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Abstract

The present paper analyzes how a technological standard emerges in the long run, under the
presence of bandwagon effects or network externalities. First, we present a set of axioms to capture what
are popularly termed "bandwagon effects” in a general setting where there are more than two technological
standards. The existing literature mainly assumes that the value of a technology is an increasing function
of its own market share. However, the value is also affected by the composition of other technologies,
because they bear various degrees of compatibility to the technology under consideration. Qur formulation
explicitly considers those cross effects. This enables us to examine the most likely way of dominating the
market. A technology might dominate the market by directly increasing its share (direct domination), or it
may let an intermediate technology dominate first and then overtake the market from it (indirect
domination). We provide conditions to determine which way is more likely. Then we examine the long run
technology choice according to the stochastic evolutionary game theory, which determines the unique
outcome even when multiple equilibria exist. In particular, we show that pairwise risk dominance determines
the long run standard, when bandwagon effects are strong enough.




1. Introduction

In this paper we examine the emergence of a technological standard when the value of a technology
to any one user depends on how many others are adopting it, or in other words, when bandwagon effects
are present. For mstance, which video recording system or which disk operating ;ystcm will emerge in the
long-run? This subject has been much in vogue recently, and one major conclusion reached by several
investigators is that the long-run standard is indeterminate. A host of papers (see Brian Arthur (1989) or
Paul David (1985)) argue that the long run standard is determined by a series of historical events, which drift
the population of users into a specific technology which, by virtue of its stand-alone value, may not have any
intrinsic merit. Instead, its only reason for preeminence is extrinsic and ex-post, i.e., the fact that many
people have already chosen it. Another branch of the literature stresses the role of multiple, self-fulfilling
expectations (see Katz and Shapiro (1985, 1986, 1992) or Matsuyama (1991)). According to that approach

once individuals believe that a critical mass will lock into a particular technology, it is in their best-interest

to choose the same technology as well, leading to muitiple consistent beliefs and, hence, to multiple
equilibria. Therefore, the technological standard is indeterminate and, in particular, not related to the
underlaying characteristics of the set of technologies that are ex-ante available.

The approach we take in this paper enables us to isolate a particular equilibrium, even when the
static game of technology choices possesses multiple strict Nash equilibria, as in the formulations mentioned
above. This is made possible by incorporating two features of the decentralized process of techrology
adoptions. First, we consider an explicitly dynamic formulation where technological choices are spread over
time, and where individuals’ decisions may depend on the pattern of technological adoptions present in the
population at the time they choose a technology. For instance, in the case of the home videogame industry
an individual’s decision comes up for renewal only every once in a while (depending on the age of her
existing base unit (if any), or on the age of her children), and at that time her choice (cg, Atari vs. Nintendo)
may depend on how many other individuals arc presently attached to cach system, and therefore, on the size
of the "library" associated with cach system. A sccond feature we incorporate into the formulation is a small
degree of randomncess over the choice of technology, i.c., we allow diffcrent individuals facing the same
situation to make different technological decisions. More explicitly, we hypothesize that most individuals

will pick a (myopic) best-response given the present pattern of choices by others, but some will deviate and



pick a non best - response. The basic reason for this is that some individuals are poorly inférmed about the
present pattern of choices in the society (perhaps because this is the first time that they subscribe to a
technology), or that it is very costly for them to collect such information, or that different individuals hold
different expectations about the future evolution of technology choices, leading them to divergent decisions.
Once these hypotheses are explicitly incorporated into the formulation we develop a user side theory of
technological adoptions, using the stochastic evolutionary approach developed in our earlier paper (see
Kandori, Mailath and Rob (1993) and Kandori and Rob (1991)). This approach examines the long run
average behavior in a relatively small population, where its technological standard does fluctuate. For
example, the dominant computer in a department of economics may change over time, and the present paper
predicts which one the department uses most often in the long run.

The first step in applying this theory is to define the relevant class of games. All previous literatures
consider special cases of such games, eg, games where individuals’ choice is binary (Betamax vs. VHS) or
games where individuals’ willingness to pay is addictively separable in the "stand-alone” value and the size
of the network. In practice, however, one often encounters cases where more than two technologies compete
for market dominance, eg, MS/DOS, 0S/2, and UNIX in the case of PC operating systems. In such
situations, the pattern of compatibilities across the various pairs of technologies is much richer. For
instance, in the case of PC operating systems that it is a well-known fact that only a fraction of the set of
software packages designed for one operating system will be compatible with another, and that this fraction
is different across different pairs of operating systems. Consequently, the value of a system to an individual
will be affected by the whole structure of cross effects, i.e., it will depend on the entire configuration of
market shares, and not just on how many other individuals are in his own network. Given these facts we
introduce a more general definition of games with bandwagon cffects which takes account of this global
information.

A particularly intcresting issuc when there are more than two technologics is the comparison of

dircct and indircct _domination of the market. Consider, for example, a market dominated by IBM

computers, and cxamine how Next might capture the market. If IBM and Next are the only available
technologies, the only way for Next to dominate the market is to capture dircctly a critical mass of IBM

uscrs. However, when therc is another computer, Apple for example, there is an indirect way of dominating



the market. That is, Next might let Apple dominate the market first, and then capture the market from
Apple. One example of indirect domination can be found in the history of politics. When the Nazi party
seized power in Germany, it first let the communists undermine Weimar. When the communist party
became sufficiently strong and people started to worry, the Nazis won over and captured the powerl.
Another example is in the area of medical equipment where CT-scanners had taken a large market share
from the traditional X-ray equipment, but were later replaced by the even more advanced MRI technology.
We examine in this paper the basic elements determining which way, direct or indirect domination, is more
likely to succeed. Those two points, the definitions of bandwagon effects in general and the comparison of
direct and indirect domination, should be of independent interest apart from their relevance to the long run
evolution of technological standards.

