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A common observation among economists on many economic time se-
ries including major financial time series is the asymmetrical movement
between in the down-ward phase and in the up-ward phase in their sam-
ple paths. Since this feature of time irreversibility cannot be described by
the standard ARMA and ARIMA time series models, we introduce a sta-
tionary and non-stationary Simultaneous Switching Autoregressive (SSAR)
models, which are non-linear Markovian switching time series models. We
discuss some properties of these time series models and the estimation
method for their unknown parameters. We also report a simple empirical

result on Nikkei 225 spot and futures indeces by using a non-stationary
SSAR model.
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1. Introduction

In the past decade, several non-linear time series models have been proposed
by statisticians and econometricians. Granger and Andersen (1978), for instance,
have introduced the bilinear time series models. Also Ozaki and Oda (1978), and
Tong (1983) have proposed the exponential autoregressive (EXPAR) model and
the threshold autoregressive (TAR) model, respectively, in the statistical time
series analysis. In particular, a considerable attention has been paid on the TAR
model in the past decade by statisticians and econometricians and several related
applications have been reported. The statistical details of many non-linear time
series models have been discussed by Tong (1990). In the econometric analyses
several non-linear time series models including Hamilton (1989), and McCulloch
and Tsay (1992) have also been proposed and used in some empirical studies.

In this paper we shall propose an alternative class of non-linear time series
models, which is called the Simultaneous Switching Autoregressive (SSAR) time
series model. This model is a kind of Markovian switching time series model
with a quite distinctive structure of simultaneity. We shall propose this class
of statistical models because we have a conviction that the class of standard
Autoregressive Moving-average (ARMA) time series model and Autoregressive
Integrated Moving-average (ARIMA) time series model cannot describe one im-
portant aspect in many economic time series, that is the asymmetrical movement
in the up-ward phase (or regime) and in the down-ward phase (or regime). It
has been sometimes argued that major economic time series display some kind of
asymmetrical movements over various phases of the business cycle. In particular,
a number of economists have observed the asymmetrical pattern in the up-ward
phase and in the down-ward phase for major financial time series including stock
prices. This feature of economic time series can be regarded as one form of time
irreversibility discussed in the statistical time series analysis. (See Chapter 4 of
Tong (1990), for instance.)

Earlier, Kunitomo and Sato (1994a,b) have introduced the simple stationary
SSAR time series model and discussed its statistical properties in some details.
For instance, they have shown that even the simplest univariate SSAR model,
called SSAR(1), gives us some explanations and descriptions to a very impor-
tant aspect of the asymmetrical movement of time series in two different phases.
This characteristic of economic time series has been observed by a number of
economists. However, there has not been any useful time series model incorpo-
rating this feature explicitly as far as we know in the econometric literature. The
main interest in the study by Kunitomo and Sato (1994a,b) was to link the sta-
tionary non-linear time series models to the disequilibrium econometric models.
They also have investigated the conditions for ergodicity and the basic properties
of the stationary distribution in the stationary SSAR model.

This paper extends the basic SSAR model (denoted by SSAR,(p)) discussed
by Kunitomo and Sato (1994b) into two important directions for econometric ap-



plications. First, we shall allow that the disturbance terms in the SSAR model can
be auto-correlated and have a moving-average structure. By this extension the
SSAR model can exhibit more complicated patterns of auto-correlations among
economic time series and their differenced data. More importantly, second, we
shall consider a class of non-stationary SSAR models, which is useful for the ap-
plications to major financial time series. In the past analyses of financial time
series data, the linear non-stationary time series models have been often used
because the movements of most financial time series are usually too volatile as
the realizations of stationary time series. We shall give one convincing economic
reasoning why the non-stationary SSAR model introduced in this paper is in-
teresting and useful for its applications in financial time series. There has been
a fairly common observation among many economists that many financial time
series including stock prices have asymmetrical movements between the up-ward
phase and the down-ward phase. However, it is not possible to describe this
kind of asymmetrical patterns by the linear non-stationary time series models
including the ARIMA time series model. The non-stationary time series model
we shall propose can be called the simultaneous switching integrated autoregres-
sive (SSIAR) model because it can be regarded as a non-linear extension of the
standard ARIMA model.

In Section 2, we shall introduce the general SSAR model, which is possibly
stationary or non-stationary, and investigate some basic properties of a non-
stationary univariate SSAR model in some details. Then in Section 3, we shall
discuss one justification for the non- stationary SSAR modelling from the view of
financial economics, and apply the non-stationary SSAR(1) model for the analysis
of Nikkei 225 spot and futures indeces. In Section 4, some concluding remarks
on our econometric approach to the non-stationary and non-linear time series
modelling will be given. The proofs of some theorems will be given in Appendix.

2. A Stationary and Non-stationary SSAR models

2.1 The SSAR model

In this section we shall consider the multivariate simultaneous switching au-
toregressive (SSAR) model with moving-average (MA) disturbances. In the fol-
lowing representation the order of the autoregressive part is one without loss of
generality. This is because we can consider the p-th order multivariate SSAR
model silimarly, but it can be re-written as the first order multivariate autore-
gressive form by using the standard Markovian representation well-known in the
statistical time series analysis.

