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Abstract
This paper investigates the cause and consequence of the valuation of fiat money in an overlapping
generations economy with private information. In this economy, the value of money and the extent of
moral hazard are simultaneously determined: the valuation of fiat money worsens moral hazard; and
the worsened moral hazard induces people to hold fiat money. People born in and after the first period

may be worse off when money has positive value than they are when it does not.
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1. Introduction

In standard overlapping generations models [e.g. Samuelson(1958), Wallace(1980),
Tirole(1985)], the valuation of the intrinsically useless asset, or fiat money, is benign to all agents:
every agent in the economy becomes happier when money has positive value than when it does not. As
is widely known, markets in some of those economies fail to achieve efficient allocation unless
incomes are appropriately transferred across generations. If money is demanded as a store of value, it
promotes such transfers and, as a result, improves economic welfare.

This paper, however, gives another picture of fiat money not so rosy as the above. In the
model of this paper, the vaIuatidn of fiat money may be malign to the generations born in and after the
first period. Roughly speaking, this result is brought about by the installation of the following
externality in a Wallacian overlapping generations economy: the rate-of-return on physical investment
is a decreasing function of the value of money; and dominates the rate of population growth when
money is valueless. Owing to the externality, the valuation of money lowers the rate-of-return on
physical investment. This implies that the interest rates when money is valued are lower than those
when it is not, because arbitrage equalizes the rate-of-return on money with that on physical
investment. As the result of this decline in interest rates, the agents except the initial old are worse off
when money has positive value.

In this model, the valuation of fiat money is not due to the dynamic inefficiency of
nonmonetary economy but to the above-mentioned externality. Notice that money and externality
explain each other in this model: the externality is not activated unless money has positive value; at the
same time, money cannot have positive value unless the externality is activated. That is, the valuation
of fiat money activates the externality, which, in turn, causes the valuation of money by lowering the
rate-of-return on physical investment. This is how fiat money is valued in this model. In the following
sections the externality is not simply assumed but derived from uncertainty and asymmetric
information (moral hazard).

There are some works closely related to this paper. Using a somewhat different model,

Grossman and Yanagawa(1993) also reached a similar conclusion. In their model, money harms



future generations by lowering their labor incomes, rather than interest rates. There are also some
studies pointing out that things such as uncertainty and informational friction can give positive value to
fiat money. For example, Azariadis and Smith(1993) showed how adverse selection in credit market
makes people to demand fiat money. In Kitagawa(1994), fiat money is demanded as a riskless asset by
the people to whom insurance is not available. In fact, the model of this paper is an extended version
of Kitagawa's: like his model, money is demapded because of incomplete insurance; but, unlike his
model, incomplete insurance is no assumption but the result of agents’ money-holding.

The remainder of the paper is organized as follows. In the next section the basic model is
presented. Although it conveys the central message, the results of this model depend on rather

restrictive assumptions. Thus the model is a little bit generalized in Section 3. Section 4 concludes the

paper.

2. The Model without Storage

A. Environment
An economy comprising an infinite sequence of two periods lived overlapping generations is
considered. Time is indexed by t=1,2,... In the initial period (t=1), there is a unit mass of old

generation, cach member of which is endowed with ¢ units of corn and M units of fiat money. No

other agents have any endowment of fiat money and no other kinds of goods but corn exist in this
economy. All agents of this generation have identical utility functions v(c,). where ¢, denotes a level
of consumption of corn. The function V is assumed to be increasing. They die at the end of initial
period.

In addition, a new generation is born at the beginning of each period. Each generation is
identical in size, containing a continuum of agents of measure one. Although members of each
generation derive utility only from the second period consumption, it is not in the first period when
they receive € units of corn per capita. Thus they must save for their old age. Two ways of savings,

distinguished by their extents of riskiness, are available. The first and more risky way is to plant the



endowed corn: planting $ units of corn brings in the next period as units of corn with probability 0
and nothing with probability 1 — 0. Parameters, @ and 0, are positive constants satisfying:

0 €(0,1), Ba > 1. (D
The risks associated with corn-planting are assumed to be not aggregate but idiosyncratic, so that it is

possible to offset these risks by pooling them. The second and less risky one is to exchange the

endowed corn for fiat money: exchanging 777 units of corn for money promises the purchase of E'm

P
units of corn in the next period with probability 1, where p (p') denotes money price of corn in the
first period (that in the second period, respectively). In this section the storage of corn is assumed to be
impossible for simplicity, but this assumption will be removed in the next section.

