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ABSTRACT

Nash equilibrium has been tremendously useful in understanding economic problems in which
strategic behavior is important. The theoretical foundations of the solution concept often include the
assumption that the game to be played is common knowledge, an assumption that often seems not realistic,
particularly in games involving large numbers of players. In this paper we introduce the concept of norm
equilibrium for random matching games. A norm equilibrium essentially a Nash equilibrium that implicitly
relies on substantially less information than the traditional common knowledge of the game. We use norm
equilibria to provide a type of folk theorem for random matching games and to analyze the effect of
increasing the numbers of players in a random matching game.



1. Introduction

As incomplete information and strategic behavior have become important topics in understanding
economié phenomena, game theory has come to play a critical role in economic thinking. Many applications
of game theory have proven useful in conceptualizing and analyzing problems in conflict situations.

Nevertheless, in many applications of game theory to economics there has been an increasing
uneasiness in interpreting the results and making predictions based on the theory. The vast majority of the
papers of the work using game theory to analyze economic problems uses Nash (or Bayes Nash) equilibrium
as the solution concept. This solution concept is sometimes justified on the grounds that it is the only
rational choice if players can solve the infinite regress of the chain argument, "I think that you think that
I think that...," provided that all the structure of the game is common knowledge.

This complete information interpretation, though a viable and consistent justification for Nash
equilibrium, has weaknesses.! First, if the game has multiple equilibria, tﬁis interpretation does not specify
how players coordinate or focus on a specific equilibrium. This is an especially serious problem in super
(or repeated) games, which tend to have a large (generally infinite) set of Nash equilibria.

Second, the assumption that the game (its strategies, payoff functions, information sets, etc. of all
the players in the game) is common knowledge often appears very restrictive, particularly for applications
involving asymmetric information. Here, each player is assumed to have full knowledge of what possible
information each player might have, and each player is assumed to know that all other players have such
full knowledge, and so on. In short, the exact structure of how information is not perfect is common
knowledge.

Even in the case that there is no uncertainty fundamental to the problem, the assumption of
common knowledge often seems unrealistic, especially for games with many players. For example, as in
Aumann [1987] we can think of the entire economy as a game and all economic outcomes as a Nash (or
correlated) equilibrium. The assumption that we know the set of players, let alone their preferences and/or
strategies, seems heroic.?

This paper proposes an alternative theory of human behavior in conflict situations. Our theory will
stress the importance of social norms and standards of behavior in individual decision-making. The norms
and standards will serve primarily to facilitate coordination among players. Our model will provide an

alternative interpretation of Nash equilibrium which, we believe, is less susceptible to some (but certainly

1 For more general and fundamental criticisms of this interpretation of Nash equilibrium, see, for
example, Binmore [1987].

2 For a related discussion and a definition of a solution concept motivated by concerns similar to
these, see Kaneko [1987].
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not all) criticisms leveled against existing interpretations.

We should stress that we are not proposing a solution concept different from Nash equilibrium, but
rather we are proposing an alternative to existing interpretations. We do not reject the standard
interpretations in all cases; for many problems it may be appropriate, particularly for games that are new
and novel to the players and which are isolated from other games in which the players may be involved.

In the next section, we will provide definitions of the basic components of our model. We will
present the formal model in section 3 and our concept of norm equilibrium in section 4. Section 5
contains several simple examples of norm equilibria and of our results. Section 6 extends the model to
the case of a finite population while section 7 contains a discussion of our results including related

literature.

2. Motivation

Our view in this paper is that to understand human behavior in a situation in a society, one should
consider the behavior of all the members of the society in all possible situations simultaneously. Traditional
game theory can, in principle, solve such a problem. Assuming all the relevant data of the problem are
common kxiowledge among all the members of the society, the Nash equilibrium (or even better, the
correlated equilibrium) concept can be applied. But it seems unreasonable to assume that all the details
of every encounter are common knowledge in a society consisting perhaps of millions of people.

Our aim is to propose a theory with weaker requirements concerning the knowledge of
decision-makers. In our model a decision-maker, faced with a conflict situation, considers society’s norm
as well as the characteristics of the particular situation. Given the particular conflict situation including
the characteristics of the other participants, the decision maker will predict opponents’ behavior on the basis

of the prevailing social norm, or social standard of behavior. Since the opponent’s predicted action is

specified with the help of a social standard of behavior, an individual’s problem is a simple maximization
problem of choosing an optimal action given the predicted behavior.

An individual will not treat a conflict situation in isolation, however. His action/choice in this
situation will affect his position in future encounters. We will use the term status to summarize the
information about a person which will affect future encounters and we will model the effect of an
individual’s current actions on his future status via a transition mapping. The problem an individual in a
conflict situation faces is now the following simple problem: choose an action that will maximize his
life-long payoff consisting of the immediate payoff and the value of the future given the resulting position
in which he will find himself given the social standard of behavior and the transition mapping.

We shall call a pair consisting of a social standard of behavior and a transition mapping a social
norm. Not every social norm can be maintained, however. As in the traditional treatment of game theory,

we assume individuals act in their own self-interest. They calculate whether they are better off following
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the social norm or violating it. The decision will depend on, among other things, the distribution of the

status levels of the others in the society. We will call a social norm a norm equilibrium if it is self-fulfilling,

that is, that (i) each individual in the society finds it in his interest to follow the social standard of behavior,
and (ii) the distribution of status levels in the society is stationary.

