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Abstract

One important characteristic of many economic time series, which has
been often ignored, is the asymmetrical movement between in the down-
ward phase and in the up-ward phase in their sample paths. Since this fea-
ture cannot be described by the standard ARMA time series models, we in-
troduce a new class of the Simultaneous Switching Autoregressive (SSAR)
model, which is a non-linear Markovian switching time series model. We
discuss the problems of coherency, ergodicity, the stationary distribution
and its moments, and the estimation method for its unknown parameters.
We also give a simple empirical example of an agricultural market model
with price and quantity in the context of disequilibrium econometrics.
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1. Introduction

In the past decade, several non-linear time series models have been proposed
by statisticians and econometricians. For instance, Granger and Andersen (1978)
has introduced the bilinear time series models. Also Ozaki and Oda (1978), and
Tong (1983) have proposed the exponential autoregressive (EXPAR) model and
the threshold autoregressive (TAR) model, respectively, in the field of statistical
time series analysis. In particular, a considerable attention has been paid on the
TAR model in the past decade by statistician and econometricians and several
related applications have been reported. The statistical details of many non-
linear time series models have been discussed by Tong (1990). In the econometric
analyses several non-linear time series models have been proposed and used in
some empirical studies. For instance, Hamilton (1989) has introduced a Marko-
vian switching time series model and applied it to some macro-economic data.
Also McCulloch and Tsay (1992) have proposed to use the Bayesian approach to
analyze another type of Markovian switching time series model.

The main purpose of this paper is to introduce an alternative non-linear time
series model, which is called the Simultaneous Switching Autoregressive (SSAR)
time series model. This model is a kind of Markovian switching time series model
with a quite distinctive structure of simultaneity. We shall propose this statistical
model because we have a conviction that the standard Autoregressive Moving-
average (ARMA) time series model cannot describe one important aspect in many
economic time series data, that is, the asymmetrical movement in the up-ward
phase (or regime) and in the down-ward phase (or regime). In this paper we in-
troduce a particular version of the SSAR model as the reduced form equations of
the disequilibrium econometric models proposed by a number of econometricians
including Fair and Jaffee (1972), and Laffont and Garcia (1977). We shall show
that the class of the SSAR model proposed gives us some explanations and de-
scriptions to very important aspect of the asymmetrical movement of time series
in two different phases. This characterestic of economic time series has been ob-
served by a number of economists. But there has not been any useful time series
model incorporating this feature as far as we know in the econometric literature.

In Section 2, we shall discuss a wide-spread observation among economists on
the asymmetrical movement of economic time series data, which has been often
ignored in the recent econometric analyses, and its implications to the statistical
time series anaysis. In Section 3, we shall re-consider a simple two equation dis-
equilibrium econometric model originally proposed by Laffont and Garcia (1977)
and introduce the simple SSAR model. Then in Section 4, we define the mul-
tivariate Simultaneous Switching Autoregressive (SSAR) model with exogenous
variables and discuss its distinct feature of simultaneity. In Section 5, we shall
discuss the conditions for the coherency and the ergodicity of the SSAR model,
and the stationary distribution and its moments. We shall also give some results
on the asymptotic properties of the maximum likelihood estimators of unknown
parameters. Then in Section 6, we shall give an empirical application of the
SSAR model to Japanese agricultural markets. Finally, some concluding remarks
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on the related issues will be given in Section 7. The proof of theorems and some
algebraic details will be gathered in Appendix.

2. Asymmetry in Economic Time Series

It has been sometimes (or often) argued that major cyclical variables such
as the unemployment rate and the growth rate of GDP display some kind of
asymmetrical movements over various phases of the business cycle. In particular,
many economists have observed that the length of the up-ward phase has been
often longer than that of the down-ward phase. Neftici (1984) argued that there
is enough evidence in the U.S. time series data to warrant a serious consideration
of whether economic time series indeed go through two different regimes in the
business cycle. According to another interesting paper by Neftici (1993), the
earlier work by Burns and Mitchell (1946) has already devoted a considerable
effort to investigate the asymmetrical V-shaped patterns on the sample paths of
major economic time series data.

Turning to Japanese economic time series data, a number of leading economuists
in the past have mentioned to similar observations. Among many of them, we
present Table 2.1 ! which is taken from the published (or official) statistics by
the Japanese Government. It gives the official estimate of the turning points and
the cycles periods of the business cycles during the past 40 years. From Table
2.1, we find that the lengths of expanding periods are longer than those of con-
tracting periods in most cases. This reflects a common view among economists
in the Japanese Government that the down-ward phase of business cycle occurs
abruptly or rapidly developed. Although this observation could not be justified
in the narrow sense of statistical reasoning, it is difficult to be denied because a
number of leading economists have observed this kind of asymmetrical aspect in
many economic time series data.

Table 2.1: Official Dates of Japanese Business Cycles

cycle  trough  peak trough ezpanding period contracting period
1st 1951.6  1951.10 4months
2nd  1951.10 1954.1 1954.11 2Tmonths 10months
3rd  1954.11 1957.6  1958.6 31months 12months
4th  1958.6  1961.12 1962.10 42months 10months
5th  1962.10 1964.10 1965.10 24months 12months
6th  1965.10 1970.7 1971.12 5Tmonths 17Tmonths
Tth 1971.12 1973.11 19753 23months 16months
8th 19753  1977.1  1977.10 22months 9months
9th  1977.10 1980.2 1983.2 28months 36months
10th  1983.2 1985.6 1986.11 28months 17months

'We constructed Table 2.1 from Indexes of Business Conditions (July 1991) published by
the Research Bureau, Economic Planning Agency, Japanese Government.



Now we consider an interesting question, namely, is it possible to use the
standard autoregressive moving average (ARMA) time series model to capture
this asymmetrical feature in economic time series data 7 Our tentative answer
to this question is quite negative. For the sake of simplicity, we take the first
order autoregressive (AR(1)) model and illustrate some symmetrical properties
of the standard ARMA time series model, which has been often used in recent
econometric studies.

Let a sequence of observable random variables { y; } follow

(21) y¢:¢lyt—1+vt) i = 1)2)“' )

where ¢, is the unknown coefficient and {v;} are independently and identically
distributed random variables with E(v;) = 0 and E(v)? = ¢°. In the AR(1)
model, the necessary and sufficient condition for stationarity has been well-known
and is given by

(2.2) l¢a] < 1

The question we have is whether the sample paths of the stochastic process {y:}
could exhibit some kind of asymmetrical pattern in the time domain or not. First,
we take the minus of y;—; and y; in (2.1). Then we have the new stochastic process
y; = —y;, which has an AR(1) representation

(2-3) Yr = $1Y-q — Ut

If we assume that the disturbance terms {v;} are symmetrically distributed
around the origin as we usually do, the distribution of {y;} is exactly the same as
that of {y;}. Hence we conclude that the stochastic process {y;} is symmetrical
around the axis y = 0. Second, let us consider the reversed AR(1) model defined
by

(2.4) U= Sy v, t=T =1, T =2,

We assume that the disturbance terms {v;*} in (2.4) are independently and iden-
tically distributed with E(v;*) = 0 and E(v]*)? = o2.
stationarity condition on {y;*}

If we further assume the

*

(2.5) lp7l <1,

the autocorrelation function for {y*} is exactly the same as that for {y,}, pro-
vided that ¢; = ¢7. Hence this consideration leads to the second conclusion that
given the specific autocorrelation function of the AR(1) model, there are two
alternative representations in the time domain. In one representation given by
(2.1), the present value of the observed y; can be an infinite moving average of
the past disturbance terms, while in the other representation given by (2.4), v
can be expressed as an infinite moving average of future disturbance terms. In
this sense, we conclude that the standard AR(1) model has a kind of symmetric
structure in the time domain. Also the above arguments can be generalized to



the more general case of the standard ARMA models by using some results given
in Section 3 of Brockwell and Davis (1991).

