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contingent claims when the underlying asset prices follow the general class
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age (Asian) Options for Interest Rates. Our method gives some explicit
formulae for solutions, which are numerically accurate enough for practi-
cal purposes in most cases. The continuous stochastic processes for spot
interest rates and forward interest rates are not necessarily Markovian or
diffusion processes in the usual sense; nevertheless our approach can be
rigorously justified by the Malliavin-Watanabe Calculus in stochastic anal-
ysis.
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1 Introduction

In the past decade various contingent claims have been introduced and actively
traded in financial markets. In particular, the various types of interest rates
based contingent claims have appeared and attracted much attention not only
of financial economists but also financial practitioners in financial markets. This
paper presents a new methodology which is applicable to the valuation problems
of financial contingent claims including such as various options, swaps, and other
derivative securities when the underlying asset prices follow the general class of
continuous Ité processes. Especially, our method in this paper is suitable for the
pricing problems of interest rates based derivatives when the underlying implicit
forward rates follow the general class of continuous Ito processes.

In the valuation problems of financial contingent claims, it has been known
that we can rarely obtain the explicit formulae on solutions when the underlying
assets follow the general class of continuous Ito processes. This is particularly
evident for the contingent claims based on the term structure of interest rates be-
cause their payoff functions are usually complicated functionals of the underlying
asset prices and the term structure of interest rates must satisfy strong restric-
tions by the fundamental economic considerations. In order to cope with these
problems, two methods, called the partial differential equation (PDE) approach
and the Monte Carlo (MC) approach have been widely known among financial
economists and used for practical valuation problems. (See Hull (1993) for the
details of these methods.) The asymptotic expansion approach we are propos-
ing in this paper is different from these conventional methods. As we shall show
later in this paper, our method has several advantageous aspects over the existing
methods.

The asymptotic expansion approach in this paper is based on the key empiri-
cal observation on many asset prices including interest rates, that is, the observed
and estimated volatilities for financial asset prices may vary over time, but they
are not very large in comparison with the observed levels of asset prices. This
aspect of phenomena has been even true for the stock prices whose volatilities
are relatively large compared with other financial prices. It was this key ob-
servation why Kunitomo and Takahashi (1992) have developed the asymptotic
theory called Small Disturbance Asymptotics for solving the valuation problem
of average (or Asian) options for the foreign exchange rates when the volatility
parameter goes to zero. They have proposed to use the limiting distribution in
this asymptotic theory as the first order approximation to the exact distribution
of the payoff functions of average options when the underlying asset prices follow
the geometric Brownian motion. Although the approximations they proposed
have given relatively accurate numerical values in many cases, they are not com-
pletely satisfactory in some cases for practical purposes. For the same setting
of the valuation problems in Kunitomo and Takahashi (1992), Yoshida (1992)
has obtained some further results on average options when the undrelying asset
prices follow the geometric Brownian motion by using the asymptotic expansion



technique originally developed for some applications in statistics.

The main purpose of the present paper is to show that the asymptotic expan-
sion method in the small disturbance asymptotics can be effectively applicable for
the various valuation problems of contingent claims in financial economics when
the underlying asset prices follow the general class of continuous It6 processes. In
particular, we shall show that the asymptotic expansion approach is very simple,
but gives an unified method to the valuation problems of interest rates based con-
tingent claims. However, we shall point out that some economic considerations
on the theoretical restrictions on the structure of stochastic processes should be
indispensable when we apply the asymptotic expansion method to the valuation
problems of financial contingent claims. In the term structure problems, for in-
stance, we need the strong conditions on the form of drift functions because of the
no-arbitrage theory, which has been standard in financial economics. It implies
that the continuous stochastic processes for spot interest rates and forward rates
are not necessarily Markovian or diffusion processes in the usual sense.

Also as we shall explain in Appendix, our method is not an ad-hoc approxi-
mation method because it can be rigorously justified by the Malliavin-Watanabe
theory in stochastic analysis. However, we should mention that the spot and
forward interest rates are not necessarily Markovian and the existing asymp-
totic expansion methods by Watanabe (1987) and Yoshida (1992) in stochastic
analysis and statistics have been developed for the case of time homogeneous
Markovian processes. Hence we need to extend the existing results on the valid-
ity of the asymptotic expansion approach to certain extents. In this respect the
asymptotic expansion approach developed would be interesting for researchers in
stochastic analysis as well as financial economics.

Furthermore, as we shall illustrate in Section 4, the resulting formulae we
shall derive for the complicated contingent claims are numerically accurate in
many practical situations. Thus the asymptotic expansion approach would be
not only theoretically interesting, but also quite useful for researchers in financial
economics.

Tn Section 2, we formulate the valuation problem of the contingent claims
based on the term structure of interest rates. In Section 3, we shall explain
the asymptotic expansion approach for this problem and give some theoretical
results. Then, in Section 4, we shall show some numerical results on Average
Options for the interest rates as an illustrative example. Section 5 will summarize
our tesults and give concluding comments. Some mathematical details including
useful formulae and discussions of the validity of our method via the Malliavin-
Watanabe theory will be gathered in Section 6.



2 The Valuation Problem of Interest Rates Based
Contingent Claims

We consider a continuous time economy with a trading interval [0, T], where
T < 400 and it is complete in the proper economic sense. Let P(t,T) denote the
price of the discount bond at ¢ with the maturity date 7 (0 <t < T < T < +00).
We use the notational convention that P(7,7) = 1 at the maturity date t = T
for normalization. Let also P(t,T") be continuously differentiable with respect to
T and P(t,T) > 0for 0 <t <T < T. Then the instantaneous forward rate at s
for the future date t (0 < s <t < T) is defined by

dlog P(s,1)

(2.1) f(S,t) = ot

In the term structure model of interest rates we assume that a family of forward
rate processes {f(s,1)} for 0 < s <t < T follow the stochastic integral equation:

=500 + [ (ot [foitrw i)

g3

(2.2) .
+ (3050, 0, 0dB()
=1
where f(0,t) are non-random initial forward rates, {B;(v),1=1,--+,n} ate nin-

dependent Brownian motions, and {o7(f(v,?),v, t),i=1,---,n} are the volatility
functions. We assume that the initial forward rates are observable and fixed.

In the above formulation there is a strong form of restrictions on the drift
function on {f(s,t)}. This is because we shall use the arbitrage-free valuation
method of financial contingent claims based on the equivalent martingale measure,
which has been standard in financial economics. The restrictions in (2.2) we are
imposing in this formulation have been derived by Heath, Jarrow, and Morton
(1992). Let f(s,t) be continuous at s = ¢t for 0 <'s <t < T. Then the spot
interest rate at t can be defined by

(2.3) r(t) = f(t,t).

We now consider the contingent claims based on the term structure of interest
rates. There have been many interest rates based contingent claims developed
and traded in financial markets. Most of those contingent claims can be regarded
as functionals of bond prices with different maturities. Let {c;,5 = 1,-+-, m} be a
sequence of non-negative coupon payments and {7;,5 = 1,---, m} be a sequence
of payment periods satisfying the condition 0 < < W< <Tp<TH1

To }De more precise, the weight at the maturity date ¢,, should be interpreted as 1 + c;n,
where ¢, is the coupon rate at Ti,. This is because the principal of bond is redempted at the
maturity date Th,.



