94-F-13

Term Structure of Interest Rates and
the Pricing of Fixed Income Claims and Bonds

by

Terry A. Marsh
Walter A. Haas School of Business
U.C.Berkeley
The University of Tokyo

March 1994

Discussion Papers are a series of manuscripts in their draft form. They are not

intended for circulation or distribution except as indicated by the author.

For
that reason Discussion Papers may not be reproduced or distributed without the

written consent of the author.



Term Structure of Interest Rates and the
Pricing of Fixed Income Claims and

Bonds

Terry A. Marsh

U.C. Berkeley
Walter A. Haas School of Business
350 Barrows Hall
Berkeley, CA 94720
(510) 642-1651

University of Tokyo
Department of Economics
7-3-1 Hongo, Bunkyo-ku T113
(03) 3812-2111 Ext. 5656

Last Revised: January 30, 1994

To appear: Handbooks in Operations Research and Management Science:
Finance, ed. by R. Jarrow, M. Maksimovic, and W. Ziemba, North-Holland:
forthcoming, 1994. I am grateful to the Yamaichi Securities Co. Ltd. for financial
support through the Yamaichi Chair in Finance at the University of Tokyo while
part of this work was completed, and to Raoul Davie and Paul Pfleiderer for helpful
comments on an earlier draft.



1 Introduction

The term structure of interest rates is an array (“structure”) of price or yields on
bonds with different terms to maturity. The relationship among the yields—the term
structure— varies over time. For example, if the yields on long-term bonds are above
those on short term bonds, as they were in the U.S. in mid-1993, the term structure is
said to be upward sloping. By contrast, the term structure was downward sloping in
1973 and the early 1980s—short-term yields were above long-term yields. The term
structure is usually computed from the observed prices of Government bonds which
are typically regarded as default-free in developed countries, or the prices of securities
which depend upon the bonds, such as interest-rate swaps.

Until the mid- to late-1970s, term structure analysis and related research on
fixed income management more or less existed as a stand-alone field in finance. Ba-
sic default-free bond concepts and terminology such as yields, spot and forward rates,
immunization, duration, and the liquidity preference and ezpectations hypotheses con-
cerning term premiums were neither influenced, nor had much influence on, develop-
ments in the asset pricing models. The latter dealt with the price of risk whereas
term structure models dealt with the price of time alone’—in the one-period and par-

tial equilibrium portfolio allocation and asset pricing models prior to the mid-1970s,

1This is not to say that portfolio theory and asset pricing concepts were never used to study
the term structure of interest rates. For example, Stiglitz (1970) derived the relative demands for
one-period (“short” term) and two-period (“long” term) bonds from a model in which investors
make investment and consumption decisions to maximize expected lifetime utility. Long (1974) de-
rived investor demand functions and prices for stocks, bonds, and commodity “futures” contracts
in the presence of multiperiod uncertainty about consumption good prices, changes in the invest-
ment opportunity set, and (nominal) wealth. Long’s paper, along with various sections of Merton’s
(1971)(1975a) papers, foreshadowed much of the subsequent general equilibrium term structure
analysis. On the empirical side, Roll (1970)(1971) applied a recursive version of the Sharpe-Lintner
capital asset pricing model to monthly returns on longer-term bonds. Marsh (1985) tested whether
consumption-based and one-period asset pricing model constraints across the monthly returns on
bonds with different maturities were satisfied.
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one-period bonds were no more than numeraire.

In the last ten years, however, fixed income models have become increasingly inte-
grated with mainstream models of asset allocation and asset pricing. The “enabling”
technology for this integration has been the intertemporal equilibrium asset pricing
theory and risk-neutral valuation techniques developed in the mid- to late-1970s. The
extension of this new technology to bonds has undoubtedly been stimulated by the
increased volatility of interest rates, along with the rapid expansion of the cash mar-
ket (e.g. the issuance of Government bonds in the U.S. and Japan),? and derivative
markets (e.g. mortgage-backed securities, bond futures, interest-rate swaps, and the
like) in fixed income securities. Continual improvement in the technology has, in
turn, stimulated further growth of the derivatives market.

The primary objective of this chapter is to explain how the intertemporal and
risk neutral pricing techniques have been applied in the fixed income area. The ex-
position is in essentially reverse chronological order. It begins with an explanation of
how the risk-neutral approach has been adapted from the options pricing literature.
It then turns to the equilibrium bond pricing models which were the focus of research
in the late 1970s and early 1980s. Both the risk-neutral and equilibrium approaches
are initially presented under the assumption that term structure movements depend
upon only a single factor—the short rate of interest. This factor, and thus movements
in bond prices, can then be depicted in the familiar “tree” diagram used to exposit
contingent claim pricing methods. Once the arbitrage-free and equilbrium approaches
to modelling the term structure have been introduced, the extent to which the ap-

proaches “incorporate” the information in the current term structure, and the number

2In 1990 fixed income securities account for about half of the estimated $22 trillion worth of
outstanding world stocks, bonds, and cash, though not all of these securities are freely traded; some
30%-40% of Government bonds are held by central banks, for example.
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of factors which might be needed to adequately describe term structure movements,
are discussed. Finally, some issues in fitting the fixed income models and applying
them in the valuation of interest rate derivative claims are addressed.

For the most part, the paper deals with the term structure of default-free zero
coupon or discount bond prices, or equivalently, the spot and forward rates of interest
implied by those prices. In principle, a coupon bond can be decomposed into a
portfolio of zero-coupon bonds, each with a face value equal to the coupon, as if it
were stripped from the coupon bond and priced separately. For example, a two-year
8% coupon bond with face value $1,000 makes a $40 coupon payment at the end of 6,
12, and 18 months, and a $1,040 payment at the end of two years—this final payment
is the face value of principal plus the final coupon payment. As such, the 8% coupon
bond notionally consists of a portfolio of three zero-coupon bonds paying $40 at the
end of of 6 months, 12 months, and eighteen months respectively, together with a
$1,040 zero with a maturity of 2 years.?

In practice, it is well-known that “coupon” effects, tax effects, “on-the-run” ef-
fects, and various other idiosyncracies are important in pricing Treasury securities.
Data errors, stale quotes, and the like must also be taken into account when fitting a
term structure to bond prices, i.e. in deriving implied zero coupon yields. These im-
portant practical issues cannot be examined here. Typically, spline fitting techniques
are used to (cross-sectionally) “smooth out” the pricing idiosyncracies in the fitted

term structure at each point in time* (cf. Nelson and Siegel (1987), Beim (1992) and

3In 1984, the U.S. Treasury allowed coupons which are stripped like this from its outstanding
obligations to be held as Strips, an acronym for Separate Trading of Registered Interest and Principal
of Securities, whereby stripped securities can be held in separate book-entry form at the Federal
Reserve. After 1987, bonds could also be reconstructed from Strips.

44Smoothing out” the effects doesn’t necessarily mean “smoothing away,” e.g. if there are no
zero-coupon bonds traded, it is not possible to isolate all coupon effects, and they will be smoothed
into the fitted yield curve.
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Diament (1993) for discussion and references). Unfortunately, the design and pricing
of various coupon and payout provisions on debt cannot be covered here either. Cox,
Ingersoll, and Ross (1980) and Ramaswamy and Sundaresan (1986) are examples of
this work. Finally, by ignoring coupons, duration and immunization measures are not
per se discussed here, though the models of interest rate movements on which their
validity depends are; Ingersoll, Skelton, and Weil (1978) contains a good overview of
the duration literature; see also Boyle (1978).

The focus of the paper is on dynamic models for the time series of term structures
of implied zero-coupon bond yields after the idiosyncracies have been smoothed out.
The smoothing is assumed to have been done in a first step; the dynamic modelling is
then a second step. In a state-space framework, these two steps could be tntegrated.
In such a framework, the discount function would be defined as a state variable whose
dynamics are modelled in a state equation. Differences between the observed term
structure and the discount function—the differences which are “smoothed” away in a
separate step before fitting dynamic models, would then be simultaneously handled
in a measurement equation.’

Whether obtained in a state-space framework or by the two step procedure of
smoothing and then fitting a dynamic model to the smoothed term structure, the
fitted discount function ends up being “smoothed” in two ways relative to the term
structures of actual discount bond prices at successive points in time. First, esti-

mated idiosyncracies such as coupon effects, on-the-run effects, data errors, stale

5As an example of why it is useful to integrate the measurement and state equations, consider
liquidity effects on bond prices. One could possibly choose to model liquidity, or some systematic
factors responsible for it, as something priced in the state equation, or alternatively relegate it to
the measurement equation. Integration should also force the user to think about the consequences
of estimation error—presumably the loss function for errors in measuring the term structure at the
long end does is not the same as at the short end.
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bond quotes, etc.—the type of effects which the spline fits attempt to smooth out,
are eliminated as residuals or “model measurement errors” in the measurement equa-
tion. Second, if the dynamic model is to have “teeth,” it must have a small number of
factors (potentially the prices of a subset of bonds themselves) to explain movements
in the smoothed discount function—the state equation.

In Section 2 a brief explanation of equilibrium and risk-neutral valuation of assets,
and their application to bonds, is given. In Section 3, a detailed exposition is presented
of the risk-neutral method in a simple “tree-diagram” context. In Section 4, the
calibration of the risk-neutral model with the observed term structure is discussed.
Equilibrium models of the term structure are introduced in more detail in Section 5,
where the relative degree to which equilibrium and risk-neutral models fit the observed
term structure is also discussed. The issue of the number of factors underlying shifts
in the term structure is discussed in Section 6. Finally, Section 7 contains a brief

summary and discussion of issues for future research.
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2 Brief Overview of Asset Valuation Methods Ap-
plied to Bonds

2.1 Introduction

The analysis here will deal with the pricing of zero-coupon bonds which pay,
with certainty, a standardized face value of 100 at maturity date T, T = 1,..T,
where T is the longest maturity bond.® The payoff 100 is in units of a given country’s
currency, e.g. $100 in the U.S. or Y100 in Japan. Given covered interest rate parity,
a U.S. investor will be indifferent between a U.S. Government bond or a fully hedged
investment in Japanese Government bonds.”

Current time will be denoted by t. “States” ¢ = 1,...S are used to represent
uncertainty: today’s state ¢ is known, but future states are unknown. The abstract-
sounding states will become nodes in “tree diagrams” used to illustrate the uncertainty
in bond prices. To fix ideas, a state could refer to a level of production technology
on which payoffs on some of the investments in individuals’ portfolios depend, or

to something that influences enjoyment from consumption—a “consumption technol-

SInterestingly, the maturity range T seems to differ substantially across countries—30 year Gov-
ernment bonds and now 50 year corporates in the U.S., but rarely more than 10 year maturities with
any liquidity outside the U.S. Further, the maturity structure of debt (especially corporate debt)
seems to shift substantially over time within countries. There does not seem to be much analysis of
the economic and institutional factors responsible for these differences.

