 - M), which

A

is 1less than 1 - 6. Hence, we have proven that wi(k,m) Vi(ﬁ,é) for every

large enough m.)

However, it is important to note that the requirements of (9) and (10)
are not sufficient to guarantee the perfect equilibrium property. Firms may
still have incentive to deviate in a small number of markets. The
requirements of (9) and (10) only implies that for every large enough m
there exists an integer k(m) such that firms have no incentive to choose d

k(m)
m

at a time in k(m) or more markets. Surely approaches zero as I

increases, but for any large m, k(m) may still be more than 1. Hence, we
have not yet eliminated the incentive for a firm to choose d in k(m) - 1 or
less markets.

Based on these observations, we will require, in addition to (9) and
(10), that for every large enough m,
(15) sm{p(d,c) - p(c,c)}f(r(m)-1:m-1,0) > (1 - 5)M.
In Example II, inequality (15) is equivalent to

émf (r(m)-1:m-1,0) > 2(1 - &)M.

As it will be shown in Lemma A-3 in the Appendix, there exists a threshold

function r(m) which satisfies inequality (15) as well as equalities (9) and



-21_

(10). We will show below that for every large enough m, firm i has no

incentive to choose d in a single market: By definition,

Y f(r:mk) = L f(rmm-1,k-1) + f(r(m)-1:m-1,k-1), and
rzr(m) r2r(m)
Y f(r:mk-1) = Y f(r:m-1,k-1) + % f(r(m)-1:m-1,k-1),
r2r(m) rzr(m)
and therefore,
P f(rimk) - L f(r:mk-1) = —;- £(r(m)-1:m-1,k-1).

r2r(m) rzr(m)

Hence, one gets
_ [m]
wi(l,m) vi(a , 8)

[m]

= (1 -&6M-6{ ¢ f(rmm1) - 1L f(r:m,0)}v, (0 ,6)
rzr(m) rzr(m)
- 6 . [m]
= (1 - &)M - 5 f(r(m)—l.m—l,O)vi(o ,6),
which is approximated by (1 - ¢&)M - on f(r(m)-1:m-1,0) for every large

2

enough m, because of equality (11). Here, (1 - 6)M is the instanteneous gain
from deviation in a single market, and g% f(r(m)-1:m-1,0) approximates the

associated increase of the expected value of future penalty. Inequality (15)

om

says that (1 - 6)M - - f(r(m)-1:m-1,0) is negative, and therefore, wi(l,m)

< vi(o[m],d), i.e., firms have no incentive to choose d in a single market

for every large enough m.

[m]

We can also check that if a firm i has incentive to deviate from Gi ,

it is Dbeneficial for it to choose d either in a single market or in all
markets: As it will be shown in Lemma A-2 in the Appendix, for every m and

every r={0,...,m}, f(r:mk) is single-peaked with respect to ke{0,...,m}.
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Hence, f(r(m)-1:m-1,k-1) is single-peaked with respect to k={1,...,m}, and
therefore, there  exists k*s{1,...,m} such that f(r(m)-1:m-1,k-1) is
nondecreasing with respect to Kk in {1,...,k*}, and is nonincreasing with
respect to k in (x*,...,u}. We must note

wi(k,m) - wi(k—l,m)

[m]

= (1-6M-6{ ¥ f(r:mk) - ¥ f(r:m,k-1)}v; (o ,6)
rzr(m) rzr(m)
- (1- oM f(r(m)-l:m—l,k—l)vi([j[m],6),
which is nonincreasing with respect to kK in {1,...,k*}, and is nondecreasing
with respect to Kk in {k*,...,m}. This implies that all we have to check is

whether a firm has incentive to choose d either in a single market or in all
markets. From the above arguments, we have proven Theorem 2 in the case of

Example I1I.
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5. FURTHER DISCUSSIONS

Throughout this paper we have assumed that all firms operate in the
same multiple markets. This assumption is irrelevant to our arguments: In
the same way as Section 4, we can also check, in the case of three or more
firms operating in their respective multiple markets, that whenever each
firm can observe the realized prices in all markets including the ones in
which it does not operate, then the similar folk theorem properties still
hold, even though two firms may contact with each other in a single market
only.

We have also assumed that there exists no macro random shock which
commonly influences all markets. This assumption is crucial for the proof of
the main theorem. I think that it would be quite meaningful to take the
existence of macro  shocks into account, from the view-point of
applicability: 1In a real economic environment, several distinct markets are
actually influenced by common rahdom factors and these market demands
fluctuate in a correlated way. This consideration is beyond the purpose of
this paper. See, however, my companion papers (1994, 1995), in which several

related problems have been intensively studied.
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FOOTNOTES

For readers unfamiliar with the study of repeated games, see Pearce

(1992).

