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Abstract

A number of statistical procedures for testing the unit roots hy-
potheses has been proposed by statisticians and econometricians. This
paper is unifying many of the previous studies on unit roots tests in

" the framework of a multivariate regression model and developing some
new test statistics.

We give a convenient quadratic representation of the limiting dis-
tributions of test statistics using stochastic integrals with respect to
the Brownian Motion. The test procedures in this paper include the
statistics for testing the unit root, the double unit roots, the seasonal
unit roots, and the cointegrating relations as special cases.

1 Introduction

An important underlying assumption in many of the traditional econo-
metric analyses has been the condition that the stochastic part of economet-
ric model is stationary in some statistical sense. Although this assumption
were often made a priori ground in practice, it may be advisable to examine
this condition from a statistical view. In this respect, a number of statis-
tical testing procedures for this problem has been proposed by statistician
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and econometricians in the past decade. The problem of testing this con-
dition has been often called the unit root test and the cointegration test.
For instance, the test procedures of Dickey and Fuller (1979), Hasza and
Fuller (1979), Dickey and Fuller (1981), Hasza and Fuller (1982), Phillips
(1987), Phillips and Perron (1988), Perron (1988) among many others have
been drawn attention and have been applied in empirical works under the
the name of unit root test. Also the test procedures proposed by Engle
and Granger (1987), Phillips and Ouliaris (1990), and Johansen (1991) have
been also drawn special attention among econometricians under the name
of cointegration tests. There have been many econometric empirical studies
using the statistical testing procedures of the unit roots hypotheses mainly in
the areas of macroeconomics and financial economics. However, since many
different testing procedures have been introduced, it may be difficult to un-
derstand the meaning of tests in some cases and how to choose one from
many tests in many cases.

The main purpose of this paper is to derive systematically several test
procedures for the condition of unit roots and to obtaine the relationships
among many test statistics. We start our discussion from the general reduced
form equations in the traditional econometric framwork and formulate them
in a multivariate regression model. Then we consider the hypotheses on re-
gression coeffiicients which includes the unit root hypothesis, the double unit
roots hypothesis, the seasonal unit roots hypothesis, and the cointegration
hypothesis as special cases. We shall introduce a general class of test statis-
tics, which includes the likelihood ratio (LR) test, the Lagrange Multiplier
(LM) test, and the Wald test for these hypotheses as special cases. In this
framework the test statistics we shall derive include many of the test proce-
dures mentioned above and also explore the possibility of constructing some
new test procedures.

Secondly, we shall derive the asymptotic distributions of the test criteria
under a set of general conditions for martingale difference sequences using
a certain type of invariance principle. We shall derive a general form of
limiting distributions of test statsitics under the null hupotheses. It gives
some insight to the problem of unit roots tests and may be useful for obtaining
the percentage points of ststistics based on simulations. Besides, we shall
show that they include many previous results as special cases by the use of
Ito’s formula in the theory of stochastic integration.

In Section 2, we shall formulate the unit roots hypothesesin a multivariate
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regression model. In Section 3, we introduce a general class of test statistics
for these hypotheses. In Section 4, we derive the general forms of limiting
distributions of test statistics. In Section5, some concluding remarks on the
distributions of tests statistics will be given. The proofs of Theorems are
given in Section 6.

2 Unit Roots Hypotheses in a Multivariate
Regression Model

We first consider a simple univariate AR(1) model

(2.1) Ye = Gp + a1Y¢—1 + Ui,

where v; are independently, identically, and normally distributed disturbance
terms with E(v) = 0 and E(v;v]) = o?. Then the unit root hypothesis
without drift in this model is given by

(22) HO L ag = 0, a; = 1.

This testing problem was first investigated by Dickey and Fuller (1979).
Subsequently, a number of studies have been done mainly in order to deal
with more general unit roots problems for applications. Especially, a number
of applied works has been conducted using more general tests than those de-
veloped by Dickey and Fuller (1979) in some sense because of many empirical
problems encountered by macroeconomists and financial economists.

From a statistical point of view, it seems there can be three directions in
the generalizations of this testing problem. The first one is to consider more
general serial correlation structures on v;. One interesting line of reserach in
this derection may be a series of papers since Phillips (1987). The second
one is to allow some deterministic parts (or exogenous variables in some
econometric sense) as well as stochastic parts in the statistical models. The
third one is to consider the multivariate versions of the testing problems of
unit roots hypotheses. In this section we shall try to unify these possible
extensions in a systematic way.



For this purpose, we consider a system of linear structural equations
in econometric models implicitly. The reduced form equations for the G-
dimensional dependent vector y; can be often written as

(2.3) ye = 2] + Arye—1 + -+ - + ApYe—p + Vs,

where z* is a K* x 1 vector of strictly exogenous variables, I' is a G x K*
coefficient matrix, Ay, ..., A, are G x G coefficient matrices, and v, are G x 1
vector of disturbances. Re-arranging the explanatory variables in the right
hand side of equations, we can re-write these equations as

(2.4) Ye = Bz + v,

where z; is a K x 1 vector of predetermined variables including z{, ye-1, . - ., Yt—p
(or their linear combinations), and 8 is a G x K regression coefficient matrix.
This is the standard multivariate regression model.

Let F; be an increasing sequence of o-fields generated by z1, v1, =+ +, 2¢, v, 241
Then z is F;—; -measurable and v; is F,-measurable. We assume that the
disturbance terms v; are a sequence of martingale differences with

(2.5) E(v|Fi-1) =0 as.,

(2.6) E(Utvzlft-—l) = Qt a.s..

In this paper we shall consider two types of hypotheses on the coeflicient
matrix 8 in (2.4). In roder to state these hypotheses, we partition 7y =
(zE”',z?)')' into K; and K, vectors of predetermined variables and 8 =
(B,,B,) into G x (K; + K;) matrices. Then the general linear hypothesis on
the coefficient matrix B in the multivariate analysis (Chapter 8 of Anderson
(1984), for example) is given by

(27) H1 Zﬂz = ﬂ;,

where 3} is a fixed G x K, matrix. Another important hypothesis in the
multivariate analysis is the rank condition on the coefficient matrix 8,, which
is given by



(2.8) H, : rank(83,) = r,

where r < G. This hypothesis, originally considered by Anderson (1951), is
mathematically equivalent to the block identification hypothesis for a sys-
tem of simultaneous structural equations in econometrics. The latter testing
problem has been systematically investigated by Anderson and Kunitomo
(1990), (1992).

