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Abstract

This paper gives a general valuation formula for European options when
the underlying asset price follows the geometric Brownian motion process
with curved boundaries. Our valuation formula is derived by generalizing
the well-known formula for Brownian motion by Paul Levy to the case of the
geometric Brownian motion process with curved boundaries. Although the
general option pricing formula is expressed as an infinite series, our
numerical examples suggest that the convergence of the series is quite
rapid. Based on our general formula, we derive various valuation formula
for complex options with upper and (or) lower curved boundaries. Our
results include some valuation formulae already known for the options with a
lower boundary by Merton (1973) and for the path dependent options by
Goldman, Sossin and Gatto (1979) as special cases. We also discuss some
possible applications for valuing corporate securities and the practical
problem of hedging.



1. Introduction

Recently, various types of option contracts have been introduced in
financial markets. The payoff of the ordinary European option is uniquely
determined by the underlying asset price at its maturity date and does not
depend upon its historical path. However, other types of option contracts
have been appeared in financial markets and also discussed in textbooks on
options such as Cox and Rubinstein (1985), for instance. Among them, there
is a type of option contracts when the underlying asset price process is
restricted by an absorbing barrier. In this type of option contracts, they
are nullified when the underlying asset price reaches at a predetermined
price, which 1is called the knockout price. It seems that there exist some
option contracts of this kind in Tokyo financial markets according to a
recent issue of the NIKKEI FINANCIAL JOURNAL. Merton (1973) has already
presented the pricing formula for the options whose underlying asset price
is restricted by a floor absorption barrier. In other words, he derived the
valuation formula for the down and out call option, which expires whenever
the underlying asset price falls and touches the knockout price level. Cox
and Rubinstein (1985) also refers to the valuation formula for the up and
out put option, which is nullified whenever the underlying asset prices goes
up and touches the predetermined fixed upper knockout level.

The main purpose of this paper is to develop a new method of the option
valuation when the underlying asset price 1is restricted by two curved
absorbing barriers. In order to derive the valuation formula for the
option with }two curved boundaries, we first extend the Levy formula, which
has been well-known in probability theory. (See Levy (1948) or Hida
(1974).) Based on the generalized Levy formula (see our Theorem 2.1 in
Section 2), we give the general pricing formula for the option with two

curved boundaries (see our Theorems 3.1 and 3.2 in Section 3). The



resulting option formula is expressed as an infinite series of the log-
normal densities 1in the general case. However, our numerical examples
indicate that the convergence of the infinite series is quite rapid in most
cases. This implies that our general option formula may be useful in
practical situations. As a special case, we can derive the option [(ormula
when the underlying asset is restricted by a floor absorbing barrier, which
has been obtained by Merton (1973). Also by using the generalized Levy
formula we give the option pricing formulae for some path-dependent options
derived by Goldman, Sossin, and Gatto (1979).

This paper 1is organized as follows. In Section 2, we dcrive a
generalization of the Levy formula, which has not been known in probability
theory as well as 1in finance. Then we shall give the general pricing
formula for the options with two curved boundaries in Section 3. We also
examine the convergence property of the option formula by a number of
numerical experiments. In Section 4, we derive some valuation formulae for
the options with one absorbing barrier and one type of the path-dependent
options for illustrative purposes. We also discuss other possible
applications and a practical problem of hedging. Then we give some
concluding comments in Section 5. The proof of our main theorem is given in

Appendix.

2. A Generalization of Levy Formula

Let the underlying asset price S(t) at t follow the geometric Brownian

Motion process

(2.1) dS = uSdt + oSdw ,



where W(t) stands for the standard Brownian Motion, u is the drift parameter
and 0 is the volatility parameter. For this process of asset price wc shall

consider the FEuropean options with two curved absorbing barriers. Let the

5.8
upper and the lower absorbing barriers in the interval [0,t] be Be = and
628
Ae , respectively. For the sake of simplicity we assume B 2 A and
dlt 62t
Be z Ae , that 1is, two curved boundaries do not intersect in the

interval [O0,t]. The option contracts in this situation are described by
Figure 1. If the underlying asset price {St} starts at S0 and hit the lower
absorbing barrier at C for the first time, then the option contracts are
nullified. Similarly, if {St} starts at S0 and hit the upper absorbing

barrier at D for the first time, the option contracts are also nullified.

<Figure 1 should be around here.>

In order to determine the equilibrium option price with two knockout
prices, we need the transition density function of the stochastic process
{St} with two curved boundaries. Let

(2.2) L(t) = min S(s)
0ssst

be the minimum asset price in [0,t]. Also let

(2.3) M(t) = max S(s)
0ssst

be the maximum asset price in [0, t1. Then we have the following result on
the joint probability of three random variables (L(t), M(t), S(t)). The

proof is given in Appendix.