Let y, be an m x 1 vector of time series variables. The model we consider in
this section is represented by



p+ Ay, + Dy, i eny, 2 ey,
(2.1) Ye = )
py+ By, + Dyu, if eny < ey
where €/ = (0,---,0,1) and p! (i = 1,2) are 1 x m vectors of constants, A and
B are m x m matrices, and D; (i = 1,2) are m x n matrices.
The disturbance terms {u.} are a sequence of I(d) process satisfying

q
(2.2) Atuy =y Cjvey,

i=0
where I(d) denotes the integrated linear stochastic process,

q
(23) > 11651l < +oo,

=0
{v,} are a sequence of martingale differences, and I(d) denotes the integrated
linear stochastic process. The order of the moving-average (MA) terms g can be
oo in the general case.

The most important feature of this representation is that the time series vari-
ables may take quite different values in two different phases or regimes. This
type of statistical time series models could be termed as the threshold models in
the recent time series literature. However, since the vector time series and two
phases at time ¢ are determined simultaneously, we shall call this type of time
series models as the simultaneous switching autoregressive (SSAR) time series
models. Tt will turn out that this simultaneity has not only important economic
interpretations, but also a new aspect in the non-linear time series modelling as
we shall discuss.

We now consider the basic question whether the stochastic process defined
by (2.1), (2.2), and (2.3) does make sense in a proper statistical sense or not.
The general answer to this question is negative and we need some additional
consitions on the unknown parameters in the SSAR model. This issue has been
called the coherency problem. (See Section 4 of Kunitomo and Sato (1994b) in
some details.) The conditions of ey, > €y, ; and ey, < €,y,; can be
rewritten as

(2.4) e, Diu; > €, (In— Ay, — €ntty
and
(2.5) e, Dyu, < €, (I — By, — €,

respectively. When m = n, the necessary conditions on coherency for the SSAR
model can be summarized by a 1 x (14 m) vector

1 1 ,
(2.6) ey, € (In — A)] = —[~enpy, €,(I,— B)
(051 (o0
= ,



where o, (j = 1,2) are unknown scale parameters. Then we have the following
proposition.

Theorem 2.1 : Suppose (i) m =n, (ii) |[D||D2| > 0, and (iii) the condition
(2.6) hold. Then the correspondence between two stochastic processes {u,} and
{y.} is one-to-one, and the SSAR model consisting of (2.1), (2.2), and (2.8) is
coherent as an econometric model.

We define the indicator functions by

Ifl) =1 (e:’nyt 2 e:nyt-1)
and e
=1 (e:nyt < e:nyt—-l) ;

where I(w) = 1 if the event w occurs and I(w) = 0 otherwise. By use of these
notations, it is often more convenient to re-rewrite (2.1) in the following form:

(2.7) Y. = p(t) + A(t)y,—, + D(t)u,,
where 5
(2.8) p(t) = }_‘;Iﬁ"’u; ,
(2.9) A(t) = ATV + BI® |
and )
(2.10) D)= 19D, .
1=1

There are several special cases of (2.7), which are interesting from the view point
of possible econometric applications. Here we shall mention to only three exam-
ples in the class of the SSAR models we introduced.

Example 1 : We consider the SSAR model when d = ¢ = 0. This is the
case which Kunitomo and Sato (1994b) have investigated in some details. The
disturbance terms {u,} in this case are the sequence of martingale differences and
satisfy

(2.11) E(u|Fiq) =0,
and
(212) E(utuﬂftml) = I-m ,

where F;.; is the o-field generated by the random variables {y,,s <t — 1}. Ku-
nitomo and Sato (1994b) have investigated the conditions for the ergodicity and
basic properties of the stationary distributions and their moments. In particular,
the necessary and sufficient conditions for the ergodicity when m = n = 1 are
A<1,B<1,and AB < 1.1t should be noted that the conditions |A| < 1 and
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|B| < 1 are sufficient, but not necessary for the geometric ergodicity of the sta-
tionary SSAR model. This illustrates one of interesting differences between the
linear time series models and the non-linear time series models. Also we should
point out that there are interesting economic interpretations for these differences.
For instance, Kunitomo and Sato (1984b) have originally introduced the station-
ary SSAR model from the reduced form of a disequilibrium econometric model. It
seems that the conditions for ergodicity in the disequilibrium econometric model
are much weaker than those for the corresponding equilibrium econometric model.

Example 2 : We can illustrate the possible applications by the multivariate
SSAR models. For this purpose, we take d = 0,m = 2, p; = py = o, and
e; A = e, B = (1,0), for simplicity. Then by using the coherency condition (2.6)
we have the representation

(2.13) Ay, = a(t)”'lyt—1 + D(t)u:,

where a(t) = (0,— Y2, I8¢;) and »' are 1 x 2 vectors. The vector # could be
called a co-integrated vector in a non-linear sense because the stochastic process
defined by r'y, can be stationary with the additional condition lesroi| < 1(i=
1,2). When A = B and D, = D>, (2.13) has been called the error-correction rep-
resentation of a non-stationary linear time series model. (See Engle and Granger
(1987), for instance.)

