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ABSTRACT

We examine the possibility of cooperation in a long term relationship,
where agents receive diverse imperfect information about each other's
actions. '"Secret price cutting" in the industrial organization
literature is a leading example. In a differentiated product market,
a firm may not be able to perfectly detect secret price cutting by
others, but its own sales may imperfectly indicate what is going on.
Since the firms' sales levels are subject to random shocks, they may
well end up having diverse expectations: firms with low sales may
suspect price cutting while others may not. This causes a serious
difficulty in sustaining collusion in such a market. In fact, the
characterization of equilibria of this class of games - discounted
repeated games where each player receives a different signal - has
been an open question, despite the large body of literature on
repeated games. The present paper shows that communication 1is a
powerful way of resolving the possible confusion among the players in
this class of games. In particular, we construct equilibria where
players voluntarily communicate what they have observed and prove
folk theorems. Our results thus provide a theoretical support for the
conventional wisdom that communication is vital in sustaining
collusion.

Keywords: discounted repeated games, folk theorem, imperfect
monitoring, privately observed signals, communication, review
strategy



1. INTRODUCTION

The present paper analyzes the role of communication and the
possibility of cooperation in a long term relationship, when the
actions of the players are imperfectly observed. 1In particular, we
consider the situation where the players receive diverse information
about the past history and do not share a congruent set of beliefs
about what might have happened. 1In such a situation, we will show
that communication is a powerful way of dissolving the possible
confusion and coordinating the players' behavior.

"Secret price cutting” is a leading example of the particular
situation we analyze in this paper. Consider a small number of firms
producing intermediate goods. It is a usual practice in such a market
that the effective price of the good is different from the published
ohe, and the former is determined by face-to-face negotiation by the
seller and the buyer. This is commonly referred to as "secret price
cutting” in the industrial organization literature. As a result, the
firms cahnot directly observe others' effective prices. However,
each firm can observe its own sales, which serves as an imperfect
signal about other firms' pricing behavior. If the sales are low, for
example, it may be an indication of other firms' secret price cutting.
Or, it may just be the case that the market demand is low. An
important feature of the market is that the sales level of each firm
is private information and can not be observed by others. This
creates a serious difficulty for firms trying to collude for the
following reason. To maintain high prices the firms need to punish
potential deviators, and this is easiest when they share common
beliefs about when a deviation happened and who might be the deviator.
In the above situation, however, the firms typically receive
different levels of sales and therefore end up having diverse beliefs
about what might have happened.

In fact, the analysis of such a situation is known to be a hard
problem in game théory. The situation can be formulated as a repeated

game with imperfect monitoring and privately observed signals. Note



well that the difficulty is not caused by imperfect monitoring per se,
but by the private observability of signals. The celebrated model of
collusion by Green and Porter (1984), in which the market price serves
as a commonly observable signal, is much more tféctable, because the
players can easily agree Whehbto punish potential deviators. The
study of repeated games with public signals was further extended by
Abreu, Pearce and Stacchetti (1986, 1990), and Fudenberg, Levine and
Maskin (1989) identified sufficient conditions for the folk theorem
to hold in such games. In a sharp contrast, there has been very slow
progress in understanding repeated gamés with private signals. This
is rather unfortunate because those models represent a variety of
important economic problems, including such a prominent example as
secret price cutting.

There are a limited number of previous contributions on this
subject: Radner (1986), a series of works by Lehrer (1989, 1990,
1991, 1992a-c), and Fudenberg and Levine (1991). Those papers,
however, share a common weakness. Radner analyzes the no discounting
case, in which any act in a finite period, however long it may be, do
not affect the total payoff at all. His work extensively uses this
property, and can not readily be extended to the discounted case. In
fact, it is known in the study of repeated games with perfect
monitoring that there is a substantial difference between the
discounted and non-discounted case.! Fudenberg and Levine, in
contrast, analyze the discounted case, but they assume that the
players are only epsilon-rational. When the players are patient, this
implies that they do not mind taking suboptimal behavior for a long
time, and again it is this rather problematic property that plays a
crucial role in their model. Similarly, Lehrer analyzes the no
discounting case and/or the discounted epsilon-rational case.

In the:present paper, we analyze perfectly rational players with

discounting. Instead of assuming no discounting or irrationality, we

! See Fudenberg and Maskin (1986).
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introduce communication in the model to overcome the basic difficulty
of this subject. We feel that communicating with each other is the
most natural way of dissolving confusion among players when they
cannot agree on how to maintain collusive behavior. Notice that the
conventional wisdom in industrial organization states that
communication plays an important role in collusion. In fact, certain
kinds of communication are per se illegal in the antitrust law . Yet
there has been virtually no formal theory to show the role of
communication in collusion, and the present paper is hopefully a first
step to formulate the conventional wisdom in a general framework.?

In particular, we assume that at the end of each period players
can communicate what they privately observed. Communication entails
no cost so that it is "cheap talk" rather than "signaling". We also
assume that the players act strategically when they communicate: they
can freely provide false information if it suits their best interest.
Nevertheless, we will show that we can construct equilibria in which
players reveal their private information truthfully, and show that
the folk theorem obtains under a set of mild assumptions.

The use of communication in this class of games was first
introduced by Matsushima (1990), who presented some preliminary
results and conjectured the possibility of a folk theorem with
communication. After the completion of several versions of the
present paper, the authors became aware of recent independent
contributions by Ben-Porath and Kahneman (1993) and Compte (1994a),

’There are many aspects of communication in collusion, and the
present paper does not attempt to formulate all of them. For example,
one prominent role of communication is to choose which equilibrium to
play. While this probably is one of the most important roles of
communication in reality, the well-known literature on cheap talk
(Farrell(1988), and Matsui(1991)) shows that this aspect of
communication is rather hard to formulate in the standard equilibrium
analysis. In contrast, we are able to show within the standard
theoretical framework that communication is useful in coordinating
player's beliefs about history so that they can choose actions
appropriate to collusion.



who also explore the role of communication in repeated games with
privately observable signals. Ben-Porath and Kahneman examine the
case where each player's action is perfectly observed by a subset of
other players, and prove a folk theorem when each player's action 1is
observed by at least two players. Compte's paper is more closely
related to ours; it examines the same class of games and proves
similar folk theorems with communication. Interested readers are
strongly advised to read his paper too.

At this juncture let us briefly explain why the analysis of
repeated games with privately observed signals has been an open
question. 1In the usual repeated games, players can choose which
equilibrium to play depending on the publicly observed signals in each
period. This means that after any history, the continuation play is
always an equilibrium of the repeated game. This "recursive"
structure makes the analysis much easier, and the set of equilibria
can be characterized by the dynamic-programming technigue introduced
by Abreu, Pearce and Stacchetti (1986, 1990). On the other hand, when
signals are privately observed, continuation plays are no longer
equilibria and the recursive structure is destroyed. To see this,
consider an equilibrium where players' actions are a = (a;, ..., a,)
in the first period and each player i receives private signal o;
according to distribution Pr(w,, ..-,0,]a). If each player i
conditions his future strategy on o;, this means that the continuation
play is a (partially) correlated equilibrium, rather than a Nash
equilibrium. More importantly, if player i deviates from a; to a;' in
the first period, the continuation play is not even a correlated
equilibrium. Thisish@causethe;ﬂayershavedifferentbeliefsabout
the distribution‘of the "correlation device" (o,,...,0,): player i
knows that their distribution is changed by his deviation
(Pr(w,,...,0,|a;,a;')), while others continue to believe that the
distribution of  is given by the equilibrium action profile a
(Pr(w,,...,0,|a)). Thus we lose the recursive structure when signals
are privately observed, and accordingly there has been no result

characterizing the set of equilibria of discounted repeated games



with such an information structure. . ‘

In the present paper, we overcome this difficulty by introducing.
communication. Communicaticn generates publicly observable history,
and the players can play different equilibria depending on the history
of communication. In this way, the recursive structure is recovered,
and we are able to use the dynamic programming method developed for
the repeated games with publicly observable signals.

The paper is organized as follows. The model is defined in
Section 2 and Section 3 summarizes the basic technique from the
previous work and provides the overview of basic ideas. The reader
who is not interested in the technical details is advised to read the
last part of Section 3 to understand the basic theoretical
constructions of our results and the relationship to the existing
literature. Section 4 deals with the case with at least three
players. The two-player case is somewhat special and requires a
different technique. Basically, we show that equilibrium payoffs can
be improved by the delay of information release, together with the
statistical testing addressed by Radner (1986) and Matsushima (1994).
This is explored in Section 5. Concluding remarks are given in the
last section.