Newly born agents have the same expected utility functions:

Bu(c®) + (1-0)u(c). Q)
where ¢° (CF) denotes a consumption when a good harvest is observed (a consumption when it is not,
respectively). The function 2 is assumed to be concave, increasing, and continuously differentiable
and to satisfy:

lim__, u'(c) = +o. (3)
These properties of 2 imply that agents in this model are risk-averse and demand insurance for
uncertain harvests.

There are also countably infinite number of risk-neutral insurance companies. At the
beginning of cach period they offer insurance contracts to young agents, each of whom is allowed to
accept only one of those offers. An insurance contract consists of an insurance premium ¢ and an
insurance money {3: if a good harvest is observed, an insured agent must pay an amount o to the
insurance company; in some, not necessarily all, of the other cases the company must pay an amount
{3 to that agent. Each agent's realized state, good harvest or not, is assumed to be publicly observable.

To what extent those insurance contracts protect agents from their individual risks depends
considerably on the observability of insured agents' corn-planting behaviors. In the following

subsections we first consider the case that insurance companies can observe amounts of planted corn,

and then the case that no companies can observe those amounts.



B. The Case of Full Information

Assume that insurance companies can observe and verify an amount of corn each agent
plants. Since a good harvest of any agent is assumed to be publicly observable, this means that
insurance companies can determine the cause of any observed poor harvest, that is, whether it
occurred by accident or by intentionally planfing no amount of corn. In this case the payment of
insurance premium can be dependent on the amount of planted corn.

Competition among insurance companies give the following features to equilibrium
contracts: equilibrium contracts (a) earn zero profit, i.e.,

Bo-(1-6)p=0 Q)
and (b) maximize each agent's indirect utility function, which is defined to be the maximal level of
expected utility attainable under a fixed insurance contract. That is, equilibrium contracts are the most
favorable ones to planting agents among those which are actuarially fair. Especially under full
information, they fully insure the agents who planted all of the endowed corn from their individual

risks, as will be shown in the proof of the next proposition.

Proposition 1: Suppose that a and O satisfy (1). Then, fiat money has no value under full
information.

(Proof) See Appendix.

Since equilibrium contracts get rid of the risks associated with corn-planting completely, the rate of
return on insured corn-planting in this case is O8a(>1) with probability 1. As pointed out by
Wallace(1980), no rational expectation equilibrium with valued money exists for such an environment.
The rate of return on fiat money, 1 at its highest, is always dominated in rate-of-return by fully
insured corn-planting, so that agents never demand it as a store of value.

Thanks to full insurance, each agent can consume the same amount of corn, 8a, whether the

harvest is rich or poor. Thus the level of their expected utilities is #(6a). And each initial old cannot



but consume ¢ units of corn, so that the level of their utility is v(q).

C. The Case of Private Information

In this subsection the information structure is modified as follows: nothing but whether each
agent harvests and whether contracted payments- occur is publicly observable. No one can observe
either what amount of corn an agent planted of what amount of corn a successful agent harvested. This
implies that no one can identify whether any observed poor harvest occurs by accident or as a result of
planting no amount of corn. In this situation every enforceable insurance contract is subject to the
following restrictions. Firstly, payments in an insurance contract cannot be made dependent on
anything but the observation of whether the insured agent harvests or not. Thus, every contract
prescribes that insurance companies must pay insurance money, 3, to their insured agents who did not
harvest, and that the insured must pay insurance premium,ct, to their insurance companies if she
harvested. Assume that the law allows insurance companies to forfeit the whole amount of harvest of a
successful agent if she does not pay a promised premium. Obviously, successful agents have no
incentive to default premium under this regulation. Secondly, every contract must satisfy the following

incentive constraint:

Bufas* + —}—7—'711 *—a]+(1- B)M[E;m *+B]> u[ﬁ'e + 3] (5)
P p P

The incquality (5) states that the contract is required to make the honest planting behavior more
profitable to the insured agents than the cheating behavior. Otherwise, fraud being more profitable, the
agents choose to plant none of the endowed corn in order to ensure the receipt of insurance money,

which ultimately leads the insurance companies offering such contracts to bankruptcy.l -The pair

(s*, m*) denotes the solution for the maximizing problem:

Max

mOulas+ gm —a]+(l- 8)1/[—5}77 +B], s.1. e=m+s. (6)

Note that:

IWe neglect the moral hazard on the side of insurance companies. In this paper insurance companies
are assumed to behave honestly at any time.