Theorem 2.1 : Suppose {S(t)} follows the geometric Brownian motion

62T élT
given by (2.1) with S(0) = S0 and IelAe , Be ].
62t 61t
that Ae < L(t) £ M(t) < Be for all te[0,T] and S(T)el is

Then the probability

_ ds
(2.4) Py = 1 § kn(S)]S ,
I n=-o

where

B" ¢, A cy 1nS—ln(SOB2n/A2n)—(u—02/2)T
(2.5) k (8) = () (—) < -9

A S0 OJT

AR InS-1n(A20*2/B20g )~ (u- & /2)T

S(—) e | . ,

SOB ayT

and ¢ = 2[u-6,-n(6,-6 )]/02 -1, ¢, = 2n(6,-6 )/02 c. = 2[u-6.+n(6, -
1n 2 1 72 A ¢ 1 72 ’ 73n 2 1

62)]/02 - 1, and ¢(-) is the density function of the standard normal
distribution.

This theorem is a generalization of the well-known formula by Levy
(1948) in probability theory. (See Hida (1974), for instance.) He derived a
similar density function for the standard Brownian motion {W(t)} with two
flat boundaries. In order to see this point, we make the transformation

X(t) = 1n(S(t)). Then dS/S = dX and the drift parameter n'o=ou - c?/z by

Ito's Lemma. Let
(2.6) Q(t) = min X(s)
0ssst
be the minimum of X(s) in [0,t] and
(2.7) m(t) = max X(s)
0ssst
be the maximum of X(s) in [0,t]. Then we have the following proposition.
4



Theorem 2.2 : Suppose X(t) is the Brownian motion with X(0) = X, and

eqs . <
Ie[v2+62T, Y1+61T]. Then the probability that Y2+02t < Q(t) £ m(t) < Y1+61t

for all te[0,T] and X(T)el is

(2.8) P, = (Y kﬁ(x)]dx,

I n=-o
where
1 ( 1 [ ]2 [
(2.9) k' (x) = — exp(- —, {[x-x,-u'T-2n(v -v,) %+ 4nTln(r; -v,) (6,6 )+v 6
n J2nT 2T02 0 12 1 2 1 72 172
- ¥p8,7M (Yl—Y2)+X0(61—62)]}]
(— Al 2
- — exp(-——,{[x+x,-u'T-2v,-2n(v,-Y,)
V2nT 2T02 0 2 21
v ATy, =v,)-Yoxo ] [n(8;-65)-6,+u" 1}].
Further if we set XO = 61 = 62 =u' =0 and g = 1 in the above formula,

the kernel density kﬁ(x) becomes

— o[—2 ],

VT YT

x—2n(ylfv2H x-2v,, +2n(y -Yz)

(2.10) kl(x) = o[

which is called the Levy formula in probability theory. Hence our Theorem
2.1 generalizes the Levy formula in two respects. One aspect is that our
result is for the geometric Brownian motion. The other aspect is that we
use some curved absorbing boundaries instead of two flat absorbing

boundaries. In this sense Theorems 2.1 and 2.2 may not be a trivial



extension of the Levy formula, which has been well-known in probability

theory.

Corollary 2.3 : Suppose S(t) is the geometric Brownian motion given by

6,T
(2.1) with S(0) = SO‘ Then (i) for an arbitrary interval IelAe 2 , +o] the

5,1t
probability that Ae 2 . L(t) for all te[0,T] and S(T)el is

1ns-1n§)—(u—02/2)T

(2.11) P, = 1 {¢]
1

ayT

2 2 2 2
A 2(u-6,-0/2)/0 1nS-1n(A“/S,.)-(u-0"/2)T
= 2 -0 0 N,

S
So oyT

5. T
and (ii) for an arbitrary interval Ie[-»,Be 1 ] the probability that

6.t
M(t) < Be 1 for all te[0,T] and S(T)el is

1nS—1n%)-(u—02/2)T
(2.12) P, = r{9] ]
1 /T

B 2(u—61~02/2)/02 lnS—ln(Bz/SO)—(u—dz/Z)T i
- (=) | 1) &

S
So oyT

This corollary can be obtained formally by letting B go to infinity or A
go to zero in Theoremn 2.1. A more rigorous proof can be obtained by a
similar argument as in Appendix. As we shall show in Section 4, the result
by Merton (1973) on the options with a floor boundary is a direct

consequence of the first part of Corollary 2.3.



3. A General Option Formula with Curved Boundaries

We assume that the asset price S(t) for te[0,T] is described by the
geometric Brownian Motion (2.1) with two absorbing barriers. Let St be the
current asset price, ¢ is the volatility parameter, T is the maturity date
of option contract, and E stands for its exercise price. Let also r(t) be
the risk-free interest rate, which is assumed to be independent of {W(s),
s£T}. In order to evaluate the price of option contract, we shall use the
risk-neutralized method developed by Cox and Ross (1976) and Harrison and
Kreps (1979). The value of European call option at t in the risk-

neutralized method is given by

T
—Itr(s)ds
(3.1) C(t) = e E[max(S(T)-E, 0)1S(t)=S]
—!{r(s)ds F —lEr(s)ds F
= e 7 S(T)f(S(T))dS(T) - Ee ¢+ F(S(T))ds(T),
E E
61T
where F = Be and E(-) is the expectation operator taken with respect to

the risk-neutralized density function £(S(T)) of S(T) given S(t) = S. Since
the integrands in (3.2) are bounded, we can make use of the Lebesgue bounded
convergence theorem. Assuming that r(t) = r (constant) in te[0, T], we have

the following result.