The most important and distinct characteristic of the stationary ARMA model
as time series model is its linearity. In the linear time series models the present
value of the variable 3, can be expressed as a linear combination of uncorrelated
disturbance terms

[e.0)
(2.6) Ye = Z CsVtms 5

where -
(2.7) > e < 400

$=—00
and the coefficients {c,} in this moving average representation are independent of
t. It is known that the linear time series model given by (2.6) can be approximated
accurately by some ARMA model. Hence we should expect that it is quite difficult
to describe the asymmetrical patterns of economic time series data between in
the down-ward phase and in the up-ward phase.

Next, from the purely data analytic point of view, we examine the asymmetri-
cal property in the economic time series data. For this purpose, we use some time
series data on agricultural products traded in Tokyo. By modifying the AR(1)
model with some exogenous variables, we can construct a non-linear model

(2.8) ye=Po+ BT Ay + BT Ay + Y2 o, =12,

where y, is the explained variable, z; is a vector of exogenous variables, and
{v,} are the disturbance terms with E(v,) = 0 and E(v}) = ¢ > 0. As the
explanatory variables in (2.8), we have {z;} and the signed lagged explained
variables defined by

Aypy Ay >0
+ t—1 t—1 =
29 aut = { 0 20
and

~ _Jo if Ay, >0
(210) Ay = { Ay f Ay <0 ’

where the difference operator A is meant by Ay, y = o1 — yi—2 . In (2.8), Go ,
BT and Py are scalar coefficients, while ' is a vector of coefficients. In particular,
if 3t = By in (2.8), the asymmetric terms in the model disappear and we have
an AR(2) model with some exogenous variables.

As the preliminary data analysis we have used the time series data on prices
and quantities of the pork market and the hen eggs market traded in Tokyo. As
the exogenous variables we used the disposable income of consumers and the price
index of feeds which may appear in the demand function and the supply function,
respectively. These data will be further investigated in Section 6. Using these
time series data, we have estimated (2.8) by the standard least squares method.



The result of estimation are summarized in Table 2.2. From this table, we find
that the estimated unknown coefficients 87 and S; are considerably different
both in the price equation and in the quantity equation.

Table 2.2: Estimated Results of (2.8)

(1) Price of Pork (ili) Price of Egg
s BT A A
Estimate 0.6162 0.5300 Estimate 0.4796 -0.0114
S.D. 0.2204 0.2459 S.D. 0.2977 0.2592
(i1) Quantity of Pork (iv) Quantity of Egg
By Br Br By
Estimate -0.3062 0.3362 Estimate 0.2683 -0.0095
S.D. 0.1851 0.1800 S.D. 0.3061 0.2087

In the price and quantity equations for the egg market, the estimated co-
efficients of B and f; are substantially different, but many of them are not
significantly different from zero. On the other hand, all of the estimated coef-
ficients f; and A7 in the price and quantity equations for the pork market are
significantly different from zero, but the difference of the estimated coefficients
Bi and By are smaller than those in the egg market. In order to see the degree of
model fitting, we have calculated the value of AIC(Akaike’s information criterion)
in each case. We have found that the estimated models with Ay}t ; and Ay, are
better than those with only Ay;_; in all cases by the minimum AIC. Therefore
we tentatively conclude that by using the model given by (2.8), (2.9) and (2.10),
we have picked up some kind of asymmetrical aspect in the time series data we
analyzed.

3. Re-interpretation of a Disequilibrium Econometric Model

We have argued in the previous section that we often observed some kind
of asymmetrical pattern in many economic time series data. The question we
now have is to find an economic reasoning in some generality to lead the asym-
metrical pattern we have discussed in economic time series. Generally speaking,
there could be many ways to solve this problem. In this section we shall start
our discussion by investigating a very specific econometric model which may give
one affirmative answer to the theoretical question we have raised in the previous
section. We shall re-consider a version of the disequilibrium econometric model
originally investigated by Laffont and Garcia (1977). The disequilibrium econo-
metric modelling has been developed initially by Fair and Jaffee (1972). Since



then a number of different econometric models have been proposed. Some of them
have been surveyed and explained in Chapter 10 of Maddala (1983) or Quandt
(1988).

For the illustrative purpose mainly, we first make a brief review on the partic-
ular version of the disequilibrium model discussed by Laffont and Garcia (1977).
We first set up the standard system consisting of the demand function and the
supply function in a small market. Let D, and S; be the demand and supply of a
commodity at time ¢. By assuming that they are linear for the sake of simplicity,
these two equations are written as

D, = Bipe+712% + v
(3.1)
Sy = Bope + 7325 + uae )

where p, is the price level, 23, and 23, are the strictly exogenous variables appeared
in the demand and supply equations, respectively >. The demand shocks and the
supply shocks are described by the disturbance terms uy; and wuy, respectively.
The coefficients B, B, v! (a K1 x 1 vector), and 7, (a K3 x 1 vector) are unknown,
The equilibrium condition explained by textbooks is given by q; = D, = 5,
where ¢, is the quantity of the commodity traded in the market at ¢. Using
this condition with (3.1), the observed quantity ¢, and price p, are simultane-
ously determined at each ¢ given the exogenous variables and the disturbance
terms. Instead of the equilibrium condition, Fair and Jaffee (1972) introduced a
disequilibrium condition
(3.2) g¢ = min( Dy, S;)

We note that when we replace (3.2) instead of the equilibrium condition, the
econometric model consisting of (3.1) and (3.2) is not complete in the proper
statistical sense. It is because the quantity variable ¢; is determined by (3.1) and
(3.2) once the price variable p; is given. There have been several formulations
to make the disequilibrium econometric model complete. In this section we shall
adopt one simple formulation by Laffont and Garcia (1977). If D; > S; at ¢ in the
market, there is an excess demand, which leads to make the price variable p, go
up. On the other hand, if S, > D; at t in the market, there is an excess supply,
which leads to make p; go down. This consideration leads to the linearized price
adjustment process

| &(D S) D, >S5
(3.3) Apipr = { 62(Dy— S;) if Dy < Sy,

where Apip1 = pig1 — pi. ° Since the coefficients 6; and 8, represent the adjust-
ment speeds in the up-ward phase (or regime) and in the down-ward phase (or

?When there are some lagged prices and quantities as well as common exogenous variables,
it is straight-forward to modify the following analyses.

3Kunitomo and Sato (1993) has used Ap, = p; — pi—1 instead of Apyy), but the following
derivations are similar.



regime), 6; > 0(: = 1,2) and they may not necessarily take the same value. Also
there could be some economic justifications that they are different.