"Let S(t) be the spot exchange rate at time t in dollars per yen. Let F(t,t + 1) be the one-
period forward exchange price, at time t, of dollars per yen. A U.S. investor who invests one
dollar to buy a (t+1) maturity U.S. Government bond for P(t,t + 1,7) earns a known return of
R(t,t + 1,7). Alternatively, the investor can convert the dollar to 3%;5 yen, which when invested

in Japanese Government bonds, will earn the yen-denominated riskless return R*(¢,t + 1,7). This
payoff can be sold forward for M%%‘-‘M dollars at time t (assuming no default risk on the

forward market). If covered interest rate parity (1 + R) = -‘;—(1 + R*) obtains, as it must to rule
out the possibility of arbitrage profits, then the U.S. investor will be indifferent between the two
alternatives. (Actually, the location of the investor becomes unimportant—the “U.S. investor” is
one who purchases consumption goods in the U.S.). Interestingly, uncovered interest rate parity,
in which the U.S. investor does not hedge the yen investment and thus expects to receive 5%;5( 1+
R*)E;[S(t + 1)), where E;[S(t + 1)] is the time expectation of the time t + 1 price of dollars in
yen, does not seem to hold very well historically.
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ogy.
The price of a discount bond will in general be a function of the current time t,
the bond’s maturity T, and the current state 7. The following time line illustrates the

time sequence:

0 t t+1 T

1 1 I

|

|
P(t,T,3) 100

The term structure of bond prices at time t and state i is the shape of P(t,T,1) for
increasing T'.
If a bond matures at time T=t+1, then its price at time t+1 must, with certainty,

equal 100. At time t, its price in state 1 = 7 can be set equal to:

- 100
Pitt+10) = 2oty (1)

which defines the one-period riskless return R(t,t + 1,7) as the return that an in-
vestor would receive with certainty by buying the bond at time t for P(¢,t+ 1,7) and
redeeming it at time t+1 for 100. Next, consider bonds which mature at time t+2
and beyond. Even though these bonds have a sure payoff at maturity, their time t+1
prices are uncertain at time t—future states are uncertain, and thus so are future
bond prices and interest rates. The following diagram, reproduced from Ho and Lee
(1986), shows term structures at time 0, 1, and 2. In the diagram, as time changes
from 0 to 1, the bond which is specifically highlighted as a 3 year bond at time 0
becomes a two year bond at time 2, and its time 1 price depends upon whether state
1 or state 0 is realized. At time 2, it will be a one-year bond, and its price will
depend upon which of the three time 2 states is realized. In general, as time passes,

the bond’s price approaches its par value of 100 and price volatility decreases.

TermStructure: 7



Fig. 1 here

2.2 Equilibrium Pricing Models

How are the time ¢ prices of bonds determined, given the uncertainty in ¢ + 1 prices?
In an equilibrium approach to asset pricing, bonds are treated as just one asset in an
investor’s portfolio.® In the standard analysis, representative investors are assumed
to make their consumption and portfolio decisions so as to maximize the sum of
their (additively separable) expected utilities of consumption at each time 7 in state
i, u [C (7, ;)] A necessary condition for an interior maximum is that, at any time
t, the increase in an investor’s satisfaction from selling a marginal dollar’s worth of
assets at t, and thus giving up expected future consumption, must just balance the
marginal utility of consuming the proceeds at t. Selling the time-T maturity bond
at time t at price P(¢,7T,7) and consuming the proceeds gives a marginal increase in
satisfaction of P(t,T,7)uc [C(t,4)]. The expected loss in utility from not holding onto
the bond is the expectation of its uncertain liquidation value at t+1, P(¢t + 1,T),1)
times the marginal utility from consuming these (uncertain) proceeds at ¢ + 1, which

is uc [C(t + 1,1)]. That is, in intertemporal equilibrium:
P(ta T, ;)uC [C(t,Z)] = EleQiP(t +1,T, Z)Uc [C(t +1, Z)] (2)

where Q; is the probability of state i at time t+1.° It is convenient to define m;(t,t +
1,i) = %ﬂ, in words, m;(t,t + 1,1) is the price at which, at the margin, time-t

consumption in state 7 is traded off against (uncertain) time-(¢ 4+ 1) consumption in

81f the bonds are in zero gross supply, the bond prices will be shadow prices.

9This transition probability could depend upon the state at time t, and it will definitely depend
upon the time-to-maturity of the bond, but the dependence is suppressed for the time being to
simplify notation.
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Fig. 1: Example of dynamics in the discount function (Reproduced
from T. Ho and S. Lee, "Term structure movements and
pricing interest rate contingent claims,” Journal of Finance
51(5), Fig. 1)



state ¢ = 1,...,S. The restriction implied by the equilibrium in (2) is that m; does not
depend upon the specific asset which is used as the investment vehicle to transfer a
dollar to time ¢ +1: all assets are equally desirable at the margin. Using the definition

of m; and rearranging (2) gives:

P(t,T,i=1)=XL,Q: [mi(t,t + 1,7)P(t +1,T,i)) (3)

The Euler equation (2) has to hold between time t and any future point in time,
not just between ¢ and ¢ + 1. In particular, it must hold between ¢ and the maturity

time T of each bond. Thus, (3) can be rewritten as:

- 100
P(t,T,3) = 10055, Qim; = ———— 4

where R(t,T,1) is defined as the (T —t)-period spot rate of interest or yield-to-maturity.

Some typical yield curve shapes are illustrated in Fig. 2.
Fig. 2 here

The Euler equation (2) is a necessary condition on consumption and invest-
ment for individuals to maximize their expected utility of lifetime consumption, e.g.
Samuelson and Merton (1969), Merton (1971), Rubinstein(1976), and Lucas(1978).
LeRoy(1982) and Breeden (1986) specifically discuss the implications of the Euler
equation for bond pricing. The one-period capital asset pricing model, the intertem-
poral capital asset pricing model, and the arbitrage pricing theory can all be derived

from (2), so bond pricing!® in this framework makes it consistent with these models.

10The pricing formula can be derived in terms of either real consumption or nominal consumption
expenditures, so it can be considered an equilibrium model for either the real or nominal term
structure and bond prices. (If the investor’s known consumption bundle consists of, say, a home in
the U.S., a Japanese car, and vacations in Paris, the known payoffs would be converted using forward
currency rates which are known at time t. Uncertainty about the relative prices of consumption
goods can affect real spot rates of interest, however.
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The concept of states is not fully exploited in the development of (3). The most
primitive securities in the state pricing framework are those that pay a dollar in a
given state and zero otherwise. Any asset can be “assembled” from these primitive
securities and priced relative to them by arbitrage-free techniques. For example, since
the (T — t) maturity bond pays off in all states at time T, its price P(¢,T,1) in (4)
must be equal to the sum of the prices of the primitive securities paying off in the
different states at time T. If it doesn’t, arbitrage profits could be earned by making a
portfolio of all the primitive securities which, like the bond, would be guaranteed to
payoff in every state at time T, but would have a time t price which is different from
the bond. Breeden and Litzenberger (1978) and Banz and Miller (1978) show that
the prices of the primitive securities—state prices—can be obtained as the prices of
options on aggregate consumption and the market index, respectively. The prices of
bonds can then be calculated in terms of the state prices. These state prices, and
thus the bond prices, will still reflect the same probablilities of consumption payoffs
and their marginal utility in the payoff states, just as in (2) above.

Many empirical tests find that the Euler condition fails to hold as a restriction
across the period-by-period returns on assets, including default-free Treasury secu-
rities (e.g. Hansen and Singleton (1982)). However, it is difficult to know how to
interpret these test results. The generality of the Euler condition as a null hypothesis
regarding asset returns is, ipso facto, a weakness insofar as its rejection for any partic-
ular specification of the utility function doesn’t tell us much—the generality admits a
plethora of alternatives, one of which will eventually fit the data. In Stigler’s words,
¢ takes a model to beat a model,” which can only be done by putting more flesh
around the Euler equation by developing more detailed models of the the pricing op-

erator m;(t,t+1,7). This is the subject of Section 5. An alternative approach, which
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does accomplish the objective which seems to underlie the Euler equation tests, is to
formulate the conditions on prices which are necessary to rule out arbitrage opportu-
nities. Such opportunities must, of course, be absent in any equilibrium.! Assuming
that arbitrage opportunities can’t exist, then these will be minimal conditions which
must hold on prices. From a practical point of view, if the conditions are not satis-
fied, “yield curve arbitrage” profits are possible.’? In addition, following Black and
Scholes (1973), Merton (1973), and Cox and Ross (1976), the no-arbitrage conditions
are all that will be needed for pricing contingent claims. The no-arbitrage conditions

on bond prices are now derived.

11parital equilibrium models, in which the m;(¢,t + 1,1) is partly given exogenously (e.g. exoge-
nous risk premiums) could be considered another “less ambitious” way to go. However, as Cox,
Ingersoll, and Ross (1985) emphasized, arbitrarily specifying some components of the equilibrium
is a dangerous business, since there is no longer any guarantee that the equilibrium does indeed
imply the absence of arbitrage opportunities. Constantinides (1992) suggests that the m;(t,t + 1)
be represented as a reduced form statistical process which would satisfy restrictions on bond prices.

12Checking the non-arbitrage conditions is not completely mechanical in practice due to the po-
tential effects on bond prices of illiquidity, high or low coupon rates, and other idiosyncracies like
those discussed in Section 1. It is also not mechanical in the sense that there are only potential
arbitrage opportunities among N points on the yield curve if they are spanned by kjjN risk factors.
This is a matter of risk model specification, e.g. early writers such as Culbertson (1957) believed
that the market for bonds of different maturities was partly segmented, i.e. there were in principle
as many factors as maturities.
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3 Arbitrage-Free Restrictions on Default-Free Bond
Prices

13

3.1 Introduction

Since the one-period riskless return R(t,1) is a known constant conditional on the

state at time t, the equilibrium pricing equation (3) can be rewritten:

P(t,T,i=1)= m}:mc;),- [miR(t,D)P(t+1,T,7)] (5)

Cox and Ross (1976), Ross (1978), Garman (1978), and Harrison and Kreps (1979)

pointed out that, if arbitrage opportunities do not exist, then (5) can be formulated

as:

L. TEL6Pt+1,T,
P, T,i=1)= 1 R((t ) )

(6)

where the nonnegative numbers 6; are valid probabilities:

3 ,6,=1 (7)

The 6, are called pseudo probabilities or risk neutral probabilities. The reason for

13The exposition in this section and the next most closely resembles that in Cox (1986) and
Black, Derman, and Toy (1990). The basics are due to Black and Scholes’ (1974) and Merton’s
(1973) ideas on the basic role of replication, and to Cox, Ross, and Rubinstein’s (1979) paper in
which these ideas were cast in the “tree diagram” context used here. (Mark Rubinstein credits
William Sharpe with suggesting the binomial approach during a break at a 1975 conference in Din
Bokek, Israel.) In addition, Vasicek (1977), Richard (1978) and Dothan (1978) derived closed-form
expressions for the term structure in continuous-time under the assumption that bond prices are a
function of the (instantaneous) short nominal or real rate of interest, as is the case in discrete-time-
space in this section. If their models are solved “as if” investors are risk-neutral, their approach is the
continuous-time analog of that used here; Indeed, this interpretation of their models is perhaps most
appropriate since the partial-equilibrium dynamics they used were not intended to be endogenous
to some full-fledged representation of the actual economy.
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this terminology is readily seen if Equation 6 is rearranged:
Es[P(t +1,T,.)] = P(t,T,1).R(t,1) (8)

where Ej is the expectation of the one-period-ahead bond price P(t+1,T,.) under the
risk-neutral probabilities {6;}. That is, the bond’s expected return computed using
the risk neutral probabilities {6;}, Eq, [P(t +1,T,.)] /P(t,T,?) equals the riskless re-
turn, just as it would if investors were risk-neutral. Since the {6;} are non-negative
and sum to unity, (7) says that non-arbitrage implies the existence of a linear pricing
operator which can be used to value assets (e.g. Ross (1978)).