Theorem 3.1: The value of call option at t which is nullified before
its maturity date whenever the underlying asset price {S(t)} reaches at the
upper Dbarrier Bexp(éls) or the lower barrier Aexp(égs) for any sel[t,T] is

given by



B“ *

(3.2) C(t) =S z {( “1n (éacznlo(d ) - 6(d, )]
’ = - g in 2n

n+l

an
- (=) Medy) - eld, ) ])

B"'s

Bt -2Ac

Cpe T () ) 2eddy o) - 04y oV
n=-a A S

-2
[e(d, - ovt) - e(d, - a/t) 1},

6 .T
* . L _ 2 * _ - 1
where Ciy = 2[r 62 n(é1 62)]/0 +1, - 2[r 62+n(6 6 )]/0 +1, F = Be

T = T-t,
2n 2n 02
In(SB“ /EA®") + (r + 3 )T
(3.3) dln = ’
OJT
2n 2n 02
In(SB“ /FA®") + (r + 3 )T
(3.4) dzn = s
oyt
2n+2 02
In(A /ESB + (r + 5 )T
(3.5) d3n = 5
OVT
2n+2 02
In(A /FSB ) + (r + 3 )T
(3.8) d = )

4n 0\/_(

and ®(-) is the distribution function of the standard normal density.



Although the general formula in (3.2) 1looks very complicated, the

leading term corresponds to the Black=Scholes formula (Black and Scholes

(1973)). To see this point, we notice that there are four terms in (3.2)

with n = 0. Further, if there is not any upper as well as lower boundary,

we take A = 0 and B = +®, Then three terms with d, , d, , and d
2n 3n 4n

disappear, and the resulting expression is identical to the Black=Scholes
formula. When there are upper and lower boundaries in the general
case, however, we need other terms with n * 0 because of the reflection
principle as in the theory of the standard Brownian motion. In this sense
(3.1) is a generalization of the Black=Scholes formula.

Similarly, the price of European put option at t with two absorbing

boundaries can be calculated by

T
—ftr(s)ds
(3.7) P(t) = e E[max (E-S(T), 0)18(t)=S]
-f1r(s)ds E Tr(s)ds E
= Ee ! £(S(T))dS(T) - e f S(T)f(S(T))ds(T),
F' F'
62T
where F' = Ae . Assuming that r(t) =1 (constant) in te[0, T], we have

the following result.

Theorem 3.2 : The value of put option at t which is nullified before

its maturity. date whenever the underlying asset price reaches at the upper

barrier Bexp(éls) or the lower barrier Aexp(dzs) for any se[t,T] is given by

ot Bn c;n A C2n
(3.8) P(t) = —sng_m{(zﬁ) (g) [@(dln) - ¢(d2n)]



where

(3.9)

(3.10)

(3.11)

(3.12)

and F'

We notice that the simple put-call parity relat
general
hit the upper or lower boundaries in [t,T], but we ar
events would occur.

boundaries

- (=) [(d) ) - &(d; )1}
an 3n 4n
ot B ¢ 12 A 02n
+ Z {(——) [o(d] - ovr) - of
n=- A S
A -2
- ( I ) [Q(dsn- at) - Q(d4n— /1) ]}
B'S
2n 2n 02
In(SB“"/F'A™") + (r + 3 )T
d' = ’
in 0\/_(
2n 2n 02
In(SB“/EA®") + (r + 35 )T
d, = ,
2n ot
2n+2 02
In(A /F' SB ) + (r + 3 )T
d! = ,
3n a1
2n+2 2n 02
In{A JESB“") + (r + 5 JT
d! = ,
4n 0\/1_

62T

This is due to the fact that there are some probabilities to

10

dén_ av1) ]

jon does not hold in the

e not sure when these
In the term of probability theory, the hitting times of

are stopping times. Therefore, we cannot make use of the usual



justification for the put-call parity relation. When we take n = 0 in
(3.8), there are four terms as in (3.2). As A - 0 and B - +%, three terms

with d2n’ d

3n° and din disappear and we have the put-call parity relation in

the limit.

In general, the option formulae with two curved boundaries in Theorems
3.1 and 3.2 are expressed as infinite series of the weighted normal
distribution functions. Although the proof of the above Theorems in
Appendix show that these infinite series converge, the rate of convergence
could be quite slow at this stage. Then in order to study the speeds of
convergence properties of the infinite series in these option formulae, we
have conducted a systematic numerical investigation. The numerical study

may shed some light on the practical usefulness of the general formulae.

<Insert Table 1 around here.>

Table 1 exhibits the call option premium based on our formula (3.3).
To see the effect of two simultaneous absorbing barriers imposed, we assumed
some realistic parameter values and various combination of upper and lower
knockout prices. In every case, it is assumed that S = 1000 (yen), r = 5%
(per annum), and E = 1000 (ven). As for the volatility parameter, three
cases are considered from 20% to 40% (per annum). For the time to maturity,
three values are assigned to 1, 1i.e., 0.0833, 0.25, and 0.5, which
correspond to one, three and six months, respectively. Column (a) assumes

(61, S = (0.1, -0.1), i.e., a convex upward upper boundary with a convex

2)
downward lower boundary. Column (b) assumes (61, 62) = (0, 0), which

indicates two flat absorbing barriers. Column (c) sets (61, 62) =

11



(-0.1, 0.1) and the upper barrier is exponentially decaying while the lower
boundary is growing exponentially as time elapses. As the extreme case with
A = 0 and B = +x, the ordinary Black Scholes call option value is reported

in the first low.