2. THE MODEL

The component game G is defined as follows. Each player i e N =
{1,...,n} simultaneously chooses an action a;, and after choosing it
she observes her own private signal e; which is not observed by the
opponents. Let A, b.ké the finite set of actions for player i, and let
2, be the finite set of possible private signals for player i. We
denote I, \A; = A and I

a and o respectively. Similar notations will be employed for product

LN ia®; = 2, and their generic elements are denoted
sets and vectors in what follows, and the definition will not be
repeated. The probability distribution of private signal profile o
conditional on action profile a is denoted p(w|a). We assume this

distribution has full support, that is, for each a € A and each o € Q,
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p(m|a) > 0. Let the marginal distributions for signals 0, and o_; =
(@), +++0;1, 05370 - -, 0,) be denoted p;(v;|a) and p_;(v_|a).

Player i's instantaneous payoff u;(a;,e;) is determined by her
own action and her own private signal only, i.e., it is independent of
the opponents' actions a_ and their private signals o_;. This
formulation makes it sure that the realized payoff u, reveals no more
information than a;, and o, do. In the secret price cutting
application,; u; is the profit of firm 1, ‘which depends on its price a;
and the quantity sold o,. Player i's expected payoff when players
choose action profile a € A is

g;(a) =Y u;(a;,0;)pleia)

wel

Let o, be player i's mixed action, A; the set of player i's mixed
actions. Let g;(a) and p(w|e) be player i's expected payoff and the
probability of e respectively when players conform to mixed action
profile « € A. |

We will allow players to communicate with each other. After
choosing actions and observing private signals, the players
simultaneously and publicly announce messages (m;, ... ,m ). Let M be
the finite set of player i's possible messages, which will be
specified in what follows.

The infinitely repeated game with discounting associated with
the component game G is denoted by I'(G,%), where 3e(0,1) is the
discount factor. A strategy for player i is defined by s; = (0;,7n;),
where o, and 1n; specify action and message respectively. In
particular, o, = (0;(t)) " n; = (n;(£)) s o, (t) :A,"IxQ M - Ay,
and n;(t):A;*xQ'xM*! - M;. Player i's expected average payoff when

players conform to strategy profile s = (s;,...,s,;) is
v, (s,8) = (1-8)ELY 85 u;(a;(8), 0;(8)) [s],
t=1

where 'E[~|s] is the expectation with respect to the probability

measure on histories induced by strategy profile s, and a;(t) and v;(t)
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are the action and the private signal for player i realized in period
t. The solution concept is sequential equilibrium. The set of
sequential equilibrium average payoffs is denoted V(G,8). Define V(G)
= lim, ,V(G,3d).

3. CHARACTERIZATION AND OVERVIEW

To analyze the equilibria in the discounted repeated game
I'(G,3), we employ the method developed by Fudenberg and Levine
(1994)°. Instead of directly solving the repeated game, this method
first considers simple contract problems associated with the stage
game. Then, the solutions to those contract problems are utilized to
construct the set of équilibrium payoffs of the repeated game. In
this section we first present a version of their method modified to
fit our framework with private signals and communication. Then, for
the reader's convenience, we will provide an intuitive explanation
about why this method works. Lastly, non-technical overview of our
construction of folk theorems will be given. '

We consider the T-time finitely repeated game with no
discounting associated with stage game G, which is denoted by GT. We
assume before playing G' players agree to a sidepayment contract x' =
(x;") v, where x,":M" ~ R. x,"(n") is the sidepayment to player i when
the history of message profiles m" is realized. Player i's realized
payoff is

3 Fudenberg and Levine consider the very general case where there
are two types of players, long-run and short-run. The time horizon
for a long-run player is infinite, while a short-run player lives only
one period and will be replaced by a newcomer. Note well that their
model does include the usual repeated games played only by long-run
players. This becomes a special case of their model when we either
let the set of short-lived players empty or make each short-run player
a dummy player (her action set being a singleton). Hence their

results applies to the standard repeated games only with long-run
players. '



T
L3 uya(0),0,(8)) + % (mT) .
Tt

This defines the finitely repeated game with sidepayments (G, xT),
‘and player i's strategy in this game, s’ = (oiT,niT) , is defined in the
‘same way as in the previous section. Player i's expected payoff under
strategy profile s’ is | -

T
vi(sT,x{) = E[-}z ug(a,(£)) + xF(m7) |s7],
t=1

where E[-|s"] is the expectation with respect to the probability
measure on histories induced by strategy profile sT.

For every welfare weight A € R"\{0}, we introduce the following
static optimization problem:

Problem (T,A):

T
max [Y A;vi(s7T, x)]
(sT,xT) TIen

subject to (B)Y Ax (m”) <0 for all m” € M7, and

1€eN

(1c) sT is a sequential equilibrium in (G7,x7).

Let k(T,A) denote the optimal value of this problem. Define
D(T,A) = {v e R" | Av < k(T,A)}, and Q(T) = n,,D(T,A).

Fudenberg and Levine (1994) show that Q(T) is a subset of v (G")
whenever Q(T) is full-dimensional. Since V(G,d) is approximated by
V(G',8") (= the repeated game whose stage game is T-times repetition
of G with the discount faétor equal to 8") when_& is close to unity,

V(G) is ,équal to V(G"). Thus, we can conclude that Q(T) is a subset of
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V(G) if it is full-dimensional. We finally define k() = lim, k(T,A),
D(A) ={veR | Av < k(A)}, and Q = n,,.D(A).

ForeachT=1,2,..., set Q(T) represents the collection of limit
equilibrium payoffs (as § - 1 ) in a different class of strategies in
the infinitely repeated game. If T = 30 (a month), for example, Q(T)
admits the situation where each player utilizes private information
(her action and signal) only within a given month. On any given day
in the first month (say, January), each player chooses her action
based on her past actions and private signals, as well as the history
of publicly exchanged messages. In February, however, the players
abandon what they privately observed in January, and condition their
actions on (1) publicly exchanged messages in January and February and
(2) private information in February. Hence the players periodically
abandon all private information every T periods (i.e., at the
beginning of each month), but they (potentially) utilize the whole
history of publicly exchanged messages. As we will explain in more
detail, this linkage to other months is captured by the term x"(m') in
Problem (T,A), representing the effect of the message m' on
continuation payoffs. |

Formally, for any period t within the K" month (i.e. KT < t <
(K+1)T), if both o,(t) and n,(t) are independent of (a,(t), ©,(T));<krs
we call s; = (o;,n;) a T-public strategy. A special case of T-public
strategy, which will play an important role in this paper, is the case
where the players seriously communicate only every T periods.
Finally, if s is a sequential equilibrium in the repeated game and
each s, is T-public, we call s a T-public perfect equilibrium. With
this definition, the same argument as that of Fudenberg and Levine
show that Q(T) is the set of T-public perfect equilibrium payoffs (as
6-1). As T increases, more dependence on private information is
allowed, so we have Q(T) < Q(T') for T =LT', where L is a positive
integer.

. Now wé provide a brief intuition for the Fudenberg-Levine.
algorithm,. which connects the static contract problem (T,A) with the

repeated game equilibria. Let us consider the case where the players
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abandon private information every T periods (i.e., T-public perfect
equilibria). We can decompose each player's payoff into the total
payoff in the first T periods and the continuation payoff after that.
Let W in Figure 1 denote the set of average continuation payoffs. 1In
the repeated game, the players take some actions and send messages in
the first T periods. According to the exchanged messages m' in the
first T periods, a continuation equilibrium w(m’) is chosen from set
W. This way the players' actions in the first T periods influence the
choice of the continuation payoffs. Hence in the construction of an
equilibrium, we must choose the continuation payoffs judiciously so
that (1) the players are willing to send informative messages and (2)

*** Figure 1 here ***

deviants in the first T periods are punished. Furthermore, if we are
interested in the best repeated game equilibrium in a particular
direction A, we must make the continuation equilibria as close as
possible to the boundary of W in the direction of 1 (See Figure
1(a).). Now notice that the points in set W in Figure 1(a) are average
(per period) payoffs; if w is an average payoff, the total payoff is
w/(1-6). This implies that, when the discount factor d is close to 1,
a very small variation of w creates a huge change in total payoffs.
Given that the gains from deviations in the first T periods are
bounded, we can then choose w(m’) from a small neighborhood O in
Figure 1(a), and still be able to provide sufficient incentives.
Hence, if the discount factor is sufficiently close to unity, we can
regard the total continuation payoffs being chosen from the half space
H defined by the normal vector A (Figure 1(b))*. This is basically

what is going on in the Fudenberg-Levine algorithm; the 'sidepayment'’

4 For this to be true, W must be a set with smooth boundary. The
Fudenberg and Levine algorithm exploits the fact that any smooth
subset of the feasible and individually rational payoff set (which is
a polyhedron, thus not smooth) can be a subset of the equilibrium
payoff set if the discount factor is close enough to one.
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X in the contract problem (T, 1) corresponds to the total continuation
payoffs, and the 'budget constraint' (B) indicate that they are chosen
from the half space H in Figure 1(b)°®.