(s*,m*) =(e,0), if p'=+ @)
In equilibrium all offered contracts earn zero profit, so that the incentive constraint (5) is reduced to:

V(a, —‘Ii) > u[ e +—6———-0.] (8)
p 1-6

where the function V' is the insured's indirect utility function defined as:

V(a, £) Bulas™ + — P+ -a]+(1- 6)11[ m*+ 0 al. 9
4 P -6
The equilibrium insurance premium . * solves the maximizing problem:
Max, V(o 2y st Vst >u[£e+-—9—a] (10)
p p p 1-8

because, of all actuarially fair contracts constrained by (8), only the most favorable one to the agents
is demanded in equilibrium. Especially if p'= +00, the problem (10) is reduced to:

Max Bu[ae-a]+(1- 6)1/[1—96 a]

s.t.  Bulae—al+(1- 8)11[——_9—5a]>u[—1—-—(_a—é—a] (11)

The solution of this problem, a.* = (1 —6)ae, means that the agents in this case are (almost) fully

insured from individual risks by the equilibrium contract, just as in the case of full information.2

The money demand function can be expressed as q)(%), because the money demand of an
insured agent, 7%, is dependent on endogenous variables, p , o, and 3, all of which are determined
by ﬁ' From eq.(7), the next relation is obtained:

¢(§—,) =0, if p'= e (12)

o ., . . . o7 . . . oo
Definition: A private information equilibrium is a sequence of money prices of corn, {p,},...

satisfying:

¢(L)=—A—/[~ O<p, Vizl (13)
P

t+1 t

We focus on two stationary equilibria: the "nonmonetary" equilibrium, i.e.,pp, = +0,¥7 = 1; and the

2Exactly saying, the equilibrium insurance premium must be infinitesimally smaller than (1~ 0)ae to
motivate the agents to behave honestly. This is what the adverb 'almost' means.



"stationary monetary" one, i.e.,p, = p < +%,Vi = 1.

The nonmonetary equilibrium always exists, because the price sequence, p, = +%, V¢t =1,
apparently satisfies eq.(8). In this equilibrium the insurance contract induces each agent to plant the
whole amount of the endowed corn, and also gives her (almost) full protection against individual risk.
Thus the allocation is (almost) the same as that in the case of full information: every agent born in and
after period 1 consumes an amount Bae  indgpendent of her realized state, whereas each initial old
consumes her endowment ¢ .

The next proposition provides the necessary and sufficient condition for the existence of the

stationary monetary equilibrium:

Proposition 2: Let o * (1) denote the solution for the maximizing problem:

Max, V(a;1), st V(a;l)zu[e+i~(—)—6a] (14)

The stationary monetary equilibrium exists if and only if o * (1) satisfies:

-0(a-Du'[ae-a*(1)]+(1- B)u'[Ie—ea* (D]>0 (13)

(Proof) See Appendix.

In this equilibrium money explains moral hazard and moral hazard explains money. When ﬁat money
has a positive value, full insurance contracts are never offered because none of them satisfy the
incentive constraint (5). Thus, the valuation of fiat money worsens the moral hazard problem and, as a
resulf, the insured agents have to bear part of their own risks. But this is the very reason they demand
money. The rate of return on fiat money being certain, money-holding reduces the uncertainty of future
consumption, and even makes the agents better off when the condition (15) holds.3 Then, they choose
to exchange parts of the endowed corn for {iat money and, as a result, it has a positive value in each

period.

3This is the point of Kitagawa's paper [Kitagawa(1994)].