We are now in the position to relate two hypotheses in the multivariate
analysis with the testing problems of unit roots hypotheses in econometrics.
In the following discussions we mainly consider four examples, namely, the
simple unit roots tests, the double unit roots tests, the seasonal unit roots
tests, and the cointegration tests, although there can be some other inter-
esting examples for applications. In order to state these hypotheses, we also
partition K* x 1 vector of exogenous variables z; = (2%, 2%) into K7 and
K% vectors, and T' = (T'1, T'2) into G x (K} + K3) matrices.

(i)Simple Unit Roots Case
We rewrite (2.3) as

(2.9)
ye = Tzf 4 Awger+ o+ (Ap1 + Ap)Yi-p-1) = ApAYe—(p-1) T e

P
= Tz + Byys-1 + Z B;Ays—(i-1) + vt

1=2

where the difference operator A is defined by Ay, = y; — y¢—1, and

P P
(2.10) Bi=)Y A, Bi==) A (j=2,...,p)

=1 ‘ 1=j

Then the unit roots hypothesis can be rewritten as

(2.11) HY T, =0,B, = I

For testing this hypothesis, we assume that the abosolute values of all roots

of
G .
(2.12) I)\p_lfa - Z )\p—’Bil =0

=2
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are less than one.

When G=1, the hypothesis given by (2.11) has been extensively inves-
tigated as the univariate unit root problem. In Dickey and Fuller (1979),
(1981) they used two exogenous variables of constants and time trend, and
hence z; = (1,t — T/2)',t = 1,2,...,T. Also Perron (1988) used some ex-
ogenous variables of dummuy variables. One example in his paper can be
expressed in our notation as z; = (1, DUy, t), where

0 ift < AT
DUt‘{l f AT <t<T.

We note that all unit roots hypotheses discussed by Perron (1988) are special
cases of (2.11) when G=1.

(1) Double Unit Roots Case
The second example is the hypothesis of double unit roots. From (2.3),
it can be further rewritten as

ys = Dz} 4 Biys—1 + -+ — BpA%y_(p-2) + v

(2.13) N A2
= FZ: + Clyt._l + Cszt—-l + Z CtA Yt—(i-2) + Ve,

=3

where the double difference operator A? is defined by A%y, = Ay, — Ay,
and

)4 )4
(2.14) Ci=By, C:=)» B, C;==>_ B (j=3,...,p).

=2 =3

Then the hypothesis of double unit roots is defined by

(2.15) H?:T,=0, C,=C=I.

For testing this hypothesis, we assume that the abosolute values of all roots

of

G
(2.16) W26 — Y APTHC| =0

1=3

6



are less than one.

When G=1, the hypothesis of double unit roots given by (2.14) has been
investigated. Hasza and Fuller (1979) considered the case when there are no
exogenous variables and also the case with z; = (1,1)".

(111) Seasonal Unit Roots Case

The third example is the hypothesis of seasonal unit roots. Let d be
the seasonal lag, which includes 2, 4, and 12 as special cases. The seasonal
difference operator A, is defined by Agys = y¢ — Yi-q. For convenience, in
this paper we assume that

(2.17) p>d+1.

Using the relation that Ay, = —AiAys4a + AYita, We TewTite (2.3) as

(2.18)
y, = 27+ Biyi—1 + BoAye1 + -+ + Bay1Bye—g + -+ B, Ay (p—1) + Ut

= Tz} + Diys-1 + D3AYs—1 + -+ -+ D311 AYia
+ D% 0 DalYi— a1y + 0+ Dy BaDi(p-1-a) + Vs

where
D; = Bla
[p/d]
D; = 3 Byrap (G=2...,d+1),
(2.19) ! go el )
[p/a] '
D; = — By, (1=d+2,...,p)
=0

Further, it can be rewritten as

d+1 4
(2.20) e = L2+ Digem1+ Y, Dilasa-ithi—i-n)+ D DibaDyi—(i-1-a) T v,
=2 t=d+2

where



(221) Dy=D: Dy=Dj Dj=D;=D, (j=3,..,d+1).

Then the hypothesis of seasonal unit roots is given by

(2.22) H® D =Dgp1=1Is, Dy=--=Dy=0, T,=0.

For testing this hypothesis, we assume that the abosolute values of all roots
of

G .
(2.23) X4t — S XD =0

v=d+2

are less than one.

When G=1, Hasza and Fuller (1981) has considered this testing problem.
However, it should be noted that they further assumed that Dy = +-+ =
Dy = O, T's = O under both the null as well as the alternative hypotheses.
The double unit roots case can be considered as a special case of the seasonal
unit roots model when d=1.

(i) Cointegration Case
The last example is the test of cointegration relations. From (2.9), we
also can rewrite the model as

4
(2.24) Ay, = T2 + Biysr + »_ Bildye_(i-1) + s,
1=2
where
(2.25) B =B, — I

Then by the Granger Representation Theorem (see Engle and Granger
(1987)), the cointegration relation of I(1) among the variables in y; implies
the condition

(2.26) HY :rank(B;) =r < G.
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For testing this hypothesis, we assume that the abosolute values of all roots
of

G .
(2.27) P\pIG - Z Ap_zAi| =0

=1

are less than one except Go(= G — r) unit roots. ,

When G > 1, Johansen (1991) has developed a test procedure for the
hypothesis, which is similar to Hél). In his model, there is an exogenous
constant term and 23, = 1.

When r = 0, the hypothesis Hgl) is equivalent to the first condition of
the hypothesis Hil). We need the second condition of H il) if we allow to
have some exogenous variables in the multivariate regression model. This
consideration brings us a more general hypothesis given by

(2.28) H? :rank(BY) =r < G, T3=0.

We note that the second condition of I'; = O can be regarded as a special
case of the hypothesis H;. Then the hypothesis in (2.26) can be interpreted
as a combination of two hypotheses H; and H,.