With this technique, we will provide several versions of the folk
theorem in the following sections. Before going into the technical
details, let us sketch the basic ideas. The main idea is based on the
following result about the repeated games with publicly observed
signals (see Fudenberg, Levine and Maskin (1989)). Roughly speaking,
efficiency under publicly observable signals can be achieved if
piayers can be punished by "transfers'". That is, if the information
structure allows us to tell which player is suspect, we can transfer
the suspect player's future payoff to the other players. This way we
can provide the right incentives without causing any welfare loss.
If the signals are privately observed, however, we must induce each
player to reveal his signal truthfully, and this imposes certain
restrictions on the form of feasible payoff transfers among the
players. The easiest way to solicit truthful information is to make

each player's future payoff independent of what he communicates. Then
" he is just indifferent as to what he says, and truthful revelation is
a (weak) best response.

This can be done if there are at least three players. A player's
private information can be used to determine when and how to transfer
payoffs among éiher players. This possibility is explored in Section
4. Sectibn_tl also ‘examines the possibility of providing strict
incentives to tell the truth. We show that when private signals are
correlated, there is a way to check if each player is telling the
truth. All of this is done by assuming serious communication every

period: in other words, we look at 1-public perfect equilibria and we

® This is only a very rough sketch of the basic idea behind the F-L
algbrithm‘“and not a complete explanation. For example, the discount
factor appears in the repeated game problem while it is absent in the
static contract problems, and it is not immediately clear why this
discrepancy does not cause any problem. For such details, see the
Fudenberg and Levine (1994).
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utilize the above characterization of Q(1) accordingly.

If there are two players, the above idea cannot be utilized. If
what player 1 says induces a transfer between player 1 himself and
player 2, he may well send a false message to induce the transfer to
himself. Indeed, if the signals are independent (conditional on the
action profile), it is shown that there is no way to achieve efficient
payoffs in two-player case by means of 1-public perfect equilibrium.
Accordingly, we will explore in Section 5 the possibility of a folk
theorem by means of T-public perfect equilibrium with T>1. That is,
if the players communicate seriously only every T periods and their
actions can partly depend on their private information, there is a
possibility of getting better outcomes. Such a possibility has been
demonstrated by Abreu, Milgrom and Pearce (1991), who showed that the
delay of the release of public information can enhance efficiency in
repeated games. With privately cbserved signals, it turns out that
their method is not directly applicable (Section 5.2 explains the
details), and we instead use a new technique. We will show that, as
the discount factor & tends to 1 and the interval of serious
communication T tends to infinity, the folk theorem holds under some
conditions. This result assumes the indepehdence of private signals
(conditional on the action profile), but otherwise assumes Very
little about the information structure. On the other hand, it
requires some conditions on the stage payoffs. The class of games
covered by this folk theorem includes the noisy prisoner's dilemma

with private signals.

4. Folk Theorem with More Than Two Players

In this section we present folk theorems when the number of
players is (strictly) more than two. We start with a set of

sufficient conditions for the folk theorem.

':‘4.1 sufficient Conditions
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) First, we present a set of rather simple sufficient conditions
.for the folk theorem. Those conditions are easily verified, permit
economic interpretation, and the proof of the folk theorem (Theorem
1) is constructive®. After proving the simple version, we will
present weaker, although more abstract, conditions in the second half

of this sub-section.

Let @; = 1II,,;®, and Q_;; = II,,; ;2,, and define vectors

p..j(a)‘;.(p(‘@..jla) ),‘hieg_i and

p_;i(a)=(ple_s;la))

")-ijEQ-'ij !

where p(w_|a) and p(w_;;|a) are marginal distributions of pleola).
Vectors p_;(a) and p_;(a) represent the distributions of signals,
given action profile a, observed by payer i's opponents and by players
1 and j's opponents respectively. For brevity, we call the set of
players other than i and j "ij-opponents". Conditional distributions
given a mixed action profile o € A are denoted p.;(a) and p-;;(e) . Note
that p_;; is well defined only when there are more than two players,
which will be assumed throughout Section 4.

Let p' be the minimax profile (in mixed strategies) for player

pl; € argmin (max g, (a;, al;)),
u_iEA_j aiGAi

u} e argmax gi(ai,pfi) .

i€A;

The first assumption we employ is the following.

(A1) For all i and’je&i, if there is a mixed strategy a; € A; such that
P_j(lii) = p—j(ui-—_jlaj)l then gj(Pi) 2 gj(Pi—j'aJ')'

® In the sense that it explicitly constructs the side-payment

scheme in the associated static contract problems.
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This assumption will be utilized to provide proper incentives for a
player to punish (minimax) another. Assumption (Al) considers a
situation where player j has a perfectly undetectable deviation («;)
at the minimax point for player i (p'). Then, the assumption requires
that such a deviation does not pay. Note well that the 'perfect
undetectability' of the deviation a; in the above sentence has a very
strong meaning. It requires that both pij and «; produce exactly the
same distribution of the signals observed by j's opponents (o_;). This
should not be confused with undetectability in a weaker sense. Under
our full support assumption for the signals, any outcome o_; can always
be realized with a positive probability, irrespective of the action
taken. So it is a fortiori impossible to determine whether player j
is actually punishing i (using p';) or not (e«;) for sure. However, if
p.ij and «; produce different distributions of w_;, the expected reward
(future payoffs) for player j, which is a function of w_;, can change
when j switches from p.ij to «;. Hence, if the premise of (Al), p_j(p.i)
= p;(p',,e;), is violated, there is a possibility to provide an
incentive for player j to follow p';. In what follows we will show
that this is indeed the case. We will also explain when this
condition is likely to be satisfied shortly.

Now define, for each pair i#j and each profile a € A,
Qij(a) = {p—ij(a.—il a.i) I a’i eAi\{ai}}'

This is a collection of distributions of ij-opponents' signals,
generated by player i's deviations from the profile a. Let Ex(A) be
the set of strateqgy profiles which provide the extreme points of the
stage payoff set. We denote the convex hull of set X by co(X).

(A2) For each pair i#j and each a € Ex(A),
p—jj(a) ¢ CO{Qij(a) Y jS(a)}-

***x Figure 2 here **¥*
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(A2) says that if either player i or j (but not both) deviates with
certain probabilities, the other players can (statistically) detect

it. It in particular implies
(A2') For each pair i#j and a € Ex(A), p.;(a) € co(Q;;(a)).

This says that player i's mixed strategy deviations are statistically

detected by ij-opponents. This in turn trivially implies
(A2") For each i and a € Ex(A),
p.;(a) ¢ co{p(a;, a';) | a'; € A\{a;}}.

That is, any mixed strategy deviation by player i is statistically
detected by his opponents.

(A3) For each pair i#j and each a € Ex(A),
CO(Qij(a)U{P-U(a)}) n Co(jS(a)U{p—ij(a)}) = {p-—jj(a)}‘
*** Figure 3 here ***

This says that if either player i or j deviates by a mixed strategy,
ij-opponents can statistically tell which one has deviated.

