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Abstract

We first give a set of sufficient conditions on the rate of returns of
securities with some autocorrelations structures for that the discrete
security price process converges to the geometric Brownian motion.
We also give a set of sufficient conditions on the rate of returns of
securities with some long-memory properties for that the discrete se-
curity price process converges to the fractional geometric Brownian
motion. In the fractional geometric Brownian motion case, however,
we show that there does not exist any continuous martingale measure,
which is equivalent to the fractional Brownian motion. This suggests
that many statistical time series models with strong dependent char-
acteristics are not consistent with the standard no-arbitrage condition
in finance. We also discuss the estimation methods for the volatility
parameter in the geometric Brownian motion model. We argue that
the standard estimation methods discussed in textbooks are not ap-
propriate in the general situation and suggest some other estimation
methods.

*Conversations with Sigeo Kusuoka stimulated a substantial reformulation of the prob-
lem and its solution. T am pleased to acknowledge his very significant contributions to this
work.
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1 Introduction

In tecent financial economics it has been often assumed that the security
prices follow the continuous diffusion stochastic processes. In particular, the
geometric Brownian motion process has been often used in many theoretical
studies. Also there has been a growing interest in estimating the parameter
values of the continuous stochastic processes governing the historical secu-
rity price movements. Especially, since the option price formulae are some
nonlinear functions of the volatility parameter on the underlying geometric
Brownian motion process, some special attention has been paid to estimate
its numerical value.

On the other hand, econometricians and statisticians have been mainly
interested in the econometric and statistical methods for estimating the un-
known parameters in the discrete time series models. The main reason for
this is that we usually have a set of finite number of observations on a partic-
ular realization of the underlying stochastic process for stalistical inferences.

In this paper we shall first investigate the relationship between the dis-
crete time series models often used by econometricians and the geometric
Brownian motion process often used by financial economists. We shall give
a set of sufficient conditions that the discrete price processes implied by the
standard time series models for the rate of returns of securities converge
to the geometric Brownian motion process as the unit of time interval goes
to zero. Since in financial markets we can have monthly, weekly, daily, and
minutes by minutes observations on the underlying processes, this asymptotic
theory, which has been called the continuous record asymptotics according to
Phillips (1987), may have some value to justify the method of approximation
to the distributions in continuous stochastic processes.

Second, there have been recent empirical studies on the financial markets
suggesting that there may be some autocorrelations on the historical data
sets of the returns on securities. This finding has been often interpreted as
some evidence against the geometric Brownian motion model for the con-
tinuous process of security prices because its logarithmic transformation has
independent increments. Furthermore, some empirical studies on financial
markets have suggested there may be some autorerrelaticns on the rate of
returns in the long-ran. For instance, Fama and French {1938) and Poterba
and Summers (1988) have given some evidence of this kind on the U.S. stock



markets and the foreign exchange markets. In the recent econometric as well
as statistical terminology, this type of phenomena on the autocorrelations
in the long-run have been investigated and often called the long- memory
or the "strong” dependence. We shall also give a set of sufficient conditions
that the price processes implied by the strong dependent time series models
for the rate of returns on securities converge to the geometric "fractional”
Brownian motion process as the unit of time interval goes to zero. In this
context, the convergence result for the standard time series models can be
regarded as that of the "weak” dependent case. However, in this case we
shall show that there does not exist any martingale measure, which is equiv-
alent to the continuous stochastic processes based on the fractional Brownian
motion. Then by using the results of Harrison and Kreps (1979), this leads
to the rather strong conclusion that the strong dependent time serles models
are inconsistent with the standard no-arbitrage condition in finance. This
finding has some theoretical as well as practical consequences. For instance,
the statistical models with strong dependent characteristics cannot be used
for the valuation of option contracts. Also our theoretical result in this paper
is consistent with the recent empirical result by Lo (1991).