3 Test Statistics for Hypotheses

We shall introduce some test statistics for the general linear hypothesis
and the rank hypothesis in the multivariate regression model. Let the least
squares estimator of the coefficent matrix 3 be

T T -1
(3~1) B = Z ytzé (Z thg) = YIZ(Z’Z)_I’
t=1 t=1

where T is the number of observations, Y is a 7' x G matrix of observations
on the variables y;, Z = (Z1,Z,) is a T x K matrix of observations on the
K(= K, + K,) predetermined variables z; = (zgl), 2?). We partition the

least squares estimator



(3.2) | B =(B1,8),

which corresponds to 8 = (8;,8,). We apply the standard principle of
invariant tests in the multivariate statistical analysis to the general linear
hypothesis and the rank hypothesis. (See Section 8.6 of Anderson (1984).)
By the standard method, the invariant test statistics should depend on

(3.3) H = (B, - B3) A21(B, — B3),

and

G = TQ= Z — Bz)(ye — Bz)

(3.4)
= Y'P;Y,
where
(35) Azg.l = Zépzl Zg,

and P; = Z(Z'Z)~1Z' denotes the projection operator onto the space spanned
by the column vector of Z, and P; = Ir — Pz for any (full column) matrix
Z. Furthermore, the only function of the sufficent statistics invariant under
the orthogonal transformation from the left has the form of

(3.6) Ty =T+ f(h,..., \e),

which defines a general class of statistics for testing the hypothesis H;, where
0 < A\ <--- < Ag are the roots of the characteristic equation

(3.7) |H — AG| = 0.

In this paper we impose the conditions that f(:) is a smooth function,
satisfying (i) f(O ,0) = 0, (i1) f(A1,...,Ag) is totally differentialble at
(A1, -, 26) =(0,...,0), and (iii)
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0 :
(3.8) af =1 (i=1,...,G).

Ap=,Ag=0

We note that this restriction is mainly for the simplicity of the following
results on test statistics. It is certainly possible to consider more general
class of statistics. However, there are many examples of statistics within this
class for practical purposes. For instance, Anderson and Kunitomo (1989)
has shown that it includes the Likelihood Ratio (LR) tests, the Lagrange
Multiplier (LM) tests, and the Wald tests. Under the assumptions that the
disturbance terms v, are normally distributed, and the covariance matrices
0, = Q for all t, the log likelihood ratio (LR) times —2 is given by

(3.9) LR, = Tf:log(l + ).

t=1

The Lagrange Multiplier (LM) statistic is given by

(3.10) TZ(1+A

which has been known as the Bartlett=Nanda=Pillai trace criterion in mul-
tivariate analysis. Similarly, a form of the Wald test is given by

G
(3.11) Wi=TY X\,
t=1

which has also been known as the Lawley=Hotelling trace criterion in mul-
tivariate analysis.
Under the null hypothesis of H;, we notice that

(3.12) B, — By = (Z4Py, 2,)" 24P, V,

where V is a T' x G matrix of disturbance terms whose t-th row is v;. Then
the two matrices H and G can be rewritten as

11



(3.13) G =V'P;V,

and
H = lezlzz(ZéPZlZZ)—-]'ZéPZlV

(3.14)
= V!(P; — Pg)V.

Now we consider the second hypothesis of the rank condition given by
H,. Let 0 < 1; <... < vg be the roots of the characteristic equation

(3.15) I%@T — | =0,
where
(3-16) Or = ﬁ2A22.1ﬂ12'

The hypothesis of rank condition H, is mathematically equivalent to the
hypothesis on the characteristic roots H, : v =+ = vg, = 0 and V¢0+1 >0
where Gy = G —r. The sample analogue of the characteristic equation (3.15)
is given by

(3.17) |Y/(Pz — Pz,)Y = XY'P;Y| = 0.

In the above derivation, we have used the relation

(3.18) BoAn By =Y'(P; — Pp)Y.

Then by the same arguments of the invariance principle in the multivariate
analysis we may introduce a general class of test statistics T3, which is given
by

(319) T, = f(X;)"'))‘Eo);
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where A}, -+, A5, are the roots of characteristic equation (3.17). There are
also many examples in this class of test statistics. Anderson and Kunitomo
(1989) has shown that it includes the LR test, LM test, and a type of Wald
test for the null-hypothesis H, under the assumption that the disturbance
terms {v;} are normally distributed and the homoscedasticity of covariance
matrices Q; = Q, ¢t =1,...,T. As we may expect from the discussion on the
hypothesis H;, the log likelihood ratio times -2 for H, is given by

Go
(3.20) LRy =T log(1+ ).
1=1

Similarly, the LM statitic and the Wald statistic are given by

Go \*

3.21 LMy=T)» —*—
21 =L Ty
and

G
(3.22) Wo=TY ),

i=1
respectively.

Johansen (1991) has developed the likelihood ratio statistic for testing
the hypothesis of cointegration, which is similar to a special case of LR,.

The last hypothesis developed in Section 2 is a combination of two hy-
potheses H; and H,. In order to test the null hypothesis Héz), it may be
natural to use

(323) TS=T[f()‘;)"°,)‘*Go)_f()‘la”'))‘Go)]‘
A simple form of this type of test statistics is the LR test statistic, which is
given by

Go GO
(3.24) LRy =T | log(1+ A}) = log(1+ X\)|.
=1 1=1

We notice that the first term is the LR test for the hypothesis Hél) and
the second term is the LR test statistic for the hypothesis of T'; = O.

13



4 Asymptotic Distributions of Test Statis-
tics

In this section we shall investigate the asymptotic distributions of the
test statistics derived in Section 3 under the null-hypotheses. We assume
that the disturbance terms v, are a sequence of martingale differences given
by (2.5) and (2.6) and the conditional covariance matrix {; = E(vivy| Fi-1)
can be a function of z;,v1,+*+, Ze—1, V-1, 2. In the conditional expectation
operator, F;_; is the information set available at time ¢ — 1. The predeter-
mined variables z; may includes a finite number of past dependent variables
Yi1, Yee2, * * *» Y—p OF their differences. Theoretically, the maximum lag p in
the autoregression may depend on the sample size T such that p/T — 0
in the following discussion. However, we treat p as if it was fixed for the
simplicity. In order to investigate the limiting distributions of statistics, we
prepare the following theorem.

Theorem 1 Let z,v;,t = 1,-++, be a sequence of pairs of random vectors,
and let F, be an increasing sequence of o-field such that z; 1s Fr_1— mea-
surable and v, is F;— measurable. (i) Let the matriz Dr be Fo— measurable
such that

[Tt] ¢
(4.1) DF'Y 2,7(Dy) ™t /0 m(s)m(s)'ds = M(t),

s=1
say, where m(s) is a deterministic vector-valued function of s, and
(4.2)  mnax Z(Dp Dy 2 B 0.