Example 3 : When d = 1, the stochastic process defined by (2.1), (2.2), and
(2.3) is non-stationary. In the following analysis of this paper we shall mainly
forcus on the non-stationary and univariate case, that is, the SSAR model when
m =n = d = 1. Thus we are extending the stationary SSAR model discussed
in Kunitomo and Sato (1994a,b) to a class of the non-stationary SSAR time
series models. Since the integrated moving-average (IMA) process has been a
useful non-stationary time series model, we can call the resulting process the
simultaneous switching integrated autoregressive (SSIAR) process. In Section 3.1
later, we shall argue that there is a considerable reason why the non-stationary
SSAR model we developed is useful to many applications for financial time series.

2.2 Characterization of A Non-stationary SSAR model

When {u.} in (2.2) is an I(1) process, the stochastic process {y,} is a non-
ergodic process. Hence there are basic questions on the properties of the stochas-
tic process defined by {y,} when d = 1. By using the representation of (2.7), the
time series model for {Ay,} can be written as

(2.14)
Ay, = DHAD @)™ pt)]



+ D@)D(t-1)" Ay,
— DD ) Im = A))Yeey ~ Dt = )7 (Ie — A(t — 1))y,
-+ D(t)Aut.

Further when m = 1 we can simplify some coefficients by the coherency con-
ditions (2.6). In this case we have the relations u(t) = —roD(t), and 1— A(?) =
r1D(t), where » = (ro,r1). Hence we have the following characterization result

on {Ay:}.

Theorem 2.2 : Suppose d = m = 1. Define the non-linear transformation of

{Ay:} by
(2.15) T(Aye) = D ()7 Ay .

Then the tranformed stochastic process {T'(Ay:)} satisfies

The time series model defined by (2.16) has been called the first order thresh-
old autoregressive (TAR) model with MA distrubances in the non-linear time
series analysis. From this result we know that {Ay,} is slightly different from
TAR(1) model with MA disturbances, which has been known to be useful for
applications in the recent time series analysis literature.

From the above discussions, we can deduce some properties of the differenced
time series {Ay:}. Thus we can further investigate the univariate non-stationary
SSAR model when d = m = 1in some details. For the specific application we shall
report in Section 3, we also include the time trend variable in the univariate SSAR
model. Thus the non-linear and non-stationary SSAR model to be considered is
given by

Ao + At + Agyeq + orue (g > yea)

(2.17) y = {
By + Byt + Boypq + opur (i 9 < yia)

By the same argument used in (2.6}, we can obtain the coherency conditions for
this model. The resulting conditions can be summarized by

A B A B 1-A, 1-B
(2.18) “"’q"="““*9'=7°o,‘*“1-=-—-i=7‘1, 2 = 2:7‘2.
g1 a2 a1 U2 o e

Since {y,} is a non-ergodic process, we need to investigate the stochastic process
defined by (2.17). For this purpose it is convenient to use the indicator functions
I = I(Ay, > 0) and I®) = I(Ay, < 0). Also we use the notation of D(t) =
allfl) + (let(z) and re-write the disturbance terms {u;} as

1

(2.19) up = mAyt + 7o+ it + oYy -



Then given the information available at ¢ — 1, there are four phases for Ay, at ¢
to be considered depending I and I, (i = 1,2). By substituting this equation
into (2.7) and re-arranging terms, we have the representation as

(220) Ay =D(t) {-rl + (—rz + H(t_l':‘ﬁ) Ages + Aut}

Hence the stochastic process {Ay;} has the representation
(A4 AAYer + 018U (if Aye1 >0, Ay, > 0)
A + (%];) BoAyiy + 018y, (if Ay-n <0, Ay 2 0)

(2.21)Ay, =
B; + (%) AsDysy + by (if Ayn 20, Aye < 0)

.31 -+ Bszt——l -+ O'gAut (lf Ayt_l < O, Ayt < 0)

\

For the stochastic process {Ay:} defined by (2.21), we can establish the necessary
and sufficient conditions for its ergodicity. The proof is given in Appendix.

Theorem 2.3 : Suppose (i) the order of MA terms q on {Au;} is a finite
number, (i) the coherency condition (2.18) holds, (ii1) the density function g(v)
of {v:} is everywhere positive in R', and (iv) Efjv]] < +oco. Then the Markov
chain defined by (2.21) is geometrically ergodic iff

(222) Ay <1, B, < 1, ABy <1 .

It is interesting to see that the conditions given by (2.22) are the same as for
the geometric ergodicity as in the stationary SSAR(1) model proven in Kunitomo
and Sato (1994b). However, we do not need any additional condition on {v:} in
the present case which they have used.

The non-stationary SSAR. given by (2.17) is a complicated stochastic process.
In order to get some idea on its statistical properties, we did a set of simulation for
the simplest case. When m = d = 1, the simplest SSAR model can be re-written
as

Alys—r — p) +orue i ye 2 Yy
(2.23) Yo — p=

B(ye1 — p) + o2ue  if Y <y

where we re-define u as a location parameter and o; (i = 1,2) as scale parameters.
The disturbance terms {u,;} follow the random walk process satisfying

(224) Up = U1 -+ Vg .