<Insert Figure 2 around here.>

In every case the closer two curved boundaries are, the less the option
value is, reflecting the increasing probability of absorption before the
maturity date. If two boundaries are apart enough as 1 becomes largcer, the
call premium increases as for the ordinary option. If two boundaries are
closely located, however, the value of call option dereases as t becomes
larger because of the high absorption probability. The volatility has a
similar two-way effect on the call premium. Increasing volatility enhances
the value of option as a hedging instrument, but at the same time the chance
of Dbeing nullified by hitting the barriers becomes higher in the volatile
market. It is noteworthy that as the value of B/A decreases, the decrease
of the call premium is slow to a certain level depending on other parameter
values, and after that point the decrease of premium becomes vivid. This
phenomenon is induced by the tail behaviour of log-normal distribution
function. Note that the Levy formula decomposes the restrictd Brownian
motion process into infinite number of unrestriced Brownian motions by means
of the so-called reflection principle. As the range between upper and lower
barriers is Widended, the absorbing probability decreases rapidly since the
probability of the corresponding unrestricted Brownian motion reaching the
further boundary decreases exponentially.

Table 2 picked up 18 premium values from Table 1 to investigate the

speed of convergence of the infinite series. We only show the case of

12



column {a), an upward upper barrier and a downward lower barrier case, since
we found similar tendency in other cases. The series have been calculated
in the order of n =0, n = +1, n=-1, n= +2, n = -2, ---. Notice that all

the reported values are rounded to the 10_5 digit level.

<Insert Table 2 around here.>

When (A, B)

i

(400, 1600), in all cases it suffices to take only the
first term of n = 0. When (A, B) = (900, 1100), the option premium
decreases drastically and taking 3 to 6 terms is requred achieving the
preciseness in 10—5 level. In most cases, however, the increment except
the first term is negligible when the t is one month, i.e., when the time to
maturity 1is short. When (A, B) = (950, 1050), only 50 yen of instaneous
change in asset price (5% of current price level) nullifies the option
contract and this example shows such contract has negligible values. In
this case, in order to achieve the preciseness in 10—5 level, we need 6 to
10 terms when Tt is six months and 3 to 6 terms when t is one month,
respectively. It should be emphasized, however, that even in this very
extreme example, the inclusion of only several terms can approximate the
option premium sufficiently for practical purposes. These numerical studies
suggest that our general formula 1is useful although it 1looks very

complicated.

4. Some Applications

4.1 An Option Formula with One Absorbing Barrier

The general option pricing formulae we have obtained in Theorems 3.1
and 3.2 include some option formulae as special cases. The first example in

our formulation is the option formula with a curved boundary. Let B go to

13



infinity in Theorem 3.1. Then all terms in the infinite series except n = 0

converge to zero. Then we have the following results.

Corollary 4.1 : The down and out call option price at t with a knockout

price, which is given by the curve Aexp(dzs) (se[t,T], A<S) is

In(S/E)+(r+02/2) 1
0\/'(

(4.1) c(t) = s{ol

A {2(r—62)/02}+1 1n (A2 /SE) + (r+d®/2) 1
- (—) ¢[ ]} ’
S oWt

i In(S/E)+(r-2/2)t
- e E{¢] ]
ot

A {2(r-62)/02}—1 [ln(Az/SE)+(r—02/2)r
- (=) )
S O\/T

A rigorous proof of this corollary is similar to the one given in
Appendix. Notice that Merton's formula [1973] (equation (55) in Page 175),
expressed in its error function form is the same as the above formula by
setting A = DbEexp(-nt), and 62 = n in (4.1). He sets the upward growing
boundary with n > 0. Also Cox and Rubinstein [1985]'s formula for the flat
barrier case can be easily obtained by equating 62 =0 in (4.1).

For the put option with one curved boundary, we let A go to zero. Then
all terms in the infinite series except n = 0 or n = -1 disappear. Again

this 1line of arguments can be justified rigorously as in Appecdix. In this

case we have the next result.

14



Corollary 4.2 : The up and out put option price at t with a knockout

price, which is given by the curve by Bexp(éls), (selt, TI, B > SO) is given

by

In(E/S)-(r+02/2) 1

(4.2) P(t) = -S{&]
Gv'T

B [2(r—61)/02]+1 In(SE/B2) - (r+d®/2) 1
- (=) o[ 1}
S 0\/ T

rt In(E/S)-(r-c%/2)t

+ Ee {0]
0\/'1’
B [2(r~61)/02]—1 [1n(SE/B2)—(r—02/2)r
- (=) )
S VA

When 61 = 0, the above put option formula is identical to the one given
by Cox and Rubinstein (1985). In addition to the above options in
Corollaries 4.1 and 4.2, there can be two more cases when there is an upper

or lower boundary. However, it is straightforward to derive the resulting

formulae for these cases from Theorems 3.1 and 3.2.