We now consider the disequilibrium econometric model consisting of (3.1),
(3.2), and (3.3). The new aspect in our investigation here is to shed some light on
the time series aspect of this type of disequilibrium econometric models. It seems
that enough attention has not been paid on this problem in the disequilibrium
literature, as far as we know. Let the 1 x 2 vector of endogenous variables
Y! = (g, pes1) and the 1 x K vector of exogenous variables 27 = (2}, 23,).
If the price variable p; is in the up-ward phase, then Ap;4; > 0, g; = S; and

1
(3.4) Di=q¢g+ (D —S)=¢q: + C“S'I'APtH ,

provided that §; > 0. Hence the system of demand and supply functions can be
rewritten as

1 671 0 67t g N
(3.5) (1 B )yt=(0 lﬁzﬁl)yt—l‘*‘(z; 7é)zt+ut )

where u] = (uy,up) is a 1 x 2 vector of the disturbance terms. If we assume

61 > 0, we can solve (3.5) with respect to y;. The reduced form equations for
(3.5) become

{0 B 0 75 PN €0
(36) Y = ( 0 1+51(ﬂ1 _ ﬂz) )yt—.l + ( 61’)’3 -“(51‘]/3, ) z, + v, )

where the disturbance vector of the reduced form equation is given by

w_{0 1
(3.7) o -( ) ﬁél)u,

We denote the matrix coefficients in (3.6) by II(II) and IV, respectively. Then
we may rewrite (3.6) as

69 o= TPy, + T 4 of?)

Similarly, if the price variable p, is in the down-ward phase, Apyy; < 0, ¢ = D;
and

1
(3-9) St =g — E"Aptﬂ y
2

provided that §; > 0. Hence the system of the demand and supply functions can
be written as

1 0 (0 B v 0 .
(310) (1 _5;1)yt—(0 ,62“‘(5;1>yt_1+< 0 7{)>zt+ut

By the same arguments to (3.6) and (3.7), the reduced form equations are given

by

: 0 B v 0 ) . @
3.11 = o+ g , bz
311 v (o 1+ 508 - fi) )yt (6271 sy, ) FT

8



where the disturbance vector of the reduced form in this case is given by

@_(0 1
(3.12) v = ( 5y —6, )ut

We also denote the matrix coefficients in (3.11) by IT (12) and TP, respectively.
Then we may rewrite (3.11) as

(3.13) yo = IPy,_, + Pz + 2

Let also a 1 x 2 vector e/ = (0, 1). Then the condition of Ap,4; > 0 is equivalent
to
(3.14) ey > ey,

We now summarize the reduced form equations for the disequilibrium econo-
metric model consisting of (3.1), (3.2), and (3.3). They can be rewritten as

Py, + 00z + oY (if eby, > ehyi-,)
Py, + 092 + 07 (if ehy, < ehys)

The most important feature of this representation is that the endogenous variables
may take quite different values in two different phases or regimes. This type of
statistical time series models could be termed as the threshold models in the
recent time series literature. However, since the endogenous variables and two
phases at time ¢ are determined simultaneously, we shall call this type of time
series models as the simultaneous switching time series model. It will turn out
that this simultaneity has not only an important economic interpretation, but
also a new aspect in the non-linear time series modelling. This finding leads to
some interesting problems in econometrics.

4. Simultaneous Switching Time Series Model

4.1 Some Non-linear Time Series Models

In the simultaneous switching time series model given by (3.15), the vector
of the endogenous variables g, can not be written as a linear combination of
the disturbance terms v{) (j = 1,2,s < t) in the past, and it is a non-linear
Markovian switching time series model. Generally speaking, it may be possible
to generalize this type of non-linear time series model in a variety of different
ways. In this paper, however, we shall consider only a simple way of extending
the model given by (3.15).

Let an m x 1 vector of the endogenous variables y;. Then we consider a set
of equations



P
S aVy i+ TPz + v (in the phase S{)

(41) w=1F
> OP,_ + TPz + 27 (in the phase S |
=1 .

where 2} is a K x1 vector of the strictly exogenous variables, IIE“ (i=1,...,p;j=

1,2) and IIY(j = 1,2) are m x m and m x k matrices of unknown coefficients,

respectively. Without loss of generality, we assume that the first component of z}

is the constant term. The two phases for the endogenous variables are determined
by the states SP(j = 1,2) defined by

{ 5:(1) = {c{y: > €Y, + ¢}

(4.2)
St(Q) = {cfyY: < €Yp—r + ¢}

where ¢y and ¢; are m x 1 vectors of known constants, and c. is a known scalar
constant.

In the present formulation it is noteworthy that two phases Si’’ on the en-
dogenous variables are dependent upon not only their past values but also the
value of the disturbances at . This simultaneity makes the model given by (4.1)
interesting from the statistical point of view. In this sense we call the model
defined by (4.1) as the simultaneous switching time series model. In particu-
lar, when m = 2, p = 1, ¢o = ¢; = €3, and c. = 0 in (4.1) we have (3.15).
Also when m = 1, ¢ = 0, ¢; # 0, and n¥ = o (j = 1,2), we have the
Threshold Autoregressive (TAR) model. The TAR model is an extension of the
standard autoregressive (AR) model and much attention has been recently paid
as a non-linear Markovian swiching model by time series analysts. In the above
formulation, we call (4.1) as the Simultaneous Switching Autoregressive (SSAR)
model when we do not have z} except a constant or {2} are independently and
identically distributed random variables.

(1)
t

4.2 Coherency Condition

We have presented a new non-linear time series model represented by (4.1).
However, there is a basic question if the model given by (4.1) does have the
logical consistency as a statistical model. Our answer to this question in the
general situation is negative and we shall show that we need some additional
conditions on the unknown parameters in (4.1). The issue we have can be called
the coherency problem. We should note that this problem has been already
systematically investigated by Gourieroux et. al. (1980) in their analysis of
disequilibrium econometric models.

At time ¢ all information available from the past is described as the o-field
Fior =A{y,,2},,,s <t —1}. Given F,_j, there are two phases 55]) (7=1,2) at
t and we do not know from the past information which phase we shall be at ¢.
Given Fi._y, the probability that the phase St(l) would actually occur is given by

10



(4.3)P{SV| F.1}

P
= P{CS(vﬁl) + Zﬂgl)yt‘"i + Hil)z:) > €Yty + | Fior}

=1

P
= P{chvM > (¢} = TP)yeey — ¢S APy, — (eh TV — cel)z]| Fios}
1=2

By the same token, the probability that the phase 5 would actually occur given
Fi-1 is also given by

(4.4)P{SP|F._1}

p
= P{cho® < (¢, — et TP Vyry — b S TPy, — (et TP — c.€})z]| Fiy}
=2

Since there are only two phases St(l) and ng) at ¢, the sum of two probabilities

given by (4.3) and (4.4) should be one for arbitrary values of past observations

and unknown parameters in the parameter space appropriately defined. In order

to state some conditions on the coherency problem for the model given by (4.1),

we assume the following condition on the disturbance terms o (j=1,2).

(A1) The random variables cngJ) (j = 1,2) are absolutely continuous ran-
dom variables, which are mutually independent with respect to t and their
distribution functions are given by FU)(-) (j = 1,2).

Under this assumption, we immediately obtain the following result on the co-
herency problem.

Theorem 4.1 : Suppose F) £ F? with a positive Lebesque measure under
the assumption of (A1) and c. = 0. Then we have the following conditions (1) or
(ii) as a set of necessary conditions for the logical coherency of (4.1). (i) ¢o = 0,
(ii) €0 # 0 and for e, =(0,...,0,1,0,...,0) (7 =1,...,m),

45) FOe(e;—TMVeo)) = FOlel(e; — I ep))
(4.6) FO (e;-(HSI)Ico)) = F@ (e"(II(-g)'co)) (1=2,...,p),

S
(4.7 FO (e;(ﬂil)lco - elc*)> = F® (e;(ﬂg)lco - elc*))

When the condition (i) holds, the problem of simultaneity on two phases
disappears and the problem of coherency is a trivial one. Furthermore, if there is
no exogenous variables {2z}, (4.1) is identical to the multivariate p-th order TAR
model. Hence for the TAR models in the non-linear time series analysis there is
no serious coherency problem in this respect.

