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Abstract

The simultaneous switching autoregressive (SSAR) model proposed by Kunit-
omo and Sato (1994a.b) is a Markovian nonlinear time series model. We inves-
tigate the finite sample as well as the asymptotic properties of the least squares
estimator and the maximum likelihood (ML) estimator. Due to a specific simul-
taneity involved in the SSAR model, the least squares estimator is badly biased.

However, the ML estimator under the assumption of Gaussian disturbances gives
reasonable estimates.
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1. Introduction

In the past decade, several non-linear time series models have been proposed by
statisticians and econometricians. For instance, Granger and Andersen (1978) have
introduced the bilinear time series models. Also Ozaki and Oda (1978), and Tong
(1983) have proposed the exponential autoregressive (EXPAR) model and the threshold
autoregressive (TAR) model, respectively, in the field of statistical time series analysis.
In particular, a considerable attention has been paid on the TAR model by statisticians
and econometricians and several related applications have been reported. The statistical
details of many non-linear time series models have been discussed by Tong (1990).
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In Kunitomo and Sato (1994a.,b), we have introduced an alternative non-linear time
series model, which is called the simultaneous switching autoregressive (SSAR) time
series model. This model is a kind of Markovian switching time series model with a
quite distinctive structure of simultaneity. The current state in the SSAR model is
dependent upon not only the past values of states but also the current disturbances,
which makes it different from the TAR models. We have proposed this statistical model
because we have a conviction that the standard autoregressive moving-average (ARMA)
time series model cannot describe one important aspect in many economic time series
data, that is, the asymmetrical movements in the up-ward phase (or regime) and in
the down-ward phase (or regime). There have been many intuitive observations on
this aspect in economic time series among leading economists, but there has not been
any useful statistical time series model as far as we know in the statistical time series
analysis and the econometric literature. Kunitomo and Sato (1994a,b) have discussed
the problems of cohereney, ergodicity, the stationary distribution and its moments on a
particular version of the multivariate SSAR model. Also they proposed the maximum
likelihood estimation for estimating its unknown parameters. We have shown that the
class of the SSAR models proposed gives us some explanations and descriptions to
handle the very important aspect of asymmetrical movements in two different phases
(or regimes). Though this characteristic of economic time series has been observed by a
number of economists, enough attention has not been paid on the statistical modelling
of this feature in economic time series.

The main purpose of this paper is to investigate the finite sample and asymptotic
properties of the maximum likelihood estimator in a systematic way. Since the standard
least squares method gives a severely biased estimator as we shall show in Section 3,
we will give a fuller investigation on the finite sample distribution of the maximum
likelihood (ML) estimator. For this purpose, we will present a fairly detailed tables
of the distribution of the ML estimator in the simple univariate case. Because of the
intractability of mathematical expressions of the distribution function of the estimators,
we have utilized simulation procedures in this paper, but nevertheless the tables given
have a high degree of accuracy, any error being in the third decimal place.

In Section 2, we define the SSAR model in this paper. In Section 3, we will discuss
the serious problem in the least squares estimation for the SSAR model. In Section 4,
we shall investigate the asymptotic properties of the ML estimator and show that it is
consistent and asymptotically normal under a set of restrictive assumptions. Then in
Section 5, we shall present tables of the distribution of the ML estimator in a simple case
and give some comments on its implications. Finally, we give some concluding remarks.
The proof of Theorem 2 is lengthy and given in Appendix.

2. Simultaneous Switching Autoregressive Model

In this paper we shall investigate the maximum likelihood estimation method for a
version of the multivariate SSAR model. Let y, be an m x 1 vector of the endogenous



variables. The model we consider in this section is represented by

p+ Ay, + Diuy i €Ly, > €Ly,
(21) Y, = )
My + By, + Dyu, if e,y <e,y,,
where €/, = (0,---,0,1) and p} (i =1,2) are 1 x m vector of constants, and A, B and

D; (i = 1,2) are m x m matrices. The disturbance terms {u,} are distributed with

(2.2) E(w|Fi-1) =0,
and
(23) E(utu;lft_l) = Im s

where F;_; is the o-field generated by {y,, s <t ~1}. Then the conditional covariance
matrix of D;u, given F,_; is denoted by X ==D;D. .1 = 1,2). We assume that
{u,} are absolutely continuous random variables with the density function g(w) which
is everywhere positive in R™. We denote this model as SSAR,,(1) and also we simply
denote SSAR,(1) as SSAR(1). By using the standard Markovian representation the p-th
order multivariate SSAR model can be reduced to the SSAR,,(1) model ( See Section
5 of Kunitomo and Sato (1994b) for its details). Hence without loss of generality, we
shall consider the SSAR,, (1) model given by (2.1) in this paper.

We note that in (2.1) there are two phases(or regimes) at time ¢ given F;_;. Then
there is a basic question that the simultaneity among two phases and the values of the
endogenous variables does not cause a logical inconsistency as a statistical model. This
problem has been called the coherency problem and the sufficient condition for the logical
consistency has been called the coherency condition. The conditions of e/, y, > €, y, ;
and e),y, < €/,y,_, can be rewritten as

(2.4) e,Diu, > e, (I — Ay, — €, ,
and
(2.5) e, Dyu < €, (I, — B)y, | — €t ,

respectively. When D; (i = 1,2) are positive definite matrices, the necessary and
sufficient conditions on the coherency problem for (2.1) can be summarized by a 1 X
(m + 1) vector

(2.6) (eI~ A), €] = = [€(ln— B), €,
Jq 09
frasend ')"I s
where 0 = €], e, = eﬁnDjD;»em (7 = 1,2). (See Section 4 of Kunitomo and Sato
(1994b).)

The SSAR model defined by (2.1) is a Markovian time series model, which is non-
linear in the state variables. Thus, the problem of ergodicity is also not a trivial one
contrary to the linear time series models including the autoregressive moving average
models. Hence we assume the following strong conditions on (2.1).
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Assumption I : In (2.1) the coherency condition given by (2.6) is satisfied and
the SSAR model is also ergodic.

In Kunitomo and Sato (1994b) we have discussed the coherency problem in some
details and also given a set of sufficient conditions for the geometric ergodicity for the
SSAR model. In particular, they have shown the necessary and sufficient conditions on
the ergodicity of the SSAR model when m =1 are A < 1, B < 1, and AB < 1. We
should note that the conditions |A| < 1 and |B| < 1 are too strong for the ergodicity of
the SSAR model. This feature of the SSAR model leads to not only a new aspect in the
statistical modelling of time series, but also some interesting economic interpretations.

3. Bias of the Least Squares Estimator

When A = B, p, = py, and X = X in (2.1), the SSAR model reduces to the
multivariate autoregressive (AR) model. Since the least squares estimation method has
been extensively used for the multivariate AR models, one may ask if we can use the
least squares method to estimate the unknown parameters in the SSAR,,(1) model given
by (2.1). In this section, we shall show that the least squares method gives a seriously
biased estimator.

For simplicity, we assume that g, = 0 (¢ = 1,2). Then the least squares estimation
method based on the observed data {y,,0 <t < T} can be defined by minimizing the
criterion function

T !
(3.1) 51(0) = > {v.- Ay..I{" - By, I}
t=1
x{y, — Ay, I\" = By, I’} ,
where It(l) and 11(2) =1- I}l) are the indicator functions defined by

o _ |1 if ey, >ey
(3.2) : ‘{0 if ey <e,y,_,

and @ is the vector of unknown parameters.
We rewrite (2.1) as

(3.3) y, = Ay, I{" + By, I{” + w,
where _
(34) w; = Dlutlt(l) + DQUtIlQ) .

Let also Azg and Bpg be the least squares estimators of A and B, respectively.
Then we have

T T
(3.5) As—A = (Zwty;,]lt(”) (Zyt_ly’t_llf”)
t=1

t=1

1 & ;o) (1 AT
D, Tzutyt—l‘[t fzyt-lyt—llt
t=1 t=1

-1

-1
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When the sample size T increases, this quantity converges fo

N > - ~1
(3.6) Aps— AL Dy [Buy I [Byoyia )]

provided that the expectations on the right hand side of (3.6) exist. Similarly, we also
have

(3.7) Bis - B -2 Dy [E(uy, 1)) [E(y_yi 1)

The important aspect in (3.6) and (3.7) is due to the fact that in general the random

variables {u,} and {yt_llim} are contemporaneously correlated. In order to see the bias
of the least squares estimator in more details, we assume the following condition.

-1

Assumption II :  The random variables {u,} are independently distributed as
Nu(0, I,).
Let
(3.8) vy = ;Diut (i =1,2),
and X
(3.9) o) = ;e’,nD,-ut (1=1,2).