Garman derived (6) and (7) by using Farkas’ lemma. Harrison and Kreps (1979)
provided a recipe for calculating the risk neutral probabilities {6;}; in (5) from the
probabilities {Q;}; in (6). They showed that the probability measure for the risk-
neutral probability distribution, which here makes the discounted bond prices'® a
martingale, is a transformation of the original probability distribution {@}. If in-
vestors have von Neumann-Morgenstern utilities, then this transformation impounds
any aversion to risk in the probability distribution {Q} by weighting the probability
of each outcome by the marginal utility of wealth of that outcome—the m;(t,t +1,7)
in ( 5).Samuelson and Merton (1969) referred to these transformed probabilities as
“effective probabilities” and “util probs.” Sharpe (1993) points out that the trans-
formed probabilities can also be interpreted as forward prices, and suggests that it is
confusing to refer to them as “probabilities.” Cheng (1991) gives some examples of the

transformation in the fixed income context, where {Q} describes bond price move-

14The hypothesis that investors are risk-neutral is typically referred to as the ezpectations or
local ezpectations hypothesis in the term structure literature. The actual probabilities of bond price
movements will not equal the risk-neutral probabilities unless this local expectations hypothesis
holds.

15More precisely, the discounted pricing functional. The discounting operation is the same as
making one-period bonds the numeraire in pricing.
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ments. If markets are complete, the transformation is unique, i.e. the risk neutral
probabilities {6;} are unique (Harrison and Pliska (1981), Huang and Litzenberger
(1988)).

The remainder of this section is devoted to a further explanation of this risk-
neutral valuation formula (6). It is important to realize that the formula is not
necessarily a model of changes in bond prices per se; rather it is the valuation for-
mula that applies when we treat the economy as if it is risk neutral and arbitrage

opportunities are ruled out in the pricing of fixed income claims.

3.2 Bond Pricing with Binomial Interest Rate Movements

Suppose that there is only a single “state variable,” the one-period rate of interest,
forcing movements in bond prices (e.g. Cox, Ingersoll, and Ross (1985)). In this
case, the uncertainty in (say) two-period discount bond prices can be spanned by
constructing a portfolio containing the three period bond and riskless borrowing and
lending. The proportion of three-period bonds which must be held in the spanning
portfolio will depend upon the sensitivity or delta of that bond’s price, relative to the
two-period bond’s price, with respect to movements in the interest rate, which is the
single source of uncertainty in bond prices. Spanning the two period bond with a
portfolio of the three period and one period bonds is analogous to replicating a stock
option’s payoff with a portfolio of the underlying stock and riskless borrowing and

lending.®

16Note that, so long as stock prices follow a geometric Brownian motion, it can be shown that
the no-arbitrage price of the stock option must depend upon the price of the stock, and only the
price of the stock (Merton(1977)). In the bond example here, it was necessary to make a structyral
assumption that a single state variable underlies bond price movements. However, it can also only be
a structural assumption that stock prices are a geometric Brownian motion; if stock price volatilities
are not constant, for example, option prices can depend upon those volatilities as a second state
variable. Generally, there are several important assumptions that are built into stock price trees,
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To explain this parallel between arbitrage-free or risk-neutral bond pricing and
arbitrage-free option pricing more fully, we first simplify notation by referring to the
price now (time t=0) of the two period bond, P(0,T = 2,1 = i) as G, the present
price of the three period bond, P(0,T = 3,1 = 1), as H, and the riskless return
(one plus the rate of interest) R(t,1) simply as R. Next, assume that at time t=1,
interest rates, and thus bond prices G and H, can move to one of only two possible
states—that is, prices can only move either up or down, to Hy or Hp and Gy or Gp
respectively, when one plus the interest rate moves down to Rp or up to Ry. The
step sizes (¢, Hp) and (%¢,%2) will differ because the maturities of these bonds
differ. Specifically, the spread 91%—92 is 0.095, which is smaller than -&LFQEQ:O.%Q
because bond G’s time-to-maturity is shorter, and all default-free bond prices must
approach their face values as maturity approaches!’

These binomial movements in R, G, and H are plotted on a “tree diagram” in Fig.
3(a). At the end of next period, at time 1, bond G will become a one-period bond
whose default-free time 2 payoff is known with certainty because the period 2 interest
rate will then be known with certainty. In the case of bond H, its price can again
move up or down in the second period in response to the change in one-period interest
rates between time 1 and time 2, after which time it also becomes a one-period bond.
In Fig. 3, the movements in interest rates and the price of bond H are assumed to
be path independent. That is, the bond price at time 2 is the same irrespective of
whether it went up in the first period and down in the second period, or down in the
first period and up in the second period. Here, path independence requires that the

volatility of percentage changes in the bond price do not depend upon the level of the

particularly path independence (or the process which is transformed to path independent).
17This could be regarded as a minimum condition on the behavior of a bond’s volatility over time.
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bond price.

In Fig. 3(b), numerical values have been attached to the branches of the tree,
and these will be used in order to illustrate results as they are developed. The first
period interest rate is assumed to be 8%. It is assumed that the interest rate will go
up or down by 50% in the second period. That is, it will go up to 8% x (1+0.5) =
12% or down to 8% x (1-0.5) = 4%.'® Bond G will then be worth either $96.15 (if
R;=1.04) or $89.29 (if R;=1.12). Bond H’s price is known at time 2, when it becomes

a one-period bond.

18 Although this specification is for illustration only, the empirical results in Marsh and Rosenfeld
(1983) and Chan, Karolyi, Longstaff, and Sanders (1990) suggest that such a model of proportional
interest rate changes is not wildly unreasonable for nominal short interest rates measured over short
intervals.
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Figure 3(a)

One-Period Interest Rate
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Two-Period Bond G
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Figure 3(b)

One-Period Interest Rate

8%
2
4%
%

Two-Period Bond G

6.15___100.00

9.29__100.00

Three-Period Bond H
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Equation 7 tells us that, if arbitrage opportunities are ruled out, the time 0 value of
bond G in Fig. 1(b) is some weighted average of Gy = $96.15 and Gp = $89.29,
discounted at the period 1 riskless rate of interest of 8%. The weights, which are the
risk neutral probability weights in Equation (7), are now derived.

So long as there is a single interest rate factor which causes (perfectly correlated)
shifts in bond prices of all maturities, the end-of-period 1 value of bond G can be
replicated by creating a portfolio of bond H and riskless borrowing at time 0. In
particular, the portfolio must contain A units of bond H and a one-period

default-free loan of B, where A and B are chosen such that:

AHy+RB = Gy (9)

AHp+RB = Gp (10)

Solving these equations gives:

Gv - Gp
A o —Hp (11)
HyGp — GyHp
B = 12
(Hu — Hp)R (12)

Since the portfolio has the same payoff as bond G, the time 0 value of bond G must

be:

G=AH+B (13)

To see the restriction which this no-arbitrage constraint implies across the term

structure of bond prices at a point in time, it is necessary to introduce probabilities
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for interest rate, and thus bond price, changes. We let @ be the probability of a
downward movement in interest rates, and thus the probability of an upward
movement in bond prices. Then, multiplying (9) by @ and (10) by (1 — Q) and
adding them together:

QGu+(1-Q)Gp=A[QHy+ (1 - Q)Hp] + RB (14)
Imposing the no-arbitrage condition G = AH + B, Equation 14 becomes:
QGu + (1 - Q)Gp — RG = A[QHy + (1 — Q)Hp — RH] (15)

Further, the delta of the no-arbitrage portfolio is A = (Gy — Gp) + (Hu — Hp), so

Equation 15 becomes:

QGuy+(1-Q)Gp—RG QHu+(-Q)Hp— RH
Gy - Gp B Hy — Hp

A (16)

Equation 16 has an easy economic interpretation which is the same as that of its

counterpart in option pricing. It says that the return premium on all bonds, per
unit of risk measured by the volatility of the bond prices, must be identical across
bonds. That is, a bond’s premium per unit of risk cannot depend upon its maturity,
though it could change as a function of the level of interest rates or calendar time.

In general, it will also be a function of the length of the time interval in the tree

diagram.
Rewriting Equation 16 for bond G, the no-arbitrage Equation 6 becomes, in this

binomial context:

_(@-XGu + [1-(Q=X)]Gp]

G R (17)

where (Q — )) is the risk aversion adjusted, risk neutral, or pseudo probability 6 in

Equation 7. We will refer to Equation 17 as the risk neutral valuation formula,
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though as Sharpe (1993) emphasizes, it is really just a forward valuation equation in
which the risk-neutral “probabilities” are Arrow-Debreu forward prices of the
payouts Gy and Gp.

Since the derivation of the non-arbitrage constraint on bond prices is identical to
that of the binomial option pricing formula, it is not suprising that (@ — A) is
analogous to the risk-neutral probability in that formula. For example, using the
standard terminology in Cox and Rubinstein(1985, p. 173), if the interest rate

becomes uR in the upstate (u=1.5 in the numerical example in Fig. 3(b)), and dR

in the downstate (d=0.5), then p’ = ‘;‘_f is the risk-neutral probability of interest

rates going up. Thus, p = (1 — p’) is the risk-neutral probability of an increase in
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bond prices.!® In the numerical example, p = 13222 = 0.3.