Suppose further that E(v|Fe—1) =0 a.s. , and E(vv}| Fie1) = Q4 a.s.

[T]
(4.3) S[Q, ® D7tz (D) B @ ® M(1),

s=1

where Q is a constant matriz, and
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(4.4) sup E[vlv,I(viv, > a)|Fe-1] B0
§=1,2,

as a — oo. Also let

[T¢]

(4.5) Sp(t) = _-\/17_]1_— ; v,.

Then
(4.6)  vec (g [ :/1_1; é;z(s ) ] vi) 5 vec ( /0 t [ 738 ] dB(S)') :

where B(s) is the vector Brownian motion on [0, 1]x---x[0, 1] with E(B(1)B(1)) =
Q. (ii) Suppose further

1 T
(4.7) =50, 5q.
T t=1
Then
1 T
(4.8) =Y v, B Q.
T t=1

The proof given in the Appendix is similar to that of Theorem 1 in An-
derson and Kunitomo (1992). The first part of this theorem is a functional
central limit theorem or an invariance principle. The proof is based on a
functional central limit theorem given by Helland (1982), which was origi-
nally derived from a very general central limit theorem by Dvoretzky (1972).
The upper part of (4.6) means that

[T ¢
(4.9) vec (Z D;lzsv:) AN (O,Q ®/ m(s)m(s)'ds) :
s=1 0

which is a standard central limit theorem on the discrete time series. Further
if we take z; = 1, we simply have
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4.10 M- B(t
—_ LA i
(4.10) Wi ;vs (t)

This type of functional central limit theorem was systematically discussed
by Billingsley (1968) and has been extensively used in the unit roots prob-
lems. The second part of Theorem 1 is a general convergence theorem for
martingale difference sequences. The conditions implied in (4.4) are known
to be too strong for the desired result. (See Theorem 2 in Anderson and
Kunitomo (1992).) But we shall use them in the following for their sim-
plicity. Our conditions in the above theorem are on the conditional second
order moments based on the Lindeberge conditions. One important feature is
that we allow some types of conditional heteroscedasticities on the covariance
matrices of disturbance terms.

We shall make an additional assumption on the exogenous variables z} in
(2.3). As T — oo,

(4.11) Wy = ir (22,Pp 72,

is bounded uniformly in s, where Z* , is a 7'x K* matrix whose t-th row is 2;_,.
It should be noticed that ¥ = O and the above condition is automatically
satisfied when we have time trends such as z; = (1,%)’. In order to obtain the
limiting distributions of test statistics under the null hypotheses, we partition
the matrix M(t) into (K7 + K3) x (K7 + K3) sub-matrices

_ Mii(t) Mia(t)
(4.12) M() = ( May(t) Ma(t) )

Theorem 2 Suppose (4.1) to (4.4), (4.7) and (4.11) hold for {vs, z;}. Also
suppose 0 and M(1) are nonsingular. Then under the null hypothesis either

H&l), H§2) or HiS) the statistic Ty has the limiting distribution of the form

(4.13) Ty = tr (N’ lM'l - ( Mll(()l?_l 8 )J 1\7) :
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where B(t) is the G-dimensional standard Brownian motion, and the vector
of ewogenous variables z; and two matrices N and M are defined as in the

following three cases. (i) In the simple unit roots case (HY),

N EORVEIORY
(4.14) M_/O ( ) ) ( B ) dt,
s 1 mls) '
(4.15) N _/0 ( % )dB(t)
and 23, = Az3,. (ii) In the double unit roots case (H?),
oo (e ) ()
(4.16) M= / [EB(s)ds || JEB(s)ds | dt,
° B(t) B(t)
. 1 ( m(s) )
(4.17) §= / £ B(s)ds | dB(t)
| "\ B®)
and 2%, = A?23,. (i11) In the seasonal unit roots case (Hﬁs)),
(4.18)
Y. ORI
2 A Bii—(j-1(s)ds ; fo Bii—(j-1)(s)ds
d d
L d ZB(i—1~(J—1))(t) ZB(i—1~(j—1))(t)
=g 3| e 7 dtJ',

d—1 d—1
=1 Y Bli-2-G-1)(t) > Bli—a—(j-1))(t)
3=1 Jj=1

Bi—a—(j-1y) 1 Bii—a—(5-1
\;( G-1(t) )\ ;(d( »(t) )

17



( ) m(t) \
21 /0 Bii—(j-1))(s)ds

d

, Y- Biic1—(-1))(t)

. 1 =1 !

(4.19) =Y G B
i=t| Y Bi-a—(i-1)(t)

i=1

1
Bliea—j—1y(t
\ ; (i—a-Gi-1)(t) |

where z¥, = ADgz3y, J 15 a K* 4+ G(d + 1) diagonal matriz

I]\t O O O
O d2g 0] 0
(4.20). J=| 0 0 d'lg O ||
0 0 T O
O O O d1lg
and
o B,‘+d ZfZ < ].
(4.21) B = { B. ifl<i<d

When there is not any unit root term in the standard case (i), the statistic
Ty has the limiting distribution of x?. If we drop B(t) from M and N, the
distribution of T} is a x%. On the other hand, when there is no exogenous
variables in the model, the limiting distribution of T; has a simpler form.
For instance, in the unit roots case

(122) T=u (] 1 B(t)dB(t)')/ [ | 1 B(t)B(t)'dt]m1 ( | 1 B)B())
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This representation of the limiting distribution has been obtained in the units
roots case by Phillips and Durlauf (1986).

When G=1, it has been quite common to use the least squares estimator
of the coefﬁc1ent and its t-ratio statistic for testing the hypothesis of a unit
root in (2.9). In this case we have the following simple representation of the
limiting distribution.

Theorem 3 Suppose (4.1) to (4.4), (4.7) and (4.11) hold for {ve, 21}, Also
suppose € and M(1) are nonsingular. Then unedr the null hypothesis H1 (1)
T(B; — 1) has the limiting distribution of the form

/1 m(t) \ [ m(t)dt \’

o \ B(t) dB(t)

/1 m(t) \ { m@) \' " ’

o \ B(t) B(t)

Now we consider some special cases we have mentioned in Section 2. The

following examples may illustrate the usefulness of representations of the
limiting distributions in Theorems 2 and 3.