Then the condition I§1) = 1 is equivalent to
(3.10) Ut 2 'Yy

By the normality assumption on {u,}, we have

1
(3.11) E [vgl)lvﬁt)] = 0—%21%@5;3
and
(312) E [Dlutlt(l) | ft—-l]

= B {E o ] 100 > 'y ) | Fi)

1 .
= —XienF [vgt)l(virlzg >7r'y,_,) | ft—1]
01
1
= —Xiend(r'y;y) ,
g1

where ¢() is the density function of the standard normal distribution. Similarly, we
have

(3.13) Ely, oy IV | Fii
= Yy (1- O(r'y,1))



where ®(-) is the distribution function of the standard normal distribution.
Hence the asymptotic biases of A and B can be further re-written as

(3.14)  ABIAS(Aps) = al-l-Elem{EM(r’yt_l)yé,l]}
< {Bl0-3ry v}
and
(3.15) ABIAS(Bs) = -—nggem{E [Py 1)y}
x {E [0y, Dy i)}
respectively.

We summarize the above result on the asymptotic bias of LS estimator in the following
proposition.

Theorem 1 Under Assumption I, the least squares estimators A s and B s of A and
B are not consistent if

(3.16) E [uy, I1V] #0 .

Also under Assumption II, the asymptotic biases of A;s and Brg of A and B are given
by (3.14) and (3.15), respectively.

It should be important to note that the distribution of {y,} is symmetrically dis-
tributed around zero when A = B and ¥, = X5. Then the asymptotic bias of the
least squares estimator is zero. However, when A # B and X, # X, the random vari-
ables {u;} and {yt_llf”} are contemporaneously correlated and the condition (3.16) is
satisfied.

In order to investigate the bias of the least squares estimator, we present some
tables of its mean. We also present some figures of the distribution of the least squares
estimator.  Our simulation has been done by the following procedure:

1. First, generate standard normal random numbers for {u,}.

2. Using the above sequense of {u,}, obtain the simulated time series for the SSAR(1)
model when m = 1.

3. Estimate A and B by A;g and Byg.
4. Calculate the sample means for each estimator based on 5,000 replications.

We have chosen the values of parameters as {4, B} = {0.8,0.5,0.2,0.0, —-0.2, —0.5, —=1.5}
and their sample size {T} = {50,100,500}, respectively. Table 1 shows the sample
means of the least squares estimators. When A = B, the bias of the least squares
estimators is negligible. This is expected because the least squares estimator is consistent
and its asymptotic bias is zero when the sample size is infinity. However, when A # B,
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Table 1: The mean of the least squares estimator !

(i) T = 50
B=08 B=05 B=02 B=00 B=02 B=05 B=-15
A=| AL | 07985 07099  0.7437  0.7559  0.7653  0.7750  0.7875
0.8 (0.202)  (0.106) (0.069) (0.056)  (0.046)  (0.036)  (0.022)
Brs | 0.8005  1.2277 14506  1.5676  1.6894  1.8551  2.3697
(0.203)  (0.784) (1.296) (1.617)  (1.945)  (2.431)  (4.026)
= | Aps | 12182 04951  0.4315 04406  0.4500 . 0.4621  0.4835
0.5 (0.777)  (0.197)  (0.131)  (0.106)  (0.091)  (0.076)  (0.048)
Brs | 07095  0.4940  0.4258  0.3852  0.3345  0.2226  -0.0788
(0.107)  (0.201) (0.409) (0.593)  (0.767)  (1.015)  (1.903)
= | Ags | 14575 04254  0.1896  0.1680  0.1732  0.1785  0.1942
0.2 | (1.301)  (0.409) (0.199) (0.152)  (0.127)  (0.102)  (0.065)
Brs | 07430 04352 01919  0.0354 -0.1313  -0.3899  -1.3026
(0.070)  (0.129) (0.197) (0.264)  (0.335)  (0.443)  (0.809)
A=|As | 15771 03808 00317 -0.0064 -0.0127  -0.0056  0.0019
0.0 (1.623)  (0.582) (0.265) (0.196)  (0.159)  (0.125)  (0.072)
Brs | 07575  0.4407  0.1768  -0.0027 -0.1858  -0.4920  -1.5332
(0.055)  (0.107)  (0.155)  (0.200)  (0.246)  (0.311)  (0.558)
A=|Aps | 16860 03112 -0.1327 -0.1907 -0.2028  -0.1977  -0.1877
02| (1.940)  (0.751)  (0.329) (0.250)  (0.195)  (0.150)  (0.078)
Brs | 07661  0.4475  0.1703 -0.0076  -0.2017  -0.5061  -1.5490
(0.045)  (0.092) (0.128) (0.160)  (0.196)  (0.245)  (0.384)
= | Aps | 1.8508 0.2397 -0.3903 -0.4933 -0.5118  -0.4968  -0.4816
05 | (2.427)  (1.019) (0.439) (0.318)  (0.251)  (0.177)  (0.071)
Bus | 07748  0.4616  0.1808 -0.0049 -0.1971  -0.4952  -1.4733
(0.036)  (0.077) (0.102) (0.123)  (0.148)  (0.180)  (0.188)
A=|ALs | 23002 -0.0908 -1.3122 -1.5477 -1.5377  -1.4656  -1.5000
1.5 (4.032) (1.901) (0.808) (0.555)  (0.373)  (0.193)  (0.000)
Brs | 07877  0.4829  0.1941  0.0039  -0.1896  -0.4799  -1.5000
(0.022)  (0.047) (0.064) (0.074)  (0.080)  (0.070)  (0.000)

! The value in the parentheses shows the root mean squared error.



Table 1: The mean of the least squares estimator (cont.)

(ii) T = 100

B=08 B=05 B=02 B=00 B=-02 B=-05 B=-15

= | Ars | 0.8055 0.7152 0.7479 0.7601 0.7687 0.7767 0.7889
0.8 | (0.143)  (0.094)  (0.059) (0.046)  (0.037)  (0.029)  (0.017)
Brs | 0.7978 1.2359 1.4515 1.5603 1.6583 1.8087 2.3009
(0.141)  (0.759)  (1.268) (1.577)  (1.877)  (2.331)  (3.843)

=| Aps | 1.2328 0.4972 0.4361 0.4405 0.4519 0.4636 0.4848
0.5 (0.757)  (0.133)  (0.099) (0.086)  (0.073)  (0.058)  (0.034)
Brs | 0.7160 0.4974 0.4297  0.3904 0.3317 0.2766 -0.0320
(0.002) (0.135) (0.331) (0.492)  (0.651)  (0.916)  (1.708)

A= ALS 1.4507 0.4329 0.1966 0.1729 0.1720 0.1790 0.1931
0.2 (1.267)  (0.331) (0.133)  (0.107)  (0.092)  (0.073)  (0.045)
Bys | 0.7477 0.4360 0.1976 0.0353 -0.1269 -0.3824 -1.2837
(0.059)  (0.099) (0.131) (0.181)  (0.236)  (0.321)  (0.574)

=| Arg | 1.5623 0.3874 0.0380  -0.0019  -0.0071 -0.0051 0.0028
0.0 | (1.580)  (0.495) (0.180) (0.134)  (0.108)  (0.086)  (0.050)
Brs | 0.7601 0.4424 0.1752  -0.0037  -0.1927 -0.4831 -1.5317
(0.046)  (0.085) (0.107) (0.136)  (0.168)  (0.221)  (0.387)

= ALS 1.6645 0.3538  -0.1276  -0.1912  -0.2049 -0.1982 -0.1913
02| (1.884)  (0.668) (0.232) (0.167)  (0.136)  (0.103)  (0.054)
B;s | 0.7689 0.4517 0.1744  -0.0074  -0.2017 -0.5009 -1.5537
(0.037)  (0.072)  (0.088) (0.110)  (0.135)  (0.173)  (0.267)

A= ALS 1.8091 0.2625  -0.3910 -0.4814  -0.5020 -0.4972 -0.4891
05| | (2332) (0.896) (0.316) (0.218)  (0.170)  (0.123)  (0.046)
Bps | 0.7768 0.4644 0.1817  -0.0035  -0.1943 -0.4960 -1.4874
(0.029)  (0.058)  (0.073) (0.086)  (0.102)  (0.125)  (0.125)

= ALS 2.3123  -0.0295 -1.2830 -1.5303 -1.5517 -1.4913 -1.5000
15| | (3.856) (1L697) (0.577) (0.388)  (0.268)  (0.125)  (0.000)
Brs | 0.7889 0.4846 0.1941 0.0042 -0.1910 -0.4887 -1.5000
(0.017)  (0.034)  (0.045) (0.053)  (0.055)  (0.047)  (0.000)




Table 1: The mean of the least squares estimator (cont.)