Notice that the reason fiat money has positive value in this model is quite different from
those in the standard overlapping generations models of fiat money [e‘g.’ Samuelson(1958),
Wallace(1980), Tirole(1985)]. While it was explained by the dynamic inefficiency of nonmonetary
economy in those models, the valuation of fiat money is here due to asymmetric information. Welfare
comparison between the nonmonetary equilibrium and the stationary monetary one provides one
evidence: unlike standard ones, this model shews that the utilities of some agents in the stationary
monetary equilibrium are lower than those in the nonmonetary equilibrium. Figure 1 depicts the
patterns of consumption in those equilibria: in the nonmonetary equilibrium each agent born in and

after the initial period always consumes Oae, so that her utility is #(Bae); in the stationary monetary

one, the consumption of the same agent varies according to her realized state, namely

ae—(a~1)¢(1) —a*(1) in the good state and §(1) + —le—ea *(1) in the bad one. Her expected

utility in the latter equilibrium is determined to be V' (a*(1);1). It is easy to establish the next
inequality:

V{a*(1);1) <u(Bae) (16)
That is, the valuation of fiat money may harm all generations except the initial old. Needless to say,

the decline in their utilities results from the moral hazard valued money worsens. Also note that the

initial old benefit from the valuation of money: their utilities increase from v(g) in the nonmonetary

equilibrium to v(q +¢(1)) in the stationary monetary one. Therefore, two equilibria cannot be

Pareto-ranked.

3. The Model with Storage

The model of the preceding section is a good example exhibiting that the valuation of fiat
money does not always make people happy. But the structure of that model is restrictive in that it
precludes the storage of corn. In this section, it is assumed that corn is storable: storing Z units of
corn brings 8z units of corn in the next period, where 8 is a positive constant satisfying d €(0,1).
Public knowledge is still nothing but whether each agent harvested or not. Obviously, these

assumptions do not alter the existence condition of the stationary monetary equilibrium.



Whether the stationary monetary equilibrium exists or not, there exist equilibria with time-

invariant insurance premium o * (8), the level of which is determined by:

V(a0 *(5):8) = u[de + I—e—e-a*(a)] a7

Proposition 3: Consider an equilibrium with time-invariant insurance premium a.*(0). In this
equilibrium, storage is used if and only if o.* (8) satisfies:

-0(a-08)u'lae—a*(8)]+(1- 6)61,1'[—1~g—e—a *(8)]>0 (18)

(Proof) See Appendix.

Only when there is an gquilibrium where storage is used, there are also equilibria where fiat money is
demanded as a perfect substitute for storage. In those equilibria the value of money decreases over
time at the rate of § , though the combined demand for riskless assets, money and storage, is constant.4

When the inequality (18) does not hold, there is an equilibrium where neither storage nor
money is used. In that equilibrium the agents are not fully insured from their own risks, though they
plant all of their endowed corn. Since the behavior of storing corn is not publicly observable, full
insurance would just motivate the agents to cheat their contractual partners: they would choose to store
all of their corn and in the next period require the payment of insurance money. Thus, the incentive
constraint binds even when money is valueless and storage is not used. In this regard, this model
contrasts finely with that of the preceding section: in that model, agents were (almost) fully insured
when money was valueless.

Now, consider the following two examples: both examples exhibit the stationary monetary
cquilibrium and the nonmonetary/nonstorage one, but they are different from each other in

implications for the valuation of fiat money.

4Such money/storage equilibria can be Pareto-ranked: a money/storage equilibrium Pareto-dominates
those with smaller initial values of money. Across those equilibria both total demand and rate-of-
return on the riskless assets, i.e., money and storage, is equal and constant over time. Thus the higher
initial value of money raise the utility of initial old without harming future generations.

10



Example 1: Suppose that #(c) =1Inc, 8 =0.5, a =2.44, and 8 = 0.488. In this case equilibrium
insurance premia are determined as:
0.*(0,488) = 0.488e
and
a*(1) =0.020e.
Then, the utility of agent born in and after the initial period is equal to In[0.976e] in the

nonmonetary/nonstorage equilibrium; and In[1.020e] in the stationary monetary one.?

In Example 1, the stationary monetary equilibrium Pareto-dominates the nonmonetary/nonstorage one.
In other words, the valuation of fiat money makes all agents better off in a class of economies with

storage. But the next example tells that this is not always true.