The third purpose of this paper is to investigate the estimation meth-
ods of the volatility parameter in the continuous security price models. In
this respect, several methods have been proposed to estimate the volatility
parameter of the underlying stochastic process from a set of discrete obser-
vations on the asset prices. Surprisingly, we shall show that the standard
variance estimator frequently explained by the finance textbooks and com-
monly used in practice tends to be inconsistent as the unit of interval goes
to zero in the general case. This finding lead to the natural question: how
to measure the volatility parameter and estimate its numerical value by us-
ing the discrete data set on the asset prices. In this paper we discuss some
new and old estimation methods for the volatility parameter. Under a set
of fairly general conditions the estimation methods in this paper yield con-
sistent estimators, which are also asymptotically normally distributed with
some additonal conditions in the sense of the above asymptotics.

As for the estimation of the volatility parameter under the assumption
that the underlying security prices follow the continuous geometric Brownian
motion model, several methods have been proposed in finance. For instance,
Parkinson (1980) proposed the extreme value method. Kunitomo (1992a)



also has improved the method by Parkinson. We shall discuss these esti-
mation procedures of the volatility parameter in relation to the estimation
methods proposed in this paper.

In Section 2, we shall give a set of sufficient conditions on the rate of return
process for the convergence to the geometric Brownian motion process and
the geometric fractional Brownian process. Then we shall give a theorem on
the non-existence of martingales for the the fractional Brownian motion in
Section 3. Then in Section 4, we shall give some new estimation methods for
the volatility parameter and discuss on the relation between the methods in
this paper and some estimation methods of the volatility parameter already
known in finance. The proofs of Theorems are given in Section 5.

2 Convergence to Geometric and Fractional
Geometric Brownian Motions

We first start with the weak dependent time series models for the rate of
returns on the security prices. We divide the interval [0, 7] into n intervals
of [ti-1,t;), where t; = iT'/n (¢ =0,1,---, n). Let S, (t;) be the i-th security
price at t; = i¢T'/n (i = 0,1,---,n) and we have n+1 observations. We define
the rate of returns on S, (¢) in the i-th interval as

(2.1) Xalts) = Sn(ti‘z“nu(mti()timl)'

In the above definition the order of variance of X,(t;) should be 1/n because
the length of time unit is 1/n. Since the security prices S,(t;) are non-
negative, we have a natural restriction on the range of X,(t:):

(2.2) Xa(t) > ~1.

We denote the expected rate of returns X,(t;) and its variance in the
interval [t;_y,t:] by E[X.(t:)] = pa(ti}/n and V[X,.(t:)] = o2(t;)/n, respec-
tively. We also denote the excess returns from the expected rate of returns
and the (normalized) cumulative excess rate of returns by



(2.3) Yo (t:) = V[ Xa(t:) — pa(ti) /),

and

(24) Zn(k) = S_:Yn(tz) (k = 1,“-,n),

respectively. Then by construction we have E[Y,(¢;)] = 0 and E[Z,(k)] = 0.
We make the following conditions on the generating process of {¥,(¢)}.

Assumption A: (i) There exist 4 and o (constants) such that

L
(2.5) Jim =3 un(ts) = 1,
=1
2.6 ~1~ t; 0
(2.6) max —|un(t:)] = 0,
and
.1 2 2
(2.7) lim —E[Z,(n)’] = ¢° > 0.
n-*ro0 7

ii) The sequence {Y,(%;)%, (¢ = 1,-+-,n)} is uniformly integrable and
8

(2.8) | EYo(t) Fns-klll2 < mkon(t),
(2-9) “Yn(ti) - E[Yn(ti)lfn,ﬂ-kmz < 77k+10'n(ti),
and

-1/2

NIE
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(2.10) < o0.
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where || -||2 is the Lo-norm and F,, x is a double array of the o-field generated
by {Ya(t:), (1 < i<k}

We have adopted the conditions (ii) from McLeish (1977), which has given
a set of sufficient conditions for the weak convergence (i.e. the functional
central limit theorem). It is important to note that the condition (2.10) is
automatically satisfied by many statistical time series models. The condition
(2.10) implies the condition

(.1) S <

with o = 2 and is implied by (2 1) with o < 2. Hence immediately we
know that the above conditions are satisfied by the stationary autoregressive
moving-average (ARMA) models with non-Gaussian innovations, which have
been often used in the empirical studies of financial markets. The conditions
in Assumption I are different from the conditions used by Phillips (1987)
for the weak convergence (i.e. the functional central limit theorem) of the
discrete time series models in econometrics.