Once we delineate the class of games that are of interest, we generate several predictions about
their long-run equilibrium, i.e., about how technological standards are expected to evolve over a long time
horizon. First, we identify the measure of risk dominance as the relevant criterion in selecting among
multiple equilibria. This measure was originally introduced (see Harsanyi and Selten (1988)) for binary
choices, and was designed to reflect the tradeoff between the potential payoff to a strategy (here a
technology) and its inherent risk (or compatibility in the present context). In the case of choice between
two technologies, it is already known that the risk dominant technology emerges in the long run (Kandori,
Mailath and Rob (1993)). In the present paper, we show that this result can be extended to the multiple-

technology case in that the system of pairwise risk dominance measures (between all pairs of technologies)

determines the long run equilibriumz. One particular instance of this is, when one technology risk-
dominates all others. In this case we show that this technology is the unique long-run equilibrium.
Second, we contrast the long-run equilibrium with the Pareto-superior technology. For the class
of games we analyze here the two need not coincide, although there are special circumstances when they
do, and wc give sufficient conditions to ensurc this. Several models (sce Meyer, Milgrom and Roberts

(1991) or Harsanyi and Sclten (1988)) analyzc propertics of the Pareto-cfficient cquilibrium, on_the

! We thank Matsuyama Kiminori for suggesting this example.

>When bandwagon effects are weak (or nonexistent) there arc cxamples showing that pairwise risk-
dominance is not the relevant criterion. See Young (1993), and section 4 below.
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assumption that this equilibrium is somehow going to emerge. Our analysis complements these models by
providing a way of verifying whether such assumption is justified.

More generally, we show that this set of circumstances is special and that the equilibrium which
emerges in the long-run depends on the tradeoff between the technological advantage of a technology (which
is manifested when everyone adopts it), and the degree to which it is compatible with other technologies
(which is manifested when different individuals are adopting different technologies). Given such tradeoff
it is quite possible (and we illustrate this) that a Pareto inferior technology is sustained in the long-run
simply because the ease of ‘mixing and matching’ it with other technologies supersedes its technological
disadvantage. This result (and the intuition which underlies it) are especially relevant given case-study data
(see Cowan (1990)) and recent experimental evidence (see Van Huyack, et. al (1990) and Cooper et. al
(1990)) which shows that the actual choices of people n coordination games corresponds (at least in some
instances) to Pareto inefficient equilibria. Our framework provides a way of interpreting‘such data.

Third, we provide a complete characterization of the long-run equilibrium when there are exactly

three technologies. In that case the maximin criterion determines which of the equilibria is sustained in the

long-run. Fourth, we illustrate our results by constructing a parametric example of bandwagon games. The
construction is based on a direct specification of the ‘primitives’, i.e., quality/risk characteristics of a set
of available technologies. These characteristics determine the payoff structure of the game, and we show
what its long-run equilibrium is, and how it relates to the specified characteristics (eg, we illustrate how the
interplay between quality and compatibility determines the long-run equilibrium). Finally, we show that the
long-run equilibrium is generically unique in band wagon games.

The rest of the paper is organized as follows. In the next section we present the model, introduce
the class of bandwagon games in gencral and a particular parametric example illustrating their structure.
Section 3 lays out the mechanics of the long run cvolution of tcchnological standard. In section 4 we
comparc direct and indircct dominance, and then provide various characterizations of the long run

cquilibrium, including the pairwisc risk dominancc and maxmin criteria. Scction 5 concludes.

2. The Bandwagon Effccts

In this section we develop a demand-side theory of technological adoptions in which users of the



technology are the only strategic players. To capture the idea that identical choices by two users generate
*positive feedbacks’, we consider a population of individuals who are randomly matched to play a symmetric,
two person game in which the coordination of strategies as beneficial. There are scenarios in which positive
feedbacks come about exactly in this fashion, eg, two scientists collaborating on a paper and using the same
word processor package, or two households with compatible base units exchanging software for a home
videogame. In other cases the positive feedbacks are more indirect, and are channeled through the
manufacturer who can offer the product at a lower price, or offer a wider variety of peripherals if the
number of subscribers is sufficiently large. In the first case our formulation applies directly, while in the
second it can be viewed as an approximation. Generalizations of the basic model to encompass a broader

class of payoffs is a clear target for future work.

We start here by defining and analyzing properties or the underlying game. The set of pure
strategies of the game is denoted N={1,2,..,n}. A player’s payoff, when she and her match take strategics
i and  respectively, is represented by ;. Let A be the set of mixed strategies (the n-1 dimensional simplex),

and the carrier of a mixed strategy a € A is denoted C(a)={i ¢ N | 2 > 0}. The set of pure strategy

best responses against mixed strategy a is denoted BR(a). We consider the following three properties, which

formalize mathematically what are popularly termed bandwagon effects:

(1) Total Bandwagon Property (TBP): For any a € A, BR(a) c C(a).

To interpret this condition, consider the situation where the distribution of the strategies in the society is
given by a. The total bandwagon property says that the optimal strategy is one of the existing strategics in
the socicty. For example, if cach strategy represents a choice of technology, TBP says that the network
externality is sufficicntly strong that it always pays to adopt onc of the cxisting technologics. Note that TBP
in particular implics that the situation where cverybody is using the same technology is always a Nash

cquilibrium: in terms of the component game, cach strategy i € N constitutes a symmetric Nash cquilibrium.

(2) Marginal Bandwagon Property (MBP): For any distinct strategics 1, j, and k, uj; - 05 > Uy - U



The marginal bandwagon property captures another aspect of the network externality. Namely, it says that
the advantage of technology i over j is maximized when all other users are using technology i. In a random
matching situation, this implies that the marginal gain of switching to technology i is an increasing function
of the number of technology i-users in the society. As we will see in detail below, TBP and MBP are not
nested assumptions.

The last property is somewhat subtler than the first two. To state it, we need a bit more notation.
Under TBP, for any subset of strategies S < N, there is a unique mixed strategy equilibrium which is
completely mixed in S. We denote it by m(S). We will sometimes denote m({i,...j}) by m(i,..., ) for

simplicity.