(ifi) T = 500

B=08 B=05 B=02 B=00 B=-02 B=-05 B=-15

= | Ars | 0.798¢ 0.7205  0.7511  0.7625  0.7704  0.7781  0.7899
0.8 (0.064)  (0.081) (0.050) (0.039) (0.031)  (0.023)  (0.012)
Brs | 08010 12453  1.4465  1.5496  1.6429  1.7806  2.2351
(0.063) (0.749) (1.249) (1.552)  (1.846)  (2.284)  (3.742)

= | Azs | 1.2476  0.4980  0.4387 04457  0.4554  0.4668  0.4856
0.5 (0.751)  (0.059)  (0.070)  (0.060)  (0.051)  (0.039)  (0.020)
Brs | 07208  0.4968  0.4369  0.3991  0.3633  0.2968  0.0274
(0.081)  (0.058) (0.259) (0.421)  (0.587)  (0.823)  (1.570)

A=|Aps | 1.4484 04398 02007 01769 01774  0.1821  0.1935
0.2 (1.251)  (0.261)  (0.058) (0.051)  (0.044)  (0.036)  (0.021)
Brs | 07511  0.4387  0.1988  0.0404  -0.1199  -0.3785  -1.2688
(0.050)  (0.069) (0.058) (0.088)  (0.127)  (0.179)  (0.331)

A=|Aps | 1.5489 04044  0.0452  0.0007 -0.0094  -0.0054  0.0013
0.0 (1.552)  (0.425)  (0.090)  (0.060)  (0.049)  (0.039)  (0.022)
Brs | 07627 04448  0.1779  0.0000 -0.1870  -0.4827  -1.5224
(0.039)  (0.062) (0.050) (0.060)  (0.076)  (0.099)  (0.171)

=| Ags | 16439 03577 -0.1189 -0.1855 -0.1993  -0.1989  -0.1937
-0.2 (1.847)  (0.581) (0.127)  (0.077)  (0.060)  (0.046)  (0.025)
Brs | 07706  0.4548  0.1772  -0.0077  -0.2020  -0.5013  -1.5503
(0.031)  (0.051)  (0.045)  (0.050)  (0.059)  (0.076)  (0.124)

A=|Aps | 17801 02921 -0.3759 -0.4810 -0.5020  -0.4989  -0.4965
0.5 (2.284)  (0.819) (0.180)  (0.098)  (0.076)  (0.055)  (0.020)
Brs | 07781  0.4666  0.1821  -0.0062 -0.1986  -0.4989  -1.5048
(0.023)  (0.039) (0.036) (0.039)  (0.046)  (0.054)  (0.054)

A=|Ags | 2.2297 00239 -1.2639 -1.5243 -1.5532  -1.5046  -1.5000
-15 (3.736)  (1.567) (0.334) (0.172)  (0.128)  (0.054)  (0.000)
0.7899  0.4857  0.1936  0.0015  -0.1944  -0.4962  -1.5000
(0.011)  (0.020) (0.020) (0.023)  (0.025)  (0.020)  (0.000)

w)
~
i




the situation is dramatically changed and the bias of the least squares estimator is
substantially large. The estimated values for cofficients often exceed the boundaries
of the stationary region when the absolute values of A and B are large. Also it is
interesting to see that the estimated signs of coeflicients are not necessarily the same as
the true signs. This causes a serious problem when we want to interpret the estimated
coefficients. Our simulations indicate that the least squares method gives a badly biased
estimate when A # B and hence it is not adequate for estimating the SSAR(1) model.
In Figure 1, we have shown the histograms of the least squares estimator for the case of
A=02B=08and A=02,B = -0.2. These figures vividly show the observations
we have found on the distribution of the least squares estimator.

4. The ML Estimator and its Asymptotic Properties

In this section, we consider the SSAR,,(1) model given by (2.1) when m > 1. Ku-
nitomo and Sato (1994a,b) have proposed the ML estimation method for estimating
its unknown parameters. Since the SSAR,, (1) model is a Markovian process, the joint
density function p(yr, Yr_1, -, Y1) given ygy can be rewritten as

(4.1) PYr Yo, Y1l¥e) = P Yr_)P(Yr|Y7r—2) - P(Y1|Y0)

where p(y,|y,_,) is the conditional density function of y, given y, ;. Then under As-
sumption II and | X;| # 0 (i = 1,2), the conditional log-likelihood function of {y,, 1 <
t < T} given y, can be rewritten as

T
(4.2) log L+(8) = ———;log o1
1 T / !
- "2“103 | 2| Z I(e,y, > ey, )

t=1

1 T . a
T 5 Z(?Ja — M~ Ayt—1)’21 1(yt — My — Ayt~l)l(e;yt > elmyh—l)
t=1

1 T
— —2-log|22izf(elmyt < €y1)
=1

T

S (y,— py— By,_1) 25y, — 1y — By, )€y, < €,y,1)
t=1

N —

where 8’ = (r’, (vech(X;)), ejA, eiBep; (i=1,---,m—1, 7= 1,2)) denotes the
vector of unknown parameters in the SSAR,,(1) and the parameter space @ is defined
correspondingly. Hence, the ML estimator we have proposed is the vector 8 which max-
imizes log L(@) under the restriction (2.6). Since it is difficult to obtain its analytical
expression, we use the numerical maximization technique to get the ML estimate. In
Kunitomo and Sato (1994b) we have claimed that the ML estimator 61, of 6 is con-
sistent and asymptotically normal when the sample size increases. Since Kunitomo and
Sato (1994b) did not give a complete proof of this result, we shall restate it and give its
proof in Appendix.
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Theorem 2 For the SSAR,, (1) model given by (2.1) , suppose the sufficient conditions
for the coherency and ergodicity hold and the disturbances terms {u,} are independently
distributed as N(0,I,) with |X;] # 0 (i = 1,2). Also suppose that the true parameter
vector @ is an interior point of the parameter space ©. Then the ML estimator O Of
unknown parameter @ is consistent and asymptotically normally distributed as

(4.3) VT (02, -6) & N0, 16)7]
where LT 0log Le(6)

og L
(44) 16) = %’L”foT[ 5096 ]

We note that the assumptions in Theorem 2 suffice the existence of the second order
moments for {y,}. In fact, in Section 5.3 of Kunitomo and Sato (1994b) we have shown
that the existence of k-th order moments for disturbance terms implies the existence of
k-th moments on {y,}. Hence the information matrix given by (4.4) is well-defined in
the present situation.

5. Tables of the Distributions of the ML Estimator

In this section we consider the SSAR(1) model when m = 1. In this case (2.1)
becomes ( )
Ay —p) +oruy iy 2 e
5.1 : — = o =
( ) Y= H { B(yg~1 - M) + 09y if Yo < Y1
where p is the location parameter in this model.
In this simple case the coherency conditions are given by

1-— 1-—
(5.2) r= A = B
0 09
and
(5.3) B_bB
gy J9

By comparing (2.1) and (5.1), the second condition is also equal to ru. Since we can
write another random variables 3, = y, — u, we can assume g = 0 from the beginning
without loss of generality.

Under Assumption II and ¢; > 0 (i = 1,2), the conditional log-likelihood function
of {y;, 1 <t < T} given yo can be rewritten as

T
(5.4) log Lr(0) = ——2—log27r
sy L 2 7(1)
- ‘IOgalzIt '_—“TZ'Z(yt_Ayt—l) I
2 =1 207 13
N 2 7(2)
- ~10g0221t - “‘"‘2‘2(% - By )L,
t=1 202 t=1



where 8 = (A, B,0y,02) and

wm _ J Uity >y
(5:5) i = {0 oy <y

(5.6) P = 1-1"

Since the analytical expression of the exact distribution of the ML estimator is not
tractable, we have analyzed the properties of ML estimator for the unknown parameters
by Monte Carlo simulations. We have generated the simulated time series {y;} for the
SSAR(1) model by using the standard normal random numbers for the disturbances
{u;}. First, we obtained the tables of the sample mean of the ML estimators from
5,000 replications in each case in Table 2. Then we can compare these tables to those
of the least squares estimator shown in Table 1. Table 2 shows that the biases of the
ML estimator are vary small even when A # B and they are negligible for paractical
purposes. We also have shown some histograms of the ML estimator in Figure 2.

Next, we have shown the tables of the empirical distribution functions of the ML
estimator for some cases. In order to make a comparison with the normal distribution
possible, we calculated the values of the empirical distribution based upon the standard-
ized estimator, that is,

~

(57) b = e ,
(sim) , A
;vzl (9] - m0)2
N(sim) ]

where §; is the estimate of a parameter in the i-th replication, my = 1/N(™) Zﬁ__‘;‘m) b,
and N(™) is the number of replications. In our simulations it is 20,000 in all cases. In
Table 3, we also have shown some percentiles of the empirical distributions. It seems
that the distributions of the ML estimator are slightly asymmetrical when T = 100.
However, when T = 1,000, the distribution function of the ML estimator is very close to
the standard normal distribution function. The error of a sample distribution function is
about 0.01 at 99 percent confidence level in this case by using the Kolomogorov-Smirnov
statistic. From this observation we confirm that the asymptotic properties of the ML
estimator discussed in Section 4 hold approximately when the sample size is 1,000. We
also have plotted the distribution functions of the ML estimator obtained by simulations
in Figure 3.