Then the price of the coupon bond with coupon payments {c;,j = 1,---, m}
at ¢ should be given by ?

(24) Pnz,{Tj},{c]'}(t) = Z CJP(i’T‘J)’

y=1

where {P(¢,T}),j = 1,---,m} are the prices of zero-coupon bonds with differ-
ent maturities. For illustrations we give two examples of interest rates based
contingent claims, which are important for practice in financial markets.

Example 1 : The payoff functions of options on the coupon bond with coupon
payments {c;, = 1,---,m} at {T},7 = 1, --,m} and the swaptions at the expiry
date T' (0 < T' < T,,) can be written as

Tt

(2.5) VO(T) = [P 2,40 (T) = K|
and

(T = | "

(2.6) VO(T) = [K — Poz1ey(D)]

where K is a fixed strike price and the max function is defined by [X]* =
max(X,0). V(T) and V(T) are the payoffs of the call options and put
options on the coupon bond, respectively.

Example 2 : The yield of a zero coupon bond at ¢ with the time to maturity
of 7 (0 <t <t+7<T,) years is given by

(2.7) () = [F(‘t,%?%’)f - 1] :1; |

Then the payoffs of the options on average interest rates are given by

(2.8) yO(T) = [—71; / " Lr@)dt - 1{} '
and
(2.9) V(T) = [K - % /0 ! Lf(t)dtr,

where K is a fixed strike price. V®(T) and V*(T) are the payoffs of the call
options and put options of average options on interest rates, respectively.

2If the following equality is not satisfied, there is an arbitrage opportunity in the economy.
We shall use the no-arbitrage condition in the economy, which has been standard in recent
financial economics. Here we also have implicitly assumed that there does neither exist any
default risk associated with bonds nor any transaction costs.



The valuation problem of a contingent claim can be simply defined as to find
its “fair” value at financial markets. Let V(T') be the payoff of a contingent
claim at the terminal period 7. Then the standard martingale theory in financial
economics predicts that the fair price of V(T') at time t (0 < ¢t < T') should be
given by

(2.10) V;(T) =E, [e—» LTr(s)d.sV(T) ,

where E, [-] stands for the conditional expectation operator given the information
available at ¢. When we do not impose the drift restrictions given by (2.2) for
the implicit forward rates processes, (2.10) should be regarded as the expectation
operation with respect to the equivalent martingale measure for the true forward
rates processes and we can obtain the same results reported in this paper. Since
this complicates our notations as well as explanations, we have directly imposed
the restrictions given by (2.2)  from the begining of our discussions for later
developments.

3 The Asymptotic Expansion Approach

There are two difficulties in the valuation problems of interest rates based con-
tingent claims. First, the payoff functions are usually non-linear functions of
functionals of coupon bonds with different maturities. More importantly, second,
the coupon bond prices are also complicated functionals of the instantaneous for-
ward rate processes. Therefore except some special cases we cannot obtain the
explicit formulae for the solutions in the valuations problems of interest rates
based contingent claims.

In order to develop a new asymptotic expansion approach, we first re-formulate
(2.2) and we assume that a family of the instantaneous forward rate processes
obey the stochastic integral equation:

(3.1)
wwmzfmwa-éf[

s n
Q

0w, 0),0,8) [ oD, ),0,9)dy| do

+ 6/05 Zn:ai(f(s)(v,t),v,t)dBi(v),

where 0 < e < land 0 < s <t < T < T. The volatility function 0:(f)(s,1),5,1)
depends not only on s and t, but also on f(")(s,_t) in the general case. Let f()(s,t)
be continuous at s =t for 0 < s < ¢ < T < T. Then the instantaneous interest

3This issue has been systematically investigated by Heath, Jarrow, and Morton (1992), for
instance. There have been other approaches to modelling the term structure of interest rates
as discussed in Hull (1993).



rate process can be defined by
(3.2) () = FO(,) .

We note that these equations on {r(*)(t)} and {f{*)(s,t)} can be obtained simply
by substituting eoi(f)(v,1),v,t) for o7 (f(v,1),v,1) in (2.2).

The asymptotic expansion approach we are proposing in this paper consists
of the following three steps. First, since we do not know the distribution of a
smooth functional of the future forward rate processes:

(3.3) g = U({fP 1),
we consider its stochastic expansion around the deterministic process
(3.4) Uy = U FOs,0})

when the volatility parameter ¢ goes to zero. Second, the formal asymptotic
expansion can be taken along the polynomial order of the volatility coefficients
e*(k = 1,2,---). Then we truncate the resulting stochastic expansion and take
the expectation in (2.10) given the information available at time ¢. In order to
implement this procedure, we first need to obtain the stochastic expansion of
the stochastic processes {f)(s,#)} and {r()(t)}. We shall make the following
assumptions:

Assumption I : The volatility functions {o;(f*)(s, 1), s, )} are non-negative,
bounded, Lipschitz continuous, and smooth in its first argument, and all deriva-
tives are bounded uniformly in e, where f{*)(s, t) are properly defined in (e, s,1, fe)(s, 1))
€ (0,1]x{0 < s <t < T} xR". The initial forward rates f(0,1) are also Lipschitz
continuous with respect to t.

Assumption II : For any 0 <t < T,

t n
(3.5) Y= / ZUEO)(U,t)Zd’U > 0,
0 ;=1
where
(3.6) Vv, 1) = 0, (f (v, 1), v,1)e=0-

The conditions we have made in Assumption I can exclude the possiblity of
explosions for the solution of (3.1) *. They are quite strong and could be relaxed
considerably, which may be interesting from the view of stochastic analysis. For
practical purposes, however, we can often use the truncation arguments as an

#For example, Morton (1989) has shown that there does not exist any meaningful solution
when the volatility function is proportional to the forward rate process.



example given by Heath, Jarrow, and Morton (1992). Assumption Il ensures
the key condition of non-degeneracy of the Malliavin-covariance in our problem,
which is essential for the validity of the asymptotic expansion approach as we
shall see in the following derivations. Under these assumptions we can get the
stochastic expansions of the forward rates and spot interest rates processes. The

outline of their derivations and their mathematical validity are given in Section
6.

Theorem 3.1 : Under Assumption I, the stochastic expansion of the instanta-
neous forward rate {f(s,1)} 1s given by

(3.7) fO(s,t) = £(0,8) + €A(s,t) + € B(s,1) + 0,(¢7)
as £ — 0. In particular, the spot rate process can be expanded as
(3.8) r&(t) = f(0,1) + eA(t,t) + €2 B(t, 1) + 0p(¢”).

The coefficients A(s,t) and B(s,t) in (3.7) and (3.8) are defined by

(3.9) A5, ) = [ 300, (0),

(10)  Bls,t)= [ 00, 0dv+ | S A(w, 19000, ) B(v),

where

(3.11) 5O (w,) = b(f) (v, 1), v, ) |e=0,
(0) — agi(fe(vat))v’t)

(3'12) 8Ui (vat) - 3f(5>(v,t) la:O;

and

(3.13) (O, t),vt) = i oi(f (v, 1), 1) /t oi(fOv, ), v,y)dy -

=1 v

In the above representations, the first terms of (3.7) and (3.8) are determin-
istic functions. The second term A(s,?) in (3.7) follows the normal distribu-
tion with zero mean and the variance ¥, which corresponds to the limit of the
Malliavin-covariance in the theory of Malliavin-Watanabe calculus when ¢ — 0.
The stochastic expansion method around the normal distribution has been stan-
dard in the statistical asymptotic theories.