Example 2: Suppose that (c) =Inc, 6 =0.5, a=3.25, and 8 = 0.65. In this case equilibrium

premia are:
a.*(0.65) = 0.65¢
and
a*(1) =0.143¢e
Then, the utility of an agent born in and after the initial period is equal to In[1.3e] in the

nonmonetary/nonstorage equilibrium; In[1,143e] in the stationary monetary one.b

When the storage is possible, there are some cases in which the valuation of money is benign to all

agents. But there are also some cases exhibiting that money is still malign to future generations. This

9The levels of expected utilities in monetary and nonmonetary/nonstorage equilibria are derived as
follows. Since incentive constraints bind in both equilibria, equilibrium insurance premia are
calculated from these constraints. Substituting obtained value of insurance premium into the RHS of
incentive constraint, we can evaluate the level of expected utility in each equilibrium.

6The derivations of insurance premia and expected utilities are the same as in Example 1.
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result reflects the fact that the relation between the expected utility of an insured agent and the rate-of-
return on the riskless asset, i.e., money or storage, is not monotone. When the rate-of-return on the
riskless asset is sufficiently low, the agents planting corn honestly never hold that asset. This implies
that the higher return on the riskless asset makes honest agents worse off, because it just raises the
gain from cheating behavior and, as a result, makes insurance contracts less favorable to tliose agents.
When its rate-of-return is close to but less thap ,lA, on the other hand, the honest agents may hold the
riskless asset. In that situation the expected utility of an insured agent may be an increasing function of
the rate-of-return on the riskless asset. The higher return on the riskless asset in this case raises both
gains from honest behavior and from cheating behavior, which in turn changes the levels of insurance
premium and insurance money. In general the total effect of these changes on the expected utility of an
agent is obscure, but there are some cases where they make all agents better off, as shown in Example

1.

4. Concluding Remarks: Does Money Always Make People Happy?

The answer is NO. In the presence of private information, the valuation of money makes it
difficult to provide insurance protecting people completely from their individual risks, which
sometimes ends up to the decline in their utilities. This does not mean that the valuation of {iat money
always harms future generations. As shown in Section 3, welfare consequence of valuation is, in
general, hard to evaluate.

A promising extension of this model can be pointed out. Remember that the valuation of money
reduced the size of physical investments by hindering risk-pooling. This reduction did not have any
further effect in this model, but the situation changes if corn-planting is replaced with capital
accumulation, In that world the reduction of physical investments would also reduce the incomes of
future generations through capital accumulation. This situation is quite similar to that of Grossman and

Yanagawa(1993). Although this extension secms rewarding, it is left to future researches.
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Appendix

Proof of Proposition 1: Since the function # is concave, Jensen's inequality obtains:
0
Bu[ae—a]+(1- B)u[I——éa] < u[Bae]. (Al)
The equality holds if and only if o = (1 - 0)ae. The LHS of (Al) represents the expected utility of

the insured agent who planted the whole amotnt of the endowed corn, and the RHS of (Al) is 1ts

maximum. Because of competition, insurance companies offer the contract ((1-8)ae,Bae) to this

agent. This, in turn, implies that the agent demand money if and only if money-holding promises a

utility higher than 2(8ae). Suppose that such an equilibrium exists. Define m *, as:

m*, = arg max{Bu[ae—(a - by Yym, —a, ]+ (1-0)u[ Py m, +1—6—6a,]}. (A2)

t+1 t+]

In fact, m*, is the value of money in this equilibrium. It must satisfy V7 =1,m*, €(0,e). For all

t

generations to demand money, the following inequality must hold:

Vi =1,0ulae—(a- —1—7'—)171 * -, ]+ (1- 8)11[—[—7’— m*, + —l—e—ea,] >u(Bae). (A3)

t+1 t+1
Usin Jensen's inequality, one can also obtain:
2
Vi = 1,

Bulae - (a - ﬁ—)m * —a, ]+ (1- B)zt[ﬁ—m * o+ T%a'] < u[Bae - (Ba — —pi~)m * 1. (A4)

t+] [£3) t+1

The inequalities (A3) and (A4) jointly imply:

Vi1l Liseas1 (A3)
p1+]

The inequality (A5) means that in this equilibrium the value of money exceeds the endowment ¢ in

{inite time, which is not feasible. Contradiction. Q.E.D.