(3) Monotone Share Property (MSP): A game with TBP satisfies MSP when the following is true. Let S and

S’ be subsets of strategies such that S” & S. Then,

m,(S) < my(S) for allk € §".

The mixed strategy equilibrium m(S) can be regarded as the equilibrium market shares among technologies
in the set S. When one takes this interpretation, the monotone share property captures the bandwagon
effect in the following sense: when a technology exits from the market, gach of the remaining technologies
gets a larger market share. Although this condition may be the least intuitive, we show below that it is
closely related to MBP. Moreover, it plays an important role in showing that direct domination is easier

than indirect domination.

Proposition 1. Suppose TBP is satisfied. Then, MSP implics MBP. Furthermore, when n=3, MBP and

MSP arc equivalent.

Proof. Takc any distinct strategics i, j, and k, and let m=m(i, j) and m’=m(i, j, k). Since the player is

indiffcrent between i and j under m and m’, we have



' .m’: .m’, = u.m’: .m’; .m’ 2
ym’y + yym’y + ym’y = wm’ +ouym’; +ogem’ (22)

Subtracting (2.2) from (2.1) and rearranging terms yield

'

mi--m. m:—m:
Uy = (U (=) + (wmup (=) )
my m, ‘ (2..))

= (uii-—uji)s + (uij ’Ujj)t.
Note that s+t=1 because m;+m=m;'+m;+m =1 Since MBP can be expressed as
Uy U > Uy -Uy > Uy U, it is equivalent to s,t >0. (That is, -y being a convex combination of Uiy and

;). But MSP implies s,t >0 by the definitions of s and t and, therefore, it implies MBP. Furthermore

when n=3 the two are equivalent.

Let us illustrate these properties for 3x3 games, using the geometry of the 2-dimensional simplex.
Figure 1 is an example where TBP is not satisfied. The numbers in parentheses indicate the best response

for each region.

1

)

Figure 1.

TBP fails in this cxample because the best response region for strategy 2 contains a part of the cdge between
1 and 3, where strategy 2 is assigned probability zero. The next example (Figure 2) satisfics TBP, but MBP

(and hence MSP by Proposition 1) is violated.



m23)

—= Q;=Comstdnt.

Figure 2.

MBP and MSP fail because the borderlines of best response regions do not have adequate angles. For
example, one can see that my(1, 2) < m, (1, 2, 3), which violates MSP. For MSP to be satisfied, the
borderline between the best response regions (1) and (2) must lie in the shaded region. Finally, Figure 3

shows an example satisfying all properties.

(2 (2)

Figurc 3.



We will now construct from primitives a game which satisfies all three "bandwagon" properties.
Consider a scenario in which each individual can choose one among n different technologies available in the
society. Let the inherent payoff (or quality) to technology i be q;, and assume that this payoff is realized
if two individuals with the same technology are matched. Otherwise, technology i user has to adapt to
technology j user which costs her bij (technology - j user pays then by). Assume for the moment that this

cost depends only on the partner’s technology, and let G = bij3' Then the payoff is given by:

q; j=i
uy (24)
g-¢;
We can readily check that for i#k
¢ Pl PR j=i
Uy~ Uy = 9; -9y j*ik
49~y j=

so that MBP is satisfied.
Let us now turn to TBP. Consider a mixed strategy a € A. TBP is satisfied if for any i € C(a),

there exists a j € C(a) such that

Y o< Y, U8y

keC(a) keC(a)

Since i ¢ C(a) and j € C(a), the left hand side of this inequality is q;-%,c,a,, and the right hand side is qj-

%, sCkay- Hence TBP is equivalent to
Va € A Vi & C(a) 3j € C(a), so that gj-¢ia; < q;. (2.5)

Condition (2.5) is vacuously salisficd if a € A is completely mixed. 1f a € A is not completely mixed, there

30ne instance of this is the ATM (Automatic teller machine) industry in which the customer of onc bank
(i) has to pay a ‘switch fee’ (c;) to the bank which deployed the machine he is using. If the customer uscs
a machine deployed by his own bank this is an ‘on  us’ transaction, and the fee is waived.

9



exists a j such that g = 1/(n-1), where n is the number of strategies. So a sufficient condition for (2.5) is
Vij: q; - cj/(n-l) < g (2.6)

Condition (2.6) is satisfied when the cost of adaptation is relatively large compared to the differences in the
intrinsic qualities.
Lastly, we show that MSP is satisfied. Let S be a subset of strategies, and consider the equilibrium

m(S), which is completely mixed in S. Then we have

vijes, Y umy(S) =Y uymy(s).
keS

keS

By (2.4), this condition is equivalent to

VS e N Vi,j €8, q; - my(S) = ¢ - cmy(S). 2.7

Now consider S! 2 2. Since S! » S, there must be a k € S? such that mk(Sz) > mk(Sl). Then, applying
(2.7) for j=k and comparing across S! and S?, we conclude that mi(Sz) > mi(Sl) holds for all i € S, which

is nothing but MSP. We summarize the above results:

Proposition 2. Suppose the payoff function satisfies (2.4) and (2.6). Then, TBP and MSP (hence MBP) are

satisfied.

In general, the cost of adaptation for a technology i-user to adopt technology j may depend on both

i and j. In this case, the payoff function is given by

uy = g - bij’ bij > 0 for i#j and b;; =0. (2.8)

A special case which generalizes the above example is the case of additive adaptation cost: bij =¢ +dp

By the same argument as above, one can verify MBP and MSP for this case. For TBP, we need a similar

10



condition to (2.6),

Vij qi-d-q + (-U(@-1)d < ¢/(n-1), (29)

which requires large cost of adaptation in terms of ¢ The proof that (2.9) is sufficient for TBP is similar
and, therefore, omitted.