At the expense of ‘irrelevant difficulty, we can derive the similar
result by constructing a pure strategy equilibrium with finite-period

penalty phases.

The readers familiar with the literature of repeated games may find
that our construction in this section is similar to the one by Abreu,

Milgrom and Pearce (1991) presented in a different context.

In the construction of review strategies in repeated partnerships,
Radner (1986) organized similar statistical tests through multiple
successive periods. Radner assumed no discounting and used the limit-
of -average criterion. These assumptions drastically simplify the
incentive aspects of the Folk theorem, by avoiding the troublesome
restriction of deviation in a small number of periods. For the

criticism of the limit-of-average criterion, see Pearce (1992).
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APPENDIX: PROOF OF THEOREM 2

Similarly to Example II in Section 4, let f(r:m,k) denote the
probability that r is the number of markets in which signal L is observed,

i.e., #{h: wh = L, h=1,...,m} =r, provided that a firm chooses d in k

markets, chooses ¢ in m - Kk markets, and the opponent chooses c in all
markets. We must note
min[r,m-k]
f(r:lll,k) = E D(h,l’,m,k),
h=max[0,r-k]

where

_ k!(m-k)!
D(h,r,m.K) = {r(m-k-n) ! (r-h) ! (k-r+h) !

m-k-h k-r+h

pe, o1 - pe.e) ™ ¥ Mpd,e)" M1 - p(d.o)}
is the product of probabilities that h is the number of markets in which
the deviant firm chooses c¢ and observes signal L and that r - h is the

number of markets in which the deviant firm chooses d and observes signal L.

We must note that

(A1) f(r:m,k) = p(d,c)f(r-1:m-1,k-1) + {1 - p(d,c)}f(r:m-1,k-1),
and
(A2) f(r:m,k-1) = p(c,c)f(r-1:m-1,k-1) + {1 - p(c,c)}f(r:m-1,k-1).

Before starting the proof of Theorem 2, it might be helpful to present

the following three lemmata.

LEMMA A-1: f(r:m,k) is single-peaked with respect to r, that is,

there exists r* = r*(m,k) such that’

f(r:m,k) 2 f(r-1:m,k) for r & re, and

IV
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f(r:m,k) 2 f(r+1:m,k) for r = rr,

where r*(m,k) is nondecreasing with respect to k, that is,

r*(m,k) 2 r*(m,k—l) for all k 2 1.

PROOF: Let k = 0. Then, by definition,
X oo m re. _ n-r
f(r:m,0) = s p(c,c) {1 - p(c,c)}”
and therefore,
f(r+1:m,0) - (m - r)plc,c)
f(r:m,0) (r + 1){1 - plc,0)}’

which is 1less than or equal to 1 if and only ifr £ (m+ 1)p(c,c) - 1.
Hence, f(r:m,0) is single-peaked with respect to r.

Let k 2 1. Suppose that f(r:m-1,k-1) is single-peaked with respect to

r. For every r£{l,...,m-1}, if 1 £r = r*(m—l,k~1), then, by using equality

(A1),
£(r:m,k) = p(d,c)f(r-1:m-1,k-1) + {1 - p(d,c)}f(r:m-1,k-1)
2 p(d,c)f(r-2:m-1,k-1) + {1 - p(d,c)}f(r-1:m-1,k-1)
= f(r-1:m,k),
where f(-1:m-1,k-1) = 0. If r*(m~1,k~1) + 1 £r £ m-1, then, by using

equality (A1),
f(r:m,k) = p(d,c)f(r-1:m-1,k-1) + {1 - p(d,c)}f(r:m-1,k-1)
2 p(d,e)f(r:m-1,k-1) + {1 - p(d,c)}f(r+1:m-1,k-1)
= f(r+l:m,k),
where f(m:m-1,k-1) = 0. Hence, f(r:m,K) is single-peaked with respect to r,
and therefore, the first part of this lemma has been proven.
Consider the second part. Suppose that f(r+l:m,k-1) 2 f(r:m,k-1). By

using equality (A2)
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f(r+1:m,k-1) - f(r:m,k-1)

p(c,c){f(r:m-1,k-1) - f(r-1:m-1,k-1)}

-+

{1 - plc,c)H{f(r+1:m-1,k-1) - f(r:m-1,k-1)}

2 0.
This inequality, together with the single-peakedness with respect to r,
implies that

f(r:m-1,k-1) 2 f(r-1:m-1,k-1)
must hold. Suppose that f(r+l:m-1,k-1) 2 f(r:m-1,k-1). Then, it is obvious
that f£(r+1:m,k) 2 f(r:m,k). (By using equality (Al),

f(r+l:m,k) - f(r:m,Kk)