The next step in the asymptotic expansion approach is to obtain the stochastic
expansions of the bond price processes and the discount factor. For this purpose,

8



we utilize the relation between the bond price processes and the implicit forward
rate processes:

(3.14) PO, T) = ezp [- l ! f(e)(t,u)du} .

Using (3.7), we immediately have a stochastic expansion of the bond price process

{P©(¢t,T)} as

(3.15) P, T) = %(—(%-%2 exp [—5 /tT Alt, u)du — € /tT B(t,u)du + op(sz)] ,

where P(0,7") and P(0,1) are the observable initial discount bond prices. Because
the coupon bond prices { {T Ve }} are linear combinations of the prices of zero-
coupon bonds, it has a stoch astic expansion as

(3.16)
P13 4e3(8) = Z ¢, P(O 5 ) exp [——5 /tTJ A(t, u)du — & /T] B(t, u)du + 0,,(52)}

t

™ P(0,T;) [

” du—e [ B(t,u)d
= Z JP(()t -—a/ A(t,u)u—a/t B(t, u)du

t

+€2—;- u Alt, u)a’u)z + op(ez)] ‘

5

By using a Fubini-type result

/tTA(t,u)du _ /tT [[)t:210§0)(?)’u)dBi(v)] Ju

= [ #Q0)dB)

where B(v) = (B;(v))is an n x 1 vector of standard (i.e. mutually independent)
Brownian motions and O'E?T) isalxmn vector

(3.18) () = { /tT (s, u)du} .

Since (3.17) is a linear combinations of {Bi(v)} with deterministic coefficients, it
follows a normal distribution. Also we have
(3.19)

/t " Bt wdu = ka(t,T) + /0 t [ A ' [ /O ’ 0—(0)(y,u)dB(v)] 00 (s, u)dB(s)| du,

, we can write

(3.17)

5We can use Lemma 4.1 of Ikeda and Watanabe (1989) under Assumption I as a generalized
Fubini-type theorem.



where o(®(v,u) = (O'EO)(U,U)) and 90V (s,u) = (8050)(3/, u)) are 1 x n vectors of
deterministic functions, and

(3.20) ki(t,T) = /t {/tT b(O)(fU,u)du] dv.

0

Hence we notice that (3.19) is a quadratic functional of n standard Brownian
motions. Similarly, by making use of (3.8), a stochastic expansion of the discount
factor process is given by

(3.21)
T T
e~ Jo "~ p(0, T)eap [—5L A(s, s)ds — 52/0 B(s, s)ds + o,(¢*)

= P(0,T) [l —c /OT A(s,s)ds — € /OT B(s,s)ds

+52% (/OTA(S, s)ds)z

The second term of the discount factor process can be expressed as
T T T g

/ A, t)di = / / o (v, t)dtd Bi(v),
0 0 v

= [ oP)dB),

+0,(e?).

(3.22)

0) .
where 0'%) is a 1 x n vector

T
(3.23) o = [ / (v, t)dt] .

Since (3.22) is also a linear combinations of {B;(v)} with deterministic coeffi-
cients, the second term of (3.21) follows a normal distribution. The third term of
(3.21) can be expressed as

(3.24) /OT B(t,t)dt::kQ(T)+/0T Uot [/0 a<°>(v,t)dB(u)] 9o O(s, t)dB(s)| dt,

where

(3.25) ko(T) = /

0

! UUT b(°>(u,t)dt] dv.

The third step in our approach is to obain the asymptotic expansion of the
discounted functional of the payoff function at the expiring date. We shall illus-
trate this procedure by using two examples we have mentioned to in Section 2.

10



By using (3.16) and (3.21), the asymptotic expansion of the discounted coupon
bond price minus the strike price is given by

© = s [p L (T — K
(3.26) g e [P 233,460 (1) = K]

= go+egi+e’gp+op(e?),
where the coefficients ¢; (¢ = 1,2,3) in (3.26) are given by

(3.27) go = ¢;P(0,T;) — KP(0,T),

« T *

(3.28) g = /0 oy, (v)dB(v),

(3.29) o, (v)= —-gocr(TO) ch (0,7} 0'(0) ()
and

(3.30)

g2 = g0{Jd A(s,9)ds} +{Jo A(s,s)ds} }_: ¢; P(0, T;){ /T AT, wydu}
+ ilv'ij: P(0, TJ){/TT] A(T, u)du}2 ~ go /OT B(s, s)ds

- écj OT){/ B(T, u)du}.

What we really need is not to derive the stochastic expansion of the random
variable ¢{*), but to obtain the asymptotic expansion of its density function. For
this purpose, we consider the characteristic function of the normalized random
variable :

(3.31) XP = (9(5 — go)-

Then the characteristic function of X TE can be formally expanded as

px(t) = E [6”"(5“)}

= E[e'9 (1 + eitE[g:|g1])] + ole),

(3.32)

where E[g,|g1] is the conditional expectation operator. By using the inversion
formula in Section 6 (i.e. Lemma 6.2), we have the following result. The validity
of this procedure will be discussed in Section 6.3.

11



Theorem 3.2 : Under Assumptions I and II, the density function of ng)
e — 0 can be expressed as

(3.33) fx(z) = ¢s(z) + ¢ [—;—mg’ + (% — 2c)x] ¢s(z) + O(e?),

where ¢x(z) stands for the normal density function with zero mean and variance

(3.34) = /OT o7 (o (t)dt

provided that & > 0. The coefficients ¢ and f in (5.83) are determined by the
integral equation

(3.35) E ]9 = 2] = cz® + f.

The asymptotic variance ¥ is the limit of the Malliavin-covariance when e — 0
for the call options of the coupon bond and the swaptions whose payoff function is
given by (2.5). The explicit formulae of coeflicients in (3.33) are quite complicated
in this problem. By using Lemma 6.1 in Section 6, we can show that ¢ and f for
the call options of the coupon bond and swaptions in Example 1 are given by

(3.36)
o = 32| Pwe; <v)dvr
+ 5| P Seron) | [ o 00w
T DICLXH I aéfiz«,(z))a’;](v)’dvr
= &[T o000 ([ 00,005 (/0015
- aeron) |[7| [ e @ar e o e, o) i 2




(3.37)
f o=
+
.+.
+
+

—goka(T Zc, (0, T)) kA (T, T5)

Lgo | T (o N go | [T (o), \ (03, vt

582 [/0 o (v)a?, (v) dv] +2 UO @) (v) dv
ch (0 T)/ (0) a% (v) dv

] O (N () | | 0) o
) {/0 oy’ (v)o (v) d’u} Z:ICJP(O,TJ) [/0 o, (v)og, (v) dv
11 P(0,T)) 0 (v)o* (v)'d 2

22 Z € U"T T, v

l m
52 c; P(0,T})
7=1

/ o0, (Vo7 (v } %—ch [ [ a;(v)a%,T,.(v)'dv]
% [j{JT [/{: o (s )30(0)(3 t) (/ (0)(11,15)0';1(0)'611))(13] clt]