Lastly, we will provide a sufficient condition for TBP. This condition requires that: (1) The set of
technologies be linearly ordered, closer technologies being more ‘similar’.  Denote the ordering by >.
And, (2) compatibility increases at an increasing rate as products become more similar. Condition (2) is

illustrated in figure 4, showing that it generates a ‘one  sided convex’ payoff function.

I i

~'\‘_______
\ -
7 L
Figure 4.
Formally, we have the following.
Proposition 3. TBP is satisficd if
Uigrg - Y > U - Uy > 0 foralli < j and
0 <y -ty < upyy-uy foralli > (2.10)

Prool. Choosc any mixed strategy a and consider its support C(a). We will show that for any i & C(a) there

11



is a mixture of strategies in C(a) which is a better response against a than strategy i. There are three
possibilities to check.

(i) i < MinC(a). Letj = MinC(a). Since uy < for all k € C(a) (see Figure 4), j is a better response
than i against a.

(ii) i > MaxC(a). Similar to case (i).

(iii) Otherwise. Let i’ and i’" be the closest strategies in C(a) toi (i’ < i < i’"). Consider the mixed
strategy which assigns potability 4 to i’ and 1-A to i", where A’ + (1-A)i” = i. By the one-sided
convexity of uy with respect to i (see Figure 4), we have du;; + (-2)uy > for all j < i’ and all

izi". M

3. The Long Run Evolution of the Technological Standard

In this section, we summarize the long run evolution model introduced by Kandori, Mailath and Rob
(1993)4, following the generalized formulation by Kandori and Rob (1992). We consider a population of
M players, who are repeatedly and randomly matched to play the component game uy; over an infinite time-
horizon. For concreteness, the reader may imagine the faculty members in a department of economics, using
different kinds of computers. The configuration of strategy-choices in the society is summarized by the
state-vector z, whose ith element, z;, represents the number of players with strategy i. The state space is
a finite set

Z = {(@Zp-2) 20,1, M), 3 7 = M} (3.1)

i=1

Under z, a player with strategy i receives the following expected payoff in random matchings:
(D) = —[Ezu+E-Du]
M-1 i U

1 a
= — ‘21 zju,j—uﬁ],
j=

where 7-1 in the above expression comes from the fact that onc cannot be matched with oneself.

4 A partial list of related literature includes the pioneering work of Foster and Young (1990) and
important extensions by Ellison (1991), Fudenberg and Harris (1992), Noldeke and Samuelson (1993) and
Young (1993).
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At each moment of time, the following events happen. First, each player exits from the society with
probability e. This event is independent across players and across time. If the player exits, a new comer
(a newly recruited faculty member?) enters into the society. The new comer comes with her computer,
which she has been using elsewhere. Or, she might buy a new computer, but we suppose that new comers
are not always well informed about he configuration of computers in the population they enter into and,
thus, may choose their computer on the basis of other considerations. Thus, we suppose that the probability
that a new comer chooses computer 1 is strictly positive, denoted m; > 0, for all 1. This will introduce
random flow of different computers into the department, and is called "mutation”. If the player does not
exit, she can potentially switch to a new computer. We suppose,'hOWever, that there is a switching cost and
one may change computers only when the cost becomes sufficiently low. For example, one may switch to
a new computer when her computer is broken or when she finishes writing a paper. We assume that the
opportunity of adjustment arrives with probability n for each player, and that these events are independent
across players and across time. Whenever this opportunity arrives we suppose that the player switches to

the myopic best response. That is, the player assumes that the distribution of computers observed in the last

period remains unchanged today and takes the best response against it. More precisely, let z be the strategy
distribution in the last period and assume that the player took strategy i. The strategy distribution he expects

to face, under the static expectation, is c(z,i) which is defined by
o(zi) = z/(M-1) for j#i and o4(z,1) = (z-1)/(M-1).

Then, the sct of best response against this distribution is given by

B = Arginax Zukjaj(z,i).

j=i

We assume that the player switches to an clement of By(7) if and only if iéBi(z)S. This adaptive behavior,
although naive, can be a completely rational onc, if the adjustment speed is low (n becing small) comparced

to the player’s discount factor.

> When there are multiple best responses, we assume that cach onc is chosen with a positive probability.
It will turn out that our results do not depend on those probabilities.
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Then we consider the behavior of the system when the mutation rate is much smaller than the rate
of adjustment (e < n). To visualize the evolution in this case, let us intuitively examine what will happen
when there are three computers: Apple, IBM and Next. If there are a large number of IBM users in the
department, sooner or later everyone will end up using IBM by means of adaptive adjustments. After that,
the department will be completely dominated by IBM for a while, but in the long run a significant number
of new professors with Apple computers may enter into the department one after another. Once this
happens, IBM will be driven out from the department by Apple, and the domination of Apple lasts for a
while. This in turn may be broken by a large number of Next invasions, and so on. Therefore, the system
fluctuates between different technological standards over a long time horizon. Then we can ask on average

how much time the system will spend on each technology. As it will turn out, we can show that the system

typically spends almost all the time on one technological standard, when the mutation rate is small. Figures
5 illustrate this in a stylized way. When the mutation rate ¢ is high, the system frequently fluctuates among
three different regimes (Figure 5(a))®. As ¢ gets smaller, it becomes more difficult to upset each
technological standard, so each regime expands (Figure 5(b)). However, one of the technologies, Apple for
example, is typically more "stable" than others, and its regime expands much faster than others as € becomes

smaller (Figure 5(c)). We call such a technology, Apple in the above example, the long run equilibrium.

(a) ' 1BM ( Applel Next Apple - time
\ :
| T T T
(b) IBM Apple Next Apple - time
l { % % >
(c) IBM Apple Next -« time
Figurce 5.

® For simplicity, we do not denote transition periods, where different computers coexist.