Let us now examine when the information conditions (Al1)-(A3) are
likely to be satisfied. They are somewhat weaker versions of
Fudenberg-Levine-Maskin's "individual full rank'" and "pairwise full
rank" conditions ((Al) corresponds the former and (A2) and (A3) the
latter)’. Assumption (Al) is vacuously satisfied when different pure

" Our conditions are weaker because they are stated in terms of
convex combination of distributions, while Fudenberg, Levine, and
‘Maskin (1989, FLM hereafter) consider linear combination. On the
- other hand, FLM note that their condition, the pairwise full rank
.condition, needs to be satisfied by one (possibly mixed) strategy
profile. This is in contrast to our requirement that (A2) and (A3) be
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strategy deviations by player j creates linearly independent
distributions of the signals w_;, because the premise of (Al), pd(pi)
=P (p.i_j,aj) , cannot be true in such a case. This linear independence
requirement is called individual full rank condition by Fudenberg,
Levine and Maskin, and a sufficient (but not necessary) condition for
this is that the collection of distributions for o_;, one for each pure
strategy profile a€A, (i.e., {p.(a)},,) are linearly independent.
This is generically satisfied when the number of possible outcomes of
the signals o_; exceeds the number of pure strategy profiles.
Therefore, if the signal space is rich enough (the number of possible
signal outcomes being large compared to the number of pure
strategies), the condition (Al) is typically satisfied.

A sufficient condition for (A2) and (A3) is that the signal
distributions created by players i and j's deviations are linearly
independent (the pairwise full rank condition by Fudenberg-Levine-
Maskin). An example which violates this is a symmetric case, where
Aa; and Aa; have symmetric effects on the the signal distribution. In
the secret price cutting application, for example, (A3) is violated
if the quant;ty sold by firm k, which is its private signal o,, depends
on the averagé'price charged by its rivals ([%,,a,]/(1-n)). However,
by the same argument as in the previous paragraph, such a
counterexample is a knife-edge case, when the signal space is
sufficiently rich. When the number of signal outcomes w_;; exceeds the
number of pure strategy combinations for i and j (#[A;xA;]), we can
always satisfy (A2) and (A3) by slightly perturbing the signal
distributions. In summary, if each player has rich enough signals,
our information conditions (A1)-(A3) are typically satisfied. In the
secret price cutting application, those conditions are likely to be

satisfied when each firm has many instruments to infer the rival's

satisfied at all extremal profiles. The weaker requirement by FLM
works because that assumption ensures that any extremal profile can
be approximated by a (mixed strategy) profile where the full rank
assumption is satisfied. A similar generalization is possible here,
but is omitted for the simplicity of exposition.
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price cutting (sales figures of related products, the outcomes of
marketing research, etc.).

The following lemma provides the key implications of (A2) and
(A3).

Lemma 1. Under (A2) and (A3), for each pair i#j, A;#0, A;#0, and a €

Ex(A), we can construct payment schemes Xx;, X; such that

(1) A%, (0

~ij '

L) *Ax(e_,) = 0 Va_,

(2) E(x,|al-E[x,]|a.,, a',]

v

g,(a, a'y)-g,(a), Va',, h=i,j and

v

(3) E[x,|a]-E[x,]a.,, a',] 20 Va',, h=i,j.

This is basically the separating hyperplane. theorem, and the
proof is left in the appendix. Let us now briefly explain the meaning
of the above lemma and how to go about proving the folk theorem
(Theorem 1 below)®!. In the repeated game equilibrium, what ij-
opponents say (m_;;=0_;;) determines the future payoffs of players i and
j. That future payoff function is constructed from the transfer rules
described in Lemma 1. Lemma 1 states that we can find a transfer rule
for each pair of players (x; and x;) which provides the right
incentives (condition (2)) and entails no social welfare loss
(condition (1)). Once we define such a transfer rule for each pair,

we will 'patch together' all those payment schemes. Note that for

each player i, (n-1) payment schemes x;',...,x;"! are defined (as there

are n—1 pairs which player i belongs to). What we will do is to take
the summation of them X, = x/'+-.-+x,"'. This patchwork generates
payment schemes (X,,...,X,) which satisfy; '

® What follows is the intuitive explan‘ation for the case where
each element of vector A is strictly positive. Other cases are
treated similarly. See the proof of Theorem 1 for the details.
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(1) A X++-++1 X = 0 (no welfare loss),
(ii) E[X,|a]-E[X,|a,, a - gh(a_h, a'y)-g,(a), va'y, vh
(providing correct incentives; Lemma 1 (3) is used here.), and

(iii) X, is independent of m, (so that each player h has a (weak)
1ncent1ve to tell the truth).

Those payment schemes correspond to the equilibrium continuation
payoffs in the repeated game. This way, we can construct an efficient
equilibrium, which is described in the last part of the previous
section. This is a rough sketch of the folk theorem stated below
(Theorem 1). The formal proof of Theorem 1 is left in the appendix.

Before stating the folk theorem, let us introduce some notation.
Let v, = g;(p') be the minimax value for player i and define the
feasible and individually rational payoff set by

= {v € co(g(ar)) | v 2v'}.
Now we are ready to present a folk theorem result.

Theorem 1. Suppose that there are more than two players and the
information structure satisfies conditions (A1), (A2) and (A3). Also
suppose that the dimension of V* is equal to the number of players.
Then, any interior point in V' can be achieved as a sequential
equilibrium average payoff profile, if the discount factor & is close
enough to 1.

Conditions (A2) and (A3) in the above theorem are probably the
weakest conditions on the information structure which are imposed
uniformly for all a € Ex(A) (the same conditions should apply for all
a € Ex(A)) which generate a folk theorem. We can certainly weaken the
conditions by imposing (non-uniform) assumptions both on the

information structure and the payoffs functions. In what follows, we
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- will explore such a possibility, and derive a folk theorem from weaker
assumptions. The readers who are not interested in weakening the
informational assumptions may skip the rest of this section and can
go directly to Section 5.

Let us define «(A) to be equal to p! (the minimax point for player
i) if A; < 0 and A; = 0 (for j%i), and otherwise let a(1) = a(i) €
argmax,Ag(a). We will provide necessary and sufficient conditions
for a(A) to be supported efficiently in the static contract problem
in Section 3 (Problem (T,A) for T=1). That is, there exists x! such
that

s,

ieN

Ax'(w) = 0 for all v € Q (2)

and for every i, every a, € A;, and every function h;:Q, ~ Q

i?

gi(e(A)) + Y xi(e)p(e]a(d))

well

2 gy(a;(A),a) + Y xi(o g, h(e))plola (A),a;). (3)

wel

If these conditions hold for all A # 0, the result in Section 3 shows
that any individually rational feasible outcome can be approximated
by sequential equilibria. |

Let y, be a "mixed message rule", which assigns a lottery over Q;
to each element of A;xQ;. Define

] / / / /
pi(ele_;,af,y)= Y plogeilale(a)ei(a)y;(0;]a;, 0] .
aeA,waQi

The interpretation is that pi(mla_i,ai‘ ,V;) is the probability that m
= ® is announced when all players except player i choose a_; and
announce honestly, whereas player 1 chooses according to «;' and

announces according to y;. Now we can prove the following:

Lemma 2. Necessary and sufficient conditions for the existence of a

sidepayment scheme x' satisfying (2) and (3) are:
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(1) IfPi(mla_i(l),ai,Yi) =P((‘)]a(l))l then gl(a()-)) 2 gi(a—i()’)laj)l and
(2) Let N* = {ieN| A, # 0}. If there exist Ap and o such that
p'(ola(A),a;,y;) - p(e|a(L)) = (sign A,)Ap for all i e N*,

then it must be the case that

Y 1Al lgi(aA) - gi(a_;(A),a;)] > 0.