3.3 Risk (Liquidity) Premiums on Bonds

If the local ezpectations hypothesis holds, then A = 0. In this case, the risk neutral
probabilities are the actual probabilities of bond price movements. If
A(Ry — Rp) > 0, the holding period returns on a long-term bond exceed the riskless
return on a one-period bond. So long as the variation in interest rates, Ry — Rp,
reflects the variation in the representative investor’s marginal utility of wealth, then
the risk premium on bonds is compensation for the systematic risk of bond price

movements. It is unclear whether this explanation for the risk premium is consistent

191 X is interpreted as an expected stock price change in excess of the return on a riskless bond
position, and Q the probability that the stock’s price moves up, then it may be verified that the
binomial call option pricing formula can be written (using the terminology of Cox and Rubinstein,
pp. 172-173), as:

o= @=NCu+11-(@= NG

When written this way, the call option price C depends upon the risk premium on the stock,
as well as on the probability of stock price movements. However, C can be rewritten (Cox and
Rubinstein (p.173, (3)) in terms of risk-neutral probabilities which depend only upon parameters
defining movements in the stock’s price, u and d (as well as the interest rate):

C=[pCu +(1-p)Cp]/R

where:
_ (R-4d)
P =4
_ (u-R)
1-p = w=d)

In like fashion, the formula for the price of bond G in (12) can be rewritten as:

G =[pGu +(1-p)Gp] + R
where: (RH — Hp)
_ —Hp
p-[(Hu-HD)]

Now the parameters for the interest rate probability and bond risk premium are impounded in the

price of bond H, whose price movements can be used to price bond G.
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with Keynes’ argument that long-term bonds are priced to yield a premium because

investors have a liguidity preference—he proposed (Keynes (1935, p. 169)) that one

source of liquidity preference is the “...risk of a loss being incurred in purchasing a

long-term debt and subsequently turning it into cash” because “the future rate of
interest is uncertain”; if the uncertainty in interest rates is due to the same factors

that cause uncertainty in investors’ well-diversified portfolios, Keynes’ liquidity

premium is essentially the same as the risk premium here.

3.4 Numerical Example (contd.)

To illustrate the risk-neutral valuation result (17), we complete the numerical
example in Fig. 1(b). Since only the risk-neutral probability (Q — }) is relevant in

determining the risk-neutral price, we arbitrarily set @ = 0.5. We assume for the

purposes of the example that the risk premium A = 0.2 in all periods. Then the

risk-neutral prices of bond H at times 0 and 1 are given in Fig. 4.

Figure 4: Bond H
804 _100.00
4.34_100.00

1824
4.75 100.00
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For example, in Fig. 4, the value of bond H at time 1 if interest rates had gone

up in the first period is:

Hp = [(@-NHyp+[(1 —(Q—A)Hpp]+ R (18)
= [0.3(94.34) + 0.7(84.75)] + 1.12 (19)
= 78.24 (20)

and similarly for Hy. H is then:

H = [(Q-NHy+[1—-(Q-\Hp]+R (21)
= [0.3(91.78) + 0.7(78.24)] + 1.08 (22)
= 176.20 (23)

The dispersion of possible percentage price changes over the first period is greater
for the three-year bond H than for the two-year bond G. Bond H’s price increases
from 76.20 at the beginning of the period to 91.78 if interest rates go down, but
increases to only 78.24 if interest rates go up. These are percentage changes of 20.4%
or 2.68% respectively; the volatility of the change is 11.54%. Bond G’s price increases
by 13.67% or 5.56% in these same two interest rate scenarios; the volatility is 9.61%.
This greater range of uncertainty in the returns on the longer-term bond is not specific
to the illustration. Long-term bond prices fluctuate more, over short holding periods,
than short-term bond prices. The illustration makes clear that the reason for this
is the one usually given in practice—if interest rates go up or down, there are more
periods over which the long-term bond’s payoff must be discounted by the higher

interest rates along those branches of the tree.
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3.5 Pricing Fixed Income Contingent Claims

Contingent claims on fixed income securities can all be priced, and hedges computed,
from the same lattice, like that plotted in Figure 3, on which interest rate and non-
arbitrage bond price movements are drawn.?

To illustrate the pricing of claims, suppose that we want to find the time 0 value
of a European call option on the three-year bond H, with a strike price of $90.00 and

a maturity of two years. The terminal payoffs on the bond, which are given in Fig.

5, can be used to calculate the option payoffs.

20Using the same lattice for all contingent claims will ensure that they are priced consistently,
that hedged positions can be aggregated for risk management, etc.. On the other hand, the one
lattice won’t generally be the most precise possible for any one security.

TermStructure: 25



Figure 5

AX[98.04 - 90,0] = 8.04

AX[94.34 - 90,0 = 4.34

AXI[84.75 - 90,0] = 0
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For example, if the period-3 interest rate turns out to be 2%, then the value
of bond H at the beginning of the third period—the time at which the call option
matures—is $98.04, and the option payoff is $8.04. We can then follow the familiar
backward recursion along the tree diagram, using the risk-neutral valuation formula,
to find the time 0 value of the option. Letting Cy and Cp refer to the time 1 value

of the option if bond prices go up or down respectively in period 1:

Cu = {0.3(8.04)+0.7(4.34)} = 1.04 = 5.24 (24)

Cp = {0.3(4.34)+0.7(0)} +1.12 =116 (25)

Finally, at time 0, the value of the call option C is:

C = [0.3(5.24) + 0.7(1.16)] + 1.08 = 2.21 (26)

The tree diagram for the call option values is:
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.04

2. 4.34

The delta for the call option can be calculated in the standard way. For example, if

the interest rate moves to 12% at the end of period 1,A = 5 A4=0— = 0.4526, while if

the interest rate moves to 4%, A = g22=23 = 1.0. (Note that, in this example, if the

period-2 interest rate is 4%, the option will finish in- the-money whatever the outcome

for the period-3 interest rate). The delta at time 0 is: A = 2:24=L18 = (.3013.

In calculating the risk-neutral value of the call option to be 2.21, the risk-neutral
probabilities [Q — A] and [1 — (Q — A)] were required. However, (Q — A) can be re-

stated so that it depends only upon the price of bond H, the volatility of bond H price

__ RH-Hp __ 1.08(76.20)-78.24 __ 0.3
= Hy-Hp ~—  91.78-7824 — '

movements, and the riskless return, i.e. (Q — )

3.6 Tree Diagrams in Spot Rates, Forward Rates, or Bond
Discount Functions?

For the purposes of pricing contingent claims on bonds, Heath, Jarrow and Morton
(HIM)(1989)(1990)(1991) have suggested transforming the no-arbitrage restrictions
on bond prices into equivalent restrictions on the forward rates implied by those bond
prices. To explain this forward rate approach, it is simplest to express bond prices in

terms of their continuously compounded forward rates of return:

P(t,T) = e~ Ji S 27)

TermStructure: 28



where the forward rate f(t,7) is the rate of return, established at time t, on a default-
free loan to be made at time 7 in the future for an instant’s duration. By construction,
f(t,t) is equal to the instantaneous riskless rate of interest at time .

Given the relation (27) between bond prices and forward rates, probability models
for bond prices can be transformed into probability models for the forward rate, and
vice versa. In particular, given an assumed volatility of forward rates, the risk-neutral
probability of bond price movements can be transformed into an adjustment to the
drift of the stochastic process for forward rates.”

To illustrate the calculation of forward rate probabilities which are consistent with
risk-neutral bond values, consider first the two-period bond G in our example. It has
a current risk-neutral value of $84.58, which will rise to $96.15 if interest rates drop to
4% at the end of the year, or will rise to $89.29 if interest rates rise to 12%.2? Then,
using the terminology f(0, 1)) to refer to the (implied) forward rate under risk-neutral
valuation at time 0, for a dollar loan from the end of year 1 to the end of year 2, we
can solve:

84.58 = ——0 (28)

(1.08)(f(0,1))
to find f(0,1) = 9.47% under the risk-neutral valuation. Similarly, using the relative

prices of bonds G and H, we can calculate that f (0,2) =~ 11.00% under risk-neutral
valuation. Thus, under risk-neutral valuation, the forward rate curve at time 0 is:
[£(0,0), £(0,1), f(0,2)] = [0.08,0.0947,0.11].

Now, what is the change in forward rates from time 0 to time 1, subject to the

2INote that the forward rate drift adjustment will reflect both the A and the fact that the bond
price is non-linear in the forward rate, e.g. if investors were risk-neutral, and thus risk-neutral
probabilities and actual probabilities were equal, there would still be a drift adjustment in the
forward rate to make it risk-neutral-consistent.

22Note that the beginning-of-year 2 values are trivially risk-neutral values, since at that time bond
G will be a one-year bond whose payoff is known with certainty.
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no-arbitrage restriction on bond prices (i.e. under risk-neutral valuation)? If the one-
period spot interest rate decreases to 4%, it can be verified that: [f(1,1), f(1,2)] =
[0.04,0.0476]; if the rate goes up to 12%, [f(1,1), f(1,2)] = [0.12,0.229].2* We can-
not decompose this variation between time 0 and time 1 in forward rates into a
“drift” component and a “volatility” component until we have some specification for
the volatility, i.e. the adjustment to the drift of the forward rate process which is
consistent with risk-neutral pricing depends upon the forward rate volatility.?4

An interesting question, especially from a practical standpoint, is whether there is
any reason to prefer that term structure uncertainty be specified in terms of the bond
discount function, forward rates, or spot rates of interest. Equation (27) gives bond
prices as a function of forward rates, and the “zero maturity” forward rate is just the
instantaneous spot rate. So if it is assumed that forward rates are generated by, say,
a one-factor diffusion process, then we can change variables from the forward rates to
bond prices using (27) and Ito’s lemma. In mapping from one variable to another, we
can expect restrictions on functional forms (on the volatility structure) for one variable
implied by the parameterization for a second. Nevertheless, in the “easiest” cases, it
does seem possible to characterize these mappings and restrictions, and in principle
it seems possible to make a computer program with a “front-end” which transforms
derivative payoffs expressed in the most natural terms (e.g. interest rate caps in terms

of forward or spot rates) to a desired common stochastic environment.?® As long as

231f we added a new three year bond at time 1, there would, of course, still be a 3-dimensional
vector of forward rates.

34Gee the discussion in HIM(1989,(11))(1989, Section 6)).

5In the risk neutral versions of models based on any of the three variables, risk premiums are not
required; if forward rates are covariance stationary, then percentage changes in discount bond prices,
which are just linear aggregations of forward rate changes, will also be stationary; the non-negativity
restriction on forward rates can be applied directly to the discount function (shorter maturity pure
discount bond values cannot be less than longer-maturity values); in the bond price formulation,
the volatility parameter for a given bond must change over time as its maturity decreases, but the

TermStructure: 30



things are done right, we will get identical contigent claim values in any of the three
environments. Unfortunately, the transformations must usually be done numerically
in the “extended” or multi-factor models since in most cases they are not analytically
tractable. In these instances, it is difficult to obtain general expressions for the
restrictions on a parameterization in forward rates implied by a parameterization in
bond prices or interest rates, e.g. the restrictions on a forward rate process in HIM

implied by, say, the extended CIR model in Hull and White (1990).

cross-section of volatilities for the discount function need not change as long as the function spans
the same range of maturities.
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4 Calibrating Bond Pricing Dynamics with the
Observed Term Structure

4.1 Introduction

The procedure in the previous section was to specify a lattice for interest rate or
bond price movements, and then derive arbitrage-free constraints on bond prices. As
Ho and Lee (1986) pointed out, this procedure can be reversed: bond prices can be
used to calibrate or specify the lattice, which would then be used for pricing other
bonds or interest rate derivatives. The logic parallels that in stock option pricing.
There, the pricing function, e.g. the Black-Scholes formula, can be inverted to obtain
the implied volatility of stock prices which is consistent with observed option and

stock prices at a point in time.?