/T" [ /OT o7, (5)90 (s, u)'( / (‘”(v,U)a;(v)'d”)ds} d“} '

JT

Also we can treat Example 2 in Section 2 by the same metod. After some
tedious calculations for the call options of the average interest rates whose payoff
function is given by (2.8), we have a stchastic expansion as

(3.38)

e - (9 s
g() = € Iy ()d(l)[fo P(tt+r)dt k]

= go+egr +€ga + 0,(e?),

where k = (1+ K7)T. In this stochastic expansion of the random variable g(*),
the coefficients g; (i = 1,2, 3) are given by

(3.39)

(3.40)

and

OT)

Jo =

/ P0t+r)dt_k}’

5= [ o5, (dBw)

13



(3.41)
1P(0,T) P(0,1)

(0) ?
= dB } dt
g2 ) Tr / P(O t + 7_ / tt+T(U) ('U)

O R0 [t o] [/ Pionmte]

+ ta[[ PwaBw)

O T)/ P](:;((t)-i)’r) Utm B(t,u)du] dt — go UOT B(t,t)dt} ,

where we have used the notations

(3.42)
. OT oﬂ © POF P(0,t) (0)
ag;(v) P 0 t4+ 7 tt+T(U) P 0 t+7,)dt k or (U))
t+r
oDentv) = [ a?(w)du},
and

oV (v) =

Then the asymptotic variance ¥ in (3.33) is given by the formula of (3.34) for Ex-
ample 2, where we use (3.42) instead of (3.29). By a tedious but straightforward
calculation in present case, we have

T
/ (v, u)du] .

1

(3.43)

_ 11 P0,T) T P(0,1) [ t (0 *
= 222 T’T 0 P(O t"i"‘T) / t,t+‘r(v)agl(v)

1

c

2
dv} dt

- B L [ oty ] | [ ooy, 00
v L[ e wyal
+ m'f;) / p(J;(?j)T M”T [/Otd’;l(s)ﬁo'(o)(s,u)'( [ o (v, e, (v do)ds | du] dt

-2 / [ 3,()0095,) ([ 0w, 1)o7, (o) )] o,

14



and
(3.44)

+

_1P(0,7) 1 P(0,1) { ‘o ' ]2
PO . ;
2 Tr % Pwt4~ﬂ /‘”wﬂ(ﬂﬂmﬁﬂdv t

1 P(0,T) [ ©) © (3 }

— dt

5 Tr / Pl 0 t+’r / tt+r(U)0'tt+r(”) dv

P(O,T)1 (T P(0,1) N0 ©)(, \' } © '
—r 5/, MP(O T [/0 o i (V)0 (v) dv| dt / 7 (v )dgl(v) dv

P(O T) P(0,1) © o
/ POt +7) /6 tt+r(U)0’T (v) dv] dt

P(; , 1) VT ky(t, 1+ T)ﬁ%%dt] ~ gok1(T)

T(lg) / P(O ; + T) o Uot [0';,(3)80(0)(3,@/([: 0(0)(v,u)0'31(v)ldv)ds] du} dt

% 0 [/Ot 021(5)60(0)(3’73)1(/03 0(0)(U,t)o-’;l(v)’dv)d3} dt.

The last step in our method is to derive the asymptotic expansion of the con-
ditional expectations of the discounted terminal payoff based on the asymptotic
expansion of the exact density function we have obtained in Theorem 3.2. For
this purpose, we re-write the payoff function in (2.5) and (2.7) as

(3.45)
where

(3.46)

v(r)=c [y + x5

@ 1

Y —do -
5

In order to evaluate the terminal payoff function of contingent claims at the initial
period, we need the additional assumption:
Assumption III : There exists a constant y such that

(3.47)

v =y +0(e?).

The above condition means that we are considering the situation where the
strike price is near go ®. Hence we have omitted & of K, and will use the notation

6This means that we are considering the valuation of contingent claim when the strike price
is near its present value implied by the initial forward rates observed in financial markets.
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K as before. The condition given by (3.47) can be relaxed to a certain extent,
but then there would be some more complications in the following analyses. In
Example 1 and Example 2, we should take

1|
(3.48) Y =~ {L ¢, P(0,T;) — K P(0, T)} ,
ol ot
and
1P, T) [ /T P(0,¢)
4 (e) _— ? — 2 dt -k s
(3.49) Y e Tr [0 PO, i+ 1)

respectively.

Theorem 3.3 : Under Assumptions III, and III, the asymptotic expansions of
Vo(T) are given by

+00
Vo(T) = e/ (y + 2)ps(z)dz
(3.50) -

+o0
+ 52] (cz® + f)ps(z)de + o(e?),

-y

provided that ¥ > 0. The coefficients c and f are given as the same as Theorem 3.2.

We note that all terms in the right hand side of (3.50) are some known func-
tions of the distribution function and the density function of N (0, ). For in-
stance, we have the relation

(3.51) [ 2 n(e)da = DR(37%) — yEds(0)

where ®(-) is the distribution function of the standard normal distribution. This
and similar formulae are useful for the numerical implementation.

4 Numerical Examples

In this section, we will present some numerical results to illustrate the method
introduced in Section 3. For this purpose, we use the pricing problem of average
options of interest rates in the term structure model explained in Section 2.

For the simplicity of exposition, we assume that the instantaneous forward
rates processes {f(s,1)} follow the stochastic differential equation:

(4.1) df(s,t) = o*(t — s)ds + odB(s).

For the expository purpose we assume that the volatility function o(s, ) is con-
stant and we impose the condition on the drift term by the no-arbitrage condition.
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This model corresponds to a continuous analogue of the discrete model by Ho
and Lee (1986), which has been used in some studies. In this case it is apparent
that the stochastic process of the zero coupon bond follows the geometric Brow-
nian motion. Although the forward rates process is very simple, it has not been
possible to obtain the explicit formula for the average interest rate options.

Tables 1-3 show the numerical values of call options on average interest rates
for the case when the volatility function for the instantaneous forward rates is
constant over time. The time to maturity of the underlying interest rates is one
year and hence the average is taken over interest rates whose maturity are one
year (r = 1). For simplicity, the present term structrure at t = 0 is assumed
to be flat of 5% per year and the volatility parameter o is assumed to be 150
basis point per year (o = 0.015), which may be a reasonable level for practical
purpose. We use the approximations based on the asymptotic expansions in
Section 3 by setting o = e. We have given the results for the out-of-the money
case (K = 5.5% for Table 1 and K = 6% for Tables 2 and 3), at-the-money
case (K = 5% for Table 1-3), and in-the-money case (K = 4.5% for Table 1
and K = 4% for Tables 2 and 3). For the comparative purposes, the numerical
values by Monte Carlo simulations and by the finite difference method in the
PDE approach have been given. The number of replication in our Monte Calro
simulations is 500,000 and we expect that the numerical values by Monte Carlo
method are very accurate. The values of the finite difference method in tables are
based on solving the PDE numerically for the average options of interest rates
processes under the assumption that they follow (4.1). This method has been
developed by Takahashi (1995).

Since the number of replications of our Monte Carlo simulations is large, we
expect that they give the bench mark values for the average options on the interest
rates. From these tables we can find that the differences in the option values by
the asymptotic expansion approach and the Monte Carlo approach are very small
and less than 1 percent of the underlying price levels in most cases. Also the
differences in the option values by the asymptotic expansion approach and the
finite difference approach are not very large. By these numerical comparisons the
values of our approximations in our tables are reliable in two digits at least. Thus
we can tentatively conclude that the approximation formulae we have obtained
in Section 3 are very accurate and useful for practical purposes.