. ieN*

Condition (l) says that perfectly undetectable deviation should not
pay. Condition (2) covers the case where puhishment is most
difficult. Suppose, for example, all welfare weights are
nonnegative. Then the equality in condition (2) says that all players
with positive welfare weights can change the distribution of
announced signals in the same direction Ap. In this case, there is no
way to tell who is deviating. However, the inequality in condition
(2) shows that some players would not like to create such a change.
Hence, we can transfer sidepayments from other players to such
players, whenever Ap is detected. The inequality in condition (2)
guarantees that just enough transfer can be made to satisfy the budget
balancing condition (2), while maintaining incentive constraints (3).
A similar interpretation applies to other cases. The conditions we
emPljoyed before, (A2) and (A3) assure that the situation covered by
condition (2) cannot arise®. ‘

The lemma comes from Ky Fan's theorem in linear algebra, which
shows that a system of linear inequalities Px 2 d has a solution x if
and only if "fP=0 and B20" implies Bd<0. The detailed proof of Lemma

2 can be found in the appendix. This immediately shows:

Theorem 2. Under the conditions in Lemma 2, the folk theorem holds,

° (a2) implies that such a Ap does not exist when the welfare

weights A,, 1 € N*,‘ have different signs, while (A3) shows the same
when all of them have the same sign.
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if the dimension of V* is equal to the number of players.
4.2 Strict Incentives for Truth-Telling

So far, we have only required the weak sense of truthful
revelation. Theorem 1 constructs equilibria where each player's
message does not affect her future payoffs. Theorem 2 admits the
possibility of strict incentives for truth-telling, but this
possibility is not explicitly explored in the theorem. We will show
below that when private signals are mutually correlated, we can
construct a transfer rule such that all players have strict incentives
to tell the truth in every period, by adding rather mild informational
assumption. For simplicity, we first consider minimax points defined
with respect to pure strategies. Let b' € A be the minimax point for
player i with respect to pure strategies, and let v™, = g,(b').
Accordingly, define the feasible and individually rational paybff set
by

vV = {v e co(g(‘A)) | v 2 v},

For A such that A; < 0 for some i and A,=0 for all j#i, let a(i) = b,
and otherwise a(A) € arg max,_,g;(a) as before. We will employ the

following condition to provide strict incentives for truth-telling:

(A4) For every a(lA), A#0, every i, every o, € Q; and every ;' € 9,

~ /)

Pilo_slald),e;) #0 ;(e_;|alr), ;) for some o, € Q

-1

plela(i))
pile;la(d))

where p_;(w_;la(X),0,) =

This assumption says that the private signals are correlated, and each
realization of a player's private signal induces a different

conditional distribution of the opponents' signals.
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We define £,:Q.~ R by

£i(0) =25 (0 la(d),0) - Y pllad),e,)?,

uf,-eQ_j
To understand this construction, consider the maximization problem of

Y (2qe.)- Y glelp? B (e lald),e;)

0_1€Q_1- b){iEQ-_i

with respect to g:Q_; - R. The first order conditions say
28 ;(w_;|la(A),0;) - 2g(e_;) =0 for all e € Q.

Since the second order conditions are satisfied (i.e., — 2 < 0), the
solution is that g(e_;) = p_;(0_;|a(}r),w;) for all @ € Q. This implies

that
Y, fi@p (e la),e) > Y Fi(e 07 )8 (0 lald),e))
©_z€d_; o_jeQ_;
for all ;' # w;. Given any A and x! satisfying the sufficient

condition for the folk theorem, we define another transfer rule X' by
Zi(0) = xH (o) + pi{fi(m) + B;}, ,.

where B; is a positive real number such that
fi(0) +B; 20 for all o € Q,

and p; is a real number close, but not equal, to zero such that p;A; <

0. With this construction, Z A,%i(0) is less than, or equal to, zero,
ieN

and is as close to zero as possible as p; - 0 for each i.

Now, suppose each player has strict incentive not to deviate at
each point a(A), A#0, under the original sidepayment scheme x'. Then,
it is obvious that each player would like (1) to conform to a(Ai)
(because a;(A) is still the unique best reply, provided that p, is
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small enough for each i) and (2) to tell the truth, under the modified

scheme X!'. . Thus we have:

Theorem 3. Under the conditions (A2") for a=b’ (for any j), (A2), and
(A3), any payoff profile v € V' can be approximately achieved as a
sequential equilibrium where the players have strict incentives to
tell the truth, as 6 - 1.

(Proof). The proof of Lemma 1 actually shows that strict incentives
for actions can be provided by some scheme x' under the above
conditions. (For A;#0 and A;=0 j#i, where player i is taking a one-
shot best response, we could choose x!; = 0 so that player i has a
unique best action.) Then, the theorem follows as is explained
above. § |

Remark: Supporting mixed action by truth telling is a little more
complicated, but possible. First, note that the distribution of the
opponents' signals depends not only on a player's realized signal, but
also on his realized action. So we must require that each player
report both his signal and action, and we can similarly define f;(0,a;)
to support mixed action o. Secondly, we must make sure that the
players are exactly indifferent among the actions in the support of
the mixed actions, and that other actions are inferior. This can be
done when the conditions in Lemma 2 are satisfied with g;(a) replaced
with g' (a«)=g,(a)+p,(E[f,(v,a;)|e;]+B;), where E[-|ea;] 1is the
expectation under mixed action profile «;. In particular, supporting
a mixed strategy minimax point with strict incentives for truth
telling is possible, when the collection of vectors pﬁ(p?ﬁ,aj),e% €
A, are linearly independent (the individual full rank condition of
Fudenberg, Levine and Maskin). This is because we can always define
x! to make all actions exactly indifferent with respect to the

modified stage payoff g' defined above. Thus we have:

Theorem 4. Suppose the collection of vectors p_.(p'_.,a.), a. € A, are
o -p J J J J J

 iihearly independent for all i and j, and assume (A2) and (A3) are
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satisfied. Then, any payoff profile v € V' can be approximately
achieved as a sequential equilibrium where the players have strict

incentives to tell the truth, as § - 1.

5. Independent Private Signals and Two-Player Case

The basic idea in the previous section is to use each player's
message to transfer payoffs among others. This induces truthful
revelation of private signals and efficient enforcement of actions.
Obviously, the same procedure cannot be employed if there are only two
players. Accordingly, we will explore the possibility of efficiency
by delaying the release of information. This requires independence

of private signals

plela) = Op;(e;]a),
1eN

and a certain restrictions on the payoff structure, which will be
discussed in Section 5.3. We begin with a simple example of a noisy

prisoners’' dilemma.
5.1 PRISONERS' DILEMMA

We specify the component game G in the following way: n = 2, A,
= {c,d} @; = {0,1}, and the expected!’ stage payoffs are given by the
following table. |

1o It_is‘easylto check that we can specify realized payoff

functions u;(a;,v;) to generate the expected payoffs in the table.
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where H; > 0 and L;, > 0 and players 1 and 2 are the row and column
players respectively. This is the prisoners’' dilemma, where (d,d) is
the unique Nash equilibrium but is inefficient. We also specify the
‘message spaces as

M. = {Pass, Fail}

1

and assume that the signals (v,, v,) are conditionally independent and
satisfy

p,(1]d4,d) 2 p,(1]c,d) > p,(1}c,c) > 0, and
p,(1]d,d) 2 p,(1|d,c) > p,(1]c,c) > 0.

Here, signal 1 is a bad sign which indicates that the opponent is
cheating.

An interpretation of this model is the exchange of commodities
with uncertain qualities. Player 1's effort level a, = ¢,d determines
the quality v, of the good he provides to player 2. Here, o, = 1 means
that the quality is low, and e, = 0 means high quality. In this
interpretation, the quality of player 1's commodity may only be
affected by his effort, so we have P,(w,/]a) = P,(0,]a,). The
symmetric explanation appliés to player 2's commodity. In this
setting it is natural to assume random shocks to the quality of two
commodities are independent, so our assumption of conditional
independence is expected to hold..

Let £, and £, be positive but small real numbers, where
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0<E < p, (1]c,d) - p; (1|c,c), and
0 < £, < p,(1|d,c) - p,(1]|c,c).

We specify x" in the following way: For i#j, we set x;° is
independent of m;" and m;"* so that x;" = x;"(m;(T)), with

x;,"(Pass) = 0, and
x;T(Fail) = —(H; + €,),
where e,, i=1,2 are arbitrary positive but small real numbers. We

will show below that by choosing T large enough, there exists a
sequential equilibrium &7 in the finitely repeated game with
sidepayments (G',x") such that for every i = 1,2, v,"(8",x") is close to
1=g;(c,c). | |

Considering the following message strategies:

f7(t) = Pass for t # T,

T

Fail  if %’Z 0,;(t) > p;(1]c,c) +E,
t=1

Pass otherwise.

The first line says that the players' messages in t =1,2,...,T-1
contains no information. Each player i waits until the end of period
T and count the total number of bad outcomes. If the frequency of bad

T
outcomes, %%2:“M(t) is below the '"threshold" p;(1|c,c)+E;, he
t~1 Lo

~announces "Pass", which means his opponent passes the statistical
test:. Otherwise, he says "Fail".