4.2 Calibration in the Binomial Example

To illustrate the calibration procedure using the numerical example of the previous
section, recall that at time 0, the no-arbitrage prices of bonds G and H were calcu-
lated as $84.58 and $76.20 respectively. These prices were derived using risk-neutral
probabilities and an assumed process for interest rate, or bond price, dynamics. Now,
assume that we don’t know the stochastic process for interest rates, but that bond
prices are observed; we then want to back out the parameters of the interest rate or
bond price process that are consistent with these prices. The local expecations hy-

pothesis does not have to be correct in order for us to use observed prices to calibrate

26]n practice, it is not often possible to find an observed term structure of bonds which are free of
imbedded options. In principle, this means that if the risk-neutral model is being calibrated for the
purpose of valuing such options, we are implicitly searching for a fixed point in the fit of the term
structure which is both adjusted for imbedded options using the model and which serves as a basis
for valuing non-nested options.
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the risk-neutral model.
Suppose that the following term structure is observed at the beginning of period
1: a one-period spot interest rate of 8%, i.e. the price of a zero-coupon bond which
matures at the end of period one is $92.59; the price of the two-period bond is
=$84.58, which implies a two-period spot rate (or yield) of 8.734%; and the price
of a three-year bond H=$76.20, implying a three-period yield of 9.483%. Suppose
for the moment that the risk-neutral probability of a down-move in interest rates,
(Q — )), is set at 0.3. Suppose that we also know that the interest rate changes

geometrically, i.e. if i is the rate of interest R — 1, then iy = i(1 + k), ip = i(1-k).

Then:
84.58 = [(Q - A)%-g +1-(Q- A)]%] 5 1.08 (29)
(30)
100 100 o
= [(Q - )‘)m +[1-(Q@ - A)]m] +(1+41) (31)

With (Q — )) = 0.3, this one equation can be solved for k; of course, k = 0.50.

In general, this implied volatility will be approximately that of the actual prob-
ability distribution of bond price changes so long as the interval of time in each step
is short.

What can we learn by bringing in the observed price of the three-year bond, bond

H? If we continue to assume that (Q — A) = 0.3, then:

76.20 = [0.3Hy + 0.7Hp]+1.08 (32)
Hy = [0.3Hyy +0.7Hyp] <+ 1.08(1 — k) (33)
(34)

100 0.7 100 S14i1—k) (35)
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Hp = [0.3Hyp +0.7Hpp) + 1.08(1 + k) (36)
(37)

100 100 S
= [0.31.08(1 50 h) +o.71.08(1 a7 k)] +1+i(1+k) (38)

If Hy and Hp are substituted into the equation for H, it may be verified that the
positive root is k = 0.50. (we hope: verify)

Of course, under the assumption of constant proportional interest rate move-
ments, the solution for k obtained from the three-year bond is redundant. However,
still under the assumption that (Q — ) is known, the value of k could be allowed to be
different in periods two and three: i.e. we could calibrate a model with a term struc-
ture of volatilities from the bond prices. In fact, it is very common for practitioners
to calibrate bond pricing models using the volatility of estimated zero-coupon yields
on bonds with different maturities. Empirically, the typical term structure of yield
volatility is downward sloping—i.e. period-to-period variation in zero-coupon yields
are a decreasing function of maturity (e.g. Murphy (1987, Ch.5)). (Since the yields
are just geometric averages of spot and forward rates, this reflects the regressivity of
those rates). A more detailed discussion of what features of the data can be matched
with what models is given below.

It might also appear that we could use the information in a cross-section of two-
period and three-period bond prices to solve jointly for (Q — A) and the constant
interest rate volatility k under the assumption that the former is not known. However,
the risk-neutral probability (Q — A) is not a free parameter, but changes as the size
of the time grid changes. It is easy to see the reason by recalling that bond G’s price
was derived as:

8458 = (Q—-/\)%Og-{»[l—(Q—/\)]% +R (39)
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Since the return on one-period bonds R is known, once a specification is made for
the up and down interest rate movements, (Q — A) must be set so as to make the
risk-neutral return on bond G equal to R. For example, the pseudo-probability (Q-
)) converges to 0.5 when the up and down interest rate movements in the binomial
tree, Ry and Rp, are chosen to make the binomial process converge to a lognormal
diffusion for the instantaneous interest rate as the step size goes to zero (as in Cox,
Ross, and Rubinstein (1979)).

Perhaps the easiest way to see that the risk-neutral probability is not a “free
parameter” is to remember that it is really just a forward price of the payouts on
bond G in the up-state and down-state (see Sharpe (1993) for discussion). To prevent
arbitrage, the value G of the bond must equal the discounted value of these forward
prices multiplied by the payouts Gy and Gp; conversely, when we know G and the
discount rate, we know the forward prices in the binomial case.

In practice, bond values are typically stated in terms of yield-to-maturity. The
yield-to-maturity on a zero-coupon bond which has T —¢ periods to maturity and
a current price P(t,T) per dollar of face value is defined as y(t,T) where P(t,T)=
1+ y(t,T)]_(T°t). In the case of zero-coupon bonds, the (T — t) yield-to-maturity
is also the (T — t) spot rate of interest. Turning to our example, the actual prices
of bonds G and H are 84.58 and 76.20 respectively, implying yields of 8.734% and
9.483%, respectively. In a risk-neutral economy, the term structure is then (8.0%,
8.734%, 9.483%) for one, two, and three period maturities, 1.e. it is upward-sloping.

The term structure of yields is, of course, related to assumed interest rate behav-
jor. If investors are risk-neutral, then A = 0, and the actual probability of the interest
rate increasing from 8% to 12% in the next period is 0.7, while the probability of a

decrease in the rate to 4% is 0.3. That is, the interest rate is expected to increase
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from 8% to 9.6% in period two and 9.82% in period three. However, the yields-to-
maturity on the bonds are lower than their expected returns to maturity as implied
by these interest rates (and risk-neutral or local expectations pricing). For example,
the expected return on the two-period bond G is (1.08)(1.096) = 1.184, or 8.80% per
period, while the two-period yield is (1.08734)% = 1.182, or 8.73% per period.

This result that the yield-to-maturity is below the expected bond return under
risk-neutrality (the expectations hypothesis) is well-known to be due to the convexity
of bond prices as a function of interest rates. The price and yield of bond G, for

example, was computed as:

bl b ) (40

~

1 [100] 100
R,
where R, = {1.04,1.12}. Since E (3) > (E(—lﬂ), ¥(0,2) < RyE(R;).Y

The above procedure involves calibrating the proportional interest rate model
with the prices of bonds at a point in time. However, if additional information about
the distribution of bond prices is available, it can be used to obtain the values of
the future possible interest rates, not just their spread (e.g. Black, Derman, and Toy
(1990) use yield volatilities). In the binomial tree, we will in fact be able to infer

the interest rates at different nodes in the tree. To see how this can be done, let’s

consider the observed price of the two-period bond in our example:

84.58 = (Q—A)%Jru—(q-,\)]%]ﬂ.os (41)

¥"The difference between yields and expected interest rates is perhaps easiest to see when the
risk-neutral probabilities of up moves and down moves in the interest rate, (Q — A), and 1—(Q - 1),
are equal to 0.5, so that the expected interest rate in our example is 8% in all periods. Under risk
neutrality (the expectations hypothesis), 8% is then also the expected rate of return on bonds G and
H in each period. However, it may be verified that bond G’s yield is 7.93% (its price is $85.85 under
these probabilities), and bond H’s is 7.80% (with a price of $79.83). That is, the yields-to-maturity
become increasingly lower with maturity relative to the expected spot rate of 8.0%.
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With (Q — A)=0.3, notice that this one equation cannot be solved uniquely for the
two unknown period-2 interest rates Ry and Rp. But, if the actual probability Q of
an up-move or a down-move in interest rates is the same, the expected interest rate
in period 2, [0.5(Ry) + 0.5(Rp)], is 0.08. The volatility of interest rates in period 2 is
then [0.5(Ry — 1.08)% + 0.5(Rp — 1.08)%]°. Setting this expression for the volatility
of period-2 rates equal to the observed volatility constitutes a second equation which
can be used in solving for Ry and Rp. If, for example, we know that the volatility
of the two-period spot rate [(1.08)]?2] 0.5, where R, is equal to Ry or Rp, equals
0.0432, then the volatility of the period-2 rate, R, is 0.04. In the special case of the
proportional interest rate model used in the example, it may be verified that the only
period 2 interest rates which are consistent with a time 0 price of $84.58 for the two-
period bond and a two-period zero-coupon yield volatility of 0.0432, are Ry=1.12 and
Rp=1.04. Alternatively, we could infer that the volatility of the percentage change
in interest rates between time 0 and time 1 is 50%.

Taking into account the three-period bond H, we have two more pieces of information—
the price of the three-period bond and the volatility of the three-period yield. Repeat-
ing the procedure above to back out Ryy, Rup, and Rpp, we will need to ensure that
both the volatility of the period-3 rate conditional on Ry, and the volatility of the
period-3 rate conditional on Rp, are consistent with these two additional pieces of in-
formation. In the special proportionality example used here, the previously calculated
Ry and Rp can be used together with the observed three-period spot rate volatility
to solve for Ryy=18%, Ryp=6%, and Rpp=2%. Alternatively, under the propor-
tionality assumption, we could infer that the volatility of the percentage changes in

interest rates from period 2 to period 3 is 50%, srrespective of whether the second
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period riskless return is Ry or Rp.

4.3 Calibration Techniques Generally

At this point, one might reasonably wonder whether there are any general principles
to guide the calibration procedure. At one level, the answer is obvious—observable
bond prices or yields plus moments of the distribution of those prices are “inputs,”
and the parameters or nodes of the lattice are the “outputs” (the pseudo-probabilities
are not free parameters, and they should satisfy the constraint that they lie between
zero and one as soon as the bond price (interest rate) dynamics are specified). Loosely,
there need to be enough inputs to derive the outputs. Further, though the discussion
here has always assumes that prices and volatilities of cash market prices (or swaps)
are used as “inputs,” contingent claim prices (e.g. caps, swaptions) could also be
used.