The innovation terms {v,} in (2.24) are independently and identically distributed
random variables and follow N(0,1). The condition on coherency in this case is
given by

1-A4 1-B

(2.25) = =r .
g1 a2

For the sake of simplicity, we set u = 0 in our simulations. Although there are
four unknown parameters A, B and o; (i = 1,2) in (2.23), there are only three
free parameters A, B and r.

We took several sets of values of these parameters and did a set of simulations
in a systematic way. Among them we only present three cases in Figure 2.1. The
middle one shows the sample path when A = B = 0.5, which means that the
non-stationary SSAR(1) model is actually the standard ARIMA(1,1,0) model.
When A # B, we can notice some asymmetrical patterns in the sample paths of
the simulated time series. For economic time series, the case when A = 0.8 and
B = 0.2 may be the most interesting one. Even though we use a very simple non-
stationary SSAR model, we found that we can get very interesting asymmetrical
sample paths of {y:} along the simulated random walk of {u;}. This aspect
can not be realized by the linear non-stationary time series models such as the
ARIMA model. The sample paths of the time series generated by the stationary
SSAR models have been investigated by Kunitomo and Sato (1994b).

2.3 Maximum Likelihood Estimation

The SSAR model is quite complex as a statistical model in its several aspects
when m = n and d > 1. The first aspect is that it is a kind of the threshold
autoregressive model in which the present state variables depend on the past
realized values of time series. The other aspect is that there is a simultaneity
between the present phase and the present value of the time series variables. The
last aspect is that the SSAR model when d > 11is a non-linear and non-stationary
stochastic process. As it has been discussed for the simple stationary SSAR model
by Sato and Kunitomo (1994), the standard least squares estimation method for
each phase separately gives a fairly biased estimates for the unknown parameters.
The main reason for this is because there is an important simultaneity involved
in the SSAR models. Thus, instead of the least squares method, we are proposing
to use the maximum likelihood method for the non-stationary SSAR model in
this paper.

Under the assumption that the disturbance terms {v,} are independently and
normally distributed random variables, the conditional log-likelihood function for
{Ay,, 2 <t < T} given the initial conditions Ay, and v = vy =+ =V =0
can be written as

(2.26) log L7(8) = -(—7—:—%—1)%@ log 27

9



2
Ig') Zlog]D;ﬂ(O)Dﬁ}

1=1

M

v,(6) £2(8)™" v(6),

RO = N =

t

1
N}

where £2(8) is the covariance matrix of v, whose diagonal elements are ones and
0 is a vector of structural parameters appeared in the original SSAR model.

When m = n = d = 1 and the error terms {u;} are independently and
normally distributed random variables for instance, the conditional log-likelihood
function can be further simplified as

(2.27) logLr(8) = — 5 log 27

2

SIS | 2 ()
- EZZL ? Ayt '—/J;"‘“ZcijltilAyt—l »
£ : j=1

where we use the notations that ¢? = D; D and C;; are the parameters appeared
in the representation of (2.21).

The maximum likelihood (ML) estimator can be defined as the maximum of
log L7(8) with respect to the unknown parameters 6 including the restrictions
implied by the coherency conditions (2.6). The asymptotic properties of the ML
estimator in the non-stationary SSAR model when m = d = 1 can be established
by using the method developed in Kunitomo and Sato (1994b), and Sato and
Kunitomo (1994). A sketch of the proof is provided in Appendix.

Theorem 2.4 : For the non-stationary SSAR model given by (2.1), (2.2), and
(2.8) when m = d = 1, suppose (i) the sufficient conditions for the coherency and
ergodicity hold, and (1i) the disturbances terms {v} are independently distributed
as N(0,1), (iii) the MA order q is a finite number, and (iv) D; > 0 (i = 1,2).
Also suppose (v) the true parameter vector 8 is an interior point of the parameter
space @. Then the ML estimators 81 of unknown parameters 8 are consistent
and asymptotically normally distributed as

(2.28) VT (bye; - 8) 5 N o, 10)7]
provided

) 1T &logLr(6)
(2:29) f'(")*"ﬂ;l.gz?[“ 5000

is a positive definite mairiz.

10



We also have investigated the finite sample properties of the ML estimator
in a systematic way. Because their mathematical expressions are intractable,
we have utilized simulation procedures. We generated the simulated time series
{Ay;} and {y.} for the non-stationary SSAR model whend=m=1and¢=0.
We used the standard normal random numbers for the disturbance terms {v:}.
Then we obtained the table of the sample mean of the ML estimator {rom 5,000
replications. Among many tables, we show only the case when 7" = 50 and
T = 500 in Table 1. From these tables, the bias of the ML estimator is negligible
when the sample size is more than 100. Thus we have an evidence for the use of
the ML estimation method for the non-stationary SSAR models.