Next we specify the action plan 8}. We assume that 6] plays c on

the equilibrium path for each t=1,...,T. Given the above message rule

and the independence of signals, each player accumulates no
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information during the T periods. So player i's problem effectively
reduces to the simultaneous (static) choice of action sequence
(a;(1),...,a;(T)). Wewill show that a;," = (¢,...,c) is better than anyb“’
other action sequence!l.

According to the above strategy profile &7 = (67,47), both

players continue to choose "c". It is clear from the law of large

T
numbers that the probability of % E w; (t) being around p;(1|c,c) is -
t=1

close to unity. This implies that given that T is large enough, each
player almost surely passes the test and enjoys no penalty, and
therefore, v/ (s7,x7) is approximated by 1 = g;(c,c).

The choice of the message function 1} is irrelevant to player i's
payoff, because g,, x;, 8] and §] are independent of m'. This
implies that announcing messages according to fi7 is one of the best

responses for player i. From the assumption of independent private
signals and the fact that the opponent 1is sending “uninformative
messages for t < T, player 1 expects in every pericd t with any history (af ™, 0™, mt™1)
that player 2 has observed ;' with probability

t-1

I p,(w,(t) |a,(t),c),

T=1
which is independent of (w; *,mt?). This property also holds for
player 2.

Let £/(h) be the probability that player i is penalized when

player j continues to choose '"c¢", but player i chooses "c'" T-h times

and "d" h times. Strategy 4, is player 1's best response to §,° if for

everyh=1,...,T,

! Formally, let 87(t) = 67(¢t) (af™) and let 6,(t) = c if a,(T) =
c for any t < t. Otherwise, let 6;(t) be the best response given
ai™?, other player's action sequence ajT = (¢,...,C), message ruleﬁg-',

and the transfer rule x,.
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T, B ) i) 7,

1+ xF(Fail) £7(0) >

that is,
(H, + ¢,) (£ °(h) - £7(0)) 2 hH,/T. (4)

A similar property also holds for player 2. Matsushimé (1994) proved
in Theorem in Section 4.2 that by choosing T large enough the above
inequalities always hold. This implies in our context that § is a
seque‘ntial equilibrium 1n (G?,XT). '.fhe appendix provides a brief
explanation of the logical core fof the reader's convenience. B

Based on the above resulté, we can derive the folk theorem based
as follows. For A, 2 0, the above "statistical test" ensures that we
can make player i choose the desirable action with negligible welfare
loss. For A, < 0, we must use "reward" rather than punishment, to
satisfy the '"budget cor‘i’straint" AxT(m(T)) < O. Namely, we set
x,T(Pass) =4, + e ’i and xiT(F;ail) = 0, where d, is the gain from deviation
from the desired action (actually d; = L; is the only relevant case).
Hence, in the contract problem in Sect.ion 3, any player i with
negative weight contributes a "welfare loss" equal to her gain from
deviation d;, whereas any player i with positive weight contributes
no welfare loss. From this observation, it is easy to check that the
intersection of the half spaces Q = n,D(A), is equal to the set of

feasible and individually rational payoffs (see Figure 4).
%x%x% Figure 4 here X

Since the set of all individually rational feasible outcomes is full-
dimensional, we have the folk theorem for the prisoners' dilemma game

with privately observable signals:

Proposition 1. Consider the prisoners' dilemma game with privately
~observable independent signals. Any feasible and individually

rational payoff profile in can be approximated by sequential
equilibria, as 6 - 1.
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In what follows, we will generalize this observation.
5.2 DISCUSSION

It is our essential device to consider a finitely repeated game
G" as the component game instead of the original G. According to
Proposition 3 in Matsushima (1990), we know that in the general two
player case Q(1) does not contain any efficient outcome, and
therefore, it 1is ' impossible to derive the folk theorem by
investigating Q(1) only.

Our approach is related to the delay of information release
originated by Abreu, Milgrom and Pearce (1991). There are a couple of
important differences, and most importantly their method is not
‘directly applicable in the present context. First, the nature of the
"statistical tests" are different: They did not use the idea of
relative frequency of getting signal "1" (the bad outcome). They
instead considered as the punishment region the event that signal "1"
was observed in every period. Clearly this event rarely occurs even
if a player deviates glbbally. This makes it necessary that the
realized punishment x! (Pass) - x',(Fail) tends to infinity as T-= in
their equilibrium, to-maintain the magnitude of expected punishment
at the required ievel.

This does not cause any problem in their model with publicly
observable signals, but a difficulty arises in our model with private
signals for the following reason. First, to induce truth telling
about the private signals, we need to make the variations of each
~Player's expected sidepayment independent of what he says (under the
assumption of conditional independence). The variations of
sidepayments are illustrated by the arrows in Figure 5(a), and such
payoff variations require that the set of equilibria should be of full
dimension. In contrast, in their model, all players can be
simultaneously punished by the reversion to the one-shot Nash
equilibrium (0,0), because there is no need for truthful revelation

of private information. Hence it suffices to show, in their model,
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that the one dimensional line segment between (0,0) and (1,1) is
(asymptotically) self-generating (see Figure 5(b)).

**%x Figure 5 here **%

Secondly, to check the full dimensionality of the equilibria, we
must consider the sustainability of (c,d) and a welfare weight A such
that 4, < 0 and A, > 0. The "budget" condition (B) in the contract
problem (T,A) requires that x' (Fail)=0 and x',(Pass)>0. As we
explained above, in their construction xﬂ(Pass) must be enhanced as

T-o, and so must the welfare loss -A,x%,7(0) {1 - p,(1|c,d)T} . This is in

contrast to the case of positive welfare weight, where the welfare
loss = (probability of punishment)x(realized punishment) vanishes
because the probability of punishment tends to zero. 1In order to
minimize the welfare loss, we have to choose T = 1, which make the
loss equal to /

-MLip, (0]c,d)
p,(0lc,d) - p,(0]d,d) "’

- A x; (Pass)p(0]c,d) =

Because this value is larger than -A,L,, only a strict subset of V*
(including (1,1)) can potentially be sustained by the methods of
Abreu, Milgrom and Pearce. However, if L, is large, this value may be
more than -A,(1+L,). The condition for this is

Mp,(0|d,d) > p,(0]c,d) - p,(0]d,d),

and this implies that the intersection of the half spaces is empty.
In such a case, not only the efficient outcome (1,1), but also any
outcome: except .the one-shot equilibrium outcome (0,0), can not be
supported by sequential equilibria, - if we were to adopt their
method!?.

'» compte (1994a) provides an alternative method, a modification
of Abreu, Milgrom and Pearce's construction, to cope with this
problem.
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Note also that the delay of information release in their model
is exogenously imposed, while it endogenously arises within our
model, where the players can choose to (seriously) communicate every
once in a while. ' - B o

5.3 EXTENSION

As we have pointed out in Subsection 5.1, any player i 'with
negative weight contributes a welfare loss equal to her gain from
deviation d,, whereas any player i with positive weight entails no
welfare loss. This basic idea can be extended to the more général
class with independent private signals. Although delaying the
release of information is most useful in the two-player case, we will
provide a general result for n-player case. As there is rib nested
relationship between the assumptions here and those in Sectionv3 , this
generalization to the n-player case is useful.

First, define a subset A' of A as follows :’ an action profile aeA

is an element of A' if and only if for every ieN, either
g;(a) 2 g;(a_;,a;"') for all a;' € A, or
p.;(a) # p_;(a_;,;) for any mixed action «;#a;.

For every subset N' of N and for every a € A', we define v(N',a) € R"
by

v,(N',a) = g;(a) for all 1 ¢ N', and

v,(N’/,a) = max g,(a_;,af) for alli eN'.
aj€Ay

Define subset V(N') of R" by the convex hull of {v(N',a)|aeA'}, and
define < ,
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v/= (v .
'N/CN

By a similar arguments in Sec’tion 5.1, one can show the following;

Theorem 5. Consider an n-player game (n22) and suppose the dimension
of V' is equal to n. If players' signals (o,,...,0,) are independent
given any action profile a, any outcome in V' can be approximated by
a sequential equilibrium of I'(G,8), if 8 is close enough to 1.

Proof. See the appendix.

If we impose some assumptions on the payoff function, the
equilibrium set V' in the above theorem coincides with the set of
feasible and individually rational payoffé. In particular, for the
two player case, the folk theorem for the Prisoner's dilemma in
Section 5.1 can be generalized as follows. Recall that b! refers to
thexninimax:profilé for player i with respect to pure strategies, and

V"™ is the set of feasible and individually rational payoffs with
respect to b'.