In recent work, the tendency has been to generalize the models of bond price
(interest rate) dynamics so that they have enough parameters to fit the observed
term structure of bond prices and bond price volatilities. For example, Hull and
White (1990) allow time dependence in the drift and diffusion parameters in the
Vasicek (1977) and CIR (1985) interest rate models in such a way that they are
exactly identified from the current term structure of interest rates, the current and
future volatilities of the short-term interest rate, and the current term structure of
spot or forward rate volatilites. Heath, Jarrow, and Morton (1992) introduced a
multi-factor model for forward rates with a parameterization that will fit any existing
term structure and any specified volatility structure. Finally, Rubinstein (1994) has
recently studied the most general conditions on a binomial tree for which parameters

can be calibrated with option prices, i.e. arecipe for what might be called the ultimate
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“extended” model.?®

If we interpret the “tree” models of the term structure, or their continuous time
counterparts, as essentially “trees” of Arrow-Debreu time-state-contingent prices,
then perhaps it is natural to extend their parameterization so as to have the finest
grid of states and state prices consistent with observed bond and claim prices. Yet
the models and their associated state prices are only as good as the exogenous specifi-
cation behind the treee diagram models. Since the extended models are of a reduced-
form nature and are parameterized so as to fit the desired characteristics of the bond
price and/or interest rate-contingent claim data, the exogenous specification can be
evaluated only?® by: (1) analyzing the properties of and restrictions on the future
behavior of the term structure that are implied when the model parameters are cali-
brated with the desired features of the current term structure (e.g. Caverhill (1992b),
Webber (1992)). For a given set of desired features of the data (moment conditions),
the looser the parameterization, the less chance that fitted functions, such as the
volatility of the short rate, will have to be “strange-looking” to make them consistent
with the data.’®; or (2) simulating their performance in pricing interest rate depen-
dent contingent claims, which is essentially doing (1), but using the contingent claim
prices as the loss function in terms of which to evaluate the models. For example,
Hull and White (1990) compare the performance of their extended models in pricing

bond options and interest rate caps, and also against the performance of selected

28His discussion is in terms of stock options.

Z9Perhaps a third criterion should be computational tractability, since extended models will
typically not have closed form solutions (the lattice becomes path-dependent, rather than path-
independent, as in the illustration in Section 3). But computer power keeps increasing.

30For example, in the Section 4 example (and Black, Derman, and Toy (1990)), a time dependent
volatility parameterization was calibrated with an observed term structure of bond prices and term
structure of volatilities. To “shoehorn” the observed data into this parameterization with a constant
interest rate drift can produce an implausible fitted time dependence in volatility. Broadening the
parameterization to include a mean-reverting drift in interest rates can alleviate this problem.
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two-factor models. Flesaker (1990) and Amin and Morton (1993) fit various versions
of the Heath, Jarrow, and Morton (1992) model to Eurodollar futures option prices.
Amin and Morton find that put options tend to be overpriced relative to call options,
and that there are significant biases as a function of strike price and maturity for all
versions of the Heath, Jarrow, and Morton model that they study. They also find
enough instability in their two parameter specifications for volatility in that model
to suggest that a one parameter specification is preferable for valuing options (or at
least options like Eurodollar futures options) with maturities less than one year—
intuitively, a single short-term interest rate volatility explains most of the variation
in the prices of short maturity bonds.

The above procedures involve the calibration of prespecified models for interest
rate or bond price dynamics with the observed term structure (under the local ex-
pectations hypothesis). For example, in the numerical illustration, the assumption
that movements in a single state variable—the one-period interest rate—are lognor-
mal formed the basis for the arbitrage restrictions, not vice versa. In general, the
interest rate tree must incorporate all possible future paths for interest rates (or the
bond price tree must incorporate all future bond price paths, etc.). Next period, the
realized interest rate must be one of the nodes contemplated on this period’s tree;
otherwise the tree has to be "redrawn.” Bur redrawing the tree involves irrational
model expectations, in the sense of Muth (1961)—changes in future spot rates as a
function of the time 1 realization of the term structure are not incorporated in the
typical tree-diagram dynamics when inferences are being made from the term struc-
ture at time 0. The inconsistency is similar to that which occurs in the case of stock
options when (say) the Black-Scholes formula, which assumes a constant stock price

volatility, is used to compute a new implied volatility each period.
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There is no direct distinction between permanent and transitory components of
interest rate change in the tree; if a transitory interest rate realization occurs, then
in principle the up and down steps following that realization will have to reflect
its transitory nature, e.g. a positive "transitory” will be followed by a down-step.
Incorporating transitories in the tree is consistent with the use of the tree for pricing
interest-rate contingent claims, where it is the dispersion of interest rates that matters.
However, it is not clear that today’s typical tree specification is so flexible, e.g. the
proportional interest rate dynamics in the example earlier automatically assumes that
all unexpected changes in interest rates are permanent.

When the tree specification is calibrated using all available data, errors in data
are of especial concern—there is no "residual” in such a “fit” which can incorporate
measurement error in, say, bond prices or volatility estimates. Further, since there
are no "residuals” in the model fit, there are none of the other typical diagnostics for
specification that econometricians use (typically in contexts where they are estimating
conditional means).

Finally, it is sometimes believed that by calibrating the arbitrage-free values of
bonds with the observed term structure, information can to be extracted from that
term structure which will be useful in trading default-free bonds. However, assuming
that the arbitrage-free restriction is satisfied, all the information is endogenous to
the existing term structure; it is not possible to make superior “bets” on shifts in the
yield curve per se using only the information in the yield curve itself. The information
is useful only for pricing contingent claims on the term structure at a point in time,
or of course for identifying direct yield-curve arbitrage opportunities if they are not

assumed away.
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5 Equilibrium Models

5.1 Introduction

When the pricing of bonds is integrated with that of other assets,3! the pricing

formula can be expressed as follows:
P(t,T,7) = Eq [miP(t +1,T3)) (42)

where Eq[] is the (conditional) expectation at time ¢ taken with respect to the
probability distribution of states at time ¢ +1, and m; is the (Arrow-Debreu) price at
which investors trade off consumption at times ¢ and ¢+ 1, and which must therefore
be the same across all assets at time t. Dividing both sides of (42) by the time ¢ price
P(t,T,1) gives:

1= Eq[miZi] (43)
where Z; = P(t + 1,T,i)/P(t,T,i = 1), is the return earned by buying the time-T
maturity bond at time t and reselling it at time ¢ + 1.

If the risk neutral pricing equation ( 6) is rearranged as:

s _0_,-_]P(t+1,T,i)
b= [R,- P(t,T,7) (44)
ie.

1 = Eo [0:2i] (45)

31This integration should help in understanding equity pricing: Since default-free bonds have
known payoffs, it follows that, commodity price level aside, the only reason that they have uncer-
tain returns over their terms to maturity is because of technological uncertainty concerning the
opportunities for investment of their payoffs and investor wealth at time of payoff. By contrast,
the payoffs on, say, corporate stocks, are affected by substantial company-specific uncertainty. As
a result, default-free bonds may be very good hedges for economy-wide technological uncertainty in
production, and if so, bond returns will be good instruments in tests of the effect of this technological
uncertainty on the pricing of equities.

TermStructure: 42



then equation ( 43) can be considered a special case of equation ( 6), or perhaps vice-

versa. In words, an equilibrium model (43) can be transformed into a risk neutral
world in which arbitrage opportunities are absent.

Many authors, among them Beja (1979), Ferson (1981), Sundaresan (1984), Cox,
Ingersoll, and Ross (1985), Breeden (1986), and Benninga and Protopapadakis (1986)
have derived endogenous bond returns Z; and optimal paths of consumption and m;
in models where a more detailed specification concerning exchange and production
uncertainty is superimposed on (43).3? In these models, real bond yields are typically
positively related to production and consumption growth rates and negatively related
to uncertainty about future real production opportunities. The model parameters
can be identified by fitting bond return (and other asset return) data. Constantinides
(1992) proposes that the m; (or ©;) pricing kernel be modelled directly as a reduced
form statistical process.

The expectation in (42) is taken with respect to a discrete grid of states i=1,...,S.
The probabilities {Q;} will depend upon the length of the interval of time [t,t + 1]
over which the states change. Frequently, equilibrium models are developed where
the interval of time [t,t + 1] is taken to a limit of zero, i.e. in continuous time. The
continuous time environment is particularly useful if it produces analytically tractable
results.®® In the following, I briefly describe the widely-studied CIR(1985) continu-

ous time equilibrium bond pricing model, and then discuss the relation between the

32Merton’s (1975a) analysis, which “rolls back” the level of exogeneity to the growth model, rightly
belongs in this list also, although that paper’s purpose was not to draw out the term structure
‘throwoffs’ (to use Merton’s own word).

33For a discussion of the merits of focusing on the continuous-time limit, see Merton (1975b). In
general, any difference between the length of the interval over which price changes are observed and
the length of the investor’s decision interval in the model will have to be taken into account in the
econometric technique to avoid biased estimates of model parameters.
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continuous time model and the discrete time example presented in earlier sections.

5.2 The Cox, Ingersoll, and Ross One-Factor Model

On the demand side, CIR’s non-monetary economy has identical log-utility investors,
while on the supply side, changes in the economy’s productive opportunities over time
are represented by a single state variable following a “gquare root” diffusion process
with mean reversion. Under these assumptions, the riskless real return, which we

define as 1, also follows a square-root process and reverts to a long-run rate of interest

6:34
dr = k(0 — r)dt + o\/rdZ (46)
At time t when the interest rate is r, the price of a discount bond which matures at

time T, P(r,t,T) is the solution to:
-12-0%13,, +K(0=r)P,+ P AP, =0 47)
with the boundary condition P(r,T,T) = 1. The solution is:
P(r,t,T) = A(t,T)e BET) (48)

where:

A(t.T Pyl A +n)(T-1))/2 258/ 02

(t7 ) = [("/ + K+ /\)(e‘T(T—-t) _ 1) + 27]
9(eM(T-1)

B(t,T) = (e 1)

(v+ £+ A (T =1) + 27

34 ongstaff (1989) examines the term structure implications of specifying that the regressivity in
the short-term (instantaneous) rate is proportional to (6 — \/7) rather than (6 —r), as in (46).
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[(x+ )+ 202]%

v

The expected instantaneous real return on bond H is r + Ar P, /P. In CIR’s model, Ar
is the covariance between the instantaneous (“short”) rate of interest r and investors’
returns on their optimally invested portfolios of assets—the virtue of the equilibrium
model is that, within the CIR economy, this risk measure is consistent across all
assets. With P,/P < 0, a negative covariance between interest rates and portfolio

returns (A < 0) results in a positive risk premium.