1

p(d,c){f(r:m-1,k-1) - f(r-1:m-1,k-1)}

+

{1 - p(d,c)}{f(r+1:m-1,k-1) - f(r:m-1,k-1)}

v

0.)
Next, suppose that f(r+l:m-1,k-1) < f(r:m-1,k-1). Then, obviously,
f(r:m-1,k-1) - f(r-1:m-1,k-1) 2 0 > f(r+l:m-1,k-1) - f(r:m-1,k-1).
This, together with equalities (Al), (A2), and inequalities p(c,c) < p(d,c),
implies
f(r+l:m,k) - f(r:m,Kk)

p(d,c){f(r:m-1,k-1) - f(r-1:m-1,k-1)}

-+

{1 - p(d,c)}{f(r+1:m-1,k-1) - f(r:m-1,k-1)}

> p(c,c){f(r:m-1,k-1) - f(r-1:m-1,k-1)}

+ {1 - p(c,c){f(r+1:m-1,k-1) - f(r:m-1,k-1)}
= f(r+l:m,k-1) - f(r:m,k-1)

z 0.

Hence, we have proven that if f(r+l:m,k-1) 2 f(r:m,k-1), then f(r+l:m,k) 2

£(r:m,k). This implies that r (m,k) z r (m,k-1). Q.E.D.
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LEMMA A-2: f(r:m,k) is single-peaked with respect to k, that is,

there exists kK* = k*(r,m) such that

I\

f(r.m,k) 2 f(r,m k-1) for k S k", and

A

f(r,m,k)

A

f(r,m,k-1) for k > k .

PROOF : Fix (r,m,k) arbitrarily. Suppose that 0 £r & r*(m—l,k—l).
Lemma A-1 says that r*(m—l,k) 2 r*(m—l,k—l), and therefore,

0£r = r*(m—l,k), or, f(r-1:m-1,k) £ f(r:m-1,k).
By using equalities (A1), (A2), and inequalities p(c,c) < p(d,c),

f(r:m,k) - f(r:m,k+1)

{p(d,c) - p(c,c)H{f(r:m-1,k) - f(r-1:m-1,k)}

[\

0.

Next, suppose that r*(m—l,k—l) < r £ m. Hence,
f(r-1:m-1,k-1) 2 f(r:m-1,k-1).
By using equalities (Al), (A2), and inequalities p(c,c) < p(d,c),

f(r:m,k-1) - f(r:m,Kk)

{p(d,c) - plc,c){f(r:m-1,k-1) - f(r-1:m-1,k-1)}

A

0.
Hence, we have shown that for every (r,m,k),
either f(r:m,k) 2 f(r:m,k-1) or f(r:m,k) 2 f(r:m,k+1).

This implies the single-peakedness with respect to k. Q.E.D.

LEMMA A-3: There exists a threshold function r(m) which satisfies

equalities (9) and (10) and inequalities (15), that is,

lim { Y f(r:m,0)} =1,
mte r<r(m)
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lim rém) = p(c,c),

mt o

and for every large enough m,

sm{p(d,c) - p(c,c)}f(r(m)-1:m-1,0) > (1 - 8)M.

PROOF : The law of large numbers says that for every £ > 0 and every

n > 0, there exists m such that for every m 2

I\
=

) f(r:m,0) > 1 - n.
'mp(c,c)-r|<me

Hence, there exists a function £(m) such that for every m, £(m) > 0, and

1im =(m) = 0, and
mTew

lim { ) f(r:m,0)} = 1.
mte lmp(c,c)-r|<me(m)

For every large enough m, we will specify r(m) as the maximum among integers
r which satisfy inequalities (15) and

r £ m{p(c,c) + =(m)}.
(Such a function r(m) exists: If not, then, for every large enough m and
every r satisfying r £ m{p(c,c) + €(m)},

. (1 - 6)M
f(r-1:m-1,0) £ 5Td.c) - plc, )}’

that 1is,

f(r:m,0) = ;TTE%;TT-p(c,C)r{l - ple,e)™ T

I—“E%—C—L?—l-f(r—l:m—l,())

. (1 - 6)Mp(c,c)
= oér{p(d,c) - plc,c)}’

Hence,
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¥ (1 - §)Mp(c,c)
m{p(c.C)-E(m)}<r<m{p(c,6)+8(m)}6r{p(d’0) - ple,c)}

A

< 2=(m) (1L - &)Mp(c,c)
= F{plc,c) - em{pld,c) - plc,c)}’

the left hand side of which approaches to 0 as m increases. But, this is a
contradiction.)