Corollary. Assume that there are two players, o, and ©, are
independent given any pure action profile, and A'=A. If there is a’
€ A, 1=1,2 such that

2 0
g,(b*,a%) > max,...v,, and
0 1
g,(a’,b',) > max, .v,,

then any outcome in V* can be approximately by a sequential

equilibrium of I'(G,d) if & is close enough to 1.

The proof“of Corollary can also be found in the appendix. Figure 6

illustrates the nature of the assumptions in Corollary.
*%* Figure 6 here *¥%*
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They require that the Pareto frontier of V¥ is downward.sloping, and
there is a "repenting" action a’: If player i chooses the repenting
action a’ while the opponent is minimaximizing him, the opponent
enjoys a payoff which is higher than any of his payoffs in V. These
conditions can be satisfied when players have some means to transfer

income between them.

6. CONCLUDING REMARKS

We have shown in the present paper that communication is an
important means to resolve possible confusion among players in the
course of collusion during repeated play. Confusion may arise when
each player observes a different set of signals about other player's
past actions. This class of games, known as repeated games with
imperfect monitoring and with privately observed signals, includes
many important economic applications, such as secret price cutting
and exchange of commodities with uncertain gquality. The
characterization of equilibria in this class of games has been an open
guestion, because the games lack recursive structure and are hard to
analyze. We introduced communication to generate publicly observable
history, which recovers the recursive structure. We showed that we
can construct equilibria in which the players' private information is
voluntarily revealed and is utilized to enforce desirable actions.

One thing which we did not show is the necessity of communication
for a folk theorem in this class of games. As we explained above, we
do not know how the equilibrium set looks when there is no
communication. In principle, there is a possibility that a folk
theorem holds even without communication. When we regard a folk
theorem as a theory of self-help or cooperation, this may not be a
serious problem, as communication is readily available in many cases.
On the other hand, if we regard it as a theory of cartel enforcement,
it is very important to determine what is possible without
communication. This is because certain kinds of communication are per

se illegal in the antitrust law. If we could show that full collusion
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is impossible without communication, we would be able to provide a
clear-cut theoretical basis for the antitrust law. Thus the
characterization of the set of equilibrium without communication is

a theoretically challenging and economically important open

question®?.

13 Kandori(1991)° and Compte(1994b) consider the case without
communication. ' ,
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Appendix

(Proof of Lemma 1). First, take the case where A; and A; have the same
sign. By (A2') and (A3), there is a separating hyperplane defined by
normal vector y such that (1) qy <p;(a)y for all g e Q;;(a) and (ii)
qy > p.;;{(a)y for all g € Q;;(a) (see Figure 3). For a positive number
t, define x; = ty and x; = -(4;/4;)x; to satisfy the budget balancing
condition (1). By making .the parameter t arbitrarily large, we can
make (p.;;(a)-q,)x, an arbitrarily large positive number for h=i,j,
g; € Q;;(a) and g; € Q;;(a). Since (p_;;(a)-g,)x, corresponds to the left
hand sides of (2) and (3), these conditions are satisfied.
Secondly, suppose A; and A; have different signs. By assumption
(A2) and the separating hyperplane theorem, there is y such that gy <
p-;;(a)y for all q € Q.U.(a) and all q € jS(a) (see Figure 2). The rest

of the proof is exactly the same as above.f

(Proof of Theorem 1). We use the algorithm explained in Section 3 for
T=1. That is, we assume that the players condition their actions on
publicly exchanged messages only. At the end of each period, players
communicate the signals they received (M; = ;). In our construction,
each player's message does not affect his continuation payoffs (1.e.
X; = X;(m_,)), so that he is willing'to tell the truth. To this end, we
look at a collection of static contract problems for each welfare
weights A € R"\{0}. We examine different cases depending of the signs
of A. ,

Case 1: Player i is minimaximized (A; < 0, 4; = O for j#i).

1) Supported action: pl.

2) x; = 0 and player i takes one-shot best response pi, to pl .

3) x;(e_;) provides player j=i correct incentives to take (possibly
mixed) strategy mij. This is possible by (Al), and the proof is found

in Lemma 2 below.

For other welfare weight vectors A#0, let a(l) € argmax,, Ag(a).
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Case 2: Player i is maximized (A; > 0, A; = 0 for j#i).

1) Supported action: a(A).

2) X%; = 0 and player i takes one-shot best response a;(i) to a_;(4).
3) X;(w_;) makes aj(A) a best response for player j#i. This is
possible by (A2"). The formal proof is similar to Lemma 1 and
therefore omitted.

Case 3: Otherwise (there are at least two players with non-zero
welfare weight).

1) Supported action: a(A).

2) For any player i with zero welfare weight: x;(w_;) makes a;(4) a best
response. This is possible by (A2“) . |

3) For each pair of players i+] whbse welfare weights are non-zero,
construct a pair of incentive schemes as in Lemma 1.

4) If more than one payment schemes have been constructed for player
i, let us finally define X, to be the sum of those schemes. Clearly,
X; does not depend on w; so that telling the truth is a (weak) best
response for player i, and Z;A,x; = 0 for all o. Furthermore, the
incentive constraints are maintained. If xli, P ,XKi are the payment
schemes defined for player i in the above construction, each scheme

satisfies the incentive constraints
E[x¥ |a] - E[x%|a;, a',] 2 g,(a,, a';) - g;(a) Va';. (1)

‘Part (3) of Lemma 1 assures that the left hand side of (1) is always
nonnegative. Hence the summation scheme x; = I x* makes the left hand

side even larger, preserving the incentive constraints:
E[Lx*|a] - E[Lx"]a,, a';] 2 g,(a;, a';) - g;(a) Va';.

Thus we conclude that aside from Case 1, the extremal payoffs in
the direction of A can be achieved: D(1,A) = {v | Av < Ag(a(A))}. For
‘Case 1, where A has a negative element for i and zeros elsewhere,
D(1,A) = {v | v; 2 v";}. Therefore n,,D(1,4) = Q(1) = V' and the full

dimensionality of V' proves the theorem, by means of the
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characterization in Section 3.f

(Proof of Lemma 2). Let H, be the set of all functions h;:Q; ~ 2;, and

define, for each a; and h;

pilela; (M), a;,h) = Y ploeile;(A),a,).

wjenit (uy)

This is the probability that m=e is announced when all players except
i play @_;(A) and announce honestly, while player i plays a; and
announces according to h;. Define row vectors ‘p(a(A)) = (p(o]a{A)) 0/
p(a;,h;) = (p'(e|a_;(A),a;,h;)),o, and let

P, = |pla(d)) -play, hy)
: aiEAj

This matrix indicate how the distribution of announced signals
‘changes when player i deviates. Let g;(a;, h;) = g;(e;(4),a;), and

define the (column) vector of player i's gains from deviations by

d, = (gl-m(x) ) —'gi(ai,hg]

Also define the column vector of sidepayments for player i by

x; = [x{(w)}
: wel.
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Without loss of generality, assume that A; # 0 for i=1,...,kand
A, = 0 for i=k+1,...,n. Let I be the #Qx#Q identity matrix, and define

P, 0
ENEA
= 0 p = ;
P ' . P and d 1A, | dy
(signd,) I - (signi,)I 0
-(signiA,) I ~ -(signi,) I

where the "O" in the definition of d is a (2#Q)x1 zero vector.

Finally, let
[lkl |X1]
x = :
PAg | % ,

Then, conditions (2) and (3) are equivalent to

Px 2 d, and (al)
P.x; 2 d; for i>k, (a2)

1

where "2'" means that weak inequality holds for each element of the
vectors. Now we can apply a result in linear algebra, known as Ky

Fan's Theorem. It asserts that Px 2 d has a solution x if and only
if

Any P20 with BP=0 must satisfy fd<0. (a3)

It is easy to see that Ky Fan's theorem implies that (a2) 1is
equivalent to condition (1) in Lemma 2. In this case, the vector B
(a3) corresponds to (after a suitable normalization) mixed strategies
of player i. For (al), the vector p in (a3) can be interpreted as P
=(Bys---,B, 8", B7), where B; = (---B;(a;,h;)- - ) aieai,hieti
player i's mixed strategy over a; and h;, and p* and B~ are nonnegative

corresponds to
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‘#ax1 vectors which satisfy Ap = p* - p~ for Ap in condition (2) of the
present lemma (again, all of these assume suitable normalization)..
For such B, (a3) corresponds to condition (2) in the lemma. For B =
(0,...,0,B;,0,...,0), (a3) cofrespoﬁds to condition (1) in the lemma.
It is easy to check that (a3) has no other implications.