14



As is clear from this description, the long run evolution model is most relevant for a society with a relatively
small population. Otherwise, it takes a very long time to upset any given locally stable equilibrium.
Nonetheless, our analysis applies to large populations in which each player is matched with a small number
of close friends (or ‘neighbors’).  For more detail, see Ellison (1991).

The formal definition of long run equilibrium is as follows. The above setting defines a Markov
chain on the finite state space, Z. That is, the distribution of tomorrow’s state z’ is completely determined
by today’s state. This is summarized by the transition matrix P(e) = (p,,.(¢)), where p,,.(¢) is the
transition probability from state z to z' in one period. For ¢ > 0, the proportion of time spent on each

state is represented by the stationary distribution wg&), which is uniquely determined by

HE)P(e) = HE).

Then we consider the limit distribution " = Iimeﬂo;.uéz)z The set of long run states is the collection of
states which receive positive probabilities under the limit distribution: C(p )= {z | w, > 0}. Under the
bandwagon assumptions, we will show that the set C(y )typically consists of one state were all players are

using the same strategy (see Theorem 4). We call this state the long run equilibrium. In general, we use

"equilibrium i" to denote a state where all players are using strategy i. (Mathematically, it is denoted by e;
= (0,..,0,M,0,...,0), where M is in the i element of the vector).
Having defined the basic solution concept, now we examine the basic nature of bandwagon games

more closely. Let A; be the best response region for strategy i: A; = {a € A | i € BR(a)}. The basin

of attraction for equilibrium 1 is defined as

BA, = {z€Z | Pr(z(t)=¢; | z(0)=27 £=0) > 0 for some t}.

There arc several differences between those two concepts. First, the best responsc region is a subsct of the

mixcd strategy space (the n-1 dimensional simplex), while the basin of attraction is a subsct of the state

7 One of the striking features of the model is that the limit distribution docs not depend such modeling
details as the adjustment speed n, or the mutation distribution m. See Kandori and Rob (1991), Theorem
1.
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space, which can be regarded as a set of grid points in the simplex. The second difference comes from the
fact that players with different strategies face slightly different strategy distributions because of the finiteness
of the population. The definition of the best response region does not capture this fact, but it is explicitly
taken into account in the definition of the basin of attraction. Those two differences become inconsequential
when the population size is large. There is, however, a third difference, which is more substantive. Consider
Figure 6 below. The triangle can be regarded as the simplex of mixed strategies as well as the state space.
Point x belongs to the best response region of e,, but it is an element of both BA, and BA;. This follows
from the assumption of stochastic adjustment: the adaptive adjustment may lead to x’ or to x’’, depending
on who switches to strategy 2. This example shows one of the potential complications which do not arise
in the 2x2 case, where the switched over players are uniquely defined. In higher dimension a cases, the
basins of attraction may have substantial overlap, and they may have complicated shapes compared to the
simple convex polyhedron structure of the best response region. Nonetheless, for the games we are
analyzing here this complication does not occur because the MBP implies that the basin of attraction and

the best response region coincide. This is shown in the next proposition.

Figurc 6.

Proposition 4. Under MBP, if i € Bi(z), then {i} = B;(z) for all j € C(z).

Remarks. (1) As is argued above, this implies that BA; approximatcs A; when the population size M is large.
This is shown as follows. Takec any state z in the interior of the best response region (#M € Int A,;). We
argue that the adaptive dynamic starting from this point always converges to ¢;. To this end, we show that
any point along the adaptive adjustment, strategy i is the unique best response for all players. This is truc

for the initial point z(0) =z, when M is large enough. Take the next point z(1), and consider a hypothetical
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adjustment path leading to z(1), where one player adjusts at a time. In the first step, player with, say,
strategy j adjusts to i. Since only one player is adjusting, strategy i is still a best response for this player in
the next state. Then, Proposition 4 shows that i is the unique best response for all players. Repeating this
argument proves that i is the best response for all players at z(1). Thus we conclude, by induction, that
strategy i is the unique best response at z(2), z(3),....

(2) Proposition 4 also shows that the myopic adjustment always leads to a pure strategy Nash equilibrium.
Take any state z(0). If all players are taking best responses, Proposition 4 shows that they have the same
unique best response, so z(0) must be a pure strategy equilibrium. Otherwise, there is 2 positive probability
that only one player adjusts to her best response. Then, as argued in remark (1) above, the process

converges to a pure strategy equilibrium. Hence we have:

Corollary. Under the MBP, the system always converges to a pure strategy Nash equilibrium in the absence
of mutations.

Proof of Proposition 4. Since the player with strategy i is optimizing, we have

Y uz, +uy(z-1)2Y) uhkzk+uh;(zi— 1), (3.2)

k=i ki

for all h. For any other strategy j € C(z), MBP implies uj-up; > ug-ug;. Rearranging this inequality as u;;-

Uy > Uy Uy, and adding this to inequality (3.2) yields

¥ uikzk"'uij(zj—l))g;{ UnZi *Uy(Z 1),

k+j

for all h. This shows that i is the best response for all players under z. |

4. The Transition of Technological Standards
Next we consider how onc technological standard might be upsct. To this end, the following notion,

called the cost of transition from equilibrium i to j (¢j), plays a crucial role. The cost of transition ¢;

represents the minimum number of mutations to change cquilibrium i to j under the presence of adaptive
adjustment. Formally it is determined as follows. First, we consider cach path from equilibrium i to j in

the statc space Z, and count how many mutations occur on the path. Then we choose the path with the
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minimum number of mutations, and G is the number of mutations associated with this most efficient path.
When there are two technologies in the society, this cost represents the "critical mass” of individuals which
is needed to convert equilibrium i to equilibrium j. That is, if ¢; individuals (or more) mutate from
strategy 1 to strategy j, then the rest of the population will follow suit (following the adaptive adjustment),
and the society will end up in equilibrium j. For example, if there are 100 individuals and if strategy 2
becomes the myopic best-response once more than 40% of the population is using it, then ¢;, = 40.
When there are more than two technologies, however, there are many ways of changing
technological standards in the society. As is in the above example, a technology can dominate the market

by directly steal the critical mass of customers from the prevailing technology. We call this direct

domination. Or, it may let an intermediate technology invade first and then overtake the market form it.