(4.23) tr =

Ezample 1: When G = 1 and there is no exogenous variables in the model,

(4.24) o /01 B(t)dB(t) _ %(B(t)z ~1)

/01 B(t)%dt /01 B(t)%dt

which has been a well-known representation of the limiting distribution of
the least squares estimator since the classical papers by White (1958) and
Anderson (1959). We notice that the last equality is a simple consequence
of Tto’s Lemma in the theory of stochastic integration. This observation is a
key fact to get many representations in the following examples. When G =1
and we have linear trend, then z; = (1,¢ — 7//2)" and
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1 0 T
0 _1_15 T—22W
(4.25) = wy 5 __;%((T*QW)(T-—GV)—l)’
1 0 W T — W2 —3Vy2
0 % ¥
w ¥rr

where we have used the notations of Dikey and Fuller (1979). Since we take
exogenous variables mutually orthogonal in this case, the final expression has
a simple structure. Similarly, when G=1 and z; = 1, (4.13) becomes

(4.26)

by using the notations of Dickey and Fuller (1979).

Ezample 22 When G=1, Perron (1989) used some interesting dummy
variables DU; and DT} as exogenous variables. The final representations
of test statistics in Perron (1988) appeared to be quite complicated at first
glance. When we let 2z} = (1, DU, t), then the limiting distribution of T'(& 4 —

1) in his paper becomes
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1 1-2 1 /s dB
1-x 1-x % fl4B
: = : [, tdB
' Bdt [} Bdt [jtBdt [, BdB
(427) t;{ — fO f)\ ‘ fOl fOl
1 1—) 1 3 Bdt
1-x 1-x ¥ [lBdt
1 v 1 Lt Bdt
JyBdt [y Bdt [} tBdt f[; B(t)dt

Similarly, it is possible to derive the simple representations of the limiting dis-
tributions of T'(&p — 1) and T'(&¢ — 1) in Perron (1989). Our representations
are much simpler than his final expressions.

Example $: When G=1, Hasza and Fuller (1979) developed several test
procedures for testing the double unit roots hypothesis. If we let z; = (1,1),
the limiting distribution of 7} = N'M~'N has a form 7} when we take

!

1 1
Y t
(4.28) M= /o Js B(s)ds Js B(s)ds dt,
B(t) B(t)
1
(4.29) N= /0 fé B’Es) 1 4B
B(t)

By using the notations in Hasza and Fuller (1979), they are

1 % Wy W,
% % W, Wy — Wy

=
I

(4.30)

W W,  We-Wiiow,w, %

W, Wy— W, W W,

2
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and

Wi
B Wy — W,
(4.31) N=| wiW, - Ws
w2 -1
2
Then we notice that T is mathematically equivalent to hiHg lhy = 4U3(4)
in Hasza and Fuller (1979). To evidence this point, we have

(4.32) Wi = B(1),

(4.33) | "1aB() = BO) - [ ' B)dt = Wi — Wy,

(139) [ 1 (f t B(s)ds) dB(t) = B() / ' B(t)dt— / " B(t)dt = Wy Wy —Ws,

(4.35) /0 " B(t)dB(t) = B—(l—g—'—l,

for instance. These relations and others needed for verifying (4.30) and (4.31)
can be directly obtained from the Ito’s formula and the partial integration
fourmula in the theory of stochastic integration. Then we confirm that each
element of M and N corresponds to that of h; and Hj, respectively.

Ezample 4: When G=1, Hasza and Fuller (1982) assumed Dy = -+ =
D, = 0 under both the null hypothesis of seasonal unit root and the al-
ternative hypothesis. When there is no exogenous variables, the limiting
distribution of T} has a simpler form 77 = N'M~1N,where

) Z:/ot Bj;(s)ds Z:/Ot B;j(s)ds
) M=J 2l s sae | Y

B; B;



d

> | Bj(s)ds

d =1 0

1 ) B;(t) B

i=1

B;

d? 0 O
J=| o dt' O |.
o o0 dt

Then it is easily seen that M and N in this paper correspond to H and h
in Hasza and Fuller (1982), respectively. Consequently, 77 is equivalent to
h'H~'h in Hasza and Fuller (1982).

Now we turn to consider the problem of testing cointegration hypothe-
ses. For this purpose, we partition the Gy -dimensional Brownian motion
B(t) = (B(t)}, B(t)4)" into [(G — K} —r) + K7] -dimensional Brownian mo-
tions. The next two theorems are on the testing a simple hypothesis of coin-
tegration and a composite hypothesis of cointegration and zero restrictions
in the multivariate regression model.

(4.37) §= /01 ‘

T

and

Theorem 4 Suppose (4.1) to (4.4), (4.7) and (4.11) hold for {vs, z;}. Also
suppose QU and M(1) are nonsingular, z3, = Azj,, and G— Ki —r 2 0. Then
under the null hypothesis of ng) the statistic Ty has the limiting distribution
of the form

(4.38) T; = tr (N' [M-I - ( Mug)_l 0 )} N) ’

where

(4:39) = ( ) ) ( e )’d’f’



(4.40) N = /0 ' ( gl(é)) ) dB(t).

Notice that the dimension of Brownian motion B(t) is Go(= G —r) in the
cointegration case, while it is G in the unit roots case in Theorem 2. This is
because there are r cointegrating relations among the variables in y; so that
the number of independent random walk should be G — . Since we allow
some exogenous variables in the model, they may make some effects with the
cointegration relations. This is the reason why we partitioned the Brownian
motion B(t) in the present situation.

When G — K} —r < 0, the statistic 7; may have the limiting distribution
of x? with G2 degrees of freedom under the condition that the stochastic
order of z%, is greater than +/7. This condition is satisfied if there are a
sufficient number of deterministic trend terms.

Ezample 5: When r = G — 1 and there is no exogenous variables under
both the null and alternative hypotheses, the second term in (4.38) disap-
pears. Then we have

(4.41) T; = (/01 B(t)dB(t))z
. t /01 B(t)*dt '

When we use a different normalization factor, we should change the denom-
inator slightly and we have

/0 ' B)dB(2)
/ 1 B(t)%dt

0

(4.42) T} =

)

for instance. Again by using the relation (4.34), T4 is identical to the expres-
sion of the limiting distribution obtained by Fountis and Dickey (1989).