5 Concluding Remarks

This paper proposes a new methodology for the valuation problems of financial
contingent claims when the underlying asset prices follow the general class of con-
tinuous [t6 processes. Our method called the asymptotic expansions approach
can be applicable to a wide range of valuation problems including complicated
contingent claims associated with the term structure of interest rates. We have
illustrated our methdology by deriving some useful formulae for the swaptions
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and average (or Asian) options for interest rates. Also we have given an evidence
that the resulting formulae are numerically accurate enough for practical applica-
tions. Since the asymptotic expansion approach can be justified rigorously by the
Malliavin-Watanabe calculus in stochastic analysis, it is not an ad-hoc method to
give numerical approximations. The asymptotic expansions explained in Section
3 can be made up to any order of precision O(e*)(k = 1,2, -} in principle.

There are several advantageous aspects in our method over the PDE method
and the Monte Carlo method, which have been extensively used in practical ap-
plications. First, our method is applicable in an unified manner to the pricing
problems of various types of functionals of asset prices in the economy governed
by the general class of continuous [t processes. This problem has been known
to be difficult by using existing methods. Second, our method is computation-
ally efficient in comarison with other methods since it is very fast to obtain the
numerical results by PC. Third, the distributions of the underlying assets and
their functionals at any date can be evaluated by our method. T his aspect is
quite useful in various kinds of simulations. For instance, the pricing formulae
derived by our method can be used as control variates to improve the efficiency
of Monte Carlo simulations and PDE method. The PDE method, on the other
hand, requires a tough task in its implementation especially when the underlying
assets follow multi-factor processes including the term structure model of interest
rates. Also the Monte Carlo simulations are often quite time consuming in this
case. Takahashi (1995) has discussed some extensions of our method for the pric-
ing problem of derivatives in more complicated multi-countries and multi-factors
situations.

Finally, we should mention to the fact that the asymptotic expansion approach
in this paper can give a powerful and useful tool not only to the valuation problem
of contingent claims associated with the term structure of interest rates, but also
to other problems in financial economics. Our method usually gives some explicit
formulae which may shed some new light on the solutions of problems when the
underlying asset prices follow a general class of continuous Ité processes. Hence
we do not need to use simple stochastic processes among the class of diffusion or
Markovian processes in the usual sense only because the resulting solutions are
manageable. We suspect that there have been some works in financial economics,
which have used simple but unreasonable stochastic processes mainly because the
resulting analyses are mathematically convenient.

6 Mathematical Appendix

In this appendix, we gather some mathematical details which we have omitted in
the previous sections. We also discuss the validity of our method by the use of
the Malliavin-Watanabe theory in stochastic analysis.
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6.1 Two Useful Lemmas

We first give some formulae on the conditional expectation operations as Lemma
6.1, which is a slight generalization of Lemma 5.7 of Yoshida (1992). The proof
is a direct result of calculation by making use of the Gaussianity of continuous
processes.

Lemma 6.1 : Let B(t) be an n x 1 vector of independent Brownian motions
and = be a k dimensional vector. Let also q,(t) be an B* — RFX™ pon-stochastic
function and

(61 7= [ a@a0d

is a positive definite matriz. (i) Suppose gy(u) and g,(u) be R* — R™*™ non-
stochastic functions. Then for 0 < s <t < T

o[/ [ aeBe)] a0 [ 080 = :
(6.2)

= trace ‘/: ql(s)qs(s)’(/os g,(v)q, (u) du)ds 3 [mw' - L‘] z .

(i1) Suppose g (u) and gs(u) be R' — R" non-stochastic functions. Then for
0<s<t<T

(6.3)
o[ aaamo)] [ aramo] | [ s =)

_ [: g, (w)gs(u) du + M; qz(u)ql(u)'du] 37 [ - 2}] 3! Uot ql(v)%(v)’d”] :

The second lemma is on the inversion formulae of the characteristic functions
of some random variables. The proof is also a direct result of calculation, which
has been given in Fujikoshi et.al. (1982), for instance.

Lemma 6.2 : Suppose that ® follows an n-dimensional normal distribution with
mean o and variance-covariance matriz X. The density function of ® is denoted
by $5(-). Then for any polynomial functions g(-) and h(+) ,

o) e [oeete]] =g @)
where
(6.5) F [h(--z’t)E [g(:e)eitiq’H<£> - (5%7;)“ / ne—it'ih(--zt)m [g(a:)eit’z} dt,

and the expectation operation B[] is taken over & € R", and F [~]<£> denotes
F1[] being evaluated at §.
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6.2 A Sketch of Derivations of Asymptotic Expansions

We give a brief sketch of our derivations used in Section 3. The following deriva-
tions are formal and the validity of our method will be discussed in the next
subsection. From (3.1), the deterministic process of {f)(s,1)} follows when
e — 0 is given by

(6.6) fO(s,1) = lim f(s,£) = £(0,) -
Then we define the random variables A(s,t) and B(s,t) by
09,
(6.7) A(s,t) = e |e=0,
and
102 f)(s,t)
(68) B(S,t) = —iT‘E:O .

By a direct calculation of differentiation, we have

Als 1) = /0 [Zab(f(e)(v,t),v,t)+628b(f(6)(<;);t)’vjt)] dv

(6.9) L[S [o,-(f@(v,t),v,t)+sa°i(f “;;“’”v“} dBi)

- [ }_: O, £)dBi(v) .

Similarly, we have

(6.10)
s OO, ),0,8) . & MO0, ,0)
- © LD b0 S ——
B(S,t) /0 [b(f (U’t)av7t)+25 85 - 2 8326 5=0dv
e [oaf Dl 1 a0,
t /0 z—;{ Oe Ta° d% =0 B

= [4000do+ [ 300w, AW, )IB)
0 0 =1

Hence we have obtained the stochastic differential equations which {A(s,¢)} and
{B(s,t)} must satisfy.

Next, we substitute {f(¢,u)} in (3.14) and use the fact that {P)(s,t)} are
non-stochastic functions at s = 0, which lead to (3.15) and (3.16). The stochastic
expansion of the discounted factor can be obtained by using {r®)(t)} instead
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of {f®(s,t)}. In (3.17), (3.19), (3.22), and (3.24), we can utilize the Fubini-
type theorern on the exchanges of integration operations 7. By expanding the
exponential functions, we have

T T
PO, T) = ‘;-((%%l n - E/t A(t,u)dU*egft B(t, u)du
(6.11) ’
T
+ ezi{/ Alt, u)du}Q] + 0,(e?) ,
2 ¢
‘and
*fT (&)(s)d T 2 [T
el 0@ pO,T)1 — e [ At~ e | Bt
0
¢ 2 Jo o o\
respectively.

Finally, we multiply the stochastic expansions of the discounted factor and
the terminal payoff function. Then by rearranging each term in the resulting
stochastic expansions, we can obtain the form of (3.26) and (3.38) in Example 1
and Example 2.