Next, we consider the case when the disturbance terms in (4.1) have sec-

ond order moments. Let the variance-covariance matrices of v\’ (7 = 1,2) be

11



129) (5 = 1,2). Then the variances of cévg") are given by 07 = e, 2%¢ (5 = 1,2).
Also we consider the situation when the distribution functions F) can be written
as
(4.8) G (f—> =FO)(z) (j=1,2)

95
When ¢, = 0 in this case, the condition (ii} in Theorem 4.1 can be simply re-

written as the condition (i)’

1 1
(4.9) —(c, —cpI) = (¢, —epH)
(eF] 02
1 1
4.10 eV = —m? (5=2,...,p) ,
(4.10) el 5, STl (5 )
(4.11) ~L%H§)= lmuﬁﬁ.
%51 a2

We notice that the disturbance terms {vgj), J = 1,2} in the reduced form
equations for the disequilibrium econometric model in Section 3 are linear com-
binations of the disturbance term {u.} in the structural form. Therefore we

establish the following result from Theorem 4.1.

Corollary 4.1 :  The disequilibrium econometric model given by (3.1), (3.2),
and (3.3) satisfies the condition (ii)' for the coherency problem, provided that
6 > 0 (i = 1,2) and the disturbance terms {u.} are mutually independent and
absolutely continuous random variables with Ef||u.|*] < +oo.

Gourieroux et. al. (1980) has presented a general theorem for the coherency
problem and the above results could be derived directly from it. However, we
have presented the above propositions because the coherency problem has not
been discussed in the statistical time series analysis.

4.3 Simulations of SSAR(1)

The simultaneous switching time series model given by (4.1) is a quite com-
plicated stochastic process in the general case. In order to get some idea on its
statistical properties, we first consider the simplest case. If we look at the price
equation in (3.6) and (3.11), and we assume that there is only a constant term
in {z}}, we have the first order SSAR model. Then this model is given by

) TP =)+ oo (0 w02 wen)
(4.12) Yo — p= @) -

05 (yem1 — 1) + 020t (i e <y

which is denoted by SSAR(1). This model can also be obtained if the exogenous
variables except a constant term are independently and identically distributed
random variables. The condition on coherency in this case is given by

1 (2
1 - ¢y _1-1 )

23] dz

(4.13)

12



If we further assume that the disturbance terms {v;} are independently and iden-
tically distributed with N(0,1), the stochastic process {y:} is determined. Al-
though there are four unknown parameters {7, 62 (5 = 1,2) in (4.12), there are
only three free parameters a = I\, b = 1'[52) and (1 —a)fo, =71,

We took several sets of values of these parameters and did a large number
of simulations. Among them we only present three cases in Figure 4.1. The
middle one shows the sample path when a = b = 0.5, which means that the
SSAR(1) model is actually the standard AR(1) model. When a # b, we can
notice some asymmetrical patterns in the sample paths of the simulated time
series. For economic time series, the case when @ = 0.8 and b = 0.2 may be the
most interesting one. Even though we use a very simple SSAR model, we found
that we can get very interesting asymmetrical sample paths of simulated time
series. This aspect can not be realized by the standard linear time series models
such as the stationary ARMA model.

4.4 A Relation Between SSAR(1) and TAR(1)

The SSAR(1) model given in (4.12) is different from the first order threshold
autoregressive model, which is often denoted by TAR(1). However, there is a
close connection between these two switching models. Let a random variable w,

be defined by

(4].4:) We = Vg — r(yt-—l - ,LL)
Then using (4.12), the stochastic process {w,} follows

(4.15) wy = { H(ll)wt“l U Ve (if w1 >0)
. , =

H§2)wt_1 + Vg — Vg1 (lf Wi < 0 ) .

By this stochastic process {w,}, the first difference of the observed process {:}
can be written as

(4.16) Ay, = { oWy Gf  w,>0)
. =

ToW; (1f wy < 0) )

where Ay; = y; — y,—1. From this representation we find an interesting relation
between the SSAR(1) and the TAR{1) models. In more general cases, however,
their relations become more complicated.

5. Statistical Properties of the SSAR model

5.1 A Multivariate SSAR model
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In this section we shall investigate some basic statistical properties of a version
of the multivariate SSAR model. Let y, be an m x 1 vector of the endogenous
variables. The model we consider in this section is represented by

g+ Ay, + Zu, if ey, > ey,
(5.1) Y. = 1 J
o+ By, + B u, if ey, < ey,

where e/, = (0,---,0,1) and p! (i = 1,2) are 1 x m vectors of constants, and
A, B, and Z’%lz (: = 1,2) are m x m matrices. The disturbance terms {u,}
are independently and identically distributed, and they are absolutely contin-
uous random variables with the density function g(u). We denote this model
as SSAR,,(1) and also we simply denote SSAR;(1) as SSAR(1). By using the
standard Markovian representation the p-th order SSAR model can be reduced
to the SSAR,,(1) model. Hence without loss of generality we shall consider the
SSAR,,(1) model given by (5.1).
The conditions of e/ y, > e y,, and €/ y, < e, y,_, can be rewritten as

(5.2) e:nzilzut > €, (In — A)Y,o — €l
and
(5.3) e 3 u,<e (I,—B)y,,—e nu, ,

respectively. When 23/2 (1 = 1,2) are positive definite, the necessary and suf-
ficient conditions on the coherency problem for (5.1) can be summarized by a
1 x (m+ 1) vector

1 1
G4) T A), ] = e (T~ B). <)
!

o= r s

where ¢? = e, ¥e,, = ein})';/z}}j/mem (j=1,2).

5.2 Ergodicity

The first question on (5.1) is its ergodicity. The SSAR model defined by (5.1)
is a Markovian time series model, which is a non-linear in the state variables. It
is important to notice that this model has a representation

(5-5) Yo = T(Yeor, )

where T'(+) is a mapping from R*™ — R™, and it cannot be written as a sum
of two components involving y,_; and u,, separately. This is because the phase
of the state variables at ¢ depends on not only the past state variables y,_;, but
also u; at t.

14



Since (5.1) is a non-linear Markovian switching process in the discrete time, it
has been generally known in the statistical time series anaysis that it is difficult
to deal with its ergodicity. In this respect, there is a sharp difference between
linear time series models and non-linear time series models. For the ergodicity of
the Markov chain defined by (5.1), we have the following characterization result
if we assume the strong condition for coherency given by (5.4). The proof is given
in Appendix.

Theorem 5.1 : Suppose (5.4) hold. Then the SSAR,,(1) model given by (5.1)
is strongly continuous with respect to the state variables y,_, = .

There are several different concepts of continuity on Markov chain with general
states. Since the model we are dealing with is a Markovian process with uncount-
able states, we need some kind of continuity. The discrete Markovian process {y,}
is strongly continuous iff

(5.6) Ehy)ly;— = 2]

is continuous with respect to the vector of state variables z for every bounded
continuous function A(-). Establishing the strong continuity by Theorem 5.1, it is
possible to use a well-known theorem on the sufficient condition of the geometrical
ergodicity on Markovian process due to Tweedie (1975). However, it is difficult to
deal with the problem of ergodicity in the general case. We first state the result
when m = 1. The proof is given in Appendix.