Proof of Proposition 2: This proposition can be regarded as a special case of Proposition 3. Set 0=1

in Proof of Proposition 3. Q.E.D.

” . 0 . .
Proof of Proposition 3: Consider an agent who made a contract (a,T—e—a) with an insurance

13



company. If she stores Z units of corn, her expected utility is:

EU(z) = 0u[ae-(a-8)z-a]+(] ’B)u[62+f%a]' (A6)

Of course, she chooses Zz maximizing (AG). The first- and the second derivatives of EU(z) are:

EU'(2) = —(a-8)0u'[ae-(a-8)z—~a]+d(1-6)u'[dz + 1—?—6—01] (A7)

and

EU"(2) = (a-3)"6u"[ae~(a~8)z-al+ 8*(1-0)u"[8z + I—(?—E)—a] <0. (A3)

Define z° as:

. ae—ao.
z* = min[e, 1. (A9)
a-90
The following is obvious:
EU'(2*) <0. (A10)

The inequalities (A8) and (A10) jointly mean that the agent plants the whole amount of the endowed

corn if:

0

EU'(0) = —(a-38)6bu'[ae—a]+06(1- e)u'[1 o

a]=0 (Al1)

and stores part of the endowment, otherwise. Let a* denote the root of the equation:

8

—(a—é)eu'[ae—(x]+6(l—6)1/'[1‘601]=O (A12)
Using ot*, one can obtain: »
EU'(0)>0 if o €[0,a”)
<0 if a€la’,ae] (A13)
Then the amount of storage, Z , is determined to be:
z=7z"(a)>0, ifa€[0,a")
=0, ifaga’ ae] (A14)
where z":[0,a") = R_, is a function implicitly defined by:
—(a -8)6u'[ae - (a-8)z" (o) —a]+8(1 - 0)u'[8z" (o) + 1—?—6(1] =0. (A15)
It is easy to establish that z* () is continuous and that:
lim___,z"(a)=0. (A16)
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The indirect utility function is obtained from (A14):
0
V(8) = Oufae - (a - 8)z* (o) —a + (1 - 0)u[ 8" (ax) + s al, if a€[0,a”)

= Bufae —a]+(1- B)zt[l—eé al, if a€la’,ae] (A17)

Note that the function J/'(.;8) is continuous and that:
V() < u(Bae) (A18)
because of Jensen's inequalities:
V(a;8) < u[Bae—(Ba-8)z* ()] <u[Bae], if o €[0,a")
<u[Bae], if a€la’, ae] (A19)
The equality of (Al8) holds if o =(1-8)ae. That (1-0)ae €[a”,ae] is ensured by that

EU'(0) = 0,ifo. = (1 - 8)ae. The inequality (A10) implies that the following relation never holds:

2(a)=e (A20)
therefore:
V(a;8) >u[de + 1—86—a], ifa=0 (A21)
The following is obtained from (A19):
V(a;8) <u[de + l—ee-a], if a=(1-0)ae (A22)

The inequalities (A21) and (A22) jointly imply that there exist as satisfying:
0
V(a;d) =u[de + I al. (A23)

Among these s, the maximal one is the solution for the next maximizing problem, i.e., equilibrium

insurance premium, o * (3):

Max

"o 0,ac]

V(ed), st V(a;d)=u[de +—l—e—e—a] (A24)
0

Thus, insurance companics offer the contract (o *(8),——a*(8)). In response to this offer, the

agent chooses the amount of storage as:
z=2"(a(8)) €0,¢), ifa*(d)<a’
=0, if o <o *(d) (A25)

The inequality o *(8) < o’ is equivalent to (18). Q.E.D.
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Consumption
in the Bad
State

: Nonmonetary Eq.
Full-Information Eq.)
\t{onary Monetary Eq.

Consumption
in the Good State

Figure 1: Patterns of Consumption

A: (ae,0),
B: (ae—(x*(l),i%:)—a*(l)),

C: (ae—(a—l)q)(l)—a*(l),q)(1)+~£—éa*(1)),
- D: (Bae,Bae)
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