We call this indirect domination. An example of indirect domination is given by the payoff matrix

15 16 0
(wp =5 12 10|
10 7 11
In terms of the parametric model in section 2, this is given by inherent quality q, =15, q, =12, g5=11, and
the compatibility costs
05 15

by =170 24
140

Figure 7 depicts the best response regions for this example.




Suppose all players are initially using technology 3 and examine how technology 1 can dominate the market.
One way is 11/16 of the total population directly mutate from technology 3 to 1. This is indicated by "direct
domination" path p in the figure. Note that it requires relatively large number of mutants, because of
technology 1’s poor compatibility to technology 3 (b5 being large). As is shown by the iso-mutation line
mm’, which is parallel to the side 12, this is the most efficient way to directly enter A, (the best response
region of strategy 1). There are, however, another class of paths, which first enter A, and then reach A;.
Path p’ is an example of such paths. On this path, technology 2 first dominate the market by directly
converting 1/6 of the population towards technology 2. After technology 2 completely dominates the market,
technology 1 steals 1/6 of its market share and finally capture the whole market. The total mutations on this
"indirect domination” path is 1/3 of the population, which is smaller than the number of mutations associated
with the direct domination path p (11/16). Hence the indirect domination is much more likely than the
direct domination in this example. Furthermore, the indirect domination path p’ turns out to be the most
efficient way (in terms of the number of mutations) of converting equilibrium 1 to 3, and therefore cj5 =
M/3 (M is the total population). This is shown as follows. First, we have shown that p’ is more efficient
than any paths which directly enters A;. So consider paths which enter A; through A,, and call them
indirect paths. It can be seen from the figure that entering into A, requires at least 1/6 mutants towards
2. By the same token, entering A; requires at least 1/6 mutants towards 1. Therefore, any indirect path
must have at least 1/3 mutations, and this lower bound is achieved by path p’. This shows that p’ has the
least number of mutations among all paths.

As can be easily seen, this example satisfies the TBP property but not the MBP (so MSP is not
satisfied either). The next proposition shows that the bandwagon conditions, TBP and MSP, ensure that the

direct domination is the most efficient, and they enable us to use simple pairwise comparison of equilibria

in much the same way as the risk dominance in 2xX2 games.

Theorem 1. Under TBP and MSP, the minimum cost of transition Cij is achieved by dircct mutations from

i to j, if the population size is sufficiently large. Namcly, for large cnough M,

Sii ;i ~Y;

M-1 (u, “”,'i) +(uij —uij).
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Proof. We assume that the population size is large enough so that we can use the geometry of the mixed
strategy space A as an approximation. In this proof, a state is regarded as a point in the simplex A. To
determine ¢y, we need to count the minimum number of mutations when the state changes from z to 2’ in

one step (namely, when z(t) =z and z(t + 1) =2’). We will call this the cost of immediate transition, and after

normalization it is given by
SN SN CE AN
keBR(z)
where (x) . denotes max {x, 0}. Following Remark (1) of Proposition 4, we regard the best response region
as the basin of attraction.
Consider any path g= (zo,...,zT) where 20 = e; and = & We consider two different cases. In

case 1, the path goes through all the best response regions. Otherwise, we have case 2.

Case 1. Let ¢(g) be the cost associated with path g. Then we show the following:

c(g) = c(e, m(N)) = c(e;, m(j, j)) | (4.1)
This says that any path which goes though all the best response regions is more costly than the direct jump
to the completely mixed strategy equilibrium point, and the latter is in turn more costly than the direct jump
from equilibrium i to j.
The first inequality in (4.1) is a consequence of TBP and MSP. Under TBP, best response region
A, is the convex hull of all the mixed strategy equilibria that assign positive probabilities to strategy i.
Therefore, by MSP, we have
m(N) < a for all k and all a € A. (4.2)
Given this, the first incquality in (4.1) is shown as follows. Take any k # i and consider the first point on
g which lics in A,. Incquality (4.2) shows that this point has at lcast m(N) playcrs with strategy k. Since
strategy k has ncver been a best responsc on the previous part of the path, all those stratcgics must have
been created by mutations. Since the path g gocs through all the best response regions, this is truc for all
k # i, which shows the first incquality in (4.1).
The second inequality is also shown by TBP and MSP. Under TBP, cach strategy is an equilibrium,

and this implies that ¢(e;, m(N)) = 1-m;(N) and c(¢;, m(i, J)) = 1-my(i, J). Since m;(N) < my(i, J) by MSP, the
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second inequality in (4.1) is verified.
Case 2. Suppose path g, which starts with state e; and ends with €j, never passes the best response region

of strategy h. In this case, we "project” the path g=(z°,...,zT) by

t
Z
xt = gt 2 {m’ -m),
oy,

where m=m(N) and m’=(N\{h}). Note that x'; =0 by construction and x' € A (the nonnegativity of xt
is implied by MSP). Note also that X’ =¢; and x' = ¢ Furthermore, we assert BR(z') =BR(x"). The reason
is twofold. First, b € BR(z!) by assumption and h ¢ BR(x') because of x'; =0 and TBP. Secondly, the
choices between strategies k,1#h do not change: that is, (uk—ul)xt———(uk-ul)zt, where uy = (Uyq,eU,)-  This
follows from (u,-u;)(m’-m) =0, which is implied by the definition of m" and m.