Ezample 6: When G > 1, Johansen (1991) assumed 2, = 1,23, = t, and
the order of seasonal dummy variables is negligible. In this case the limiting
distribution T can be further re-written as
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(143 T=u(/f 1 F(t)dB(t)'), (/ 1 F(t)F(t)’dt)‘l (f 1 F()dB(Y)

where F is the Gy vector given by

(4.44) P ( Bi(t) —;_ff} lBl(t)dt ) |

which is the same as the limiting distribution of the statistic obtained by
Johansen (1991).

Theorem 5 Suppose (4.1) to (4.4), (4.7) and (4.11) hold for {v, 27}, Also
suppose Q and M(1) are nonsingular, 23, = Azy,, and G— KT —r 2 0. Then
under the null hypothesis of ng) the statistic Ty has the limiting distribution
of the form

o= u (N' {M*l—(M”(l)_l g) N)

W e g
where M and N are defined by (4.14) and (4.15),

s o= [ (5) (50)
(4.47) I= /0 1 ( ’g((:)) ) AW (2,

and B(t) and W(t) are Go(= G—r)- and r— demensional Brownian motions,
which are mutually independent.
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The representation 75 is the most general one in this paper. The first
two terms correspond to the cointegration hypothesis. In addition to these
terms, we have two more terms because of the zero restrictions in the model.
Since I is independent of M, N, M, the second part has the distribution of
x? and its degrees of freedom is

(4.48) df = r-min(K},G —r).

When G > 1 and r = 0, the last two terms disappear and we have (4.13)-
(4.15) in Theorem 2. In this sense, the first part of Theorem 2 is a special
case of Theorem 5. When G = r, the stochastic part of y, is stationary.
Then the lower part of the first and second terms disappear, and T3 has
the limiting distribution of x? with G - K} degrees of freedom. This is the
situation when we can use the standard asymptotic theory. Thus Theorem 5
includes both the non-standard unit roots case and the standard stationary
case as special cases.

5 Concluding Remarks

First, it may be important to note that the numerical calculation of the
limiting distributions of the test statistics is not easy even under the null
hypotheses of unit roots. The limiting distributions could be numerically
obtained only in some simple cases (see Tanaka (1991), for instance). The
percentage points of some test statistics have been tabulated based on simula-
tions. In this respect, the simple representations of the limiting distributions
of statistics could be useful for efficient simulations. Chan (1988) has noted
that it is quite efficient to use a stochastic integral representation of a test
statistic in the univariate case. In the multivariate case, we may expect that
this aspect is more evident and the representation of the limiting distribu-
tions obtained in Section 4 may be potentially useful for practical purposes.

Second, we have investigated the limiting distributions of test statistics
only under the null-hypotheses in Section 4. It is possible to obtain the
power functions of test statistics under a sequence of local alternatives. For
instance, in the unit roots case we may consider

(5.1) By = ezp(C(T)),
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where C(T) — 0 as T — oco. This type of local alternatives has been
called the near-unit root case and investigated by Phillips (1987), (1988),
and Chan and Wei (1988) when there is not any exogenous variable. For the
cointegtation case, it is also possible to consider a sequence of local alternative
hypotheses. Since the rank of B} is r, we may take

(52) B2 = C(T),

where § is a G x G matrix and Gy x Gy matrix C(T') — 0 as T' — oo. This
type of local alternatives has been investigated as the near-overidentification
condition by Kunitomo (1988), and Anderson and Kunitomo (1990) because
§ is a coefficient matrix in the system of structural equations. It may be
straightforward to extend their results to the present near-cointegration case
where § is usually interpreted as a coefficient matrix of long-term relation-
ships among variables.

Finally, from the arguments discussed in this section, it may be possible to
consider more complicated unit roots hypotheses. For instance, we can think
of some combinations of the unit roots and seasonal unit roots in a variety
of ways. By using the methods similar to Theorems in Section 4, it may be
possible to construct test statistics and obtain their limiting distributions in
general situations.

6 Proofs of Theorems

Proof of Theorem I: First we shall show that

[Tt} [T ¢
6.1 tr Dlz'C| =S ' DVCy S | dB(s)Cms
T s sT s o
s=1 s=1

for every C. Let upg = CD7'z,,s = 1,...,T. Then the conditions (4.1) and
(4.3) imply that

[T¢] ¢
(6.2) > upup, B C/ m(s)m(s)'dsC’ = F(t),
0

s=1
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say, and

(6.3) Jpax, [luz,||* = 0.

Let wps = up I (|Jurs|] < 1),8 = 1,+++,T,T = 1,+++. Then [Jur,|| <1, and
Pr(wr, = urs,s = 1,+++,T) — 1, and

[T¢) (T¢)
(6.4) > B [(wh,v.)’ | Focs] = Z wh Qewr, B tr(QF(1)).
s=1

Also by (4.4), we have

)

(6.5) S B {(wh, ) I [(wh,o?) > 6|F,-a]} B 0.

s=1

Hence the result of (6.1) is a direct consequence of Theorem 3.1 of Helland
(1982). Next, we shall show

[Tt]

(6.6) {\/1_ > Sr(s)v C'} A tr {/t B(s)dB(s)'C} ,

for every C. From what we have just shown in (6.1),

(6.7) Sr(t) 5 B(t).

Then we can use the proof of Theorem 2.4 in Chan and Wei (1988). The
conditions in their theorem are automatically satisfied except one. The only
modification we need is to replace the uniform integration condition (4.4) on
the conditional covariance matrix for their uniform bounded condition. The
last convergence result in Theorem 1 is a simple consequence of Theorem
2.23 in Hall and Heyde (1980). (See Theorem 2 in Anderson and Kunitomo
(1992).) O.
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Lemma 1 Let y\_, and y}_, be the t-th row of matrices Y_; and Pz.Y_y,
respectively. Then under the assumptions of Theorem 2,

(6.8)
[74]
§1~‘ z_:y:_lv;
L C[JE B(s)dB(s) ~ J3 B(s)m(s)'ds(f3 m(s)m(s)'ds)™ fy m(s)dB(s)]

and

(T4
T Z Yo1Ys—1
s=1

L ¢ [Ji B(s)B(sYds — J§ B(s)ym(s)'ds(J3 m(s)m(s)'ds)™" 3 m(s)B(s)'ds| C',

where C = Y.%2 W, and W, are the coefficients in the moving average rep-
resentation of the stationary vector AR process Ay;.q.