We have divided a fixed interval [0, 7] into n intervals with each length
T/n. In financial markets, it becomes possible to have data with many
different frequencies, i.e. monthly, weekly, daily, hourly or even minute by
minute data. Hence it may be interesting to see how we can approximate the
distribution of the discrete security price S,(¢) by a continuous process when
n is large. More precisely, as n goes to infinity we expect that the discrete
stochastic process S,(t) converges to a continuous stochastic process based
on the Brownian motion.

Theorem 1 Suppose the conditions in Assumption A hold. As n — oo,
the discrete security price process S,(t) converges weakly to a continuous
stochastic process S(t), which satisfies

(2.12) dS = p'Sdt + 0SdB,
and p' = p— (0‘ -a )/2, provided that

(2.13) = lim — 2 E[Yo(t:)?] < +o0

N=+00 n



and B(t) is the standard Brownian motion in [0, T].

We notice that the drift parameter p' in (2.12) is different from p because
of the presence of autocorrelations in the rate of return series. Also this the-
orem means that although the discrete rate of return process has substantial
autocorrelations we have the geometric Brownian motion in the limit. Hence
the continuous geometric Brownian motion model for the security price pro-
cess is a good approximation to a broad range of statistical time series models
for the discrete security price processes.

However, it is important to note that the volatility parameter o is not
necessarily equal to o,. To illustrate this issue, suppose that the generating
process for the discrete return process Y, (t) is the autoregressive process

AR(1):

(2.14) Yn(t,’) = ﬂYn(t,'_.]_) + un(t,'), p=1,---

where u,(t;) are independently, identically, and normally distributed random
variables with zero means and o2 variances. Then we have

2

and
1 Uff
(2.16) = lim nE[Z (n)?] = Qa7

If the generating process for the excess rate of return Y,,(¢) is a sequence of
independently and identically distributed random variables random variables
with zero means and 05 variances, we immediately have 0% = 03. This 1s an
important special case of Theorem 1.

Corollary 1 If Y,(t) are independently and identically distributed random
variables with zero means and ag variances, then o? = 03 and the continuous
stochastic process S(t) satisfies

(2.17) dS = pSdt + 0SdB.



This corollary has been stated and could be standard in financial eco-
nomics. The conditions in Corollary 1 can be further weaken to allow some
conditional as well as unconditional heteroscedasticity in the rate of returns
process. For this purpose we need other type of conditions for the central
limit theorems based on the martingale differences and heteroscedastic time
series. The assumptions for this type of theorems have been discussed by
Kunitomo (1992b), for instance.

Next, we deal with the strong dependent time series models for the rate of
return on the security prices. To illustrate the strong dependent case, suppose
that the generating process for {Y,(¢)} is the fractional autoregressive (FA)
time series model:

(2.18) (1= L) Yults) = unlts), i=1,+-

where 0 < d < 1/2, L is the lag operator, and {u,(t;)} are independently,
identically, and normally distributed random variables with zero means and
o2 variances. (See Yajima (1989), for instance.) If we denote the h-th auto-
covariance function by v(h), the summability condition

(2.19) 3 y(h)] < +oo

h=0

cannot hold in this model. Hence the spectral density function diverges at
the origin, which implies that there are some strong autocorrelations in the
long-run frequency range.

The strong dependent time series models have some distinct differences
from the weak dependent case in the standard statistical time series mod-
els. In the latter case we have obtained the convergence to the geometric
Brownian motion given by Theorem 1. Instead of the the conditions (i) in
Assumption I, we need another set of conditions because they are not sat-
isfied by the storngly dependent time series models. We assume that the
discrete stochastic process {Y,(t;)} is constructed by

(2.20) Yn(ti) = Z ozkun(t;_k), 1= 1, v

k=—o0



where

(2.21) Y aj < 4oo,

k=00

and {u,(t;)} are independently distributed random variables with zero means
and o2 variances. The following conditions for the functional central limit
theorem (i.e. the weak convergence) have been adopted from Davydov (1970).