Given that the projection preserves the best responses, we now show that the new path (xo,...,xT)
is less costly than the original path g. Namely, c(xt, xt“) < o7, z‘“). This is shown as follows. First,
observe that

t+1 t.
c(x?, XM) = Z (x¢ %),
keBR(x")

t+1 t

41t t+1 _t ,2h “Zhy, .,
= Y & ox, = Y (@ -z (—)m  -my),.
keBR(Y) KkeBR(Y) my
k+h k+#h

The second equality follows from BR(x") =BR(Z") and x', =0 for all t, and the last one comes from the

definition of x'. Continuing the above equalities, we have

tel t

tel ¢ Zy "Iy

S DA s T (( Y’ ~m)),

keBR(zY) m,
k#h

Lt
t+1 t h h

= E (zy -z, * ( ). Z(m'k~mk),

k¢BR") my keh
k#h

The sccond inequality comes from m’y-my > 0 by MSP. Since X (m’,-m) = 1-X, ,m = my, the

last expression is equal 1o
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L gt
t+l ¢ h h
E (z -z, + (
k¢BR@zY m,
k=h

¢
= ¥ @&z, = o 2.

keBR(z"

).,

Hence we have shown that the new path is less costly.

If there is another strategy h’ which is never a best response on the new path, repeat the projection
with respect to h'. Repeating this procedure, we get a path g’ with the following properties: (1) the path
starts with ¢; and ends with ¢, (2)it is less costly than the original path g, and (3) if we denote the set of
strategies played on this path by J, the path g’ goes through all the best response regions Ay for k € J.
Then we can apply the same kind of reasoning as in Case 1 (replace m(N) with m(J)) to conclude that g’

(hence g) is more costly than the direct path (e;, m(i, e A

Given Theorem 1, we are ready to determine the long run equilibrium. First, we define the notion

of the pairwise risk dominance. Given two strategies i and j (each of them is an equilibrium under TBP),

we say that i pairwise risk dominates j if

;U g

(uii “uji) _(ujj 'uij)

u..

(SR

which is equivalent to u; - u;; > W - Note that the left hand side of the above inequality is the critical

i
mass that technology j must steal from technology i, if there were no other potentially available technology
in the society. This coincides with the definition of the risk dominance by Harsanyi and Selten (1988) for
the hypothetical 2X2 game, where the strategy set is just {1, j}. Kandori, Mailath and Rob (1993) show that
the long run equilibrium in a 2x2 game coincides with the risk dominant cquilibrium. Young (1993),

however, providcs an example of a 3x3 gamc which suggests that the coincidence may not be generalized

beyond 2x2 cascs. The following is a slightly modificd version of his cxamplc.
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This example shows that an equilibrium which risk-dominates every other equilibrium need not be the long-
run equilibrium. An important feature in this example, though, is that it does not satisfy TBP (see Figure

8), although it satisfies MBP.

Figure 8

In this example, 3 pairwise risk dominates 1 and 2, but the long run equilibrium turns out to be 2. We can
see why pairwise risk dominance fails to capture the stability of 3 against 1. The pairwise comparison of 1
and 3 indicates that a jump from 1 to point a (see the figure) is enough to make 3 a better response than
1. However, at point a, strategy 2, which is neglected in the pairwise comparison, beccomes the best
responsc, because the game doces not satisfy TBP. Thercfore, a much larger jump, from 1 to point b, is
required, if we should convert cquilibrium 1 to 3 by means of dircct mutations. This cxamplc makes it clear
that TBP is a nccessary condition to make pairwisc comparisons of cquilibria the relevant criterion. It is,
however, not a sufficicnt condition as we have scen in Figure 7. What goes wrong in Figurc 7 is that it docs

not satisfy MSP. 1f TBP and MSP arc both satisficd, we can utilize pairwisc risk dominance.

Theorem 2. Supposc TBP and MSP hold. If strategy i pairwisc risk dominates all other strategics, it is the



unique long run equilibrium if the population size is large enough.

Proof. The long run equilibrium is computed as follows (See Kandori and Rob (1991) for the details). First,
we must identify the candidates of long run behavior, called limit sets. Proposition 4 and TBP show that
the collection of the limit sets consists of pure strategy equilibrium states, {{el},.‘..,{en} }. Then we consider
all directed trees defined over the limit sets (the n equilibria). Each branch of a tree is a directed pair of
two equilibria (i,j), and the set of branches is directed into the root. The cost of a tree is defined to be the
sum of ¢;; over all its branches (i,j). Finally, the long run equilibrium is the root of the least cost tree.

Let h be the least cost tree, and assume k (k#i) is the root of the tree. This will lead to a
contradiction. Construct a new tree h’ by eliminating the outgoing branch from i and adding branch from
k toi. Let 1 be the successor of i in the original tree h. Then, Theorem 1 and the assumption of pairwise
risk dominance imply

¢ /(M-1) > 172 > ¢ /(M-1),

for large M. This shows that h’ is less costly than h, which is a contradiction. B

Theorem 2 provides only a sufficient condition. That is, there may be no strategy which pairwise
risk dominates all other strategies. So we will examine when this sufficient condition is met. The first

situation we consider is the case of symmetric adaptation costs.

Proposition 5. Suppose TBP and MSP are satisfied, and the payoff function is additive: u = - bij (b;;
= 0). If the cost of adaptation is symmetric (b; = by;), the Pareto efficient technology is the unique long

run equilibrium.

Proof. Undcr the symmetry, the pairwisc risk dominance coincides with the Parcto dominance, because uy; -
ujp > uj - s cquivalent to g; > q;.

A special case of this is the parametric example (2.4) where all adaptation costs arc equal, ¢; = ¢;.

The second case where Theorem 2 applies is when technologics arce linearly ordered according to
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inherent quality and compatibility. Namely, we assume the additive payoff function (2.4), and suppose that

the quality and the cost curves have the following shapes.

7~ %

Figure 9.
This amounts to saying that a larger index i corresponds to higher quality but lower compatibility (that is,
it costs more to be matched against other technologies on average), and that there are diminishing returns

to scale in terms of quality and compatibility in appropriate senses. Formally, we assume

0 < qj4q-G < qp-q;and

0<cy-¢<g-gyy foralll <i<nm (43)

Then, we show that the technology that commands a balance between quality and compatibility emerges in

the long run.