3. An Application to Financial Data

3.1 Financial Time Series

The main reason to introduce the non-stationary SSAR model is its applica-
bility to economic time series data. Especially, there have been growing interests
among econometricians and statisticians to investigate financial time series data
by using the statistical time series analysis in the last decade. There have been
several interesting features in financial time series data. First, many financial
time series such as stock prices, bond prices, interest rates, foreign exchange
rates, and their derivatives are often too volatile to use the stationary time series
models explained in the statistical time series analysis. Hence the results of the
prediction based on the stationary linear time series models are not satisfactory.
Second, the distributions of prices and yields are often not well approximated
by the Gaussian distribution. Third, some financial time series including stock
prices exhibit asymmetrical movements between in the up-ward phase and in
the down-ward phase. These features could not be consistent with the standard
linear time series models such as the autoregressive integrated moving average
(ARIMA) process, which have been sometimes used in econometric applications.
We should stress that the non-stationary SSAR model introduced in Section 2.2
has the statistical properties that are consistent to all of the above observations
on many financial time series. Thus we hope that the non-stationary and non-
linear time series model we introduced in Section 2 would be potentially useful
for the applications in many financial data.

3.2 A Simple Model of Stock Prices

In this section we first discuss a simple econometric model of stock prices,
which leads mathematically to the non-stationary SSAR model. The main reason
for the following discussion is not to develop the financial economics, but to
illustrate why the SSAR model is useful and applicable to many financial time

11



series. For this purpose, we slightly modify the well-known economic model in
financial economics developed by Amihud and Mendelson (1987).

Let the intrinsic value of a security at time t and its observed price be V¢ and
P,, respectively. We distinguish the intrinsic value of a security and its observed
price. There has been some economic reasons why they can be different. (See
Amihud and Mendelson (1987), and its references.) Since two values V; and P;
can be different, we can introduce a partial-adjustment model when the intrisic
value V; at t deviates from the observed past price P;—; at ¢t — 1 as follows

gl(‘/t—Pt-—].) if ‘/t_-Pt—-l ZO
(3.1) P,—P_, = ,
gQ(I/t—Pt—l) if ‘/t"' Pt—-l <0

where V; and P, are in logarithms and the adjustment coefficients g; satisfy g; >
0(:=1,2).

We note that we have modified the adjustment process used in Amihud and
Mendelson (1987) in two ways. First, we have omitted the contemporary noise
factor in the right hand side. We did this because of the resulting simplicity.
Second, we have allowed the adjustment coefficients g; (1 = 1,2) can take different
values. There can be several economic reasons why they can be different. In stead
of discussing them, we simply point out that this formulation includes many cases,
which are theoretically or practically interesting in financial economics. When
g1 = g, (3.1) is reduced to the standard linear adjustment model. Further, when
g1 = g2 = 1, V; = P, and the intrinsic value of a security is always equal to its
observed price. Hence, by using the formulation we have adopted in (3.1) it is
possible to examine from the observed time series data if there conditions are
reasonable descriptions of reality.

In the recent financial economics, there has been a convention that the loga-
rithms of the intrisic security values {V;} follows an integrated process I(1) with
a drift,

(3.2) Vi=Vii+oe+p

where p represents the expected daily return and {e;} are a sequence of random
variables generated by the linear stationary stochastic process which possessing
a MA representation. ,

By combining (3.1) and (3.2), we can get the representation of AF; as

(33) AP, = g(0) -y — UAPe + g(0)lu+ oed
g(t—1)
where g(t) = g1, W gzlt(z) . From this representation, it is obvious that (3.3) is a
special case of the non-stationary SSAR model we have discussed in Section 2.1
whenm=n=d=1
By using Theorem 2.3 in Section 2.2, the ergodic region for the process {AP}
with respect to the adjustment coefficients g; ( = 1,2) is given in Figure 3.1. We

12



note that the ergodic region when g; # g is quite large in comparison with that
when g; = go. This figure may be useful when we interpret the empirical results

reported in the next sub-section.

3.3 An Empirical Analysis of Spot and Futures Indeces

In this section we shall report a preliminary empirical result using the time
series data in the Japanese financial markets. In our data analysis we have used
the time series data of Nikkei 225 indeces which are the most popular stock price
index traded in Japan. They are the daily data of Nekkei Spot and Futures
indeces from January of 1985 to December of 1994. The trade of the Nikkei
index Futures started at th end of 1980’ in Osaka Stock Exchange, so we have
used the data of Nikkei Futures from January of 1990 to December of 1994. All
data have been transformed into their logarithms before the estimation of the
non-stationary SSAR model. It may be of some interests in financal economics to
compare the time series movements of the spot price index and the corresponding
futures price index.

Using these data, we have estimated the first order non-stationary univariate
SSAR model discussed in Section 2, which could be written as SSIAR(1). The
estimation of structural parameters in the SSIAR(1) model has been done by the
ML method under the assumption of the normal disturbances. Since we cannot
obtain an explicit formula for the ML estimators of unknown parameters, we have
used a numerical nonlinear optimization technique with the coherency restrictions
on parameters given by (2.18). The resulting estimation results are given in Table
2. The figures of LK stand for the maximized log-likelihood functions. For the
purpose of comparison, we also have estimated the standard TAR(1,1) process
from our time series data set. In order to make a comparison, we have calculated
the likelihood ratio statistic LR(A = B) for testing the null hypothesis

Under the assumption of the Gaussian disturbances, the likelihood ratio statistic
LR(A = B) is asymptotically distributed as x?(1). Thus this test statistic gives
us a useful information on the asymmetrical movements of stock prices. The
results have been summarized in Table 2 and Figure 3.2.