Theorem 5.2 : Suppose the density function of {u.} satisfies the condition

(5.7 i wg(u) =0
and El|lu|] < +o00. Then the Markov chain defined by (5.1) with m = 1 1s ergodic
off

(5.8) A<l B<l1, AB<1.

The condition (5.7) is satisfied by the normal distribution. Figure 5.1 gives
the region of the ergodicity for SSAR(1). It is interesting to see the conditions
|A] < 1 and |B| < 1 are too strong for the ergodicity. When A < 0, B < 0, and
AB < 1, we have the sample paths, which are interesting in many respects. In
Figure 5.2, we present some sample paths of simulated time series in this case. In
the context of disequilibrium econometric models, there could be some interesting
interpretations if we assume that 8, < 0 < 8, and §; > 0 (v = 1,2). This case
corresponds to the situation when the absolute values of £y, 3, and 6; (1 = 1,2)
are large and there are some over-reactions or over-adjustments in the market.
Also we should note that the ergodic region shown by Figure 5.1 is the same as

that for the following TAR(1) model,
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Ayt~1 + U, if Ye—1 Z 0
(5.9) Y=

Byiy+u if oy <0

The conditions on the ergodicity for the TAR(1) model have been fully investi-
gated by Petrucelli and Woolford (1984). In the more general case when m > 1
in (5.1), we first present some sufficient conditions on the ergodicity. The proof
is similar to the first part of the proof of Theorem 5.2 and it is omitted.

Theorem 5.3 : When m > 1, suppose that Efjuy]] < +oo (us = (ui)) for
i=1,.--,m. The sufficient conditions for the ergodicity of the model (5.1) are
given by either (5.10) or (5.11),

(5.10) mjax{g]a;jl, glb;,|}<1 ,

(5.11) m?x{zmijl, iw,,:}« ,

=1 =

where A = (a;;) and B = (bi;) -

The conditions given in Theorem 5.3 are very restrictive and not satisfactory in
many applications. The p-th order univariate SSAR model is given by

P
ap + Z ajYi—y + o1y Y >y
i=1

(5.12) Yy =
P
bO -+ Z bjyt—-J + Oy if Y¢ < Yt—1

\ 1=1

where {a;} and {b;} (j = 0,---,p) are unknown coefficients. This model can be
written as (5.1). Let define p x 1 vectors y, and p; (2 = 1,2) by

Ye ao bO
Yt—1 ) )
(5-13) Y = . y BT : y Mo = : )
Ytmp+1

and also define p x p matrices

al “ e 0 - .. ap bl « ¢ a8 v e e bp

1 0 1 0
(5.14) A= N , B =

0 1 0 0 1 0

Then (5.12) can be regarded as (5.1) by the standard Markovian representation.
In this case, however, the conditions given in Theorem 5.3 cannot be satisfied.
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Hence in the univariate SSAR processes we need alternative set of sufficient con-
ditions for the ergodicity.

Theorem 5.4 : When m = 1and p > 1, assume that Ef|ugl] < +o0o. Then
the sufficient condition for the ergodicity of (5.12) is given by

(5.15) max{gjlm, im} <1

=1

The above condition is the same as that given by Lemma 3.1 of Chan and Tong
(1985) for the p-th order univariate TAR model without constant term. The
proof is similar to that given by Chan and Tong (1985) and so it is omitted.
More recently, Brockwell, Liu, and Tweedie (1992) have presented alternative
sufficient conditions for the multivariate TAR models with some restrictions on
their parameters. It seems that those sufficient conditions are related to the
conditions for the SSAR,,(1) model.

5.3 Stationary Distribution and its Moments

When the model (5.1) satisfies the sufficient conditions for the ergodicity, then
the next question would be the properties of the stationary distribution. Unlike
the standard ARMA models, the problem of stationary distribution is also not
a trivial one. In order to investigate the stationary distribution of the vector
process {y,}, we assume that the disturbance terms {u} are independently and
identically distributed random variables with the density function g(u).

Let f(y) be the density function of the stationary distribution of the process
{y.}. Then we have the following representation.

Theorem 5.5 : Suppose the ergodicity conditions and the assumptions we made
for (5.1) hold. Then the density function of the stationary distribution for {f (y,)}
satisfies the equation

G16) S = [ Z[EPy - 42)] f(2)ds
Ym2Zm
+ [ 3P [3 w- B) f(=)dx
Ym<Im
where y[:: (yl, T ym) and z' = (Zla B Zm) :

In the general case, (5.16) is an integral equation and we could not have obtained
an explicit formula for the stationary distribution even if we assume that g(u)
is the multivariate normal density function. Since it is not easy to obtain the
explicit form of the stationary density function, we have investigated it by the
numerical method. Let f(y,) be the conditional density function of y, given the
o-field F,_;. When m = 1, the ergodicity of the stochastic process {y,} implies
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that the conditional density function fi(y) converges to f(y) as t — +oo, where
fi(y) is defined successively by

(5.17) ) = [ =e[I

y
1 -~ Bz
e
v<z a2 2p]

Hence starting from a reasonable density function fy(y), we expect to have the
stationary density function after a sufficiently large number of iterations using
the numerical integration method. In our numerical analysis, we have used the
standard normal density for g(z). Among many numerical examples, we shall
present only one case in Figure 5.1.

In Figure 5.3, the initial distribution fo(y) = n(0,1) is shown by the dotted
line. We show the density functions for the stationary distributions when a < b.
The conditional density function f,(y) moves to the right and converges to f(y).
The center of f(y) is positive and the variance is smaller than 1 in this case.
Although the density function of the stationary distribution is symmetric around
zero when a = b, they are not when a # b. When a < 0, the stationary density
is considerably skewed.

We also have investigated the moments of the stationary distribution. The
sufficient conditions for the existence of moments can be directly derived by a gen-
eral theorem due to Tweedie (1983). (See the proof in Appendix.) We summarize
our result in the following proposition.

N2
[

Theorem 5.6 : In the model (5.1), suppose that (5.7), E[|u’] < +oo for
J = 1,---,k, and the sufficient conditions for the ergodicity hold . Then the
moments of the stationary distribution exist up to the k-th order.

In our numerical computations, we have calculated the first four moments
assuming that m = 1,7 = 1, 3 = yp = 0, and the normality on the disturbance
terms. The numerical values of the mean, variance, skewness, and kurtosis have
been summarized in Table 5.1. From Table 5.1 we immediately notice that the
mean and skewness of the stationary distribution are different from zero when
A # B. It has been well-known that the mean and skewness are zero and the
kurtosis is 3 when A4 = B. The variance of the stationary distribution depends on
the values of both A and B. When [A] < 1 and |B| < 1, the kurtosis of stationary
distribution is not far from 3. However, when A4 < 0 < B, it can be large and
the stationary distribution is considerably different from the normal distribution.
Hence we have found that the moment properties of stationary distribution are
quite different from those for the standard Gaussian ARMA processes.
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Table 5.1 : Moments of SSAR(1) *

(1) Mean
B=08 B=05 B=02 B=-02 B=-2
A=038 0.000 -0.399 -0.622 -0.837 -1.484
A=05 0.399 0.000 -0.227 -0.449 -1.147