4.2 Option Formulae for Lookback Options

The second application of our formulation is the valuation problem for
lookback optidns first introduced by Goldman, Sossin and Gatto (1979). They
considered the pricing of call option, which is the right to sell the asset
at the highest realized price at its maturity. Let L(t) be the lowest price

during [0,t]. Then the maturity payoff of this call option is

15



(4.5) C(T) = S(T) - L(T).

When we take L as the lowest price already realized during [0, t] and define
LT as the lowest price during the remaining future period [t, T}, then we
have L(T) = min(LT, L). By the risk-neutralized method, the present value

of this option can be obtained by

(4.6) C(t)

i

e TT(E[S(T) - LylL>L]-P(Ly>L) + EIS(T) - Ly L SL]-P(L, L))

e TY{E[S(T)] - L-P(Lp>L) - E[Ly | LpSL1P(LpSL) ),

]

where t = T-t. Another type of option discussed by Goldman, Sosin and Gatto
(1979) is the put option, which is the right to buy the asset at the lowest

realized price at its maturity date. The maturity payoff of this option is

(4.7) P(T) = M(T) - S(T),

where M(T) 1is the highest price during [0, Tl. When we take M as the
highest price already realized during [0. t] and define MT as the highest
price during the remaining future period [t, T], then we have M(T) = max(MT,
M). By applying the risk-neutralized method, the present value of the put

option can be obtained by

I

(4.8) P(t) = ¢ " {E[M - S(T)IMT§M]-P(MT§M) + E[M, - S(T)IMF>M]-P(MF>M)}

e TH{M-P(M, £ M)- E[S(T)] + E[My, [M,>M] P (M >1) }.

In order to evaluate the expected values in C(t) and P(t), we nced the
distribution function of {L(t)} and {M(t)}. Setting 62 = 0 in Corollary

2.3, we have

16



(4.9) P(L(t) £ A) = 1 - P(L(t) > A)

In(A/S)-(u-a2/2)r A (2u/62)-1 In(A/S)+ (u-02/2) 1
_— ]+ (—) ol ]
oyt S oV

Similarly, setting 61 = 0 in Corollary 2.3 we have

(4.10) P(M(t) S B)

In(B/S)- (u-a2/2)t S -(2w/P)+1 1n(S/B)—(u—02/2)T]

= 0] 1 - (—) o[
oyt B oVt

Using the marginal density functions of L(t) and M(t), we obtain the

following results by Goldman, Sosis and Gatto (1979).

Corollary 4.3 : (i) The value of the lookback call option at t, which

is the right to sell the asset at the highest realized price at the

maturity, is given by

In(S/L)+(r-0%/2)1

(4.11) c(t) = 8 - Le "*{of
OJT

52 8 1-(2r/a2) In(L/S)+(r-02/2)t
- —(=) o[ ]
2r L OJT

62 1n(L/S)-(r+c2/2)t
- (1 + —)9] ]
2r T

17



(ii) The value of the lookback put option at t, which is the right to buy

the asset at the lowest realized price at the maturity, is given by

1n(M/S)-(r-02/2) 1
GJT

(4.12)  P(t) = -5 + Me " "{a]

02 S 1—(2r/02) 1n(S/M)—(r—02/2)r
- —() | ]
2r M oVt

02 ln(S/M)+(r+02/2)§

+ 8 (1 + —)o[
2r vt

We note that the method of our derivations is simpler than the one
given by Goldman, Sosin, and Gatto (1979). In addition to the valuation
problem of these lookback options, we can apply our method to other lookback
options. For example, we can think of the right to receive the amount equal
to the maximum realized price less of fixed exercise price E at its maturity
date. Another example may be the right to receive the amount equal to the
predetermined exercised price E 1less of the lowest realized price of the
asset. Using the same method as in Corollary 4.5, it is straightforward to

derive the pricing formulae for these options.

4.3 Valuing Corporate Securities

In previous sections, we have discussed only the option pricing
problems. However, as Black and Cox (1976) pointed out, a similar analysis
seems to be applied to a number of problems of valuing corporate securities.
In some corporate securities, there may be both natural lower and upper
boundaries at which the firm's securities must take on specific values. For

instance, Black and Cox (1976) referred to the problem of bonds with safety

18



covenants. The problem of its valuation is similar to the valuing option
with a curved lower boundary. Ingersoll (1977) also mentioned to the

problem of valuing a callable, convertible, discount bond with a call

policy. It is similar to the option pricing problem with a curved upper
boundary. There could be similar valuation problems of corporate
securities. Our method in this paper could be applied to such problems as

long as the boundaries are given exogenously as the exponential functions of

time.