Assumption B: Assume the conditions (i) on {x,(t:)} in Assumption
A and there exists H such that 1/2 < H < 1, V[Xa(t:)] = o2(t:)/n*",
Yo (t:) = n¥[Xa(ti) = pa(ti)/n], and

(2.22) lim (1) Bz =0 > 0.

n—o00 \ 1

(i1) For some 6 > 0,

(2.23) Elu,(t:)**] < oo.

In the above formulation we have restricted our attention into the linear
time series model given by (2.20). Another set of conditions with stationary
Gaussian time series sequence, which are not necessarily linear with respect
to the innovations and 0 < H < 1, have been given by Taqqu (1975). For
the strong dependent case with Assumption B, we have a weak convergence
result to the fractional geometric Brownian motion.

Theorem 2 Suppose the conditions in Assumption B hold. As n — +oo,
the discrete security price process S,(t) converges weakly to a continuous
stochastic process S(t), which satisfies

(2.24) dS = pSdt + 0SdBy,

where By(t) is the fractional Brownian motion in [0, T].



3 Non-existence of Equivalent Martingale for
Fractional Brownian Motion Model

When there are some strongly dependent autocorrelations in the rate of
returns, the standard methods in finance such as the option pricing theory
based on the geometric Brownian motion cannot be applied. Hence, there
is an interesting question how the standard methods in finance such as the
Black=Sholes theory (Black and Scholes (1973)) should be modified. It turns
out that we shall show a kind of negative result in this line of extending the
standard derivative security theory in finance.

By the result of Mandelbrot and Van Ness (1968), the fractional Brownian
motion By(t) has a representation

Bu(t) = romiys (2w (6 - s)H? — (=) 71?] dB(s)

(3.1)
+Ji(t—s)"?dB(s)) .

Also it has been known that By(t) is a continuous Gaussian process with
the covariance property

1
(3.2) Cov (By(s), Bu(t)) = §{SZH + 27 |t — s]?H}.
Furthermore, the fractional Brownian motion By (t) reduces to the standard

Brownian motion when H = 1/2.

Theorem 3 Let the continuous stochastic process S(t) be a function of the
fractinal Brownian motion with H # 1/2 under the probability measure P.
Then there does not exist any probability measure P* which is absolutely
continuous to P and S(t) is a martingale with respect to P~.

The proof of Theorem 3 relies on a simplified version of Theorem 2 by
Kéno (1969). However, since the original proof of Kéno (1969) contains an
error, we give its detailed proof of the simplified version as a lemma in Section
5. We notice that if there does not exist any equivalent martingale measure
P*, it may not be consistent to the no-arbitrage condition in finance. The

10



fundamental result in finance that the exisitence of equivalent martingale
measure implies the absense of arbitrage condition has been obtained by
Harrison and Kreps (1979). Kusuoka (1992) also has given some conditions
that the absence of arbitrage implies the existence of continuous martingale
measures. Thus we have the following proposition from Theorem 3.

Corollary 2 The frictionless continuous time security markets represented
by some continuous process based on the fractional Brownian motion having
an equivalent martingale measure imply that H = 1/2.

From this proposition we have a conclusion that the strong dependent
time series models are usually not consistent with the standard condition of
no-arbitrage in dynamic security markets. In the class of continuous frac-
tional Gaussian proces, the only process which can be used for describing se-
curity movements is the process associated with the Brownian motion, that is
, the diffusion process or the Ito process. Hence this finding has some impor-
tant theoretical as well as practical consequences. For instance, the strong
dependent statistical time series models cannot be used for the valuation of
derivative securities such as option contracts. Lo (1991) recently has found
that there is no strong empirical evidence for long-memory characteristics in
the U.S. stock markets. In this respect, our theoretical result in this section
could be interpreted as a theoretical support for the empirical results by Lo
(1991).