Finally, we should mention to the fact that the ML estimation of the SSAR model
is based on the normality assumption for the disturbance terms. In order to see the
robustness of the finite sample properties of the ML estimator, we did a small amount
of Monte Carlo simulations. We calculated the pseudo-ML estimator when {u;} are not
normally distributed random variables. The sample means of the empirical distributions
have been calculated and given in Table 4 by assuming that {u,} are distributed as the

Gaussian sum:
N(0,%) (Prob. 0.5)
N(0,2) (Prob. 0.5)
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Table 2: The mean of the ML estimator!2

B=08 B=05 B=02 B=00 B=-02 B=-05 B=-15

il
&)

0.7582  0.7833  0.7933  0.7950  0.7963  0.7970  0.7991
0.8 (0.111)  (0.057) (0.039) (0.032)  (0.028)  (0.025)  (0.018)

B | 07589 04379  0.1375 -0.0639 -0.2600  -0.5830  -1.6168
(0.110)  (0.196)  (0.275) (0.325)  (0.374)  (0.485)  (0.821)
A=|A4] 04422 04650 0.4800 0.4870  0.4901  0.4941  0.4996

0.5 (0.195)  (0.143)  (0.109)  (0.090)  (0.079)  (0.066)  (0.044)

Bl 0781 04665 0.1566 -0.0414 -0.2480  -0.5435  -1.5709
(0.055)  (0.142)  (0.213)  (0.251)  (0.300)  (0.338)  (0.604)
A=|A| 01201 01570 0.1789  0.1842  0.1898  0.1929  0.2010

0.2 (0.279)  (0.212)  (0.161) (0.140)  (0.120)  (0.102)  (0.064)
0.7924  0.4819  0.1793  -0.0262  -0.2286  -0.5291  -1.5421
(0.038)  (0.104) (0.159) (0.199)  (0.233)  (0.286)  (0.464)

m;

=] A| -00736 -0.0446 -0.0248 -0.0178 -0.0097  -0.0035  0.0039
0.0 (0.331)  (0.252) (0.197) (0.168)  (0.144)  (0.122)  (0.073)

B | 07943 0.4864 0.1830 -0.0158 -0.2166  -0.5141  -1.5227
(0.033)  (0.001) (0.142) (0.168)  (0.195)  (0.245)  (0.392)
A=|A| 02674 -02491 -0.2261 -0.2235 -0.2109  -0.2007  -0.1935

0.2 (0.384)  (0.293)  (0.229)  (0.203)  (0.169)  (0.136)  (0.077)

B| 07959 0.4899  0.1891 -0.0077 -0.2128  -0.5054  -1.4928
(0.020)  (0.077) (0.121) (0.148)  (0.172)  (0.206)  (0.302)
A=|A| 05661 -0.5487 -0.5241 -0.5171 -0.5097  -0.4914  -0.4823

-0.5 (0.481)  (0.358)  (0.285) (0.243)  (0.207)  (0.160)  (0.068)
0.7977  0.4929  0.1953  -0.0049  -0.1990  -0.4957  -1.4629
(0.024)  (0.067)  (0.102) (0.119)  (0.138)  (0.163)  (0.180)

v}l

=|A| -1.6170 -1.5670 -1.5452 -1.5200 -1.4974  -1.4652 NA
15 (0.819)  (0.588)  (0.463) (0.397)  (0.314)  (0.178)  (NA)
0.7991  0.4982  0.2000  0.0027  -0.1911  -0.4840 NA
(0.018)  (0.045) (0.066) (0.073) (0.077)  (0.068)  (NA)

m»

! The value in the parentheses shows the root mean squared error.

2 “NA” corresponds to the case when it is not ergodic. We did not have investigated the ML estimator
in this case.
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Table 2: The mean of the ML estimator (cont.)

(ii) T = 100

B=08 B=05 B=02 B=00 B=102 B=-05 B=-15

A=|A]| 0778 07930 0.7969 0.7964  0.7982  0.7986  0.7995
0.8 | | (0.071) (0.037) (0.025) (0.023) (0.020)  (0.017)  (0.012)
B| 07777 04726  0.1718 -0.0368 -0.2354  -0.5354  -1.5500
(0.072)  (0.130) (0.182)  (0.221)  (0.266)  (0.323)  (0.551)

A=|A| 04744 04829 0.4911 0.4941  0.4952  0.4972  0.4992
0.5 | | (0.127) (0.097) (0.072) (0.062) (0.054)  (0.046)  (0.031)
B| 07930 04813 0.1820 -0.0218 -0.2218 -0.5252  -1.5321
(0.036)  (0.098) (0.143) (0.172)  (0.201)  (0.248)  (0.400)

=|A| 01661 01807 0.1869 01936  0.1955  0.1979  0.2007
0.2 | | (0186) (0.142) (0.112) (0.096) (0.084)  (0.070)  (0.045)
B | 07960 0.4915 0.1888 -0.0155 -0.2103  -0.5130  -1.5191
(0.026)  (0.072) (0.112) (0.137)  (0.159)  (0.195)  (0.322)

=|A| 00347 -0.0187 -0.0128 -0.0082 -0.0064  -0.0020  0.0010
0.0 | | (0.220) (0.173) (0.136) (0.117)  (0.104)  (0.084)  (0.051)
B| 07975 04944  0.1926 -0.0072 -0.2065  -0.5154  -1.5190
(0.022)  (0.062) (0.096) (0.116)  (0.141)  (0.168)  (0.272)
A=|A]|-02322 -02275 -0.2135 -0.2093 -0.2036  -0.2003  -0.1965
0.2 | | (0.263) (0.205) (0.159) (0.135)  (0.119)  (0.096)  (0.053)
B| 07983  0.4954  0.1959 -0.0054 -0.2034  -0.5073  -1.4995
(0.020)  (0.054) (0.083) (0.102) (0.119)  (0.145)  (0.215)

A=|A| -05451 -0.5252 -0.5154 -0.5118 -0.5031  -0.4974  -0.4906
0.5 | | (0.326) (0.246) (0.197) (0.167)  (0.143)  (0.111)  (0.046)
B | 07982 04972  0.1971 -0.0016 -0.1973  -0.4972  -1.4798
(0.017)  (0.046)  (0.071)  (0.084)  (0.095)  (0.109)  (0.122)

A=|A|-15685 -1.5450 -1.5251 -1.5163 -1.5044  -1.4783 NA

1.5 | | (0.563)  (0.407)  (0.321)  (0.272)  (0.214)  (0.121)  (NA)

B| 07993 04986  0.1995 0.0020 -0.1963  -0.4919 NA

(0.012)  (0.031) (0.045) (0.051) (0.053)  (0.045)  (NA)
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Table 2: The mean of the ML estimator (cont.)

(iii) T = 500

B=08 B=05 B=02 B=00 B=-02 B=-05 B=-15

=|A| 07951 0.7985  0.7997  0.7993  0.7998  0.7998  0.7999
0.8 (0.028)  (0.015)  (0.011)  (0.009)  (0.008)  (0.007)  (0.005)
0.7949  0.4952  0.1950 -0.0094 -0.2056  -0.5064  -1.5076
(0.029)  (0.054) (0.078) (0.096)  (0.112)  (0.137)  (0.238)

9

= | A| 04932 04958  0.4974 04984  0.4988  0.4995  0.4997
0.5 (0.055)  (0.041) (0.032) (0.027)  (0.024)  (0.020)  (0.014)

B| 07983 04962  0.1946 -0.0034 -0.2050  -0.5044  -1.5074
(0.015)  (0.042)  (0.063) (0.074)  (0.089)  (0.108)  (0.178)
A=|A| 01940 01961 0.1974 0.1985  0.1995  0.1992  0.1998

0.2 (0.078)  (0.062) (0.049) (0.042)  (0.038)  (0.032)  (0.020)
0.7992  0.4978  0.1970  -0.0032  -0.2022  -0.5035  -1.5038
(0.011)  (0.031) (0.049) (0.060)  (0.071)  (0.087)  (0.143)

w)

=|A/| -00028 -0.0039 -0.0020 -0.0013 0.0001  0.0004  0.0002
0.0 (0.093) (0.077) (0.060) (0.052)  (0.044)  (0.037)  (0.022)

Bl 07997 04991  0.1979 -0.0020 -0.2012  -0.5004  -1.5028
(0.009)  (0.027) (0.042) (0.052) (0.061)  (0.074)  (0.118)
A=|A]|-02061 -02039 -0.2025 -0.2007 -0.2006 -0.2003  -0.1991