4.4 Delta Hedging

At the first glance the hedging arguments for the options with curved
boundaries seem to be involved because the general valuation formulae in
Theorems 3.1 and 3.2 are rather complicated. However, this 1is not
necessarily the case. In order to understand this problem, we have
calculated the option delta from (3.2) for the call option. The resulting

formula is given by

n *

o B ¢ Ac
aCc(t) _ B In ;" 2n _
(4.13) =5 = HELW{(l czH)SG;) % ) “Tle(d, ) $(d,y )]
An+1 *
* 3n

, T *
- E "”OZO {(- )(E—)c“‘_z(j-x—)cz“[@(d - oyr) - @(d, - ovyr)]
€ I Can’'n 1n oVt on” © )
n=- A S
AL o g
3n
- (2-czn)(BnS ) [Q(dsn- oft) - @(d4n- ayt) ]}

0
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Bn c* Ac An+1 c*
1 E 1n 2n 3n
- G\E(l‘l’?)n:z..m{(ﬁ) (S—) ¢(d2n) - (Bré ) 4’(d4n)}.

Since the speed of convergence in (4.13) 1is quite‘rapid as for the general
option formulae in Theorems 3.1 and 3.2, we need only several leading terms
for the practical implementation of the delta hedging. When we take n = 0

in (4.13), there are four terms. As A~ 0 and B » +», we have

(a.14) 2 5 aqa ),
where @(dlo) is the well-known formula of option delta for the Black=Scholes

formulation. In this sense (4.13) is a modification of the usual option

delta.

5. Conclusions

This paper presents the general valuation formula for the European
options when the underlying asset price follows the geometric Brownian
motion  process restricted by two absorbing barriers which are the
exponential functions of time. In order to obtain the general formula, we
have derived a generalization of Levy formula, which gives the joint density
function of the geometric Brownian motion process restricted by two
absorbing barriers.

Although .our option formula is represented as an infinite series, we
demonstrated that the convergence rate is quite rapid. Our numerical
studies suggest that it suffices to calculate leading two or three terms in

most cases. Then we have derived some valuation formulae for the knock-out
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options as special cases. Also we have shown that the pricing of some path-
dependent options are easily obtained by the generalized Levy formula.
These examples and other examples mentioned to in Section 4 suggest that our
general formulation of the options with curved boundaries may be potentially

useful to some problems in finance.
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Appendix: Proof of Theorem 2.1

In order to prove Theorem 2.1, first we provc Theorem 2.2 when u' = 0

and 5 = 1. Let Y(t) be the standard Brownian motion with E(Y(t)) = O,

E[Y(t)]2= t, and Y(0) = 0. We take real numbers T, Y1 Y., 6 , and @3 such

2 1’
X < deas
that Y2 < Yl, vz + 02T s ﬁ_+ §lT, and T > 0. Then the conditional

probability that Y(t) 2 vyt élt for a smaller t (t<T) than any t for which

Y(t) = Yz + 62t given Y(T) =y (& vt QLT) has been derived by Theorem 4.2

in Anderson (1960), which is given by

®© 2
(A1) BT, y) = T expl—{ndv, (v,+ 6,T - ¥) + (-1)%v, (v,+ 6,1 = )
1 L R G 2Ya* O3

- n(n-1) [y, (vy+ 6,T - y) + VoY + 6T - y)1})

® 2
—(nl _ -
-nglexp[—T{n [Yl(Y1+ 6,7 y) + Y2(Y2+ 6,T v) ]

- n(n—l)Yl(Y2+ 62T-y) - n(n+l)Y2(Y1+61T-Y)}]-

Now we want to know the probability of a path touching the upper line before
the lower line for 0 £ t £ T, whereT is a fixed terminal time. The
unconditional density of Y(t) at t =T is ®(1/yT), where ¢(-) is standard

normal density. Let Ie[Y2+ 62T, Yt 61T] be an interval at time T. Then

y
(A.2) ! ¢[—-]P1 (T, y)dy
I T

1 I 1 5
= — [zexp~-{[y - 2Y," 2n(v1-v2)]

u varT I n=1 2T ' 4T[(Y1—Y2)n ¥ Yzl[(él‘éz)n + 52]}
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® 1
-~ 2 ) »
_nélexp—;;{[y - 2n(Y1—Y2)] + 4Tn[n(vl—vz)(61—62) + (Y1°2—Y261)]}]dy'

Similarly, let P2(T,y) be the conditional probability that Y(t) £ v,+ 6 t

2 2
for a smaller t (t<T) than any t for which Y(t) 2 v1+61t given Y(t) =y (2
Yy ot 62T). Then Pz(T,y) can be derived simply by replacing (Yl, 61) by (-
Yoo —62). Hence the unconditional probability that Y(t) £ Y2+ ézt for a

smaller t (t<T) than any t for which Y(t) 2 Yt élt is

y
(A.3) ;¢ —]PZ(T. y)dy
1 VT

00

1
. T ) e o o
i {[nglexp ZT{[Y’2Y2+ 2(n-1) (v;-v,) 17 + 4T[(v;-v,)n v 11(6,-6,)0-6, 1)

® 1
- L exp-—{ly + 2n(v -v,)
n=1 2T

12 4 4nln(v -v,) (6,-8,) + (Y,6,-7;6,)1})dy.