There are several interesting empirical observations from Table 2 and Fig-
ure 3.2. First, the spot stock price index sometimes shows sharp asymmetrical
movements either it is in the up-ward phase or in the down-ward phase. This phe-
nomenon has been evident in 1985 and 1987. Actually we have already known
that there was a sharp decline in October of 1987. Second, it seems that the
futures stock index does not show a significant asymmetry in two phases in com-
parison with the spot price index. There could be some economic interpretations
for this observation. Third, after starting of the active trade of stock index fu-
tures in the financial market, there have not been many occasions as were used to
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when the asymmetrical movements of the price indeces are evident. This finding
may be interesting for economists.

These observations from our empirical results are preliminary and further
considerations are needed. But clearly it has not been easy to detect these features
of the financial time series data by the existing other methods, the linear time
series models in particular.

4. Conclusions

In this paper, we have focused on one important aspect in many financial
economic time series, which has been often ignored in the past econometrics
studies. We have argued that the asymmetrical pattern in the movements of
time series between the up-ward phase and the down-ward phase often observed
by economists can not represented properly by the stationary and non-stationary
linear time series models including the standard ARMA and ARIMA process,
which have been used in many empirical studies in the past.

Then we have introduced the class of simultaneous switching autoregressive
(SSAR) models, which is one type of Markovian switching Inon-inear time series
models. It has distinctive properties of simultaneity and time irreversibility. Since
Kunitomo and Sato (1994) have investigated the stationary SSAR model, we have
focussed on the non-stationary SSAR model and investigated its some properties
in the univariate case. In this paper we have proposed the maximum likelihood
estimation method for estimating the unknown parameters in the SSAR model.
We hope that the results reported in this paper may shed some new lights on the
time series properties often observed by many economists and statisticians.

Also we have tried to show that there are some natural reasons why the
non-stationary SSAR model introduced in Section 2 is a useful tool to analyze
many financial time series in financial markets. We have illustrated this issue by
suggesting a very simple model for stock price movements in Section 3.2. The
point is that if we allow that the intrisic value of security can be different from
the observed price and have an ajustment process, we have non-linear time series
models. Of course, there can be many possibilities to describe the financial time
series by non-stationary and non-linear time series modelling. At least we can
conclude that the non-linear and non-stationary models we introduced in this
paper gives an interesting econometric and statistical model, which is useful for
the applications.

However, there are several important issues remained to be unsolved. In
this paper we have only investigated some special cases of the non-stationary
SSAR model. In particular, there are some interesting situations when we have
multivariate non-linear time series as illustrated in Example 2 in Section 2.3.
Since there can be many non-linear time series models as we indicated in Section
1, a comparison or discrimination of the SSAR model from other statistical models
would be necessary. Further investigations should be needed on these problems.
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5. Mathematical Appendix

In this appendix, we gather some mathematical details which we have om-
mited in the previous sections.

Proof of Theorem 2.3 : We shall use the method similar to that used by
Liu and Susko (1992) for the TAR(1) model with MA disturbances. However,
we note that some changes in their method are necessary and we can establish
stronger results than theirs because the non-stationary SSAR model with MA
disturbances is different from their model.

(i) Sufficiency : Let z; = Ay; and define (1+ ¢) x 1 vector &, by

Tt
Ut
(A.1) 2, = Vg1

Vt—g+1

Then we consider the Markovian representation for ;. For the sake of simplicity,
we set r; = 0. The condition z; > 0 is equivalent to v, > a;_l where

' 1
(A.2) a,_ ;= (ra— m, —C1,—Czy """ —Cq) -
From (2.20) we have the representation
(AB) & = H(@t._l,vt) 3
where

D(t)a;_ z.1 + D(t)v,
Ut

(A.4) H(@i,ve) = ()

Vggq+1

We use the criterion function
(A.5) G(z) = éh(x,') ,
where h(z;) = k|z;| and ® = (z1,- -+, z,) for some k> 0. Then
g-1
(A.6) ElG(=:)|=0] = E[h(z,)+ g}h(?)t—j)i‘co]
< o+ E[Blg(zdlzea]| - - [@o]
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because E [|ve]] < oo, where ¢; is a positive constant.
Let

(A~7) Qt]t—l = E[h(mt)lmt——l]
= E{H-D(t)a, yzes + D(¢)viloii]}

We first consider the case when z,_; = z > 0. In this case from (2.20) we have
two phases at ¢t given z > 0 and so

1 ,
A8) Quoy = k / (rg— =)z + 02 d
(A-8) Q-1 01 32(12_#)35_9,%_1[ (2 Ul)m'*’ zey + 2)f(2)dz

1 :
—~k0/ —(rg — =)z + 0 z¢1 + 2} f(2)d2z ,
2 z<(‘rz—%l-)x—9lzf_1[ (2 0'1) =1 }f( )

where 2,y = (-1, *, Zt—q) - Then by using (2.18), we have

Qtjt-1 < 2 X (1 + i'vt—-il) + kAz:L‘/ f(z)dz

i=1 22(r2—7-)e—0"Z1-1]

g2
- "\oy d
g (Jl) AZm ~/z‘Z(12——~:—l)x_g’z1_l f(Z) Z

where c, is a positive constant.
Here we use the inequality

(A.9) ~Za <.