-0.2 (0.112)  (0.088) (0.071) (0.062)  (0.053)  (0.043)  (0.023)

B| 07998  0.4988  0.1997 -0.0006 -0.2008  -0.5005  -1.5010
(0.009)  (0.024) (0.037) (0.045)  (0.052)  (0.063)  (0.094)
A=|A| -05043 -0.5031 -0.5026 -0.5013 -0.4992  -0.4984  -0.4979

-0.5 (0.139)  (0.106)  (0.085) (0.075)  (0.064)  (0.049)  (0.019)

B 07997 0.5000 0.1991 -0.0006 -0.1990  -0.4985  -1.4953

(0.007)  (0.020) (0.031) (0.038)  (0.043)  (0.048)  (0.051)
=|A|-15106 -15050 -1.5030 -1.5023 -1.5004  -1.4951 NA
1.5 (0.244)  (0.176)  (0.140)  (0.118)  (0.093)  (0.052)  (NA)
B | 07999  0.4997  0.2002  0.0006  -0.1995  -0.4984 NA

(0.005)  (0.014) (0.020) (0.023)  (0.023)  (0.019)  (NA)

15



Table 3: The distribution function of the ML estimator

(i) The case A =04, B=0.8, 0, =0.6, 02 =0.2

Ll

Normal T= 100 T= 1000
T /1 B 0:] (fz A B (fl 0¢2

-3.0 0.001 0.006 0.006 0.000 0.001 | 0.002 0.002 0.000 0.001
-2.5 0.006 0.015 0.015 0.002 0.004 | 0.008 0.009 0.004 0.005
-2.0 0.023 0.034 0.035 0.013 0.020 | 0.027 0.027 0.020 0.022
-1.4 0.081 0.088 0.089 0.070 0.076 | 0.084 0.085 0.079 0.080
-1.0 0.159 0.154 0.151 0.156 0.160 | 0.157 0.161 0.159 0.159
-0.8 0.212 0.198 0.197 0.218 0.216 | 0.207 0.211 0.213 0.212
-0.6 0.274 0.254 0.250 0.287 0.281 | 0.271 0.268 0.273  0.277
-0.4 0.345 0.318 0.313 0362 0.35%1 | 0.337 0.331 0.348 0.346
-0.2 0.421 ‘| 0.387 0.386 0.444 0.429 | 0.413 0.408 0.426 0.426
0.0 0.500 0.466 0.463 0.519 0.507 | 0.491 0.485 0.506 0.503
0.2 0.579 0.547 0.545 0.601 0.586 | 0.569 0.566 0.587  0.582
0.4 0.655 0.628 0.630 0.673 0.661 | 0.648 0.645 0.662 0.658
0.6 0.726 0.709 0.712 0.739 0.729 | 0.721 0.722 0.730 0.726
0.8 0.788 0.782 0.78¢ 0.797 0.792 | 0.78 0.78  0.790  0.790
1.0 0.841 0.846 0.849 0.844 0.842 | 0.840 0.844 0.843 0.840
1.4 0.919 0938 0940 0912 0.918 | 0.921 0925 0916 0.919
2.0 0.977 0.991 0991 0.968 0.973 | 0.982 0.982 0.975 0.976
2.5 0.994 1.000 0.999 0.989 0.992 | 0.996 0.996 0.992 0.992
3.0 0.999 1.000 1.000 0.996 0.998 | 1.000 1.000 0.997 0.999
Q(2.5) -1.960 | -2.225 -2.217 -1.781 -1.905 | -2.036 -2.043 -1.909 -1.951
Q(25) -0.674 | -0.612 -0.600 -0.700 -0.691 | -0.661 -0.663 -0.680 -0.682
Q(50) 0.000 0.085 0.086 -0.050 -0.018 | 0.027 0.039 -0.014 -0.009
Q(75) 0.674 0.714 0.704 0.635 0.663 | 0.679 0.682 0.663 0.675
Q(97.5) 1.960 1.706 1.720 2.116 2.035 | 1.876 1.872 1997 1.984
IQR 1.348 1.326  1.304 1335 1354 | 1.340 1.345 1.343  1.357
BIAS — -0.029 -0.006 0.000 -0.002 | -0.003 -0.001 0.000 0.000
STD — 0.142 0.031 0.077 0.018 | 0.043 0.009 0.024 0.006

Q(p) is denoted as p percentile.

“IQR” shows the interquartile range of the distribution.

“BIAS” shows the mean bias from the true value.

“STD” shows the root mean squared error.
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Table 3: The distribution function of the ML estimator (cont.)

(ii) The case A = 0.2, B= -0.2, 01 = 0.8, 09 = 1.2

Normal T = 100

1000
x A B (fl 0:2 A 3

01 ()

N

-3.0 0.001 0.003 0.004 0.001 0.001 | 0.002 0.002 0.002 0.001
-2.5 0.006 | 0.009 0.011 0.004 0.004 | 0.007 0.007 0.006 0.006
-2.0 0.023 | 0.028 0.030 0.020 0.018 | 0.023 0.025 0.021  0.022
-1.4 0.081 0.086 0.086 0.077 0.077 | 0.084 0.085 0.080 0.079
-1.0 0.159 0.158 0.159 0.158 0.159 | 0.156 0.158 0.159  0.158
-0.8 0.212 0.206 0.204 0.212 0.214 | 0.208 0.208 0.210 0.213
-0.6 0.274 0.266 0.262 0.280 0.280 | 0.268 0.268 0.274  0.273
-0.4 0.345 0.334 0.329 0.352 0.354 | 0.339 0.339 0.345 0.344
-0.2 0.421 0.406 0.402 0.430 0.430 | 0.417 0.413 0424 0.422
0.0 0.500 0.486 0.481 0.509 0.509 | 0.501 0.496 0.504 0.501
0.2 0.579 0.568 0.562 0.588 0.590 | 0.579 0.574 0.581  0.580
0.4 0.655 0.647 0.643 0.666 0.664 | 0.653 0.651 0.658 0.656
0.6 0.726 | 0.720 0.715 0.732 0.733 | 0.726  0.723  0.728 0.729
0.8 0.788 0.787 0.784 0.791 0.791 | 0.788 0.788 0.791 0.793
1.0 0.841 0.841 0.842 0.841 0.841 | 0.841 0.842 0.841 0.846
1.4 0.919 | 0.925 0.928 0.918 0.917 | 0.920 0.922 0920 0.919
2.0 0.977 0.983 0985 0.972 0972 | 0979 0.979 0.975 0.975
2.5 0.994 0.997 0.997 0991 0991 | 0994 0.995 0.993 0.993
3.0 0.999 0.999 1.000 0.998 0.998 | 0.999 0.999 0.998 0.998

Q(2.5) | -1.960 |-2.046 -2.094 -1.896 -1.890 |-1.966 -2.002 -1.936 -1.955
Q(25) -0.674 | -0.649 -0.640 -0.683 -0.689 | -0.655 -0.658 -0.669 -0.672
Q(50) 0.000 | 0.032 0.049 -0.025 -0.023 | -0.004 0.012 -0.008 -0.003
Q(75) 0.674 | 0.683 0.697 0.659 0.656 | 0.673 0.679 0.664 0.665
Q(97.5) | 1.960 1.860 1.821  2.047 2.043 | 1.931 1926 1.994 1.994
IQR 1.348 1.332  1.337 1342 1345 | 1.328 1338 1.333  1.337
BIAS — -0.004 -0.013 -0.008 -0.008 | 0.000 -0.001 -0.001 -0.001
STD — 0.083 0.159 0.071 0.116 | 0.026 0.049 0.022  0.037
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Table 3: The distribution function of the ML estimator (cont.)