(Sstatistical test used in Section 5). To get some intuition, we will

separately investigate the following two cases:

global deviation: player 1 chooses "d" so many times, i.e.

| the number of deviation h is closest to T

local deviation: player 1 chooses "d" only a few tlmes,
| i.e., h is close to 1.

_The extreme case of global deviation is that player 1 chooses "d"

every time, i.e., H =T. The extreme case of local deviation is that

player 1 chooses "d" in period T only, i.e., h = 1. We will

investigate these extreme cases only. The basic ideas can be extended

to the general case. |

Consider the first case, where player 1 chooses "d" every time.
It is clear from the law of large numbers that player 1 almost surely
fails the test. Then, the left hand side of (4) is close to H, + €,,
while the right hand side is H;. From these observations, player 1 has
no incentive to deviate all times.

Next, consider the second case, where player 1 chooses "d" in
period T only. Note that local deviation gives only a little change
on the probability of passing the test. This may make it difficult to
4'prevent local deviation. However, the gain from local deviation is
almost negligible as compared to the amount of possible global
penalty. This point will make it easy to prevent local deviation. We
‘can check that the latter positive aspect can overcome the former
negative aspect as follows. Define an integer t* by

£* trel
T

< p,(1lc,c) +p, <

39



This means that player 1 is one the verge of failing the test when

player 2 has observed t* bad outcomes by the end of T-1.
T-1

If E @,(t) is less than t*, then player 1 certainly fails the test
S t=1 )

T-1
regardless of the signal ,(T) in period T. Similarly, if E w,(t) is
t=1

more than t*, then player 2 certainly passes the test. Therefore,
T-1

player 1's action in period T is relevant only if ¥ o,(t) is equal to
t=1

t*. Let & denote the probability of this event, (the player 1 is just

on the verge of punishment at the beginning of time T):
T-1

¢ = PI(E ©,(t) = t*). The above argument shows that by choosing a,(T)
t=]

= d instead of "c", player 1 increases the probability of punishment
by

dip,(1|d,c) - p,(1]c, )},
and the expected increase of player 1's penalty is
¢i{p,(1]|d.c) - p,(1L|c, )} (H + €).
On the other hand, player 1's gain from last period's deviation is
H,/T. Hence, all we have to show is that the product T% can be large
enough to satisfy '

H < Td{p,(1|d,c) - p,(1]c,c)} (H +€). (b)

As T tends to infinity, the probability of getting exactly t* bad

outcomes in the T-1 periods (&) tends to zero, so the guestion is how

fast it vanishes compared to T. To get some intuition, consider a
T-1

counter-factual casewhere Tll E w, (t) = Zwereuniformly distributed.
Tt =1
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Then, & = 1/(T-1), 'so that T® -~ 1: probability & tends to zero’
sufficiently slowly even in the uniform distribution case. Actually,
the distribution of Z is not uniform, but it is concentrated around
pz‘(llc,c) by the law of large numbers. This implies that, by taking
the threshold sufficiently close to P ,(1]lc,c) as T tends to infinity,
we can make sure that (1) & tends to zero sufficiently slower than
1/(T-1) so that T® » ® as T - @, and (2) the probability of pass:.ng‘:
the test is sufficiently close to 1 ( see Figure 7).

xx%x Figure 7 here ***

Hence, we can satisfy the incentive constraint for the local deviation
(b). Similar argument can be employed to show that any number of
deviations do not pay. Hence we can prove that by choosing T large

enough, §7 is a sequent1a1 equlllbrlum in (GT,x7).

(Proof of Theorem 5). We will prove the theorem by the algorithm
explained lin Section 3. Namely, we will consider the optimal contract
design problem for the T-period repeated game with 51depayments,
called Problem (T,A). Fix (T,A) arbitrarily, and let N'={ieN|4;<0} and
define the message space by M'=¢" for all i. The message sent by
player i in the t'" period is denoted m;(t)=(m;(t,1),... ,m; (t,T)).
Now consider how an arbitrary point a€A' can be supported in the
T-period repeated game with sidepayments. If player i is taking (one-
shot) best response at this strategy profile, we set her sidepayment

identically equal to zero:
x;T(m") = 0 for all m’ € MT.

If player i is not taking a best response at profile a € A', the
definition of A' implies that

p.;(a) = p_(a, ¢;) for any mixed action a;#a;.
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Then, by the separating hyperplane theorem, there exist a positive
real number £; > 0 and a function k;:Q_;-R such that

Y ki(o)ple;]a)+2E;< ) kjlw_)p_jle_jla,a’;)

b)_iEQ_i wg€l ;.

for all a'; # a;. Inother words, given a_;, the expected value of k; is
uniquely minimized when player i adheres to a;. We denote the
minimized expected value by k*;. We will now construct the sidepayment
rule for player i based on the empirical average of k;. The basic idea
is as follows. In the first T-1 periods, ,the players. send
uninformative fixed messages, which are irrelevant for the
sidepayments. In the last period, the players truthfully reveal the
entire history of their private signals; n(T)=(w(l),...,0(T)). Then,

the empirical average of k; is calculated by

T
kKim™ =23 k;(m (T, 6)) .
T

If this number falls below k,*+f,, player i "passes the test". More
precisely, with a positive real number €; > 0, and we define x," as
follows:
(Case 1: when i ¢ N')
0 if k;(m7T) < kj+E;
XiT(m Ty =

-max g;(a_;,a’;)-¢; otherwise.
a’j€a;
1 x

(Case 2: when i € N')

maxgi(a_i,a/i)+€i if Ei(mT) < kI+E,

| 0 otherwise.

42



TR

P (Pass) — L

\

DT~ o

D -

W

RS

|
e

.

pC11c.,o)

FECBU\Y*@ T,



Note that xT satisfies the constraint (B) in Problem (T,A), that is,
AxT(mT) < 0 for all m'.

The rest of the proof closely follows that of Section 5.1, and
the details will not be repeated here. We can construct a sequential
equilibrium strategy profile s® in the T-period repeated game with
sidepayment x', denoted (GT,x"), which has the following properties:
(1) it assigns the given action profile aeA'’ ih each period on the
equilibrium path irrespective of the exchanged messages (2) it always
sends a fixed message profile, say m’, in the first T-1 periods, and
(3) it always reveals the history of the private signals in the last
period (m(T)=(e(1),...,0(T))). Taking the given action a€A'
throughout the T periods is shown to be better than any other action
rule by Theorem in Section 4.2 in Matsushima (1994). As each player's
messages do not affect either other players' actions or her own
sidepayment, she has a (weak) incentive to follow the above message
plan. From the construction of x' and s”, the total payoff for player
i in (G%,x"), denoted v, (s”,x"), is approximated by g;(a) for all ieN'
and by max,;.;9;(a_;,a';)+e, for ieN',6 as T-w=. This is because the
players almost always pass the test for a large T. Since e€; can be
made arbitrarily small, we conclude that for all i, v,(sT,x") is
approximated by v,(N',a).

The above observation implies that, for every subset N'cN and
every A such that A,<0 for ieN' and 1,20 for i¢N’', V(N') is a subset of
D(A). Hence V'=n, V(N') is a subset of Q=N,,D(}), which proves the
present theorem. R

(Proof of Corollary to Theorem 5). Fix a subset N' of N={1,2}
arbitrarily. From the definitions of v(N',a), b', b%, a’, and a°%, we
have

v(N',a) 2 g(a) for all A,

v(N', (b%*,b',)) < (g,(b"),g,(b*)) =V,
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v, (N', (b%,a%)) 2 g, (% ,a%) 2 max,.v,,
VZ(N'I(bzll z)) gz(bz) = V*Zl
v,(N',(a%,b',)) 2 g,(a °,bl,) 2 max,..v,, and

v,(N', (a%,b%)) < g (b') = v'.

These imply that V** is a subset of V(N'). Hence, we conclude that V**

is a subset of V', and Theorem 5 proves this corollary B
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