We will show below that the specified r(m) satisfies equalities (9) and
(10) also. We must note

1im { ) f(r:m:0)}
mte r<r(m)

2 lim [ ) f(r:m,0) - Y f(r:m,0)]
mte mp(c,c)-r}<me(m) r(m)Sr<m{p(c,c)+&(m)}
. i _2s(m)m(1 - 6)Mp(c,c)
2 lin [ L £(r:m,0) - $rmi(p(d.e) - p(c.eI]]

mt® mp(c,c)-r|<me(m)
=1-0-=1,

which implies equality (9). Suppose that equality (10) does not hold. Since

~
=
N’
A

m{p(c,c) + =(m)}, there must exist an increasing subsequence (ms)siol

and n > 0 such that

r(ms) £ ms{p(c,c) - n} for all s.

Notice
y f(r:mS,O) < ¥ f(r:m_,0)
r<r(m_) r<m_{p(c,c)-n} S
S S
= 1 - z f(r:m ,0),

r;ms{p(c,c)-n} s

which approaches to zero as S increases, because of the law of large
numbers. But, this is a contradiction of equality (9). Hence equality (10)

holds. Q.E.D.
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We will present below the proof of Theorem 2, which is essentially the
same as that in the case of Example IT in Section 4. From Lemma A-3, we can

choose r(m) which satisfies equalities (9), (10), and inequalities (15).

According to d = U[m], firm 1 gets
oL (1 - 6)m
vil0,6) = =% ¥ f(r:m,0)
r<r(m)

[m]

Equality (9) says that for every large enough m, 0 = 0 realizes the
approximately efficient payoff vector, that is, equality (11) holds.

If firm i deviates from Gi by choosing d in k markets and ¢ inm - k
markets in period 1 and conforming to Gi from the next period, then it is

punished with probability ) f(r:m,k) and obtains the expected normalized
r2r(m)

payoff wi(k,m), which is defined by equality (12). Firm i has no incentive
to choose d in k markets if wi(k,m) S Vi, i.e., if inequality (13) holds.

First, we can check that for every large enough m, firms have no
incentive to choose d in all markets, i.e.,

wi(m,m) < Vi(d[m],d).

(The law of large numbers says that

lim { Y f(r:m,m)} = 1 for every € > 0.
mto rzm{p(d,c)-=}
By choosing £ < p(d,c) - r(m)’ one gets
lim { Y f(r:m,m)} £1 - lim { ) f(r:m,m)} = 0.
mte r<r(m) mte  rzm{p(d,c)-£}

This, together with equalities (11) and (13), implies that

lim w,(m,m) = (1 - &)m(l + M) + din { T f(r:m,m)vi(ﬁ{m],é)}

mtw mt® r<r(m)
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= (1 - &)m(1 + M),
which is less than Vi(O[m],G) for every large enough m, because of strict

inequality (4) and equality (11).)
Moreover, we can check that for every large enough m, firm i has no

incentive to choose d in a single market. (By definition,

Y f(r:m,k) = Y f(r:m-1,k-1) + p(d,c)f(r(m)-1:m-1,k-1),
rzr(m) rzr(m)
and
Y  f(r:mk-1) = ¥ f(r:m-1,k-1) + p(c,c)f(r(m)-1:m-1,k-1),
rzr(m) rzr(m)

and therefore,

Y  f(r:m,k) - L f(r:mk-1)
rzr(m) rzr(m)

= {p(d,c) - p(c,c)}f(r(m)-1:m-1,k-1).
Hence,

[m]
wi(l,m) - Vi(G ,8)

(m] 6)

(1 -6M-6{ ¥ f(r:m1) - 1L f(r:m,O)}Vi(O
r2r(m) rzr(m)

i

(1 - 6)M - 6{p(d,c) - p(c,c)}f(r(m)—l:m—l,o)vi(lj[m] 5),

which is approximated by (1 - 6)M - ém{p(d,c) - p(c,c)}f(r(m)-1:m-1,0) for
every large enough m, because of equality (11). Inequalities (15) say that

o[“‘],

this wvalue is negative, and therefore, wi(l,m) < v, ( 6), i.e., firms

i
have no incentive to choose d in a single market for every large enough m.)

Finally, We can check that if a firm i has incentive to deviate from

Ggm], it 1is beneficial for it to choose d either in a single market or in

all markets. (By definition,



wi(k,m) - wi(k-l,m)

5)

(1 -6M-6{ ¥ f(r:mk) - L f(r:m,k—l)}vi(olm],

r2r(m) rzr(m)

(1 - &M - 6p(d,c) - plc,e)}t(r(m)-1:m-1,k-1)v, (™ ,5).
From Lemma A-2 and inequality p(c,c) < p(d,c), this value is nonincreasing

with respect to k in {1,...,k*}, and is nondecreasing with respect to k in

{k*,...,m}. This implies that all we have to check is whether a firm has

incentive to choose d either in a single market or in all markets.)

From the above arguments, we have proven Theorem 2.