(iii) The case A =04, B=0.8, 03 =6.0, 00 = 2.0

Normal T= 100 = 1000

T A B &1 o A B &1 &
-3.0 0.001 0.006 0.005 0.000 0.000 | 0.003 0.003 0.001 0.001
-2.5 0.006 0.014 0.013 0.002 0.003 | 0.009 0.009 0.005 0.006
-2.0 0.023 0.034 0.034 0.013 0.017 | 0.028 0.027 0.020 0.023
-14 0.081 0.088 0.088 0.070 0.079 | .085 0.086 0.077 0.079
-1.0 0.159 0.156  0.153 0.158 0.159 { 0.157 0.157 0.160 0.160
-0.8 0.212 0.201  0.201 0.217 0.214 | 0.208 0.204 0.213 0.217
-0.6 0.274 0.255 0.258 0.288 0.278 | 0.267 0.265 0.280 0.278
-0.4 0.345 0.318 0.321 0361 0.351 | 0.33¢ 0.331 0.351 0.346
-0.2 0.421 0.380 0.391 0.443 0.432 | 0.408 0.407 0.428 0.422
0.0 0.500 0.465 0.468 0.524 0.511 | 0.485 0.488 0.507 0.500
0.2 0.579 0.544 0.550 0.602 0.588 | 0.566 0.570 0.585 0.579
0.4 0.655 0.627 0.635 0.672 0.661 | 0.645 0.649 0.659 0.653
0.6 0.726 0.708 0.711 0.737 0.731 | 0.720 0.720 0.727 0.725
0.8 0.788 0.781 0.782 0.795 0.792 | 0.787 0.788 0.787 0.790
1.0 0.841 0.846 0.846 0.842 0.843 | 0.842 0.845 0.841 (.841
14 0.919 0.942 0934 0912 0916 | 0.925 0.923 0.918 0.920
2.0 0.977 0.992 0991 0.967 0.973 | 0982 0.982 0.976 0.976
2.5 0.994 1.000 0999 0.989 0.991 | 0.996 0.996 0.992 0.993
3.0 0.999 1.000 1.000 0.997 0998 | 0.999 0.999 0.998 0.999
Q(2.5) -1.960 | -2.173 -2.176 -1.786 -1.887 | -2.056 -2.048 -1.926 -1.960
Q(25) -0.674 | -0.617 -0.621 -0.701 -0.682 | -0.654 -0.647 -0.686 -0.689
Q(50) 0.000 0.080 0.080 -0.057 -0.028 | 0.035 0.029 -0.018 0.001
Q(75) 0.674 0.715  0.705 0.647 0.656 | 0.688 0.681 0.673 0.673
Q(97.5) 1.960 1.692 1.738  2.109 2.044 1.884 1.885 1.987 1.967
IQR 1.348 1.331 1.325 1.348 1.339 1.342 1.328 1.359  1.362
BIAS — -0.027 -0.005 0.003 -0.018 | -0.003 -0.001 -0.002 -0.002
STD — 0.142 0.031 0.769 0.176 | 0.044 0.009 0.244 0.056
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For this distribution the first four moments of u; are

E(u) =0, Var(u;) =1, Skewness(w,) =0and Kurtosis(u;) =4+ %
Then we have made a comparison between the distributions of the ML estimator and the
pseudo-ML estimator , which is defined as the ML estimator as if the disturbances were
normally distributed. From Table 4 the pseudo-ML estimator based on the Gaussian
likelihood does not have large biases in many cases when the distribution of u, is not
far from the normal distribution.

6. Concluding Remarks

In this paper, we have investigated the basic properties of two estimation methods
in some details for the simultaneous switching autoregressive (SSSR) model,which is
originally proposed by Kunitomo and Sato (1994a,b). In particular, we have investigated
the finite sample as well as the asymptotic properties of the least squares estimator and
the maximum likelihood estimator in the SSAR model.

First, the least squares estimator is asymptotically inconsistent. There is a simul-
taneity among the phases (or regimes) and the values of the states in the SSAR model,
which makes the statistical estimation problem a non-trivial one. The current phase
(or regime) is dependent upon not only the past values of states, but also the current
unobservable disturbances in this model, which makes it different from the TAR models.
From our limited number of simulations, the least squares estimator is fairly biased in
many cases even when the sample size is not very large. Also the estimated signs of
coefficients by the least squares method are often different from the true ones. These
findings lead to the first conclusion that the least squares methods should not be used
in our situation.

Second, we have shown that the ML estimator is asymptotically consistent and
normally distributed. Also by our systematic simulations we have investigated the finite
sample distributions of the ML estimator for the univariate SSAR(1) model. From
the tables and figures of distributions and densities given in Section 5, we confirm
that the ML estimator does not have any serious bias and its distribution can be well
approximated by the normal distribution. We have found that this approximation is
quite good especially when |A] < 1 and |B| < 1. Hence we have the second conclusion
that the ML estimation method gives us reasonable estimation results for practical
purposes. We expect that these properties of the ML estimator hold in more complicated
SSAR models.

However, it should be noted that our results on the estimation of the SSAR model
depends on the assumption for the distribution of disturbance terms. We have shown
that the finite sample properties of the pseudo-ML estimator are not far from those of
the ML estimator when the distribution of disturbances is a Gaussian sum in Section
5. However, the assumption on the distribution of disturbances could cause a serious
consequence when the distributions of the disturbance terms are far from the nomal
distribution. In this respect, we may need a further development in the statistical
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Table 4:

The mean of the pseudo-ML estimator

(i) T = 50

B=08 B=05 B=02 B=00 B=-02 B=-05 B=-15

=| Al 07495 07829 0.7904 0.7926  0.7945  0.7957  0.7981
08 | | (0.116) (0.06) (0.038) (0.033) (0.028)  (0.025)  (0.017)
B| 07493 0.3909  0.0314 -0.2038 -0.4523  -0.8031  -2.0189
(0.117)  (0.245)  (0.371)  (0.452)  (0.562)  (0.690)  (1.231)

A=|A| 03966 04583  0.4762 04834 04859  0.4899  0.4978
0.5 | | (0.230) (0.153) (0.112) (0.092)  (0.082)  (0.068)  (0.045)
Bl 07825 04579 0.1335 -0.0841 -0.3039  -0.6265  -1.7049
(0.057)  (0.152)  (0.237)  (0.300)  (0.365)  (0.458)  (0.782)

=|A| 00240 01310 0.1667 0.1755 0.1798  0.1883  0.1982
02 | | (0373) (0.244) (0.180) (0.149)  (0.127)  (0.106)  (0.066)
B| 07898  0.4792  0.1701 -0.0462 -0.2543  -0.5589  -1.5988
(0.038)  (0.110)  (0.176)  (0.225)  (0.266)  (0.328)  (0.554)

= | A| -02010 -0.0833 -0.0474 -0.0313 -0.0188  -0.0049  0.0009
0.0 | | (0.454) (0.301) (0.222) (0.188)  (0.158)  (0.128)  (0.075)
B| 07932 04845 0.1743 -0.0355 -0.2275  -0.5361  -1.5428
(0.032)  (0.094) (0.148) (0.189)  (0.222)  (0.276)  (0.445)

A=|A| -04407 -0.3005 -0.2515 -0.2313 -0.2141  -0.2075  -0.1949
0.2 | | (0.553) (0.368) (0.264) (0.221)  (0.184)  (0.145)  (0.078)
Bl 07940 0.4894  0.1842 -0.0151 -0.2154  -0.5155  -1.5052
(0.028)  (0.081) (0.127) (0.158)  (0.186)  (0.227)  (0.342)
A=|A]|-08030 -06168 -0.5674 -0.5348 -0.5168  -0.5051  -0.4845
0.5 | | (0692) (0.456) (0.333) (0.270)  (0.223)  (0.167)  (0.068)
B| 07959 04924  0.1872 -0.0115 -0.2083  -0.5017  -1.4618
(0.024)  (0.069) (0.105) (0.129)  (0.146)  (0.165)  (0.185)

A=|A|-1.9950 -1.6677 -1.6052 -1.5496 -1.5015  -1.4629 NA

15 || (1204)  (0.750) (0.387) (0.453) (0.330)  (0.182)  (NA)

Bl 07978 04978  0.1984  0.0004 -0.1952  -0.4830 NA

(0.017)  (0.046) (0.066) (0.075)  (0.077)  (0.069)  (NA)
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Table 4: The mean of the pseudo-ML estimator (cont.)

(if) T = 100

B=08 B=05 B=02 B=00 B=-02 B=-05 B=-15

A=|A| 07741 07910 0.7948  0.7953  0.7968  0.7979  0.7991
0.8 (0.075)  (0.036)  (0.025) (0.021) (0.019)  (0.016)  (0.011)
0.7742  0.4266  0.0771  -0.1708  -0.3930  -0.7589  -1.9379
(0.073)  (0.161)  (0.250) (0.326)  (0.386)  (0.493)  (0.867)

&

=| A| 04280 04779 04885  0.4938 04946  0.4963  0.4982
0.5 (0.159)  (0.104)  (0.076)  (0.063)  (0.054)  (0.046)  (0.031)

Bl 07911 04775  0.1589 -0.0532  -0.2695  -0.5923  -1.6555
(0.036)  (0.105)  (0.162)  (0.204)  (0.245)  (0.310)  (0.533)
A=|A| 00759 01547 0.1824 01879  0.1940  0.1942  0.2000

0.2 (0.249)  (0.168)  (0.123)  (0.102)  (0.087)  (0.073)  (0.045)

B| 07944 04896 0.1828 -0.0197 -0.2286  -0.5341  -1.5575
(0.025)  (0.073) (0.123) (0.145)  (0.178)  (0.226)  (0.379)
A=|A|-01578 -0.0574 -0.0270 -0.0155 -0.0082  -0.0059  0.0010