6.3 Validity of the Asymptotic Expansion Approach

The validity of the asymptotic expansion approach in this paper can be given
along the line based on the remarkable work by Watanabe (1987) on the Malliavin
calculus in stochastic analysis. Yoshida (1992) has utilized the results and method
originally developed by Watanabe (1987) and given some useful results on the
validity of the asymptotic expansions of some functionals on continuous time
homogenous diffusions processes. The validity of our method can be obtained
by the similar arguments used by Yoshida (1992) and Chapter V of Tkeda and
Watanabe (1989) with substantial modifications. This is mainly because the
continuous stochastic processes defined by (3.1) for spot interest rates and forward
rates are not necessarily Markovian in the usual sense.

Since the rigorous proofs of our claims in this section can be quite lengthy
but most parts are quite straightforward extensions of the existing results in
stochastic analysis, we shall only give their rough sketch below. Our arguments
on the validity of the asymptotic expansion approach for interest rates based
contingent claims consist of four steps. The main aim in the following steps
will be to check the non-degeneracy condition of the Malliavin-covariance in our
situation.

"See Lemma 4.1 of Ikeda and Watanabe (1989).

21



[Step 1] : First, we shall prepare some notations. For this purpose, we shall
freely use the notations by Tkeda and Watanabe (1989) as a standard textbook.
We shall only discuss the validity of the asymptotic expansion approach based on
the one-dimensional Wiener space without loss of generality. We only need more
complicated notations in the general case. (See Ikeda and Watanabe (1989) for
the details.) Let (W, P) be the 1—dimensional Wiener space and let H be the
Cameron-Martin subspace of W endowed with the norm

. T . 2
(6.13) |h|H=A et

for h € H. The L,(R)—norm of R—valued Wiener functional g for any s € R,
and p € (1,00) is defined by

(6.14) lgllps = (I = £)"gll;

where £ is the Ornstein-Uhlenbeck operator in the standard stochastic analysis.
An R—valued function g : W +— R is called an R~—valued polynomial func-
tional if ¢ = 27, p([R1](B), -+, [h](B))ei, where k,m € ZY h; € Hye, € R,
pi(z1, -+, z)) are polynomials and

B)(B) = | hedBO)

for h € H. Let P(R) denote the totality of R—valued polynomials on the Wiener
space (W, P). The Banach space D,( R) is the completion of P(R) with respect to
||llp,.- The dual space of D;(R)is D_*(R), wheres € B,p > 1, and 1/p+1/¢ =1
The space D®(R) = My>0 Micpctoo Dy(R) is the set of Wiener test functionals
and D7 (R) = U,s0 Nicptoo D *(R) is aspace of generalized Wiener function-

als. For F' € P(R) and h € H, the derivative of F in the direction of h is defined
by

d
(6.15) < Dy F(B),e >= = < F(B+¢h),e> |.=0
fore € R and DF € P(H ® R) is called the H—derivative of F. It is known that
the norm || - ||,s is equivalent to the norm 3 j_q |1 D¥ - ],

For ¥ € D*(R), we can define the Malliavin-covariance by

(6.16) o(F) =< DF(B),DF(B) > .

[Step 2] : Weset n=1and ¢ = 1in (3.1) in Step 2. The starting point of
our discussion is the result by Morton (1989) on the existence and uniqueness of
the solution of the stochastic integral equation (3.1) for forward rate processes.
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Theorem 6.1 : Under Assumption I, there ezists a jointly continuous process
{f(s,t),0 < s < t < T} satisfying (3.1) with ¢ = 1. There 1s at most one
solution of (3.1) with e = 1.

We shall consider the H —derivatives of the forward rate processes {/®)(s,t)}.
For any h € H, we successively define a sequence of random variables {£M(s,1)}
by the integral equation:

(6.17) ,
gD (s 1) = /03 [3g(f(1)(v,t))v,t)/ o(fP(v,y), v, y)dyE(”)('u,t)} dv
+ [ [a(j“)(v t) / 9o (f (v, ), v, 9)e™ (v, y)dy]

b [0l O(w,0,0,0670,0)dB()

(D
+ /Oa(f (v,1),v,t)hodv

where the initial condition is given by £(s,#) = 0. Then we have the next result
by using the standard method in stochastic analysis.

Lemma 6.3 : Foranyp>1and 0<s <t < T,

(6.18) E[je™(s,t)I"] < o0,

and as n — ©o

(6.19) E[ sup IE(”“)(S,t) — f(")(s,t)lz] — 0

0<s<i<T
Proof of Lemma 6.3: [i] We use the induction argument for n. We have
(6.18) when n = 1 because ¢(-) is bounded and h, is a square-integrable function
in (6.17). Suppose (6.18) hold for n = m. Then there exist positive constants
M;(i = 1,---,4) such that
(6.20)
€m0, < My [ 16w, 0)Pdv + M| s | [ e naB)r
s i s .
+Ms [ [ 16w, ) Pdyds + Ml [ hufPdopl?
0 Ju 0

By a martingale inequality (Theorem I11-3.1 of Ikeda and Watanabe (1989)), the
expectation of the second term on the right hand side of (6.20) is less than

621 ME[[ e 0wl < M [ B w0l
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where M, and M, are positive constants. Because h, is square-integrable, we
have (6.18) when n=m + 1.
[ii] From (6.17), there exist positive constants Mi(i = 5,6 ,7) such that for
0<s<t,
(6.22)
640 (s,0) = €95, 0P < Ml [ 16(0,1) = €070 o, )l
0

$ t
+ M [ [ 1E w1 - €0, nldyd]
+ M'?[/os 50’(f(1)('u,t)) U’t)ig(n)(v)t) - g(n—l)(v’ t)|dB(?))]z
3
= Y10,
1=1
where we have defined I{™(s,) by the last equality. By using the Cauchy-

Schwartz inequality,

(623)  BE[sup I(w0)] < Mss [ Bl (w,0) = €0 7(w, 1)l
0<uls

By repeating the above argument to the second term of (6.22), we have

1) < Mou [T 1670,5) = €7D0, y)ldydv

(6.24) Y
< Mout [* (1™ (,9) = €07D(v, ) Pdudy
0 v
Then
(n) ~$ t
(6.25)  Elsup (w0 < Mest [ [ Bl (w,9) — €70, ) ldyelv
0<u<s 0 Ju

For the third therm of (6.22), we have

(6.26) E[ sup I. M) < M, / E[E™ (v, 1) — €7D (, 1) *]dv

0<u<s

because of the boundedness of do(-), where M is a positive constant. By using
(6.24), (6.25), and (6.26), we have

(6.27)
Blaup €79 0) ~ € 0F) < My ([ BlLsup 16700 =€, 0o
0<uls 0 0<v<u

b [ PLaup IE0,0) €0, )Pl

0<v<u
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where Mj is a positive constant. By defining a sequence of {u(™)(s,t)} by

u("“)(s,t) = E[ sup |€(n+1)(u,t) — 5(")(% t)|2] )

0<u<s

we have the relation

s t
(6.28) U5, 1) < Mo /0 [ / U, y)dy + u™ (u, )] du

JUu

where My is a positive constant. If we have an inequality

(6.29) WP (s,1) <

1 7z+1

we can show (6.19) as n — +oo. We use the induction argument for n > 1. When
n = 1, there exists a positive constant My such that

uB(s,t) = E[sup [V (u,t) — O(u, 1))
0<u<s

(630) = E[ sup i sg(f(l)(u,t),u,t)jzvduiz]
0<u<s JO
S Mg(l + t)S

because o(+) is bounded and h, is square- integrable. Suppose (6.29) hold for
n = m. Then

s t
umtD(s, 1) < My / [ / u™(u, y)dy + ut™(u, t)]du

6.31 < Mg M"" ¢+ —«dy+ Mt + 1)™—]du
ml
+1 4 s
< o+ )T
S M+ )T T

(QED)
Because of (6.19), we have

> P{ sup (600 t) - €7, 1)] > -

n—1  0Ls<i<T

§;21-4M9(T+1) o) < +oo .