Proof of Lemma 1: ~ We shall show (6.8) and (6.9) only when p=2. The
method below can be extended easily to the general case with some complex
notations. Under the null hypothesis we rewrite

(6.10) ye =+ &+ (Ig — Bé“)@/o;
where
t
(6.11) . ve =Y B3Si(t — s),
s=0
and
¢
(6.12) &= BTz, ,.
s=0

Let also ¥_; and Z_; be T' x G matrices whose t-th rows are 1;_; and &_;,
respectively. Then
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1.
(6.13) Z Y vy = \I!’ PV 4+ =

T ]PZ"V'

By the condition (4.11) and v; being a sequence of martingale diffefences, we
have

1

(6.14) TE'_IPZ.V 0.

We notice that

00 [Tt]-s

1
ﬁ'th = Z B; Z (]
s-—O
15
(61 ) 00 [Tt] 1 & [T1]
= ESBYu- Y E T )
=1 8=0 J=[Tt]—s+1
Since the second term converges to zero, we have
1 P
(6.16) = B CB(),
where C' = %, B5 in this case. Then by Theorem 1
1 (7] ’ 1 (7]
"j—" Z y:—lvs = Zws 1U
(6.17)
(74 4 (T¢) (T¢]

— (3 e DIYDF L 5 D) D X 7o)
s=1
converges to (6.8) as T' — oo. Similarly

(6.18)
[Tt] 1 _
Tz Z ys-—l s—1 = —ﬁ\I}LIPZ'\I;“l

+ Y_,,'z‘\pl_lPZ‘w—l + =
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The last three terms converges to zero as 7' — oo. By using Theorem 1, the
first term converges to (6.9) as T' — oco. O

Proof of Theorem 2: (i) Let Ayry = (AYiog, - DYoo)y 216 =

(251, Ayrl,), and 25 = (23, yi-1)"- Let also AY*; be a matrix whose ¢-th row
is Ay;_;. Then

(6.19) |
Vi (By =PV = V' { Pyy — P Y2 (MY Py AY2) T AYY PZ;} v
4V {Pz. — Pp(AY?, o) [(AY_‘_“I, v.) Py (Y2, Y_l)] - (av2,, Y, PZ,} V.

Since }—1753/_’ \Pz.AY_; 5 0, the second parenthethis of (6.19) is asymptoti-
cally equivalent to

620 VPV = V'PuAYr (AYPpAYY) T AYZ PV
6.20
— VIPRY (Y4 PYR) T YV

Because Ay} has a stationary autoregressive representation and 2 is a posi-
tive definite matrix,

1 ous Ao T
(6.21) plim ZAYZ P7-AYE = plim AYZ Py AYZ
= ["

which is a positive definite matrix. (See Lemma 2 of Anderson and Kunitomo
(1992), for instance.) Then the left-hand side of (6.19) is asymptotically
equivalent to

(6.22) V’{P = Ppet PpeYoy (Y, PpeYny) T YL P }v
. Zy z* AR S| —14Z* L1 —14Z* .

(We note that (6.22) is (6.19) when p=1.) We apply Theorem 1 to the first
two terms and Lemma 1 to the last term of (6.22), respectively. Then the
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limiting distribution of Q~/2V" (Pz, — P;) VQ™'/2 is T} in (4.13). In the
above derivation, we have used that 271/2x (the last term in (6.22)) xQ~%/2
converges to ‘

(6.23)
(15 dB(s)Bls) ~ I dB(s)m(s) (J§ m(s)m(s)ds) ™ fjm(s)B(sYet]
« [§ B(s)B(sYds — I3 Bls)m(s)ds (I m(s)m(sYds) " fim(s)B(s)ds]
< [ B)dB(sY = i B)m(s)ds (i m(s)m(s)ds) ™ [im(s)dB(s)]
= WM ~ [ dB(s)mls) (i m(sm(s)ds) ™" J§ m(s)dB(sY).

From this representation, it is obvious that the second term of (6.23)
is cancelled with the second term of (6.22). Next, we can take a K x K
normalization matrix D} such that

1

TVWD;4UW4Z%Dyﬂ*DgTZV

1,4 1
6.24) =V'PV ==V'V

Hence from the last part of Theorem 1, the second term of (6.24) converges
to zero and we have

1 ~
(6.25) VPV L Q.

Hence we obtain the result for the unit roots case.

(i) The proof of the double unit roots case is included in that of the
seasonal unit roots case when d = 1 below.

(ii1) We consider the case of seasonal unit roots hypothesis when p = d+1.
Under the null hypothesis, we define the stochastic process

Then we notice that
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[¢/d]

(6.27) Ty = Tyq+ Uy = To+ Z Ve—dj
=0
and
(6.28) Agye = BgYe—1 + ve = Dy—1 + Z Vt—d-
5=0

Hence for d > ¢ > 0,

d—i d—i—1
(6.29) Agiys = Z Aye; = Z Ayej + Ti—j.

i=0
For the simplicity of notations, we assume 7' = nd. The initial conditions
zo and Ay_j,j = 0,---,d can be ignored asymptotically. Then

=

1
T3 > Avyely;_,

- d n

1 1
= ’672' ;L—Z'ZZAky(;—-l)d+1A1y(]—1)d+z—s
v=17=1
L 1 &)1 e
(630) = ‘C'i’z"z -7’? (Z L(5— 1)d+z—m (Z L(5— l)d+z—s~—-m’)
=1 =1 m
1 d k-1 1-1 1
= a’;z Z Z le Zm(] 1)d+i—mT(j—1)d+i—s—m'
t=1 m=0 m'=0 =1
’ 1 d k-1 1-1
- 32"'2 {Ql/z/ B(i—-m)(t)B(i—s—-m’)(t)ldtﬂllg},
1=1 m=0m!=0 0

where Bi(t),7 = 1,...,d are mutually independent G-dimensional standard
Brownian Motions. Similarly, we have

11 d n k
— Z Ath_sUt = EE Z Z { Z m(j—l)d+i—s—mv(’j—1)d+i}

t 1 1=13=1 \m=0

(6.31)



The rest of the proof in the general case is similar to that of (i) and so it
is omitted. O.