Then we notice that the joint probability that Y(T)el and Yyt 62t < 2(t)

A

m(t) < vt 61t for any t<T is given by

==
>
o
-3
1]

P( Y(T)el )

y y
o[ ~IP (T, y)dy - / o[ =]P, (T, y)dy .
VT | YA

P~

Rearranging each term in (A.2) and (A.3), (A.4) becomes

1 ® 1
- - _ ) 2 ) ) .
(A.5) t {[DE-:xp 2T{[y 2n(y, yz)] + 4Tn[n(v1 Yz)(él 52) + (v6, Yzél)]}
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® 1
y 12 _
_néﬁzxp-;;{[y—zvz + zn(vl—vz)] + 4T[n(Y1-Y2)*Y2][n(ol-éz)—éz]}]dy.

Next let X(t) (0StsT) be the Brownian motion starting at Xy with the drift

parameter u* and the instantaneous variance 02. We shall obtain the joint

probability that X{(T)el and Y2+ 62t < Q(t) £ m(t) < v1+ élt for any ts£T. By

applying the Maruyama=Girsanov change of measure theorem (Maruyama (1954)

and Girsanov (1960)) to X(t), it is given by

& *#2 N
1 u u T Y ~X +6 T v ,-X 6 X-X
(a.6)  PH(T) = 1 —expl-y(xxg) - —5 Ikl 10 1 20 2 , —2Jax
I a a 20 b} a o

where

(A.7) k(Y1 + 61T, 12 + 62T, X)

1 ® 1
o T 2 ) . .
~J2nT [ng_zxp 2T{[x 2n(Y1 vz)] + 4Tn[n(v1 Yz)(é1 62) (Yléz Yzbl)]}

® 1
2 -
- ngngp—;;{[x—2v2+ 2n(Y1—Y2)] + 4T[H(Y1‘Y2)—Y2][n(ol—éz)—éz]}].

Then

o x-X ~2n{y -y )—u*T
g P = sl f o[——1F

I n=-o ay/T

2n
-exp{—E[u*(vl—yz) - (Y, -Yy) (6,-85) - (v,%g) 6y * (vz—xo)éll}
d

o X+X -2Y #2n{y Y T ou”
-y o[ ——2— 1Y em( 5 [y g - n(q )
»]

n=-® ayT

24



2
-exp{_§I~n(Yl—12) t ¥y - xo][n(él—éz) - 62]}]dx .
ag

Finally, we consider the transformation S(t) = exp[X(t)]. Then the drift
parameter W = TR 02/2 by Ito's lemmma. Here we notice that the linear
boundaries are transformed to the exponential curved boundaries. Let

A = exp(vz) and B = exp(vl). Then the joint probability that S(T)el and
62t 5, t

ae 2 < L(t) S M(t) < Be b for any t (ST) is given by

" (2u/6%)-1 A" (6169 S g8 A 8 12n/a2
(—) ) ]
S

(A.9) P (M =1 {1
I n= 0

(—) (—)
n=- An Bn

1nS-1n (S B2%/A%M) - (u-02/2)T
9] 0 ]
T

o A (w1 A"
-5 ) (——)

_ n
n=- SOB Brbo

2[n(61—62)ﬂ62]/5

2n+2

InS-1n(A /SOan)-(u-az/Z)T ds

-9[ 1}-
T S
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Table 1
The Value of Call Option with Two Curved Absorbing Barriers

(8 = 1000, r = 0.05, E = 1000)

(1)o0=0.2
1=1/12 1=1/4 T=1/2

A B (a) by (c) (a) (b) (c) (a) (b) (c)

0 +00 25.12 25.12 25.12 46.15 46.15 46.15 68.89 68.89 68.89
400 1600 25.12 25.12 25.12 46.15 46.15 46.14 68.64 68.14 66.93
500 1500 25.12 25.12 25.12 46.14 46.12 46.07 67.78 66.13 62.75
600 1400 25.12 25.12 25.12 45.97 45.76 45.35 64.63 60.06 52.50
700 1300 25.12 25.12 25.12 44.38 42.99 40.81 55.20 45.65 33.45
800 1200 24.88 24.76 24.58 35.13 30.39 24.67 34.58 22.08 10.86
850 1150 23.21 22.54 21.69 24.52 18.49 12.47 20.88 10.22 2.52
900 1100 16.17 14.40 12.50 11.06 6.21 2.60 7.55 1.79 0.01
930 1070 8.53 6.69 4.96 3.77 1.23 0.15 1.83 0.10 0.00
950 1050 3.39 2.15 1.17 0.76 0.08 0.00 0.23 0.00 0.00

The columns (a),(b), and (c) represents the case when (61, 62) = (0.1,-0.1),
(61, 62) = (0.0, 0.0), and (&, 62) = (-0.1, 0.1), respectively.