(6.32)

Then by the Borel-Cantelli lemma, the sequence of random variables {£(*)(s,1)}
converges uniformly on 0 < s < ¢t < T. Hence we can establish the existence
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of the H—derivative of f(*)(s, ), which is given by the solution of the stochastic
integral equation:

(6.33)
Daf(s,t) = [ [00( V1), 0,0) [ o7V (o), v, 1)y DS (e 1) o

+ [ otD0,0,00 [ 004D, 0), 0,00, )dy| dv
+ [ 00 (D0,0),0,0)DufO (o, 1)dB()
+ /OS a(f(l)(v,t),v,t)i.zvdv .

Next, we examine the existence of higer order moments of Dy, fY(s,1) satisfying
(6.33). To do this, we prepare the following inequality.

Lemma 6.4 : Suppose for ko > 0,k > 0, Ay >0 and 0 < s <t <7, a function
un(s,t) satisfies (1) 0 < un(s,t) < Ay and (i1)

s s 4
(6.34) uy(s,t) < ko+k; [/0 uy(v,t)dv +/0 / uy (v, y)dydv
Then
(6.35) un(s,t) < koeM I+

Proof of Lemma 6.4: By substituting (i) into the right hand side of (6.34),

we have

K s i
un(s,t) < ko+ Anky [j{, ds+/0 / dydv]

< kg+ Anki(1+1)s .

(6.36)

By repeating the substitution of (6.36) into the right hand side of (3.34), we have

IE
fs-a

(6.37) un(s,t) < ko [k (14 1)]* + Ak (14 t)s]™*

1
(n+1)!
Then we have (3.35) by taking n — +oco. (QED)

-~

!
k=0 """

In order to use Lemma 6.4, we consider the truncated random variable

(6.38) Cn(s,t) = [Duf D (s, )] In(s,t)
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where Iy(s,t) = 1if

SUPo<u<s v<y<t|th(1)(v7 y)| é N

_—lam VY

and Iy(s,t) = 0 otherwise. By using the boundedness conditions in Assumption
I and A, being square-integrable, we can show that there exist positive constants

M;(i = 10,---,13) such that

ICw(s, )P < MlO/OS'CN(U,t”de-}-MMI/: (v, 1)dB(w)P
(6.39) + Mg Ls /vt |Cn (v, y)[Pdydv + M| AS U(v,t)h,,dv]l’ .
= 30,

where we have defined J¥(s,¢)(: = 1,-+-,4) by the last equality. By using a
martingale inequality (Theorem I1I-3.1 of Tkeda- Watanabe (1989)), we have

E[J¥(s,t)] < Ml'lE[/Os | (v, ) 2du]P/?
(6.40)

< MUE([ on(v, O],

where M, and M; are positive constants. Also by the Cauchy-Schwartz inequal-
ity, we have

(6.41) T (5,0 < Ml [ o(F D0, 1), 0,87 dv [ o fPduprt?,
4] 0

which is bounded because o(+) is bounded and A, is square-integrable. If we set
un(s,t) = E[|(n(s,t)}?], then we can directly apply Lemma 6.4. By taking the
limit of the expectation function uy(s,t) as N — oo, we have the following result.

Lemma 6.5 : For any p > 1,
(6.42) E[| Dy fV(s,)|P] < +o0,

By this lemma and the equivalence of two norms stated in Step 1, we can
establish that

(6.43) FV(5,t) € NicpesooDE(R) .
Then by repeating the above procedure, we can derive the higher order H —derivatives

of fM(s,t). Hence we can obtain the following result.
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Theorem 6.2 : Suppose Assumption I in Section 3 hold for the forward rate
processes. Then for 0 < s <t <T

(6.44) fV(s,t) € D*(R) .

[Step 3] : Let a stochastic process {Y©)(s,1),0 < s <t < T} be the solution
of the stochastic integral equation:

(6.45)
yOen=1 + & [ [0 900,00 [ 07O v),v9)dy] YO, )do
+oe /0 " 90 (F O (v,1), v, 1)Y (v, 1)dB(v) .

Since the coefficients of Y(*)(s,t) on the right hand side of (6.45) are bounded by
Assumption I, we can obtain the next result.

Lemma 6.6 : Forany 1 <p < +00,0<e<1 and0<s <t <T,

(6.46) E[Y®(s,8)]7] + E[[Y )7 (s,)[P] < 400 .

Proof of Lemma 6.6: We define a sequence of random variables {Y,{*)(s,?)}
by
(6.47)

Y0 =1 + & [ [os(O0,0,00 [ a(0,0),0.1)d8] YO0, e
+ e [[0o(f 90,1, 0,0)Y 0, )dB()

where the initial condition is given by Y{#(s,t) = 1. Then by the same argument
as the proof of Lemma 6.3, we have

(6.48) E[[Y®)(s,1)]F] < o0,
and as n — oo

(6.49) Bl sup [V (5,8) =Y (s,1)P] = 0.

Hence we can establish the existence of the random variables {Y (*)(s, t)} satisfying
(6.45). Then by the same argument as (6.38)-(6.41), we have

(6.50) E[|Y®)(s,1)]"] < o0
for any p > 1. Let Z(9)(s,t) = Y(9)71(s, ). Then we can show that

(6.51) d[Z)(s,t)Y ) (s,1)] = 0
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and

(6.52)
Z(e)(s,t) =1 - ezfo [80(f(8)(v,t),v,t)/v a(f(e)(v,y),v, y)dy] fo)(v,t)dv

- e[)s 8o (fO(v,1),v,8) 2 (v,1)dB(v)

by using [té’s Lemma and Z()(0,¢) = 1. Hence by the similar argument as on
Y{€)(s,t), we can establish

(6.53) E[|Z9(s,t)]P] < o0
for any p > 1. (QED)

Now we consider the asymptotic behavior of a functional
, 1
(6.54) FO(s,t) = =[f(s,1) — £O(0,1)]
€

as ¢ — 0. By using the stochastic process {Y)(s,t)}, the H—derivative of
F)(s,t) can be represented as

(6.55) DpF)(s,t) = / Y E(s, 1) YO (0, 4)C (v, B)dv
0

where

C(E)(v7t) = g(f(e)(’U’t)’U}t)h'U +€U(f(e)(v)t)?v)t)

(6.56) )
x [ 00(r v, ), 1,9) Daf v, )y
Let
(6.57) a(s,8) = YO 5,7 70, )00, 1),
and
(6.58)

Os,t) = ¢ [ Y s, OO (0,00 (S (w,1),v,1)
0

8 /vt 8 (f(v,y),v, y) Dn f (v, y)dy|*dv

+ c/os |Y(e)(5,t)Y(e)—l(fu,t)cr(f(e)(v,t)’ v, t) — U(f(o)(v,t),’u,t)[zdv .