Proof of Theorem & Define z;; as in the proof of Theorem 2 and
Ba = (B, ..., By). Then under the null hypothesis, we write

Af’ - ’ T 21¢ T 21¢ Z1t 7
(6.32) By—By | =2 v | 7 Z 23, z5,
B, —1 =1 Z/t—- =1\ ¥Ye-1 Yi-1

Then we have

-1

(6.33). T (B 1) =TV'Py 3 (V! Pz, 2Y1)
We note that

(6.34) i
aw'l‘z'Yilpzl,Z;Y——l = “17Y.'-1PZ*Y~1
- -1
(52 Y"1 PpeAY-) (3AY!, PpAY.) (gAY Pr Yo 1)

The second term of (6.20) converges to zero. Hence the limiting distribution
of T(B; — 1) is asymptotically equivalent to that of TV’ Pz.Y_;. Then by

using Lemma 1, we have
3) (5 ).,
t)
t)

)(B()) t] -

| / ({)m(t)'dt]

to the numerator and the denominator of (6.35), we have (4.23).

(6.35) T(B-1)5

By multiplying

O
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Proof of Theorem 4: We give the proof only for the case when p = 1
and we take z1; = 27, and 22t = Ye-1. The general case when p > 1 can be
dealt by a similar method as the proofs of Theorems 2 and 3. We use the
results and notations in Anderson and Kunitomo (1990) extensively. From
the same arguments as the proof of their Lemma 3, the distribution of T3 is
asymptotically equivalent to

(636) T:; = tr {U' (p(Zl‘,Y.,l)D - szt’y__l) UE_l} 5
where
(6.37) U=VCE=C"0C,

and C* is a G x Gp matrix such that

N _ ITk; _ | D Ik 0
(6.38) B C" =0, D—{II*,[ 0 ]}’ H*—[B{ 0 } {IK—GO]'

_ Definea G xr matrix § (rank(8) = r) and a r X7 matrix o such that
PZ;ZH* = Pz;Y_lﬁa . Then

T:; = tIUI ([sz - PZI‘ZH* (HiZ'Pz;ZH*)‘ HLZ'Pzr]
(6.39) )
— [Par - Paras (Y PyY=) 'y, Py | ) US

In this case we should use a G X G normalization matrix,
1 !
(6.40) D = [—-\;-;ﬂ, D;r}} ,
where we can take each vector of § and D5} being orthogonal. Then we have
(6.41) T} = tr {U’Pz;Y_lD;T‘ [D;%'Yilpzl-y_lpgg']"l D;;‘YLIPZ;UZ*} .
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By the Granger Representation Theorem, under the null hypothesis we
have

t—1
(642) Ye—1 = Yo + C (Sl(t - 1) + Pl Z ZL) ,

s=1

where a G x G matrix Cis of rank r and 23, = ¥.¢_, 2},. Since K} < G—r, we
can take a Gx(G—K7—r) matrix v1(T") and a G x K7 matrix v,(T") consisting
of linearly independent vectors such that I\ Cy,(T") = O and I'|Cy»(T) # O.
We partition

Dy = (m(T), %(T))".

Then we have

(6.43) Ty = tr {U' [Ps; = Ppy zgn(m)5-am(m] UET'}

where S_; is a T' x G matrix whose t-th row is S;(t — 1). By using Theorem
1, T} converges to (4.38) as T'— oo. O

Proof of Theorem &: We give the proof only for the case when p=1.
The general case when p > 1 can be can be dealt with by a similar method
as the proofs of Theorems 2 and 3. Let AY be a T' x G matrix whose ¢-th
row is Ay; = y; — Ys—1. Then the test statistic T3 is asymptotically equivalent
to

INGTNNG
A*
NG NG TZ

(6.44) T! =T -log

The first term is the LR statistic for testing the null hypothesis H] : ', = O
against the alternative hypothesis H4 : 'y # O . The second term is to the
LR statistic for testing H, : rank (B}) = r,T'y = O against the alternative
hypothesis H 4y : rank (B) = G,I'; # O . From the proof of Theorem 4, the

second term of T§ is asymptotically equivalent to

(6.45) Tél) = {r {U/ [P(Zl',Y._l)D - PZI‘,Y~1] UZJ“l} .
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We take a G x G matrix E = (C*, J) such that

oem_ [ B O
(6.46) Q,_EQE_(O 2*>.

Then under the null hypothesis we rewrite the first term as

(6.47)
ElV,lPZT»Y-IVEl
T; = T-log 71-‘ -
E’V'-T—qu,y_‘VE\
1 - _ _
EIV’T(PZ{‘,Y_l - Pzt,y__1 + PZ"Y-I)VEl

= T-log

E'V’%PZ*,Y~1VE|

= {r {E’V’ (let,y_l - Pzt,y_l) VEQ:I}

= {0 (Pgyv., — Pgey, ) US™H} + tr {Vas (Pzivs — Proy.,) V.o
= TP+ 15,

where V, = VJ . Then from (6.45) and (6.47), we have

(6.48) T + TP = te {U' [Pp v = Poey) UET'}

Let D7Y = (ﬁ/\/T, Dgg)' be a G x [r+ (G — r)] nonsingular matrix. We

note Pz.Y_; = Pz.5_;C under the null hypothesis of cointegration and
1

(Y_Iﬁ/ﬁ) S_1D32 B0, then TV + TE? is asymptotically equivalent to

(6.49) 15 = te{U' [Pgy = Ppes_ipz| U7}

T

which converges to the first term of (4.45). Next, we obtain the limiting
distribution of Tég). Under the assumption Az3, = 23, we take [r+ (G —r—
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K}) + K7] x G matrix DY = (ﬁ/\/f v/T, D;})I as a normalization factor
and

— — — — -1 _ — ‘
(6.50) lew-,y_l = PZ? - sz (Yol-lPZfY“l\) Y-—-IPZ{ & PZ{,Y—lﬂ,S—l’Y,Z;

because of the cointegration relations under the null hypothesis. Similarly,
we take a [r+ (G —r)] x G matrix Dt = (ﬂ/\/-'f, 'y*/T$ for a normalization
factor. Then

(6.51) Prey_, & Proy psoye

under the null hypothesis. Hence

(6.52) PZ‘,Y—] — PZ*,Y-l g PZtyY-lﬂ,S—l'Y‘ - PZtyY—lB,S—I‘Y .
1 1

Let the t-th row of V. be v, which is uncorrelated with the t-th row of U
conditional on F;_;. Then by applying Theorem 1 to (ut, v,,)", we have

(6.53) %[‘2( o ) % ( g//;v?f((?) ) !

where (B(t)', W(t)") is the G(= [(G—r)+7]) dimensional standard Brownian
motion. Again the invariance principle, the limiting distribution of T: §3) has
the second form in (4.45), provided that G — K7 —r > 0.0
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