0.0 (0.315)  (0.206) (0.150) (0.127)  (0.108)  (0.088)  (0.052)
0.7961  0.4931  0.1882 -0.0124 -0.2144  -0.5187  -1.5231
(0.022)  (0.064) (0.101) (0.125) (0.150)  (0.186)  (0.311)

(s [

=|A| -04031 -0.2746 -0.2260 -0.2142  -0.2091  -0.2044  -0.1992
-0.2 (0.389)  (0.246) (0.179) (0.149)  (0.126)  (0.100)  (0.054)
0.7972  0.4939  0.1951  -0.0090  -0.2081  -0.5068  -1.5034
(0.018)  (0.054) (0.088) (0.106)  (0.127)  (0.152)  (0.230)

o

=| Al -07547 -05918 -0.5378 -0.5205 -0.5093  -0.5023  -0.4913
-0.5 (0.496)  (0.310)  (0.224)  (0.191)  (0.151)  (0.117)  (0.045)

Bl 07978 04973  0.1950 -0.0060 -0.2034  -0.4992  -1.4798
(0.016)  (0.045) (0.072) (0.088)  (0.100)  (0.115)  (0.124)
A=]A| 19115 -1.6634 -1.5655 -1.5222  -1.4908  -1.4794 NA

-1.5 (0.855)  (0.534)  (0.389) (0.306) (0.231)  (0.123)  (NA)
0.7987  0.4986  0.1993  0.0010  -0.1970  -0.4921 NA
(0.012)  (0.031) (0.046) (0.051)  (0.054)  (0.044)  (NA)

my
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Table 4: The mean of the pseudo-ML estimator (cont.)

(iii) T = 500

B=08 B=05 B=02 B=00 B=-02 B=-05 B=-15

o

A= 0.7945  0.7973  0.7982  0.7984  0.7985  0.7989  0.7994
0.8 (0.020)  (0.015) (0.011)  (0.009)  (0.008)  (0.007)  (0.005)
0.7946  0.4561  0.1073 -0.1271  -0.3593  -0.7136  -1.8784
(0.029)  (0.075) (0.133) (0.174)  (0.214)  (0.282)  (0.500)

(s o}

=1 A| 04545 04949  0.4995  0.4998  0.5002  0.4999  0.5000
0.5 (0.076)  (0.043) (0.032)  (0.627)  (0.024)  (0.020)  (0.013)
0.7969  0.4949  0.1815  -0.0320 -0.2431  -0.5573  -1.6170
(0.015)  (0.043) (0.072) (0.091) (0.112)  (0.140)  (0.247)

s

=| A 01055 01839 0.1960 0.1992  0.1994  0.2001  0.2005
0.2 (0.134)  (0.070) (0.053) (0.044)  (0.038)  (0.031)  (0.020)
0.7978  0.4993  0.1952  -0.0061  -0.2110  -0.5203  -1.5310
(0.011)  (0.032) (0.052) (0.066)  (0.078)  (0.099)  (0.163)

&

= | A|-01283 -0.0272 -0.0075 -0.0031 -0.0003  0.0000  0.0001
0.0 (0.175)  (0.001)  (0.065) (0.055)  (0.046)  (0.038)  (0.023)
0.7983  0.5005  0.1988  -0.0031  -0.2043  -0.5062  -1.5046
(0.009)  (0.027)  (0.044) (0.055)  (0.065)  (0.081)  (0.132)

m>

=| A|-03578 -0.2413 -0.2115 -0.2048 -0.2035  -0.2007  -0.1999
-0.2 (0.215)  (0.110)  (0.078)  (0.065)  (0.055)  (0.044)  (0.024)
0.7986  0.5001  0.2001  -0.0006 -0.2023  -0.5016  -1.4919
(0.008)  (0.024) (0.038) (0.047)  (0.055)  (0.068)  (0.103)

o

=| Al -070908 -0.5582 -0.5194 -0.5070 -0.5016  -0.5000  -0.4986
-0.5 (0.279)  (0.139)  (0.099) (0.081)  (0.067)  (0.051)  (0.019)
0.7991  0.5004  0.1999  0.0000  -0.2004  -0.4997  -1.4937
(0.007)  (0.020) (0.032) (0.038)  (0.044)  (0.051)  (0.053)

o

= | A| -1.8703 -1.6156 -1.5338 -1.5059 -1.4961  -1.4942 NA
1.5 (0.494)  (0.249)  (0.166) (0.135)  (0.103)  (0.053)  (NA)
B| 07996 04999  0.2001 -0.0001  -0.1998  -0.4984 NA
(0.005)  (0.013) (0.020) (0.023) (0.024)  (0.019)  (NA)

22



estimation method of the SSAR model.

7. Appendix
For the proof of Theorem 2, the first preliminary result is taken from (5.19) of
Kunitomo and Sato (1994b). Its proof is given in their Appendix.

Lemma 1 The partial derivative of log-likelihood process {Ql(l%g—‘-@} from ({.2) is

a vector martingale process, that 1s,

dlog L(0) _ 0OlogL:1(9)
(A1) p| PO 5| = SRS

where Fi_1 is the o-field generated by {y,, s <t —1}.

The next two lemmas are the results of direct algebraic calculations by using the
partitioned matrices. We omit their proofs.

Lemma 2 Let a p X p positive definite matriz A be decomposed into (g + (p — q)) X
(g + (p — q)) submatrices A = (A;j). For any ¢ x v matriz B, (p — q) X r matriz
C(p—q>0), andr x r matriz D,

(A2) I%Il trA < g ) D(B/, C/) ={r C,(A22 - A21AI11A12)CD
and the minimum occurs at B = — A7} A15C.

Lemma 3 Let a g X g positive definite matriz C be decomposed into (r+(q—71)) x (r+
(q—7)) submatrices C = (Cy;). For anypxr matriz A, px(q—r) matriz B (¢—7 > 0),

!
(A.3) m}i))n tr(A, B)C ( g, ) =tr A(Cy; — C1,C5, Co)A’
and the minimum occurs at B = —AC2C5; .

Proof of Theorem 2 :

Step 1 : We assume p; = 0 (¢ = 1,2) without loss of generality. Let v\ =

(1/0:)Diuy (i 1,2). Then the condition ey, > €]y, | is equivalent to vﬁf =

(1/01)el,Dyu; > r'y,_,. Let the indicator functions I (i = 1,2) be defined by
It(l) = I(vgit) > r'y, ;) and 11(2) = [(’Ugt) <7T'Y_y)

Step 2 : We take the criterion function
2
(A.4) Qr(8) =3 Qir(9)
=1
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where

7, .
(A.5) Qur(8) = ~10g|2i[%§:[§’)
t=1

and A1 A and A2 B.

Let 6y be the true value of 8 and we denote 21 ) A(O), r© 050) (i = 1,2) as the
true value of the corresponding matrix or vector of parameters. Substituting (2.1) at
the true parameter values for y, in (A.5), we have

1 &6
(A.6) Qur(8) = ~log| X4 = 311"
t=1
1 _ ;
T‘Z [(AEO) Ay, + 0ol )] bop [(AEO) ~ Ay, + 0 )] Y
t=1

Let also the moment matrices of It(i) , Y, and v, evaluated at the true value 8¢ be

(A7) = B[]

(A.8) cy) = Ely_ w0 |
(A.9) cl) = Ehvty’t_lltz} :
and , .

(A.10) Cl) = E [vv1{"]

Then Q,r(0) converges in L! to

(A.11) Qi(0)= — Vlog|X

~ (A - 4y EA - a)Cy)]

— 20" (A - Ay 57'CY)]

vy
- [z

uniformly w.r.t. 6.
Now we want to show that Q(8) = £2, Q:(8) is uniquely maximized at @ = 6. Since
Q:(0) is a complicated function of 8, we shall do it in several steps.