Proposition 6. Assume conditions (2.4), (2.6) and (4.3) arc satisfied. Then, the uniquc long run equilibrium

is the largest i such that q; - q;; > (¢, - ¢)/2.

Proof. Lct i be the strategy satis{lying the above condition. By Proposition 2 and Theorem 2, we have only

to show that 1 pairwisc risk dominates all other strategics j, namcly, I

i i A simple calculation

j.

shows that this is cquivalent to q; - q; > (cj - ¢)/2. For j < i, this is satisficd because



E(ck,1~ck) = (¢-c)/2.

i
1
q -9 = Y, (QGy) = 5
j+l i+l

The case of i < j is shown by a similar argument. [

A special case of this is when g, - g, 1 > (€, - ¢,)/2. In this case the Pareto-efficient technology
is the long-run equilibrium.
Lastly, we provide the necessary and sufficient condition for the long run equilibrium, the maxmin

criterion, when there are three technologies.

Theorem 3. If TBP and MSP are satisfied and n = 3, the long run equilibrium is given by

ArgMax;(Min;,;r;) for sufficiently large M, where ry; is given by

U ~U,

1. = ._......__.__]_._...._..
i .
I (u~u ) +(u, -u,)

3 FU)

Proof. Theorem 1 shows that ¢ + ¢ = M-1 for large M. Hence, if strategy i pairwise risk dominates all

k#i, i achieves the maxmin criterion because Min;;cy

> (M-1)/2 > ¢ = Ming . By Theorem 2, the
strategy i is indeed the long run equilibrium in this case. Next consider the case where no strategy pairwise
risk dominates others. Define r(i) = Minr;; and consider the case where r(i), 1=1,2,3, are all distinct.
Without loss of generality, assume r(1) < r(2) < r(3) < 1/2, where the last inequality comes from the fact
that no strategy pairwise risk dominates others. Next, let 1(i) be defined by r; ;) = r(i). Then, we claim
(1) # 1(2). Otherwise we would have r(1) + r(2) = r; + 1y = Land r(1) + 1(2) < 1 at the same
time, which is a contradiction. Therefore, the combination of two branches, (1, 1(1)) and (2, 1(2)), forms
a tree dirceted into root 1. Note that a tree is a collection of two branches whose roots arc distinct. The
tree we constructed utilizes the least cost branches whosc roots are distincet, so it must be the optimal trec.

Therclore, the long run cquilibrium is 1, which satisfics the maxmin critcrion. We can check that similar

reasoning applics when there are tics in rj;. &
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In all of the above cases the long-run equilibrium is uniquely determined. We now show that this

situation is true in general.

Theorem 4. For a generic choice of payoff function uy;, the long-run equilibrium is unique for large enough

population M.

Proof. Assume that for some game there are two cost minimizing trees with two different roots, i and j.
Let (j,k) be the branch which originates at j in the i-tree. Then we can lower the cost Cik by increasing u,
leaving all other payoffs intact. This will decrease the cost of the i-tree, and will either leave the cost of the
j-tree the same or will increase it (in case the branch (k,j) is part of the j-tree). It remains to be shown that
the perturbed game satisfies TBP and MSP.
As to TBP, notice first that it is equivalent to Max(u, - uja > 0,a€l,s = 1,.,n, where A is
Tr#S

face of the simplex on which a; = 0. Since this condition is satisfied for the original game by assumption,

since dot product is a continuous function and since each A is compact, there exists a 8 > 0 for which

Max (u,-u)a=8>0 a€eA, s=1.,n
r#s

Now if u;\.j Suy < 8/2 we have

Max(u; - uy) 2 = Max(u_ - u)a - 5/2 = 8/2 >0,
Ir#s r#S

where u;h denotes payoffs in the perturbed game. Therefore, the perturbed game satisfies TBP as well.
As to MSP, note that m(S) is a continuous function of the game’s payoffs (being the solution to a
system of lincar equations). Let m’(S) denote the corresponding solution in the perturbed game, and let

8 = Min {m(S") - m(S)!S’ = §, k € §'}. Then there exists a 8’ > 0 so that if u;(j - U < d’, then

m (S) - m(S) < 8/3, ScN.
Therefore, the MSP continues to hold for the perturbed game.

If there are more than one trees which tic with i, we can repeat the same argument for each such

trec il
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5. Conclusion

This paper suggests a theory which pins down a unique ling-run standard in technology adoption
games with multiple static ( or even perfect-foresight) equilibria. The critical element which makes this
selection feasible is that occurrence of abrupt transitions from one technological standard to another. The
selection of ta technology is then determined by the relative ease of such transitions and this, in turn,
depends on the inherent characteristics of the technologies. Therefore the theory here provides a link
between the underlying properties of a technology and its chances for long-run survival.

By way of conclusion we suggest two avenues along which this line of attach can be extended. First
we have confined ourselves here to the case where the benefit to each user is linear in the configuration of
others’ choices. In reality, however, there are cases with non-linearities -- either because of technological
considerations (for instance, there might be large set-up costs to develop and design a new product but small
cost of replicating it), or because of demand side considerations (the number of users with which any given
user "communicates” is limited* or, the economic viability of applications and complementary product
depends on the number of users, etc.) The treatment of such cases requires an analogous theory where
each user’s benefit is more generally (i.e. nonlinearly) specified.

A second interesting ramification is to consider firms’ strategic behavior. Such behavior
encompasses a wide spectrum: pricing over time, quality choice, degree of compatibility with others, vertical
integration into (or from) complementary products, provision of product variety, date of new product
introductions, licensing arrangements, and so on. We plan to analyze in the near future firms’ strategic
choice of direct vs indirect domination of the market by means of those rich menu of instruments.
Ultimately it would be of interest to see to what extent the evolution of standards is driven by these factors

as opposed to the demand side considerations on which our current approach here focuscs.
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