A=02 0.624 0.227 0.000 -0.227 -0.990
A=-02{ 0.840 0.450 0.227 0.000 -1.016
A=-2 1.489 1.147 0.990 1.018 NA

(i) Variance
B=08 B=05 B=02 B=-02 B=-2
A=038 0.111 0.201 0.298 0.449 1.520
A=05 0.201 0.333 0475 0.700 2.406
A=02 0.298 0.475 0.667 0.985 3.702
A=-02| 0.449 0.700 0.985 1.500 8.570
A==-2 1.513 2.408 3.708 8.593 NA

(iii) Skewness
B=08 B=05 B=02 B=-02 = -2
A=038 0.000 -0.210 -0.409 -0.668 -1.487

A=0.5 0.210 0.000 -0.212 -0.513 -1.535
A=02 0.410 0.212 0.000 -0.330 -1.493
A=-02} 0.669 0.513 0.330 0.000 -1.117
A=-=2 1.490 1.537 1.495 1.117 NA

(iv) Kurtosis
B=08 B=05 B=02 B=-02 B=-2
A=028 3.000 3.080 3.313 3.820 6.477
=0.5 3.079 3.000 3.090 3.498 6.503
= 0.2 3.311 3.089 3.000 3.195 5.842
A=-02] 3816 3.496 3.194 3.000 4.097
A=-2 6.481 6.501 5.839 4.089 NA

5.4 Asymptotic Properties of the Maximum Likelihood Estimator of
SSAR

The SSAR model in the general case is quite complex as a statistical model in
two respects. The first aspect is that it is a non-linear Markovian switching time
series model. The other aspect is due to the fact that the conditional distribution

*We calculated the first four moments by integrating the stationary distribution numerically.
In Table 5.1 NA stands for the case when the SSAR(1) model is non-ergodic and there is no
stationary distribution.
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is a kind of mixture distribution at ¢ given the information available in the past.
Thus there are some difficulties to investigate fully the statistical properties of
the estimation methods in the general case.

The standard estimation method for this kind of non-linear model is the maxi-
mum likelihood (ML) estimation. In this section we shall report some asymptotic
properties of the ML estimator for (5.1). Under the assumption of normal dis-
turbances and | ¥;| # 0 (¢ = 1, 2), the log-likelihood function is given by

T
(5.18) log L7(8) = ———En}-log 27

1 T

~310g|21| ZI(e:nyt > e,y 1)
~ t=1
1

T !
Z (yt - Ayt-—l) » (yt - Ayt-—l) ey, > ey, 1)
f=3

SV
—

f—a

T
"5108 |22] Z I(e:’nyt < e;nytv-l)

t==1

(v~ By,y) 37" (. — By,y) I(eby, > ehy,y),

NE

1
2

W
A

where 8’ = (1", (vech(3,))', (vech(X,)) , e. A, e.B, e;uj (i=1--,m—17=1, 2))
denotes the vector of unknown parameters in SSAR,,(1) and the parameter space

@ is defined correspondingly. In the present case, it is possible to show directly
that the partial derivatives of the log-likelihood function is a martingale process
(see Appendix for its derivation),

Olog L(6) _ 0Olog Li1(0)
(5.19) E [“Tlft—l =g

where F,_; is the o-—field generated by {y,,s <t — 1}. From this relation we
expect that it is possible to use the martingale central limit theorems (MCLT)
for the SSAR,,,(1) model. By using the MCLT developed by Dvoretzsky (1972)
(see also Hall and Heyde (1980), for instance) and the standard method in the
asymptotic theory (see Section 4 of Amemiya (1985), for instance), we can claim
that the following asymptotic properties of the ML estimators hold.

Theorem 5.7 : For the SSAR,,(1) model given by (5.1), suppose the sufficient
conditions for the coherency and ergodicity hold and the disturbances terms {u.}
are independently distributed as N{o, I,,) with |¥;| # 0 (1 = 1,2). Also sup-
pose that the true parameter vector 8 s an interior point of the parameter space
@. Then the ML estimators éML of unknown parameters 8 are consistent and
asymptotically normally distributed as

(5.20) VT (61— 6) % N[0, 16)7]
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where L[ 9%log Lz (6)
= olim — |2 208 T\T)
(5.21) I(8) = plim [ 50560 ]

T—c0 T
This result may lead to the conclusion that we can use the standard asymptotic
method based on the limiting normal distribution although we are dealing with a
complicated non-linear time series model for practical purposes. Strictly speak-
ing, however, the statements in Theorem 5.7 are not precise. As Kiefer (1978),
Amemiya (1985), and Quandt (1988) have pointed out in their discussions on
the switching regression models, there can be several solutions for the likelihoood
equations in the non-linear models as (5.1). The precise meaning of the ML
estimator and its asymptotic properties under non-standard situations has been
discussed in Section 4 of Amemiya (1985). Whether this problem of non-standard
situation causes serious troubles or not in the analysis of time series data has not
been fully investigated yet.

6. An Empirical Example

In this section we shall report one empirical example using some time series
data in Japanese agricultural markets. The data we used are the same as we
mentioned to in Section 2, and those observed in the pork market and the hen eggs
market in Tokyo. They are monthly data from January of 1982 to Decemnber of
1991. As the endogenous variables we took the quantities traded and prices, and
as the exogenous variables, we have included the disposable income of households
in the demand side and also the price index of feeds, the lagged quantity in the
supply side. All variables we used are the logarithms of the original data. Using
these data, we have estimated the disequilibrium econometric model discussed
in Section 3. Most data exhibit strong seasonal patterns and so all data are
seasonally adjusted by the dummy variables method.

The estimation of unknown parameters has been done by the ML method
under the assumption of normal disturbances. Since we cannot obtain an explicit
formula for the ML estimators of unknown parameters, we have used a numerical
non-linear optimization technique. In the numerical optimization, the restrictions
on the parameter space

(61) ,81<0<,82, 5,>0(Z:1,2)
have been imposed.
Table 6.1 :Estimated Results of A Disequilibrium Model

(i) Pork Market
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Estimates S.D t-value
01 1.008 0.1166 8.641
62 0.9741 0.1291 7.545
B -0.3857 0.03231 11.94
M1 17.57 0.9041 19.43
Y12 -0.6016 0.1299 4.631
o1 0.00124 0.00021 Aok
2 0.00002 0.00012 0.1987
21 10.37 1.490 6.958
Va2 -0.2178 0.04310 5.055
Y23 0.2015 0.1146 1.758
o2 0.00204 0.00037 oxx
AIC -837.346
(by equilibrium) -806.713
(i1) Egg Market
Estimates S.D t-value
61 2.568 0.2635 9.746
by 4.603 0.6521 7.059
B -0.1300 0.00946 13.73
Y11 5.144 0.2606 19.74
Y12 1.369 0.04300 31.84
o1 0.00036 0.00006 oxok
B2 0.04073 0.01161 3.507
Y21 1.758 0.6688 2.629
Y22 -0.1046 0.02612 4.004
Y23 0.8760 0.04750 18.44
022 0.00031 0.00005 oxx
AlIC -921.293
(by equilibrium) -909.777

The estimated parameters and their standard deviations have been reported
in Table 6.1 °. Since we have calculated the estimated variances by the numerical
evaluation based on

(6.2)

3 0% log L7(0)
0006’ 6 = éML .