First, we maximize Q;(6) with respect to €S A; (j =1,...,m— 1). We partition A(
and A; into ((m — 1) + 1) x m submatrices and

or — 50) (OJ
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Using Lemma 2, we can maximize ();(0) w.r.t. A;;. Then we have
(A.13) O Qu(8) < Q;(8) = =P log| Xy

1 OOy _ 4O i~
- (—T?[(a,-r——cri POy — o0 COCH” ]

><C(z) G J( )7.(0)) EO)ng C(t)em

5 (@) wzen,)

2 V.Y

() — @ () ()~ Al
where CY) = C{) —cl)cl) CY)

vo.Y e

The equality in (A 13) holds when

N (i —1
(A.14) AY - A, -0"chc)
ol 0, (0 (0) 1
= 2 (0','7' — 0 T( )) - 0y emcgjy)c v ] )
o;

?

where J| = (I,,-1, 0).
Next, we partition an m x m matrix X7 ! into ((m — 1) + 1) X ((m — 1) + 1) submatrices

-1 2(13) 052 -
091 O3
Im—-l (2)
5 =1 o
= ( 2) eme,, + _0(’) i, (Im 1 ‘;2‘21’) :
i 1

where 2112 = 211 - 0512)0521)/‘7‘
We use | X = | X502 and maximize Q}(8) w.r.t. >, by using Lemma 2.6.1 of
Anderson (1984). The resulting maximum occurs at

(i) m—1
. 1 0— m-—]
A.16 B~ I, 1, A1) )
1
Also by using Lemma 3 we can maximize
v ()
(A.17) - "2—101% | 271
w.r.t. o(’) The resulting problem in this maximization is to investigate

(A.18) Q(0) = —cVlogo?
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1 ) ]
- = [(Uﬂ' - 050)7»(0))’ - ago)e'mCEjy)C(yg ]

i

; 0) ¢ 0 =L~
xC{) [(air — ol p0) _ 4 'cl) C(y’@)em]

0‘0)2
he (7)
- = Cw y€m

1

Because Q7*(0) is a concave function of o,, we differentiate it w.r.t. o; to obtain

(A.19) 007(0) _ il

80’1' a;

2 1 (0 ) (0) ' ) )* (i)
- ?[ai 7O C’C ]ny

7

(0) ( I
< |[r= 2] - Zcly i Clle
g; ;

A
+ 2—;?——emCﬁijem
By setting 8 = 6, we have
aQ7 (0
(A.20) Q&al )l = 0
because we can use the relation
(A.21) e CWe,, — ¢ — pO Clle.,
= E{[ Umt —(r'yy) mt] z)} =0

by the assumption of normality on {u,}.
Finally, we note that

2
(A.22) Q™(0)=3_Qr(6)
i=1

is a quadratic form of an m x 1 vector r. The maximum of (A.22) occurs at

w”m Qw)m
i _ 1 %
(A.23) r— p rV = ; ) C,en
2 _(0)
g, i) (i
= Y Bly-vmk’]
=1 t

which is zero at o; = 0(0).

This proves that Q(8,) is the unique maximum of Q(6). Then we apply Theorem 4.1.1
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of Amemiya (1985) to show that 6, converges to 8 in probability as T’ goes to infinity.

Step 8 : Let 6; be the j-th component of 8. From the log-likelihood function, we
have

L T 2
(A.24) OogL1(8) _s~s~or.0,) .
501' t=11i=1
where
13108;[21' 4 ’ 8A 1 i
(A.25) dLy(8;) = —5——56-;—-—1&‘ "o, (00] ) >, 0

2 (ox;t .
“‘g"l“t { 80 U tIt )}

We also have
PlogLy(0) L&

(A.26) 00,00, ~ ;;aﬁm 0,,0r)
where
(A.27) O Lin(6,,6,) = ;%%%JL oy 1%1;1' 2_1%;1 -
+ {yt 18?92?9’;62“1 Y- 1%%+y1_1%8§0§ i
3 tzz;ge,i”t“(i)

Since {o!’ g } follows N,, [0, (1/02) %], we have the following conditional expectation for-
mulas

(A.28) E [vt (’)] L €mt
and 0
Yii, 0 1
(A.29) E {v(t')vg l ﬁn),] = —17 ( + G Xene, X, v“)
g, 0/ 0 3

Then by using the repeated expectation formula, we have
(A.30) E [0Lu(6;,0:) | Fioa)

= E{E[3Lu(8;,0,) | vi] | Fir }

19%log | X A (9A 1, (o*x:]! )
ool / 1 — I ek 3 E I
[ > om08,  Yi-ia, > o, Y1 2\ 9g,06, Ly
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1 * A AL 0XTY  , 0ALox! .
’ i 2 hailin} 1 Zi mE 1 Iz
+ [yt 160 a() 2 + yt..l aa] aek + yt_l 80k 89] jl E [ t ]

1 X7 / (i)2 (i)
5t [ae aHLEiememSé}E[(vmt — I ]

Under the assumptions of Theorem 2, we need some tedious calculations to obtain the
asymptotic covariance matrix. Then we have the m x m Fisher matrix

(A.31) 1(0) = (I)

where

(A.32) L = E—“iaQLit(gjaﬁk)]
i=1

2 2
Li=1 i=1
. . . . . 02 lo 21' _
For illustration, we take ; = r; and §; = 1. Then in this case using v 0,
J
2 22 y—1 -1
OAL _ = —ene}, gg%b- =0, and 62‘k =201 X7te e, X7,

kOU; jYVE

we have
(A.33) E [0La(8;,64) | Fir]
= () (gu) (") el 5B 1]
+— (207, B e ~ 1) B [vf 1]

On the other hand, we have

(A.34) E [22: 8Lu(0j)i 0Ly (0r)

Fi- 1}

il

{[ €y, 120%’ >l ‘”1/} [OL1/(6k)]

-

= ——a%e;yt_lE{(e;nZ‘flv,)[ (e it (1)) 1(r’yt_1) (e’melvt)
—-ale;nEl—lem] It(l) |}}_1}

- *Zf'l’l‘eéyt_lE {[w* = (r'y,_)w” - dw) 11" I“T“l }
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e
where w = e/, X7 vV

Let v = US,L) Then

(o)~ ~[(8) (0]

and we have E [(w —v)? | v] = d—1, E[(w —v)?| v] = 0. From these relations for the
normal random variables, we can obtain the formulas

and d = o€/, X7 e, .

(A.36) Elw|v] = v,
(A.37) Efw*|v] = o*+d-1,
(A.38) E [w3 l v] = 3u(d-1)+0* .

Hence the parenthesis part of (A.34) can be fuether re-written as
(A.39) E {E [w3 — (r'y,_)w® — dw ’ v] It(l)}
= E{E[Hs(v) — (ry,..)H>(v) + 2dHy(v) — dr'y,_, | o] 1V}
= E[(2d-1)é(r'y, ) - dr'y, B (I 1Fia)]
where H;(v) are Hermite polynomials. ( Hy(v) = v®—30v , Hy(v) = v*~1and Hi(v) =v
.) Hence we confirm that the minus of (A.33) and (A.34) are equivalent. Also we can

show that each componemt of the minus of (A.33) and (A.34) are equivalent by tedious
calculations. Under the assumptions of Theorem 2 we have

L 1 3%log L1(6)

(440 1) = }E&E['"fw—
_ . 1310gLT(0) 810gLT(0)
- %EEOE[T o0 00’

Finally, we shall apply the central limit theorem (CLT) to

1 dlog Lr(0)
VT ~— 08 0,

Since the partial derivatives of the log-likelihood function is a vector martingale pro-
cess by Lemma 1 and the conditional Lindeberg condition is clearly satisfied under
the assumptions we made in Theorem 2, we can use the martingale CLT developed by
Dvoretzky (1972). By applying the standard arguments in the asymptotic theory (see
Section 4 of Amemiya (1985), for instance), we have the desired result. (QED)

(AA1)

References

[1] Amemiya, T. (1985), Advanced Econometrics, Basil Blackwell.

29



2]

3]

[4]

[5]

[6]

(8]

[9]

Anderson, T. W. (1984), An Introduction to Multivariate Statistical Analysis, 2nd.
Edition, John-Wiley.

Dvoretzky, A. (1972), “Asymptotic Normality for Sums of Dependent Random
Variables”, Proceedings of the Sizth Berkeley Symposium on Mathematical Statistics
and Probability, 2, University of California Press, 513-535.

Granger, C. W. and Andersen, A. P. (1978), An Introduction to Bilinear Time
Series Models, Vanderhoek and Ruprecht, Gottingen.

Kunitomo, N. and Sato, S. (1994a), “A Non-linearity in Economic Time Series and
Disequilibrium Econometric Models”, in A. Takemura (ed.), Theory and Applica-
tion of Mathematical Statistics, University of Tokyo Press, (In J apanese).

Kunitomo, N. and Sato, S. (1994b), “Asymmetry in Economic Time Series and
Simultaneous Switching Autoregressive Model”, Discussion Paper No. 94-F-9, Fac-
ulty of Economics, University of Tokyo.

Ozaki, T. and Oda, H. (1978), “Non-linear Time Series Model Identification by
Akaike’s Information Criterion”, Proceedings of IFAC Workshop on Information
and Systems, Campiegn, France.

Tong, H. (1983), Threshold Models in Non-linear Time Series Analysis, Lecture
Notes in Statistics No. 21, Springer, Heidelberg.

Tong, H. (1990), Non-linear Time Series, Oxford.

30



200 400 600 800

0

200 400 600 800

0

Figure 1: The histogram of the least squares estimator
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Figure 2: The histogram of the ML estimator
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Figure 3: The distribution function of the ML estimator
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