01

This is because the coherency condition (2.22) implies

1 1
(A.10) 0<ry< —+— .
gy [ep))

By taking

6 = max {Ag, —g-%Ag} ,
g1

we have the relation

(A.11) E[G(=:)|®i-1] < ca % (1 + }i |’Ut..,'|) + 6G(®¢-1) ,

=1

where 0 < 6 < 1. Then we have

k=0 3=1

(A.12) E[G(x:)|#0] < 2 X tf:l " (1 L3 m_kuj) + 8G(=0) |
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where m = E[[uk|]] I(k > 0) + |vx|I(k < 0) . Hence we have established
(A.13) sup E[G(®:)|®0) < 400 .
£>1

The case when z < 0 can be similarly treated. Since we can show that
the Markov chain defined by (2.21) is weakly-continuous as in Theorem 5.1 of
Kunitomo and Sato (1994b, we can show that the additional key condition in
Liu and Susko (1992) (their Assumption 2.1) is satisfied in the SSIAR(1) model.
Thus we can prove the geometric ergodicity by the arguments given by Liu and
Susko (1992).

(ii) Necessity :  Without loss of generality we take ¢ = 0. The essential
part is similar to the proof for the TAR(1) model given by Chan et. al. (1985).
However, there is one aspect in which we have to modify their proof because the
model we are investigating is different from theirs.

We have to consider the situation when the values of parameters are on their
boundaries. For an illustration, we consider the case when A, = 1, A; < 0 and
B, < 1. By using the coherency condition in this case these conditions imply
1—ayrg =1, —oyr; < 0, and 1 — o7, < 1. Then we have o1y = 0, 0171 < 0,
and oo, > 0. However, they are contradictory when o; > 0 and o3 > 0.Other
boundary cases can be similarly treated. (QED)

Proof of Theorem 2.4 : The most important step in the proof is the martin-
gale property of the partial derivatives of the log-likelihood function summarized
in the following lemma. The rest of the proof is very similar to the arguments
used in Kunitomo and Sato (1994b), and Sato and Kunitomo (1994). Thus we
omit its details. (QED)

Lemma A.1 : Let 8 be a vector of unknown parameters in the non-stationary
SSAR model given by (2:20) except ro . Then we have

dlog L(6) _ Olog L;—1(6)
(A.14) E { 50 | Fia| = 50 :

where Fi_y 1s the o—field generated by {y,,s <t —1}.

A Sketch of Proof of Lemma A.1 : Let w(6) = (w(8)), where we define
the stochastic process {w(8)} by

w; ()

2 . .
D(t)WIAyt - D(t)_I#(t) - D(t)~1 (Z Cith(z-)IIt(')) Ay

1,0=1
= D(t)“lAyg +r + [Tz - D(t - 1)_1]Ayt...1 .

Then the log-likelihood function is proportional to
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S 90| 72(6)

1 1
Ly(8) o 5log|Z(8)] ~ 5
t=11=1

- %w 0) Z1(8) w(6),

where 37(8) is a T x T' matrix constructed from the MA coefficients on {Au:}
and its diagonal elements are ones by the normalization.
Take 6; = o, for example. In this case

t
1 et 1
where Sun(6) . 1
w
(A.16) -‘é*;T— = ";FIEI)A?J: + ;1—2115(.1.)1Ayt—1 )

We use the relation

(A.17) INAy, = I (v, + 1)
where
g 1
(A.18) Cip = ; NjVe—j — T1 + ,[-—Tg -+ _l:)_(t—-—--l_)] Ay .

We also note that we can decomose
(A.19) B = Hy(n)H,(n),

where H, is a t x t lower triangular matrix whose diagonal elements are ones.
Then using the relation

(A20) B {vt(e)ezﬂ[(w-j—gﬁ”(vt(e) o)+ (;f;) 1) Ayt_lnft_l}

= B{u(0)(~ ) (0(8) + o) Fim

we have

E

dlog Lt(02|f Olog Li-1(6)
da, ! b0,

1 .
+ =B [ (8) = DI + cau(0) V| Fic]
1

dlog Lt~@
601 '

The last equality is the direct result of calculation because of the normality as-
sumption on {v;}. (QED)
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Table 1: The mean of the ML estimator of SSIAR modell?