5In Table 6.1, v1; and o, are the coefficients of the constant term, and also 712,722, and 23
are the coeflicients of the disposable income, the price index of feeds, and the lagged quantity,

respectively.
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We also have reported the values of AIC (Akaike’s information criterion) for
the equilibrium econometric model and the disequilibrium econometric model.
From the data analytic view we may use the minimum AIC method. For both
markets, the values of AIC for the disequilibrium econometric models are smaller
than those for the corresponding equilibrium econometric models. This indicates
that the former is better than the latter in a statistical sense. It should be noted
that there is an estimated coefficient of 3, for the pork market, which is small
and statistically insignificant. One interpretation for this may be that the price
and quantity have been determined mainly by the demand curve. On the other
hand, the estimated results on the egg market are satisfactory in many respects.
Hence we have presented the estimated phase diagram for this market in Figure
6.1. In Figure 6.1, we have shown the estimated demand function and the supply
function as well as the data points and the unrealized demand (or supply) points
at each period. This kind of the estimated phase diagram is potentially useful
for interpreting the empirical results.

7. Concluding Remarks

In this paper, we have focused on one important aspect in many economic
time series data, which has been often ignored in the past econometric studies.
We have pointed out that many economists have observed the asymmetry or
some kind of non-linearity in the sample paths of economic time series data. We
have argued that such asymmetrical patterns can not be represented properly by
linear time series models including the standard ARMA processes, which have
been used in many econometric studies in the past.

Then we have introduced the simultanecus switching time series model, which
is one type of Markovian switching non-linear time series models. In particular,
we have investigated some important statistical properties of the simultaneous
switching autoregressive (SSAR) model, namely, the conditions on coherency and
ergodicity, the stationary distribution and its moments. We have also investigated
some asymptotic properties of the maximum likelihood (ML) estimator for the
vector SSAR model. We hope these results in this paper may shed some new
light on the time series properties commonly observed by many economists.

However, there are still a number of problems unsolved. First, we could not
have obtained the necessary and sufficient conditions for the ergodicity in the
general case. From our limited number of simulations, there are some interesting
cases when the sufficient conditions discussed in Section 5 are not necessarily
satisfied in the multivariate SSAR models, which may lead to some interesting
economic interpretations. Second, our results on the estimation of the SSAR
models are preliminary. Since the SSAR model is a non-linear time series model,
the asymptotic results on the ML estimation crucially depends on the assump-
tion of the distribution for the disturbances terms. There could be some other
estimation methods except the ML method. Also the finite sample properties of
the ML estimation method for the SSAR model should be clarified. Third, there
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are some related interesting issues of the prediction problem in the non-linear
switching time series models including the SSAR models discussed in this paper.

Finally, we should mention that there could be potentially several areas in
economics using the simultaneous switching time series model including macro-
economics and financial economics, for instance. In the econometric analyses of
time series data in these areas the linear times series models have been extensively
used in the past decade. It is important to notice that the disequilibrium econo-
metric model discussed in Section 3 is only one example to lead one version of
the SSAR model with exogenous variables. These problems will be investigated
in a subsequent study.

8. Appendix

In this appendix, we shall give the proofs of some theorems and some details
of algebra used in the previous sections. We assume that there is no constant
term in (5.1). This makes often our algebra simpler, while it does not change
the essential parts of our derivations. Thus without loss of generality we assume
pu; =0 (i=1,2)in (5.1).

[A1] Proof of Theorem 5.1: Letv{" = (1/a)) 3y, (1 =1,2). Then the
condition e, y, > e/ y,_, is equivalent to

(A.1) W8 =
a

1
_e:nzi/:,ut > T‘ny_.l
1

We take an arbitrary bounded continuous function A(-). Then for an m x 1 vector

¢,

(A.2) Eh(yu)ly, ==+ c] — E[h(Yi1)ly, = =]

= [ HAE+o+aw]dG)~ [ A4z +00]dG()

vm > P& +C) VST
+ / h[B(® + ¢) 4+ 0,v]dG(v) — / h{Be + o0,v]dG(v) ,
um <P(Z+C) ym<P'T

where G(v) is the distribution function of {v;} and v,, is the m—th component
of ». The first two terms in (A.2) can be re-written as

(A.3) / {h[A(z + ¢) + 010] — h[Az + 0,9]} dG(v)

v DP(B+C)

+ / h{A(z + ¢) + 01v] dG(v) .
TIE <y, <P (B +C)



Then the absolute value of the last term of (A.3) is less than

(A4) / | h[A(z + ¢) + 019] | dG()
P'ELv,, <P (E+C)

< M[Gn(r'(2 +¢) = Gn(r'2)] — 0

as r'c — 0, where M is a finite constant and G,,(v,,) is the distribution function
of vy, For other terms in (A.2),

(A.5) }:IH})I ( 1st term of (A.3) ) |
< / (l:mu hlAz + 019 + Ac] — h[A=z + 01v] | dG(v)
v 2T'®
= 0

by the Lebesgue’s convergence theorem. By applying the same arguments to the
third and fourth terms of (A.2), we have the continuity property

(A.6) }}_{% E[h(yt+1) |y, =2 + c] = E[h(yt+1) ly, = ‘B]
a

[A2] Proof of Theorem 5.2 : When m = p = 1, the condition y, > y,_ is
equivalent to the condition

(A7) U Z TYe-1
where r = (1 — A)/o1 = (1 — B)/o,. We set the transition density function

(A8)  plz,y) = ;1:9 <y_A$) I(y > z)+ Uig (y— Bx) Iy <z)

o] o}

where I(-) is the indicator function. Then we shall use a similar method to that
used by Petruccelli and Woolford(1984) for the TAR(1) model without constant
term. However, we note that some changes in their method are necessary because
the SSAR(1) model with constant terms is different from the TAR(1) model
without constant term.

(i)Sufficiency: In order to show the sufficiency, we take the criterion function

_ ) o ky i y>0
(4-9) ") *{ bl ify<o

o
w



where we take k; > 0 (¢ = 1,2). Then for any z > 0

(410) Q@ = [P@uh()dy

k — Az k — Bz
B (R [ ()

T30 71 Yocy<z 92
ks y — Bz

- 2 [e() v
2 2

By transforming the variable y into u, the first term in @, for instance, is re-
written as

(A.11) ki Az / g(u)du + kio4 / ug(u)du

u2rT u>re

Because we assumed E[|u;|] < +oo, the second term of (A.11) is bounded. Simi-
larly, by transforming y into u and ignoring the terms of small orders, the domi-
nant terms in @ can be summarized as

(A.12) ki Az / dG(u) + k1 Bz / dG(u) — kyBz /dG(u) ,
u>rz —%Su(r:p ug— 82

where G(u) is the distribution function. Since A < 1,B < l,and AB < 1, we can
take k; > 0 and ky > 0 such that 1 > A > —kj 'k, and 1 > B > —k3'k;. Then

(A.12) is less than
(-2}
T2

where we take 0 < n < 1and » > 0. By using the relation lim; .o 2[1—=G(z)] = 0
because of the condition (5.7), we can show that there exists M > 0 such that
forz > M >0

(A13) Ky {Aa:[l — G(rz)] + Bz |G(rz) — G(———@f—)

T2

(A.14) Q<hkiz—1.
Similarly, we can take M > 0 such that for z < —AM <0,

(A.15) Q < kofz] = 1.

Then by using Theorem 5.1 and applying Theorem 4.2 of Tweedie (1975), the
Markov chain defined by (5.1) is ergodic.