4 Estimation of Volatility

In the continuous security price model given by (2.12), the parameter o
has been called the volatility parameter in finance. In many literatures in
finance, it has been explained that this parameter can be estimated by the
standard variance estimation method from a set of discrete observations (see
Ingersol (1987), for instance). When we have n observations on the rate of
return Y, (t) in [0, 77, the classical estimator of o7 is given by

(4.1) 62 = %z Valt) - %],



where Y, = (1/n) =, Y, (¢;). As we have illustrated in Section 2 using the
AR(1) example, this estimator is a consistent estimator of ¢ but it is not
necessarily a consisitent estimator of 02 as n goes to infinity. This is because
we have allowed substantial autocorrelations on the rate of return in the
formulation of discrete statistical time series models.

In order to investigate the estimation problem of the volatility parameter
o from the discrete observations, we first assume that the discrete excess rate
of return process is weakly stationary. We denote the k-th autocorrelation

of Y,(t) by

(4‘2) C"n(k) = Cov (Yn(ti)) Yn(ti+k))

and we assume that o,(k) — o(k) as n — +o00. Then 0(0) = o7 and

(4.3) o = o(0) + 2 i o(k),

provided that 0? < +oo. The last condition is implied by the standard
condition in the weakly dependent time series

(4.4) T Jo(k)| = o(0) + zkf;l lo (k)] < +oo.

k=—o00

Under this condition, the spectral density function for the weakly stationary
stochastic process Y, (t) can be defined as

(4.5) F) = = 3 o(h)cos(Ah).

27rh

=00

From (4.4) and (4.5), we have a simple but key relationship between the
spectral density and the volatility parameter:

(4.6) o? = 21f(0).

Now we consider the estimation problem of the parameter ¢2 in (2.12)
from a set of discrete observations. In order to solve this problem, we first

12



consider the non-parametric estimation problem of the spectral density f (A)
from a finite number of observations. Let the kernel estimator of f(A) be

Kn

3 k(o) ctmyecstin),

4.7
(1) 2” h=—Kn

where c(h) is the h-th sample autocorrelation function

(48)  eh)=c(-h)=~ 3 (Ya(ts) = V) (Yaltiop)) = Ya) -

i=|h]+1

We confine our discussion into the case when the kernel function k(z) satisfies
the following three conditions: (i) k(z) = k(—z), (i) k(z) is continuous and
bounded in [—1, 1], (iii) there exist ¢ > 0 and k > 0 such that

(4.9) lim LR _ 5o,

=0 Jalf

Hence we have an idea that we could use the relation (4.6) for estimation. It
may be natural to construct a class of estimators on o by making use of the
kernel type estimation methods for the spectral density f (A). The resulting
estimator is given by

(4.10) 62 = 27 £, (0).

In order to state the asymptotic properties of this type of estimators, we
further make the following assumptions on {Y, (%)}

Assumption C: The stochastic process Y (t;) is a weakly linear station-
ary process

(4.11) Ya(t:) = D, axua(tios),

13



where

(4.12) > okl < oo,

k=~—o00

and u,(t;) are independently distributed random variables with Elu,(t)] =
0,E[un (t)°] = 02, and E[u, ()] < +oo0.

Then it can be shown that the above estimators on the volatility param-
eter o2 are consistent and asymptotically normal. The proof is similar to
those of Theorems 9.4.3, 9.4.4, and 9.4.5 of Anderson (1971) and so omitted.

Theorem 4 In addition to Assumption C, suppose (i) K, — +oo, K,/n —
0, and K9*' /n — 0 as n — oo for some ¢ > 1; (1)

(4.13) T |hfo(R)] < +oo.

h=-—00

Then as n — oo

n

(4.14) 7 (53 - 02) — N (0, 20* [.11 k(z)? dm) .