5.3 Estimation

If we assume that the CIR model (48) can be applied directly to nominal bonds and
that the “short” rate is observable, or to real returns on bonds where the real short
rate  is observable, there are four parameters—«, 8, o, and A—to estimate. Notice
that k and ) always appear as a sum in (48) (because k + X is the coefficient of
rP, in (47). Thus it is not possible to identify x and X separately without data on
the time series of ry, though even with this data, the estimates are typically very
“poisy” in practice. Various parametric estimation procedures for the mode] in (48)
are discussed in Brennan and Schwartz (1980), Marsh (1980), Brown and Dybvig
(1986), Gibbons and Ramaswamy (1986), Brown and Schaefer (1988), and Pearson
and Sun (1989).

Regarding the adequacy of the square root specification per se for short term
interest rates in (46), results in Marsh and Rosenfeld (1983) and Chan, Karolyi,
Longstaff, and Sanders (1990) suggest that nominal short-term intererst rates tend

to display more heteroscedasticity than allowed for in the square root model. The
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same heteroscedasticity is picked up in the ARCH/GARCH models (see Bollerslev,
Chou, and Kroner (1992) for a review of this evidence).?® More recently, Ait-Sahalia
(1992) has applied a nonparametric kernel estimator of both the marginal density of
the spot interest rate and the transition density between successive iﬁterest rates in
order to identify the diffusion function for interest rates (he parameterizes the drift,
and the effects of this parameterization show up in the estimated diffusion function).
Looking at Treasury Bill and Federal funds rates, he finds that interest rate diffusion
is globally increasing as a function of the interest rate up to 18%, but that after
the rate gets this high, there is so much mean regressivity coming from the drift
that the diffusion function decreases sharply. Also recently, Hamilton (1988), Cai
(1992), and Gray (1993) have proposed modelling interest rate movements as regime
switches; although it is not clear now whether a regime switching model constitutes
a good and parsimonious representation for continuous variables like interest rates,
the potential isomorphism between regime switching and lattice movements seems
worth exploring. Finally, it is worth noting that the moments used in both the
parametric and nonparametric procedures include the volatility structure of bond
prices (or interest rates); in this sense, equilibrium models are “calibrated” with the
volatility structure of yields, just as is the risk-neutral model in Section 4.

There is also a large, more “traditional,” literature concerned with hypotheses
about expected returns and term- or risk-premiums on bonds with different maturi-
ties. The hypotheses are often framed in terms of the ezpectations hypothesis that:
(i) the expected returns from holding a bond of any maturity for a specific period

are equal; (ii) the (guaranteed) return from holding any discount bond to maturity

35The GARCH models seem more appropriate than the typical diffusion models like (46) because
they allow (serially dependent) variation over time in the “amplitude” parameter o and thus don’t
force all the variation in the volatility to be a function of the level of interest rates.

TermStructure: 46



is equal to the return expected from rolling over a series of single-period bonds over
the same period; or (iii) forward rates are unbiased predictors of future interest rates.
Cox, Ingersoll, and Ross (1981) show that these three expressions of the ezpectations
hypothesis are strictly (pairwise) inconsistent. Good surveys of the literature, which
generally finds that the expectations hypothesis fails, can be found in Malkiel (1966)
and Mellino (1988). The most recent tests in this literature, which remain primarily
reduced form tests, seem to focus on shifts in the predictability in interest rates (when
testing whether forward rates equal ezpected spot rates), and/or variation in the term

premiums if they exist.

5.4 Binomial Trees and Continuous Time Models

We now return to the linkage between discrete-time equilibrium bond pricing models
like (42) and continuous time models like CIR’s. Ignoring estimation for a moment,
the linkage can be studied by asking the conditions under which a time-state grid
be constructed for the discrete-time model that will converge to a given continuous
time model as a limit when the time interval shrinks to zero. He (1990) shows
that, when a continuous-time equilibrium or no-arbitrage bond price depends upon
an N-dimensional state variable vector that follows a diffusion process, it can be
approximated by a N+1 dimensional multinomial process (thus the one-state variable
model used in the example in Section 2 can be approximated by a binomial process).
The multinomial “util probs” are Arrow-Debreu state prices. Willinger and Taqqu
(1991) and Duffie and Protter (1992) also discuss the conditions under which finite
state space, discrete -time models converge to continuous time limits.

In the one-state variable case, Nelson and Ramaswamy (1990) explore the con-

ditions under which it is possible to construct computationally feasible “binomial”
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approximations for limiting diffusion processes. When the limiting process for the
state variable does not have a constant volatility, such as the interest rate process
in (46), they transform the state variable to make the volatility constant. Then the
transformed variable can be approximated using a binomial tree in which the nodes
are path-independent (like the tree in Figure 1). In path-independent trees, the num-
ber of nodes increases linearly in the number of time steps. To extend the Nelson
and Ramaswamy results to the N-dimensional case using He’s multinomial approach

would require that each state variable’s volatility depend only upon that variable.

5.5 Estimating Equilibrium Models versus Calibrating Lat-
tice Models

It is sometimes argued that a major disadvantage of equilibrium term structure models
is that they involve several unobservable parameters and do not provide a perfect fit
to the term structure of interest rates at a point in time. By contrast, it is argued,
the valuation of contingent claims in an as if risk-neutral economy does not involve
unobservable parameters and can be calibrated with the observed term structure at
a point in time.

However, the fact that risk premium and interest rate regressivity parameters
are not identified in the risk-neutral distribution is an advantage or disadvantage,
depending upon one’s level of confidence in the volatility specification. Certainly the
risk neutral approach is attractive, in that it has "fewer moving parts,” as a tool
for valuing derivatives. At the same time, fewer moving parts are not necessarily
better at the design stage, where the jettisoned parts may help in understanding the
remaining components. As an illustratration of the point, when Ait-Sahalia (1992)

identifies the interest rate diffusion function using nonparametric techniques and a
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parameterization for the drift, he finds substantial interaction between the estimated
diffusion function and the drift specification—as would be expected, the interaction
is high when the interest rate is high and thus mean regressivity is strong. He and
Leland (1992) also derive equilibrium asset price processes in which the expected
return-risk premium and volatility specifications are internally consistent, and the
former provides information about the latter. The tradeoff is really whether the
risk premium and drift parameters in bond returns® are small and unstable enough
relative to the conditional volatility of interest rates (this will depend in part on the
periodicity of the returns),3” that it is better to treat them as nuisance parameters,
which they certainly become for pricing derivative assets once the stochastic process
assumption for underlying bond prices or interest rates is given.

Whether the risk-neutral model or equilibrium model “perfectly” fits the observed
term structure is not a point of difference between the models; rather it is simply an
issue of how many bond price observations there are relative to parameters. If we
have N parameters or jointly- identified parameters and N observations, then the
equilibrium model will fit the obsevations just as “perfectly” (or imperfectly) as the
risk-neutral model.

What happens when there are more bonds than parameters? One solution is
to simply expand the parameterization of the equilibrium models by, say, replacing
constants by deterministic functions of time (e.g. Jamshidian (1989) and Hull and

White (1990)). This creates more parameters so that the enhanced model can be fit

36As we just saw for the CIR model, these parameters won’t always be independently required.

37In Marsh (1985), I found that, using monthly data over the period 1958 - 1978, there was a
peak in term premiums on bonds somewhere in the one to two year range, i.e. unconditional term
premiums are “humped” as a function of maturity. McCulloch (1985) also reports low (negative)
term premiums on bonds with maturities beyond two years over the period 1951-1982. Unfortunately,
because of the variability of longer-term bond returns, it is difficult to be confident that the premiums
on long-term bonds are significantly below those on one to two-year bonds.
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exactly to the existing term structure. Alternatively, one can recognize that the exist-
ing parameters are overidentified. Unfortunately, neither the risk-neutral model nor
the equilibrium model themselves contain information to help deal with this overiden-
tification problem. As Professor A. Zellner often reminds his students, it is perilous
to take care of the overidentification by, say, simply tacking on an additive error term

which is outside the model.3®

38The situation is exactly the same as that encountered when there are multiple options trading
on a stock and Black-Scholes implied volatilities calculated from each option are not equal.
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6 Sources of Interest Rate Uncertainty: How Many
Factors?

6.1 Introduction

In the foregoing, it has been assumed that there is only one factor or state vari-
able that causes movements in bond prices—the short-term rate of interest. Even
fairly simple economic models and casual observation suggest that this is, in prin-
ciple, a narrow assumption. In a real economy in which investor heterogeneity is
not important, the assumption that real interest rates are the only determinant of
real bond prices requires that investors are not uncertain about future investment
opportunities, or don’t care about these uncertainities. For example, in the CIR
model, investors are assumed to have log utility, so they don’t want to hedge against
changes in investment opportunities—the interest rate is then proportional to a single
state-variable in their model.

The “real” world is not the real economy. Default-free bonds are usually redeemed
in units of currency®®. Thus, it is reasonable to think that inflation and inflation
uncertainty will be important factors in nominal bond prices. On the empirical side,
it is easy to find time-periods with approximately the same short rate of interest but
very different shapes of the term structure. In general, long-term bond yields tend
to be more variable than predicted by the single factor model, where those yields
converge to a constant at extreme (infinite) maturities.

It is not difficult to come up with a “laundry list” of factors which could af-.

fect nominal bond prices. The list might include uncertainty about consumption

39Exceptions include Israeli index-linked bonds, the British Government Index-Linked bonds stud-
ied by Wilcox (1985) and Brown and Schaefer (1988), and the 1988 REALS (Real Yield Securities)
underwritten by Morgan Stanley & Co. and issued by Franklin Savings (see Rogalski and Werlin
(1988) for a description), all of which are indexed for general price level changes.
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good prices, differences among investors in investment horizons and wealth, uncer-
tainty about future production opportunities, illiquidity, and changes in regulation
and taxes. The task is, of course, to come up with a parsimonious model which
accounts for the “important” stochastic factors and either approximates the rest by

time-varying deterministic functions or relegates them to a measurement equation.

6.2 Two-Factor Term Structure Models

The next most parsimonious stochastic model to the one-factor model is a two-factor
model. The evidence, which is discussed below, suggests that two (linear) factors can
account for much of the variation in bond prices, so the two-factor class of models
(and sometimes a one-factor specialization) seems likely to be sufficient in many
practical applications—especially when specification and estimation error are taken
into account. Two-factor models that have been developed include: (i) the long rate
- short rate model of Brennan and Schwartz (1982); (ii) models with one real factor
and one nominal factor; and (iii) models in which the second factor is a measure of
the stochastic volatility of interest rates.

If it is assumed that two unobservable factors cause variation in bond prices,
one approach is to simply factor analyze bond price changes and estimate factor
scores. Brennan and Schwartz (1982) suggest that if bond prices are a function of
two unobervable state variables, then two combinations of observable but endogenous
bond prices can be used as “instruments” to mimick the behavior of the factors, so
long as the bond pricing function is invertible. Brennan and Schwartz choose a short
rate of interest and a long rate of interest as the the two instruments. In a similar vein,
Schaefer and Schwartz (1984) use the long rate and the spread between the long rate

and the short rate as the two instruments. Effectively, the Brennan and Schwartz
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approach uses short rates and long rates to span the movements in intermediate
maturity interest rates. If the mapping from underlying state variables to short and
long rates is nonlinear, the length of the time interval over which bond prices are
observed will be an important determinant of the adequacy of this spanning.