Then the condition in Assumption II in Section 3 is equivalent to the non-
degeneracy condition:

(6.59) 5, = / a® (v, 1) dv > 0
0

because Y O(v,t) = 1 for 0 < v < s < ¢. The next lemma shows that the
truncation by n{*)(s,t) is negligible.
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Lemma 6.7 : For0< s <t<T and anyn > 1,

1
(6.60) lim e P{|n')(s,t)| > -2—} =0.

Proof of Lemma 6.7: We re-write (6.58) as n{*(s,t) = n§‘> + nﬁ;"). By using
Assumption I, Lemma 6.5, and the Markov inequality, it is straightforward to
show that for any p > 1 and ¢; > 0 there exists a positive constant c; such that

(6.61) P{n'®| > c1} < cpe™ .

By the Lipschitz continuity of the volatility function o(:), there exist positive
constants M4 and My such that

(6:62)  [ni”| < Mg f(s,1) = fO(0, )] + Mus|Y (s, )Y O™ (v, 8) = 1] .

Then by Lemma 10.5 of Ikeda and Watanabe (1989), for a positive ¢z and suffi-
ciently small € > 0, there exist positive constants ¢4 and cs such that

(663)  P{ sup_|f(s,1) = fO(0,6)] > es} < cacap(—cse™) .
0<s<t<T

For the second term of the right hand side of (6.62) for n3, we re-write

(6.64) nsy = MisY (v, )Y (s, 1) = YO(v,0)]

where

(6.65)
s t
YO(s,0) = YO, 1) = & [ [00(5O 0w 0),0,0) [ (7w ), m,u)dy] YO )
+oe / " 00 (£ (u, £), u, )Y O (u, 1) dB(u) |

Then by Lemma 6.6, for any p > 1 and ¢ > 0 there exists a positive constant c;
such that
(6.66) P{nS| > c} < ere? .
By using (6.61), (6.63), and (6.66), we have (6.60). (QED)

By modifying the method developed by Yoshida (1992) for the p-esent case,

we have the key result on the validity of the asymptotic expansior approach in
this paper.



Theorem 6.3 : Under Assumptions I and II in Section 3, the Malliavin-covariance
o(F®) of F© is uniformly non-degenerate in the sense that there erists co > 0
such that for any ¢ > ¢y and any p > 1

(6.67) sup E[I(|n%9)] < 1)o(FINY ] < o0,
where I(-) is the indicator function.

Hence we have obtained a truncated version of the non-degeneracy condition
of the Malliavin-covariance for the spot interest rates and forward rates processes,
which are the solutions of the stochastic integral equation (3.1). The rest of our
arguments for the asymptotic expansion approach is based on Theorem 4.1 of
Yoshida (1992), which is an extension of Theorem 2.3 of Watanabe (1987) because
it gives the validity of the asymptotic expansion of the distribution function of
functionals with truncation under the non-degenacy condition on the Malliavin-
covariance given by (6.67). Let 1/) : R — R be a smooth function such that
0 < (z) < 1,9(z) = 1for |z] < 3, and ¢(z) = 0 for |z| > 1. Then the composite
functlonal YN (F©) is Well deﬁned for any A € B in the sense that it is in

D", where B is the Borel o—field in R and I4(-) is the indicator function. By
using The01em 6.3, lemmas in this section, and Theorem 4.1 of Yoshida (1992),

it has a proper asymptotic expansion as € — 0 uniformly in D™ . Then we have
a proper asymptotic expansion for the density function of our interest by taking
the expectation operations.

Also it is straightforward to obtain the similar non-degeneracy conditions as
¥ > 0 for the discounted coupon bond price process and the average interest rate
process as we have stated in Theorem 3.2 of Section 3.

[Step 4] : Finally, we should mention that the inversion technique we have
used is different from the one used by Yoshida (1992). He has used the Schwartz’s
type distribution theory for the generalized Wiener functionals while our method
is based on the simple inversion technique for the characteristic functions of ran-
dom variables, which has been standard in the statistical asymptotic theory.
Hence what we need to show is that the resulting formulae by our method are
equivalent to his final formulae. In the notations of Yoshida (1992), we take
¢(z) = 1 in his Lemma 5.6. Then he has used

(6.65) Pie) = (-1 s B0 (fo)].
and
(6.69) Po(z) = (=1} 5B [{fi00 ) }Ha ()]

where 1,(fo) is the indicator function and fy corresponds to the random variable
of the order O,(1), which is similar to g; in our notation. The differentiation
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of indicator function has some proper mathematical meaning in the sense of dif-
ferentiation on the generalized Wiener functionals. (See Watanabe (1987) and
Yoshida (1992) for its details.) By the use of the pull-back operation of the gen-
eralized Wiener functionals, Yoshida (1992) has obtained the explicit expansion
form of the density function for a particular functional in his problem as

(6.70) pi(e) = p(z) + py(z).

Since in the second term, however, it is straightforward to show in our framework
that

(6.71) Pi(e) = (~1)= [B(golgs = )és(2)]

when k£ = 1 by using our notations in this paper. This quantity is exactly
what the inversion formula (Lemma 6.2) gives as the second order term in the

as?fmptotic expansion of the density function of the normalized random variable
e) .
X7 in (3.31).
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Table 1: Average options on interest rates (T=0.25y)

Strike rate % 5.50 | 5.00 | 4.50
(1)Stochastic Expansion | 5.36 | 25.12 | 63.98
Difference (bp) -0.034 | 0.002 | 0.080
Diff. rate % -0.56 | 0.01 | 0.13
(2)Finite difference 5.36 | 24.99 | 63.81
Difference (bp) 0.026 | -0.13 | -0.09
Diff. rate % -0.48 | -0.52 | -0.14
(3)Monte Carlo 5.39 | 25.12 | 63.90
(4)European call 16.30 | 38.05 | 71.76
(3)/(4) % 33 | 66 | 89

Table 2: Average options on interest rates (T=0.50y)

Strike rate % 6.00 | 5.00 | 4.00

(1)Stochastic expansion | 2.69 | 32.10 | 111.54
Difference (bp) 0.005 | 0.121 | -0.010
Diff. rate % 0.20 | 0.38 | -0.09

(2)Finite difference 2.68 [31.98|111.34
Difference (bp) 70.0066 | 0.002 | -0.21

Diff. rate % -0.25 |-0.16 | 0.23

(3)Monte Carlo 2.69 |31.98|111.55
(4)European call 13.86 | 50.47 | 119.64
(34 % 9 | 63 | 93

Table 3: Average options on interest rates (T=1.00y)

Strike rate % 6.00 | 5.00 | 4.00

(1)Stochastic expansion | 8.13 | 41.37 | 112.30
Difference (bp) 0.040 | -0.030 | -0.010
Diff. rate % 0.49 | 0.07 -0.01

(2)Finite difference 8.06 | 41.32 | 112.25
Difference (bp) -0.03 | -0.017 | -0.060
Diff. rate % -0.37 | -0.04 | -0.05

(3)Monte Carlo 8.09 | 41.34 | 112.31
(4)European call 28.14 | 67.26 | 129.60
(3)/(3) % 29 | 62 | 87
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