For an illustration, we give an example of estimator on ¢. The modified
Bartlett estimator for the spectral density, which has been well-known in sta-
tistical time series analysis (see Chapter 9 of Anderson (1971)) is constructed
by the kernel function

(4.15) k(z)=1-|z| (Jz] <1).

The resulting estimator of o based on this kernel function is given by

i ) )

K,

Kn
(4.16) 62(B)= 3. (1 -

h=—Kpn

14



which is incidentally identical to the estimation method proposed by Newey
and West (1985) in econometrics. In this case, if we take ¢ = 1, the conditions
in Theorem 4 are such that K, /n — 0 and K?/n — 0 as n — +oo and the
asymptotic variance is given by

1
(4.17) 204/ k(z)’dz = %a“.
-1

There are many possibilities to choose the kernel function k(z) to estimate
the spectral density. Some of them have been discussed in Chapter 9 of
Anderson (1971) in some details, for instance. Hence it is also possible to
construct consistent estimators of the volatility parameter in many ways.

Using the framework of the continuous stochastic process, Parkinson
(1980) has proposed to use the range of the L(t) = In[S(t)]. In order to ex-
plain his method, let the range of L(t) in the i-th interval I; = [(i — 1),7)(: =
1,---,T) be
(4.18) I, = r{g??([/(t) ~ min L(%).

Then the extreme value estimator proposed by Parkinson (1980) is given by

T
(4.19) 6%(p) = @%W S

=1

Instead of the original range of L(t), Kunitomo (1992a) has proposed to use
the adjusted range of L(t). Let

(4.20) Li(t) = L(t) = L(i — 1) = [t = (¢ = DI[L(E) — L(s = 1)]
fori—1<t<i(i=1,+-+,T) and define the adjusted range by
(4.21) R; = max Li(t) - min Li(t).

Since the stochastic process {L*(¢)} is the continuous Brownian bridge pro-
cess in each interval I;, it is free from the drift term of the original stochastic

15



process S(t). For the method by Parkinson (1980), the range /; does depend
on the drift term of the original stochastic process. Then the estimator of o
proposed by Kunitomo (1992a) is given by

(4.22) 52(k) = (%—2‘17:) éRf.

As we have proved in Theorem 1, the discrete stochastic process Sy(?)
converges weakly to the geometric Brownian motion process S(t). Let further
divide the interval I;(i = 1, -+ -, T) into n intervals and suppose we observe the
weakly dependent discrete security prices at the time t = ki/n(k = 0,---,n).
Then by the weak convergence of S, (t) in Theorem 1, we have

d
(4.23) max Sn(t) = r&aff{S(t)
and
. d .
(4.24) min Sp(t) — min S(t)
as n — oo.

Hence we can approximate the distribution of S,(t) in each interval I;
by the corresponding continuous process S(t). (See Billingsley (1968), for
instance.) Kunitomo (1992a) has shown that the estimator o2(k) is unbiased
and the efficiency is about 10 against the standard variance estimator based
on the continuous Brownian Bridge process. The appealing feature in the
estimation methods by Parkinson (1980) and Kunitomo (1992a) may be due
to the fact that they are extremely simple and utilize only a small number
of observations in each interval. On the other hand, the class of estimation
methods discussed in this section utilize available information fully in each
interval. The latter methods enjoy some desirable statistical properties as n
tends to infinity because they are using more and more observations in each
interval. On the contrary, the former type of estimation methods could be
interpreted as some practical ways of estimating the volatility parameter o,
which can be implemented in the empirical studies easily.