{2) 0=0.3
t=1/12 t=1/4 t=1/2

A B (a) (b) {c) (a) (b) (c) (a) (b) (c)

0 + 0 36.59 36.59 36.59 65.83 65.83 65.83 96.35 96.35 96.35
400 1600 36.59 36.59 36.59 65.18 64.77 64.17 85.88 80.06 72.22
500 1500 36.58 36.58 36.58 63.49 62.34 60.75 76.57 67.88 57.31
600 1400 36.56 36.54 36.53 58.47 55.72 52.28 61.48 50.23 38.10
700 1300 36.01 35.84 35.62 46.29 41.31 35.78 40.54 28.90 18.22
800 1200 30.55 29.45 28.21 24.94 19.31 14.02 17.48 9.26 3.54
850 1150 22.14 20.36 18.51 13.01 8.60 4.99 7.26 2.50 0.37
900 1100 10.01 8.31 6.71 3.14 1.29 0.00 0.96 0.08 0.03
930 1070 3.28 2.27 1.45 0.37 0.05 0.00 0.05 0.00 0.00
950 1050 0.58 0.27 0.11 0.01 0.00 0.00 0.00 0.00 0.00
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(3)0=0.4

r=1/12 1=1/4 1=1/2

A B {a) (b) (c) (a) (b) (c) (a) (b) (c)

0 +o0 48.05 48.05 48.05 85.53 85.53 85.53 123.9 123.9 123.9
400 1600 48.03 48.03 48.02 77.56 75.28 72.52 81.60 71.53 59.60
500 1500 47.89 47.85 47.79 69.54 65.84 61.63 64.85 53.35 41.70
600 1400 46.95 46.72 46.44 55.90 50.76 45.26 45.23 34.22 24.05
700 1300 42.32 41.67 40.52 36.34 30.69 25.15 25.08 16.45 9.44
800 1200 27.63 25.84 24.01 14.81 10.69 7.17 7.34 3.14 0.76
850 1150 16.14 14.35 12.61 5.67 3.26 1.59 1.74 0.37 0.02
900 1100 5.08 3.97 2.99 0.57 0.15 0.00 0.05 0.00 0.00
930 1070 0.88 0.52 0.27 0.01 0.00 0.00 0.00 0.00 0.00
950 1050 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 2

Convergence of Infinite Serics

(s = 1000, r = 0.05, E = 1000, 61 = 0.1, 62 = ~-0.1)
(1)0=0.2

A = 400 A = 900 A = 950

B = 1600 B = 1100 B = 1050
n 1=1/2 T=1/12 1=1/2 t=1/12 t=1/2 =1/12
0 68.63629 25.12067 9.04900 16.17595 1.88621 3.82211
+1 68.63629 25.12067 7.54197 16.17484 -0.26278 3.39105
-1 68.63629 25.12067 7.55348 16.17484 0.26271 3.39233
+2 68.63629 25.12067 7.55348 16.17484 0.22598 3.39233
-2 68.63629 25.12067 7.55348 16.17484 0.22702 3.39233
+3 68.63629 25.12067 7.55348 16.17484 0.22701 3.39233
-3 68.63629 25.12067 7.55348 16 17484 0.22701 3.39233
+4 68.63629 25.12067 7.55348 16.17484 0.22701 3.39233
-4 68.63629 25.12067 7.55348 16.17484 0.22701 3.39233
+5 68.63629 25.12067 7.55348 16.17484 0.22701 3.39233
-5 68.63629 25.12067 7.55348 16.17484 0.22701 3.39233
(2)0=0.3

A = 400 A = 900 A = 950

B = 1600 B = 1100 B = 1050
n t=1/2 1=1/12 1=1/2 t=1/12 1=1/2 1=1/12
0 85.88228 36.58566 3.32389 10.15675 0.60315 1.47683
+1 85.88228 36.58566 0.59860 10.00883 -0.58860 0.49392
-1 85.88228 36.58566 0.97271 10.00884 0.24209 0.58034
+2 85.88228 36.58566 0.96384 10.00884 -0.06087 0.57914
-2 85.88228 36.58566 0.96393 10.00884 0.00866 0.57914
+3 85.88228 36.58566 0.96392 10.00884 -0.00029 0.57914
-3 85.88228 36.58566 0.96392 10.00884 0.00051 0.57914
+4 85.88228 36.58566 0.96392 10.00884 0.00047 0.57914
-4 85.88228 36.58566 0.96392 10.00884 0.00048 0.57914
+5 85.88228 36.58566 0.96392 10.00884 0.00048 0.57914
-5 85.88228 36.58566 0.96392 10.00884 0.00048 0.57914
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(3)0=0.4

A = 400 A = 900 A= 950

B = 1600 B = 1100 B = 1050
n 1=1/2 1=1/12 t=1/2 1=1/12 t=1/2 1=1/12
0 81.59726 48.03399 1.51228 5.84362 0.26059 0.68685
+1 81.59726 48.03399 0.71756 5.07620 -0.36595 -0.19725
-1 81.59726 48.03399 0.16767 5.08000 0.26839 0.07544
+2 81.59726 48.03399 0.04559 5.08000 ~(0.14840 0.04795
-2 81.59726 48.03399 0.05486 5.08000 0.05340 0.04919
+3 81.59726 48.03399 0.05463 5.08000 -0.01587 0.04917
-3 81 59726 48.03399 0.05463 5.08000 0.00315 0.04917
+4 81.59726 48.03399 0.05463 5.08000 -0.00054 0.04917
-4 81.59726 48.03399 0.05463 5.08000 0.00006 0.04917
+b 81.59726 48.03399 0.05463 5.08000 -0.00001 0.04917
-5 81.59726 48.03399 0.05463 5.08000 0.00000 0.04917
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Figure 1 : Geometric Brownian Motion with Two Curved Boundaries
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