(i1) Necessity:

(ii-a) We first consider the case of A > 1. If A = 1, then B = 1 and y, is
a random walk process because we have the coherency condition (4.13). Thus
without loss of generality we assume A > 1. The proof for the case B > 1 is
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similar to this case. First, we take n such that A > n > 1 and consider the
situation when y,_; > M > 0. Then we have the inequality

+1
(A.16) P{yt < n—Q—"yHl yt—l}
1 +1
< P{~ut > . (A - 17—2““) Ys—1, —TYt-1 2 “Ut} + P{us < rye-1}
1
n—1
< P{Iutl 2> Y. Y1 yt-l} + P {lue] > —rye-a] o1}
201

< 2P{|Ut| > ksyt—1| ytwl} )

where k3 = min[ =2 | —r] > 0 and r < 0. Then by the Markov’s inequality this

20y

probability is less than

Ellue] 2Eu]] 1
17 2 < = =c <1
(A-17) kayemr ks M
If we take a large M > 0, we have
+1
(A.18) P{yt > Z}‘“‘éf“"yt—ll yt—-l} >1-c

for an arbitrary small c. Next, by the use of (A.18) we have the inequality

+1

+ 1 i
(A.19) P {yt > l‘i‘"yt—“l) Yi—1 > —‘,5“?/:—2' yt—:z}

| 120
yt—1>l;tlyf-2 . kSyt-—l

+1
(1—-Bc)P {yt-—-l > EB‘“yt—Qlyt—Q}

v

P(yt—’za dyt—l)

Y

AV

(1—=fe)(1 =0,

where = 2/(n+ 1) < 1. Hence by repeating the above evaluation we have

n+1
(A.20) P{yi+1>%~zi?ﬁ:1,~-~,t|yl}

1., (1-87%)

v



The last inequality for an arbitrary t implies that the Markov chain defined by
the SSAR(1) model is non-ergodic.

(ii-b) We consider the case when A < —1 and AB > 1. The proof for the
case B < —1 and AB > 1 is similar to this case. We take a large M such that
Yi—2 < —M < 0. Then there are four phases for {y:;-1, y:} given y;—». By using
the Markov’s inequality again, the probability

Effue]]
rM

which can be arbitrarily small. We can take n such that 42> > n > 1 and
AB >n> 1. Then

(A.21) P{ug1 < ryen} <

+1
(A22) PLue> Tyl s
+ 1
< P {Agyt—z + (Aot + oou) > 'n—:)“'"yt—z,’ yt—z}

+1
+ P {ABytmg -+ (Borlut_l -+ O'gut) Z 1 5 yt_g,l yt._g}

+ PHues < ryea| ye-a} -

The first term on the right hand side of (A.22) can be evaluated by the inequality

+1
(A-Q?’) P {(A01Ut~1 + Uzut) z (Q'g“‘ - Az) yt~2| yt--z}
0'1!/‘1' -+ (o0}
—_—F
= k4M [lufl] )

where ky = A% — 3%1- is a positive constant. Then (A.23) can be arbitrarily
small. By the same argument, the third term on the right hand side of (A.22) is
arbitrarily small. Hence we have

1
(A.24) P{yt < nt Ye—2| yt~2} >1l—c,

where ¢ can be arbitrarily small. Then we can apply the similar arguments used
in (ii-a).

(ii-c) Finally we have to deal with the case when AB = 1 and A < 0. In this
case we should modify the method used in the proof of Lemma 2.3 by Chan et.
al. (1985) to show that the process is non-ergodic. In their proof we treat as if
#(1,1) = A, ¢(1,1) = B,#(0,1) = ¢(0,]) = 0, and use the similar arguments as
they did for the multiple-threshhold AR(1) model. Since our evaluations of inte-
grals are quite similar to theirs except using the condition (5.7) in our derivations
as we did in (ii-a) and (ii-b), we omit the details. O



[A3] Proof of Theorem 5.6 : For illustration, we consider the case when
m = 1. In order to show the existence of the k-th order moment for the stationary
distribution, we take the criterion function

k¥z*  +c iz >0

kslz|* +c if z<0
where k; > 0, k, > 0, and ¢ > 0. Then by the simple calculations we can show
that

(4.26) | P )by < (1= (),

for some ¢ > 0. Then we apply Theorem 3 of T'weedie(1983) to show the existence
of moments in the present situation. O

[A4] Proof of Derivation of Equation (5. 19) :  Let the indicator func-
tions be Ic(l) =17 (v(l) > 7'y, 1) and I( D = I( Upnt < Py, _ 1) By differentiating
log L7 (8) with respect to the j—th component of 8, we have

dlog Ly (6 ’
(A.27) ‘"‘g—g“z‘(‘l =22 0Lu(8;),
0 J t=11:=1
where
1810gl)},l . 8.4," —1_ () +(8)
0Li(6;) = *5“—5@:—-15 ) + oYy 28, X, 0,1,
1. O0X:™Y 5y iy oG
—gaftr {~——~an v(t )'ut( )'It( )} ,

where we re-define m x m matrices 4; = 4 and A, = B. We partition ¥, (1 =
1,2) into ((m — 1) + 1) x ((m — 1) + 1) submatrices

3 o
X = ( O

and 3], = 2() (120%’3/02. Since {vt )} follows the multivariate normal

13

distribution N, ( ,(1/0?)3,), we use the following formulas on the conditional
expectations

; : 1 i
(A28) E {UE) | 'Umt(l)] = -g—;;‘zienzvr(n)t )

()
OMOAING) 1 (¥ 0 1 (1)2
(A.29) Ehvt|@_U« 820>+.xmes%p

We take the conditional expectation of 8L;(6;) given the o—field F,_;. The
second term of the conditional expectation of 9L,.(6,) is given by
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1 , OdAle,
(430 .

Also the third term of the conditional expectation of 8L;:(6,) is given by

E( (‘)]()lft_) .

1 (0% () ;
(A.31) 5T {-5;2;1 ( 251-2 8 ) 2;1} E[IY | )
7

1 62, f y— 2 P
+§(—T—i§tr { 5, Tlenel 3.3 1} E[v;ntft( ) | Fiei)

1 0%, _ ;
o= —itr{ 891 11}E{It()‘ Ft—nl]

e (R LU EE

Summarizing three terms in the conditional expectation of dL;(6;), it can be
written as

1 82, = (?logl}l-l :
(A32) E[@L.t(gj)lft,l] = ‘é’ {t'f‘ ( 891 “]i ]> - ‘-—“a‘é;‘—“‘} E[It() I ft-—-l]
1 0Ale,, ;
Zy;-l ae] b{ [t() ‘ ft“l]
1 Oe, Xien M) o)
+§-0—'? 883 E[(Um bt >[t I]‘-t 1] .

By the assumption of normality on the disturbances, we also have the following
relation

(A.33) /°° [l — 1= (r'y,, ) o] dG () =0 .

™'Y

If we take 6, = 02, we use the above relation and

dlog | ¥;|

: 3 2 e .
(A.34) 907 =e ¥ e
Then by the use of (A.33), we have

Also for §; = r;, we use the relation €], 4; = e, — o;r' (i = 1,2). Because the
first and third terms in the conditional expectation of 0L;(9;) are zeros, we have
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2
(A.36) E Z aL‘t(aJ) [ ft"lJ = '”‘y:_lejE

1=1

ZUE;?EIt(i) { ft-—l] =0.

t==1
For other unknown parameters in @, it is straightforward to see the conditional
expectations of 0L;(6;) given F;_; are zeros. O
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Figure 5.1: The region of ergodicity
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Figure 6.1: The estimated demand function and supply function of egg market

“¥” shows the observed price and quantity at each time.

P

o” shows the unrealized demand or supply.

The solid line shows the demand or supply function on which the price and quantity of the market is
eatmated to be determined.