16



5 Proof of Theorems

(i) Proof of Theorem 1:  The key idea for the proof is to use the func-
tional central theorem given by McLeish (1977). Without loss of generality,
we take T' = 1. Then for any fixed ¢ € [0, 1], we have

InS, ([’:f]) ~InS,(0) = lnﬁ[sf(t(t_)l)}

(5.1) ]
= Y In[l+ X, (t)].
1=1
By the Taylor expansion, we have
(5.2)
[nt] {nt]
S hl+X,(t)] = Yo [1+"Hn(t )]
i=1 1=l
A SR [Yn (ti)} 1 [Yn (ti)r
ST+t | Ve | 25 s ) L VP
+ lz [ n t ] ,
P [1+%9n(t,~)]3 Jn

where |, (t;) | < |ptn () ]- The first term of (5.2) is re-written as

[nt] [nt]

(5.9) )+ (14 ] L (8] = ~an (1))

z-l

We note that

it . i
(5.4 230 = () r )

as n — +oo because of (2.5). Also since

17



[nt] [nt] 112
(55) ;lln[l'l'_ﬂn(t)]”"”n(t)‘_;§[1+_: (t)] [H'\‘/(;;)} !

and

[nt] 1 [nt]
59 Llm@P< | | Sk e—o

1<i<[nt] ' 1

as n — oo, the first term of (5.2) converges to tu as n — oco. Next, the
second term of (5.2) is re-written as

6.7 %Y (t) +% (el [ ).

t--]

The last term of (5.7) goes to zero as n — oo because the coefficients of
Y, (t;) are bounded for sufficiently large n due to (5.5) and (5.6). Under the
conditions (i) and (i) in Assumption I, we have

[nt]
(5.8) \}_ZY (t:) A o B(t)

=1

as n — oco. This weak convergence result has been first proved by McLeish
(1977). As for the third term of (5.2) is concerned,

(5.9) =3 Yo () D to?

as n — oo because of the condition (i). Then by using (5.7) the third term
of (5.2) converges to —to2/2 as n — oco. As for the last term of (5.2) is
concerned, it is less than

1 [nt]

310 () S0P < [ m e 0] Zlr 0 20

18



as n — oo. The convergence of the last term is due to the Lindeberge
condition implied by the condition (i). Hence (5.1) converges to

(5.11) t (u - i’é) + o B(t)

as n — oo. Finally, by using the Ito’s formula, we have (2.12) in Theorem 1.
O

(ii) Proof of Theorem 2:  The proof is similar to that of Theorem 1
and we use the functional central theorem given by Davidov (1970) instead
of McLeish (1977). Therefore, we omit its details. O

(i) In order to give the proof of Theorem 3, we shall first prepare the
following two lemmas. The first lemma is a simplified version of Theorem 2
of Kéno (1969).

Lemma 1 Let X(t) be the continuous fractional Gaussian process with 0 <
H < 1. Then as n — oo,

— —_— —— / _— 1/ )
(5.12) k§=1 | X (2") X( o ) | —C / |z| ﬁ_e dz a.s..

Proof of Lemma 1: Since this lemma is a special case of Theo-
rem 2 of Kéno (1969), we can use the basic line of his proof and nota-
tions freely. We take v(z) = z#,P(s) = s, and Q(z) = zH. We also
take [|Sa]| = 27" AM = 7 —th, = 27", AFX = X (i7) — X (), then
A"X ~ N[0,272#/"] because X (t) is a Gaussian process. Thus we have

2 k k-

(5.13) E {E | X (..._) -X (———1~> |1/H} =2"- leoe
= 2n 2" 2"

Let

2“

(5.14) B,=E [E Q(ATX(t)) — Cr .

k=1

19



Wetakea=8=1,0<b<2(1-H),0<pu< gg:z;;: < 1. Then

(5.15)
2
B, = (Z[t;‘_l-—t;'_lKZ—Im +E|t;‘__l—t;'_l|>2—yn) (E [Q (|A:"X|) Q (‘A?X')] - [-21—,;01 )
= B,(1) + Ba(2).
Then by the Cauchy=Schwartz inequality, we have

(5.16)
1B,(1)] < Clen 1 |<z-sn (\/E [Q(|A?X|)2] E [Q (IA;’XDZ] _ [5170]2)

— 1)7#
= o)
where c is a positive constant.
Next, we note that the second term of (5.16) is re-written as

(5.17)

112 1 T 1 i
E : —_ [H 1 Piy —C?
[2n] (/2 |m1x2| Ny (( zs ) , ( pz 1. )) dzidz, — C ) ,