T = 100
B =10.8 B =0.2 B = 0.0 B =-0.2 B =-15

A B A B A B A B A B
A= 07922 0.7921 0.7946 0.1844 0.7932 -0.0220 0.7957 -0.2181 0.7984 -1.5410
0.8 (0.059) (0.058) (0.044) (0.169) (0.043) (0.203) (0.038) (0.230) (0.027) (0.475)
A= 0.1796 0.7912 0.1966 0.2011 0.1945 -0.0107 0.1915 -0.2006 0.2036 -1.5354
0.2 (0.173) (0.044) (0.117) (0.115) (0.110) (0.144) (0.100) (0.155) (0.061) (0.336)
A= -0.0215 0.7952 -0.0060 0.1943 -0.0062 -0.0045 -0.0008 -0.1966 0.0013 -1.5138
0.0 (0.203) (0.041) (0.133) (0.108) (0.130) (0.129) (0.117) (0.142) (0.070) (0.300)
A= -0.2159 0.7979 -0.2060 0.1958 -0.1957 -0.0028 -0.2032 -0.2049 -0.1933 -1.5185
.02 (0.230) (0.038) (0.158) (0.099) (0.150) (0.120) (0.140) (0.139) (0.082) (0.291)
A= -1.5277 0.7986 -1.5065 0.2031 -1.5052 0.0044 -1.4935 -0.2007 NA NA
15 (0.452) (0.027) (0.346) (0.063) (0.304) (0.070) (0.289) (0.083) (NA) (NA)

1 The value in the parentheses shows the root mean squared error.

2 "NA” corresponds to the case when it is not ergodic. We did not have investigated the ML
estimator in this case.

T = 500
B =0.38 B =10.2 B = 0.0 B =-0.2 B=-15

A B A B A B A B A B
A= 0.7963 0.7964 0.7987 0.1929 0.7998 -0.0014 0.7990 -0.2033 0.7996 -1.4972
0.8 (0.029) (0.028) (0.019) (0.072) (0.018) (0.087) (0.017) (0.101) (0.012) (0.210)
A = 0.1949 0.7982 0.1992 0.1997 0.2006 -0.0011 0.1997 -0.2024 0.2004 -1.5079
0.2 (0.075) (0.020) (0.052) (0.052) (0.048) (0.062) (0.043) (0.066) (0.027) (0.139)
A = -0.0042 0.7987 -0.0014 0.1998 -0.0069 -0.0014 0.0025 -0.1991 -0.0002 -1.4945
0.0 (0.084) (0.018) (0.061) (0.046) (0.061) (0.056) (0.053) (0.066) (0.031) (0.133)
A= -0.2046 0.7994 -0.1998 0.1986 -0.1987 0.0004 -0.2003 -0.1969 -0.2000 -1.5007
0.2 (0.100) (0.016) (0.072) (0.045) (0.063) (0.051) (0.061) (0.062) (0.035) (0.131)
A= -1.5146 0.7997 -1.5081 0.1992 -1.5015 -0.0020 -1.5035 -0.1996 NA NA
15 (0.193) (0.011) (0.149) (0.028) (0.132) (0.032) (0.126) (0.036) (NA)  (NA)
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Table 2: Results: Nikkei Index (225)

Spot 1985 — 1989

SSTAR(L,1) TAR(L,1)
period a b LK a(=b) LK x?
1 1985.01.04-1985.09.10 | 0.208 -0.085 741.26 0.065 736.49 | 9.528 **
2 1985.09.11-1986.05.30 | 0.372 0.258 745.99 0.328 744.92 2.155
3 1986.05.31-1987.02.20 | 0.252 0.114 643.45 0.193 642.27 2.351
4 1987.02.23-1987.11.07 | 0.233 -0.962 558.63 | -0.198  520.06 | 77.148 **
5 1987.11.09-1988.08.03 | 0.191 0.190 654.21 0.191 654.21 0.000
6 1988.08.04-1989.05.15 | 0.123 -0.072 734.40 0.040 732.67 | 3.443 *
7 1989.05.16-1989.12.29 | 0.134 0.099 605.28 0.119 605.24 0.097
* 10% significance — x?(1)
** 1% significance — x?(1)
Spot 1990 — 1994
SSTAR(L1) TAR(1,1)
period a b LK a(=b) LK x*
1 1990.01.04-1990.10.22 | 0.041 0.208 488.01 0.116 486.45 | 3.108 *
2 1990.10.23-1991.08.15 | -0.038 0.063 568.90 0.028 567.94 | 1.925
3 1991.08.16-1992.06.11 { -0.072 0.079 533.85 0.043 532.55 | 2.601
4 1992.06.12-1993.03.31 | -0.006 0.037 530.22 0.022 530.12 | 0.211
5 1993.04.01-1994.01.24 | 0.043 -0.073 573.47 | -0.015 572.90 | 1.134
6 1994.01.25-1994.11.14 | -0.160 0.049 622.40 | -0.064  620.58 | 3.630 *
Futures 1990 — 1994
SSTAR(L1) TAR(L,1)
period a b LK a(=b) LK x>
1 1990.01.04-1990.10.22 | 0.205 0.265 506.59 0.234 506.37 | 0.451
2 1990.10.23-1991.08.15 | -0.030 -0.002 561.92 -0.016 561.89 | 0.070
3 1991.08.16-1992.06.11 | 0.088 0.192 552.34 0.143 551.72 | 1.257
4 1992.06.12-1993.03.31 | 0.104 0.031 541.14 0.069 540.89 | 0.500
5 1993.04.01-1994.01.24 | -0.016 -0.095 567.66 | -0.047  567.41 | 0.500
6 1994.01.25-1994.11.14 | -0.135 -0.227 615.97 | -0.178  615.71 | 0.520
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Figure 2.1: The sample paths of SSIAR(1)
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Figure 3.1: The region of ergodicity
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