Canabarro (1993) compares the errors produced by various one- and two- factor
models when they are used to compute deltas for constructing portfolios of bonds to
replicate a given maturity bond. While the one- and two-factor models have roughly
the same replication error when term structures are simulated from a two-factor CIR
model, the two-factor models have a much lower replication error for long term bonds
when actual term structure data is used. This is because the variability of long
rates is higher than that which can be captured by the one-factor models, even the
mextended” versions which are "re-calibrated” each period.*°

The second two-factor formulation involves the nontrivial introduction of a mon-
etary sector into the real equilibrium models, so that nominal bond prices can then
be expressed as a function of a real factor and an inflation factor. To relate this to
the first formulation, inflationary expectations might be identified with the short rate
while the real factor is identified with the long rate or some transformation of the
long-run and short run rates, e.g. the difference between them. The real factor -
nominal factor route seems to be a promising direction to go if nominal bonds are the
object of study: even if one subscribes to the “judge a model by its results” school,
it does seem a bit incongruous to take our detailed derivations of general equilibrium
real economies and then superimpose highly stylized inflation effects (e.g. price level

homogeneity) in order to apply the models to nominal bonds.

4045 noted earlier, the period-by-period recalibration of the deterministic time-dependent param-
eters in the extended models can’t pick the dynamics of a higher dimensional stochastic process.
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Casual empiricism suggests that commodity price level uncertainty could be at
least as important as real interest rates or consumption growth rates in explaining
movements in nominal bond prices, and the financial periodicals use a lot of ink in
explaining how money supply changes affect interest rates. The difficulty, of course,
is to account for interaction between inflation and real economic variables. CIR
briefly consider general price level (single good price) uncertainty as a second factor
with no real effects in their model. Richard (1978) derives closed form bond prices
in a two-factor model with real interest rates and inflation which are assumed to
move independently of each other and have constant prices of risk. Breeden (1986)
introduces multiple good prices which can covary with instantaneous real consumption
expenditures and thereby affect interest rates. Pennachi (1991) develops a two-factor
nominal bond pricing model in which the two factors—real interest rates and expected
inflation, are allowed to be interdependent. Given his identification assumptions, he
reports that the two factors are significantly negatively correlated, and that the real
interest rate is more volatile than the expected inflation rate.

Structural models to account for the covariation between a real factor and ex-
pected inflation could arise in at least two ways: (i) the “Mundell effect” where an
increase in expected inflation and nominal rates causes substitution from money to
capital which lowers the expected real rate of return on capital; (ii) the endogenity of
commodity price levels to the same state variables (including econo’mic uncertainty)
that cause changes in real rates of interest (e.g. Black (1972), &2?(1994a,b)); (iii)
imperfect indexation of private contracts; (iv) taxation of nominal interest income
(e.g. Fischer and Modigliani (1978)).

There is also a substantial literature on co-movements in the term structure and

business cycle variables like growth of consumption and GNP as well as stock prices
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and seasonality. In the absence of compelling structural macro-models of these co-
movements, the results are usually reduced form. References include Friedman and
Schwartz (1963), Kessel (1965), Keim and Stambaugh (1986), Harvey (1988), and
Friedman and Kuttner (1992).41

A third two-factor formulation is to model the two factors affecting the nominal
bond price as (say) the short term interest rate and a stochastic volatility of that
rate. More generally, the first factor could be interpreted as “the level” of the term
structure, while the second is the stochastic variation in “term structure uncertainty.”
Various formulations where stochastic volatility is introduced as a second factor are
considered in Longstaff and Schwartz (1990), Fong and Vasicek (1991), and He and
Marsh (1991).42 The models have the advantage that they can usually be expressed
so as to nest GARCH-like variation in interest rates, such as that reported by Engle
and Ng (1991) for Treasury Bills. They are also consistent with various threads of
evidence that the covariation between T-Bill returns and other asset returns is not
very stable. Finally, they also accord roughly with the practice of many practitioners
who fit, by one means or another, volatility structures to the data as a first step their

analysis.

41Romer and Romer (1990) present interesting evidence which they interpret as suggesting that
the power of the term structure slope to predict subsequent economic activity is much stronger in
episodes in which the Federal Reserve deliberately shifts its monetary policy.

42Gennotte and Marsh (1993) have a different model in which the volatility that affects interest
rates is not that of interest rates directly, but rather that of aggregate cash flows; the latter then
becomes a state variable underlying term structure movements.
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6.3 Empirical Evidence on the Dimensionality of Term Struc-
ture Movements

On the empirical side, Garbade (1986) and Litterman and Scheinkman (1991) esti-
mate an implicit linear factor model for implied zero coupon bond returns.*® Both
papers report that three implicit factors explain some 98% of the variation in returns.
The first factor, called a level factor because the yields on bonds of all maturities
have roughly the same loading on this factor, explains about 90% of the variation
in returns. The second factor, called a steepness factor because it causes opposite
changes in the yields of short-term and long-term bond yields, explains about 81%
of the remaining variation.Garbade and Litterman and Scheinkman call their third
factor a curvature factor because the estimated loadings for different bonds give it the
effect of changing the curvature of the yield curve. This third factor never accounts
for more than about 5% of the total explained variance of returns.

An interesting issue raised by the factor analysis concerns the importance and op-
eration of the third implicit factor. Clearly it is not, on average, of great importance.
It could reflect the presence of nonlinearity in the bond return dynamics when the
linear factor model is applied. Alternatively, it could reflect an asymmetry in returns
or instability in the parameters of the distribution of bond returns, which would also
masquerade as an extra “factor.”*!In either case, the importance of the third factor
in price changes on occasional days (or weeks) is potentially much greater than “just”

an extra 5%. As a result, it might be very important in practice where it can cause

43]n a series of papers, K. Garbade extended the analysis to: Treasury Strip and Federal Agency
bonds, in Garbade (1987); to an international comparison of yield curve movements, in Garbade and
Urich (1988); applied it in measuring the risk of portfolios or cross-sections of bonds, in Garbade
(1989a,b); and allowed for shifts over time in the parameters of the factor model (Garbade (1990)
and Baron (1989)).

“4Litterman, Scheinkman, and Weiss (1991) consider one way in which volatility in the volatility
of returns could cause the curvature effect.
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an apparently perfect hedge to incur losses (or gains).
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7 Summary and Discussion

The purpose of this chapter has been to outline how risk-neutral and equilibrium
asset pricing techniques have come to be applied in the fixed income area over the
last five to ten years. These techniques, together with the assumption that term
structure movements can be attributed to a small number of factors, lead to pricing
and risk hedging formulae for fixed income, and fixed income derivative, securities.
The pricing formulae can be interpreted as restrictions across the prices of the fixed
income securities. The arbitrage-free pricing restrictions provide a basis for “yield
curve arbitrage” and for the pricing of fixed income derivatives. The equilibrium
pricing restrictions are those which make the pricing of fixed income securities con-
sistent with the pricing of all other assets, and a fortiori they imply the absence of
arbitrage opportunities.

Leaving aside the general but obvious questions surrounding the dimensionality
and specification of the factor structure of term structure movements, there are at
least two broad areas which still seem to be unsettled, and thus to leave room for
future research and industry development. First, many alternative parameterizations
of term structure uncertainty have been proposed: in terms of bond price movements,
as in Ho and Lee (1986); in forward rate formulations, as in Heath, Jarrow, and
Morton (1992); and in terms of interest rate movements, as in the original (equilibrium
model) formulation by Cox, Ingersoll, and Ross (1985) and the “extended” Cox,
Ingersoll, and Ross (1985) and Vasicek (1977) models suggested by Hull and White
(1990). When the parameterization of the term structure uncertainty in terms of the
stochastic process for the selected one of these three variables becomes complicated,

it can be difficult /impossible to transform among the three specifications. In practice,

TermStructure: 58



this often means that instead of using a common stochastic model for all interest rate-
sensitive securities, different models are used for different securities. Even ignoring
scientific niceties, this makes it hard to aggregate risk positions, etc. in practice.
Moreover, the tendency has been to increase the parameterization of the models,
expressed in whichever of the three variables, so that they can be calibrated exactly
to at least the observed term structure and term structure of volatilities for the
purpose of pricing derivatives. The logic of calibrating a model with the observed
moments of the term structure to price derivatives is appealing—when the model is
represented as a binomial tree, it can easily be seen that the calibration procedure is
just like inverting observed prices to obtain Arrow-Debreu state prices. In addition,
the methodology of representing the stochastic process for term structure movments
in a lattice and then calibrating parameters in the lattice with observed moments
follows the recent trend in the statistics and econometrics literature toward use of non-
parametric and empirically fitted models, and away from analytical parametric models
(this trend undoubtedly follows the trend in computer power). But the calibrated
model is only as good as its original specification; if the tree is wrong in the sense
that over time it is found that future interest rate or bond price realizations are not
on one of the paths in the tree, it will have to be “redrawn”; since the reconstruction
of the tree in response to the realizations is not itself represented in tree, this is a
form of Muthian irrationality. Use of “all the data” in calibrating tree models is, tpso
facto, an advantage; but it leaves no “residuals” to absorb data errors and the like.
Second, it seems unlikely that there is a single term structure specification that

is best for pricing all fixed income derivatives.** For example, a one-factor model

45This doesn’t mean that the derivatives can’t all be priced and hedged in terms of a common
model which nests the specialized (restricted) versions best for various derivatives.
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in which yields on bonds with different maturities are (instantaneously) perfectly
correlated does not, a priort, seem a good candidate for valuing options to exchange
one segment of the yield curve for a different segment (e.g. the SYCURVE options
offered by Goldman Sachs),* though it might produce reasonable results in valuing
some short-term options on bond prices. More generally, several of the most recent
exotic interest rate options seem to “lever” volatility assumptions in the underlying
tree, thus making their pricing and hedging much more sensitive to gyrations in the
market which weren’t contemplated in the tree. Unfortunately, there are currently
few guidelines available to guide the selection of which model features are important
for pricing and hedging which interest rate contingent claims. Kuwahara and Marsh
(1994) have investigated whether bounds can be placed on the underlying interest
rate uncertainty, and thus on the important features of uncertainty which must be

modelled, by the various derivatives contracts.*”

4Sperhaps a one-factor model for the yield curve spread could work, but it would be specific to the
points on the yield curve defining the spread, and could probably be dominated by a model using a
second “curvature” type factor.

47The intuition is similar to that behind Grundy’s (1991) derivation of bounds on asset price
distributions implied by option prices.
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