67y =5, [>27en

where n, (-, ) is the 2-dimensional normal density with zero means and the
covariance matrix ¥, and

E[ATXATX]

0 Y BT BT

In order to evaluate B,(2), we notice that the integrand of B,(2) can be
re-written as

2452

(5.19) twllel/ﬂe" T B, (z1,2,),

where
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(5.20)
) exp (_ (“’(Pij) )(""1 “2)'2"0““)

B, (z1,23) = 1 = 5
(o122 (kam +(1-(5)")

-1
—(1+(p;;)2)(zf+x§)—2p;;xlzz) _ alal )
+ P( 4(1_(‘)3)2) P( 4 )

Then
' (er)’
|By (z1,22)] < || |
Vi) |G|
(1+(pyj)2)(x3+z§)—2(p;;)xlxz st
(5.21) + | () 2|

l P;; P?j ,
1=(en) " 1-(ep)
< =pisrl [+ 2] + 2]

- (e%)

where we have used the inequality |e™* — e™*| < |t — s| for any s,t > 0. Thus
if there are positive constants ¢/ and r such that

2 2
7| + | [mlzzz + P?,’xlﬂ?z] |

(5.22) B.@l < (5)

then

(5.23) 3 1Bal < co.
n=1

Let k = |i — j|. Then [t , —t"_;| < ;& implies that k > 20=#" — o0 as
n — oo.
For the fractional Brownian motion, the k—th autocorrelation is given by
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( | oL = %sz[ll_%‘2H+|l+%|2H__2]
5.24
(1-H)(1-p)
= o((®)"™™).

Finally, by the Borel=Cantelli lemma, we have

(5.25) Y Q(Aarx@)—C as.

n=1

O

Lemma 2 (i) If H > 3, then

2" _
(5.26) Y 1X (-&) -X (k 1) |?—=0 a.s.
=1 om on

(i) If H < 3, then

> k k—1
(5.27) Y lx (——) -X ) | = 400 a.s..
1 2n 2n
Proof of Lemma 2: If H > -12-, from Lemma 1 we have

(5.28)

Sr(e(3) -2 (5179 = <ol (a) -

— 0 a.s.

as n — o0o. By using the Borel=Cantelli lemma, we have

(5.29) m}?xlX (—zk—n) -X (kz—n 1) | =0 a.s.
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Then

(5:30)
() -x ()
< foss 1 (#) - X () [F S () - x (452

— 0 a.s..

Similarly, if H < %, we take 1> (' > % > o' and

(5.31)
Se(ix(g)-x(55) > s sl (E)-x ()

IA
o™
|
[ o)
]
3
——
=
<
TN
Sk
N———
I
e
N
Fond
N3
3
—
SN————
—
snm—
£

I
N
|
[V
~—
IH
[ S
R

as n — o0o. From Theorem 1, the left-hand side of
(5.32)

() ()
< [ (8) - x ()P S 1 () - x (S50 P

converges to C' a.s.. But from (5.12), the first term of the right-hand side of
(5.32) converges to zero a.s.. Then we have (5.27). O

L
lH

Proof of Theorem 3:  We notice that for any continuous martingale
M (t), there exists a quadratic variation process (M )(t) (see Ikeda=Watanabe
(1989), for instance). Thus
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(5.33) 5 [M (;) - M (’“2‘" l)r S (X)) as.

k=1

Alsoif (X)(¢) =0 a.s., then M(t) =0fort € [0,1] a.s.. If the continuous
process X (t) is a martingale under a probability measure P*, it should be a
continuous martingale. Then

(5.34) $ [X (_252) - X ("’2' 1)]2 S (X)) as.

k=1

under P*. Hence it holds also a.s. under P because it is absolutely continuous
to P*. However, if H < 1/2 then (X)(1) = 400, which is a contradiction. On
the other hand, if H > 1/2 then (X)(1) = 0. This leads to the conclusion
X() =0 a.s. for any t € [0,1] under P*, which is also a contradiction.
Therefore, there does not exist such P* if H # 1/2. O
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