In this interpretation of individual behavior, we can distinguish between two kinds of information
that a decision maker needs. He needs local information about the immediate situation, including the status
of his opponent, and knowledge of the social norm and the current status distribution. We stress that the
entire society need not be common knowledge; in fact, a decision maker need not even have complete
information about many aspects of society. What is needed as common knowledge in our formulation is
the prevailing social norm and the underlying (stationary) status distribution. In the succeeding sections,
we shall formalize these ideas in an extremely simplified society in which two classes of individuals are

matched randomly to play a symmetric stage game in each period.

3. Model

The basic model we will use begins with a random matching model of the sort used by Rosenthal
[1979]. A society will consist of two sets of players I, and I,, sets of the same size. Until section 6,
we shall assume I, (i=1,2) is a continuum, [0,1]. In each period t=1.2,- -, each player from I, is
matched randomly with a player in I, (and vice versa) to play a stage game I. We assume that the
probability that a currently matched pair of players will be matched again is zero. In section 6, we shall
discuss the generalization of this model to the case of a finite population. |

Players of both types seek to maximize the expected discounted sum of stage game payoffs. There
is a discount factor §¢(0,1) which is common to all players. The stage game is a pair I'={A,x} where
A=A,xA, and mA-R% A, is the set of actions available to a player of type i in the stage game and
x;(a) denotes the stage game payoff to a player of type i when action pair aeA is chosen. The payoff

to a player of type i, x;, is said to be jndividually rational if it is at least as large as the level he can

guarantee for himself, i.e., w, = min max =,(a;a,), (i%).
ajeAj a e

Throughout the paper, we shall assume:
A.1 The set of individually rational payoffs is bounded.

We shall sometimes denote a random matching game by I'®(§) when its stage game is T, its discount
factor is § and I; is a continuum.
In each period t, each player of I, is assigned an element x of a finite set X;={x,,- - -,xKi}

which we will refer to as his status or status level. A status assignment x is a pair (x;.x;) where x,
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is a tuple (xi(h))hdi, specifying the status level x,(h) that the player hel; possesses at a particular
time. We will assume that when a pair is matched, their status levels will be common knowledge to the
pair. In‘particular, their action choices will typically be functions of the pair of status levels.

A player’s status level xeX, is updated in each period by a predetermined rule, the transition
mapping 7,:XxA;=X;xX;xA;~+X,.> Thatis, r; specifies the status level of a player of type i in tte
next period, 7,(x,z,a)eX,, when his current status level is xeX;, the matched player’s current status level
is zeX; (i»)) and i’s current action is aeA;. We write r=(r 1T 2)-

In each period, there is a status distribution p,eA, _,, a probability measure on X; or an
element of the K,-1 dimensional simplex, specifying the p:oportion of the population of status xeX;

by py(x) in that period. We denote p=(py,pp)eA := g ;X -1

4. Norm Equilibrium

A pure (Markov) strategy for a player of type i is a mapping s;:X~A, " specifying a choice of

action s,(x,z)eA, in each stage game when players with status levels xeX; and zeX; (i~j) are matched.
The set of all pure strategies for a player of type i is denoted by S;. We will call a pair of strategies

(s1,5,) prescribed to all players of types 1 and 2 respectively a social standard of behavior and denote

it by o=(0,,0;,). A pair ﬂ = (r,0) will be referred to as a social norm.

It is straightforward to extend the definition of a social standard of behavior to allow for the
prescription of a random action for some matchings. To avoid the additional notational complexity, we will
generally restrict attention to pure strategies. An exception will be that in both theorems below, we allow
the SSB to assign random actions for some (disequilibrium) matchings. We emphasize that in the case that
a random action is prescribed, the transition function is a function of the realized action taken.

In each period and in each matching, in addition to the transition mapping and the social standard
of behavior, only the status levels of the matched players are. common knowledge to the pair. Hence, the
history of the plays a player has chosen in the past and the current status distribution may not be known
precisely; they become known to each player only to the extent they are reflected in the status levels of the
matched players.

3 The transition mapping may depend upon A;, the opponent’s action, as well. For equilibrium
behavior, this restriction is made without loss of generality in our framework because our equilibrium
concept includes the social standard of behavior, that is, the specification of the choice of action as a
function of status levels. However, when considering out of equilibrium behavior, allowing this possibility
may affect our analysis as it increases the ways status may depend upon what the opponent did.

“ To be precise, a Markov strategy is a mapping o,:XxA-S;. However, this generalization is not
necessary as long as disequilibrium behavior is not explicitly treated. Sce, also, section 6 below.
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Given r and o, the characteristic function, £:X;xX-{0,1}, is defined as:
1 if y=r,(x20,(x2)

0 otherwise.

éi(yl’z) = {

If a player of type i chooses o, the transition probability from the status level x to the status level

y is defined as a function of the opposite status distribution as:

Gy(rouP;) = ) P36 0x2) (i),
zeX;

Let Qy(r,0;,p;) be the K;xK; matrix, an element of which is denoted q;y(r,ai,pjj, and let
Q(7,0,p)=(Q4(7,01,P2),Qx(7,0,,p1))- Given B=(r,0), if all the players follow a SSB o, the transition
probability | Q,(r,0,p) = Q,(B,p) unambiguously characterizes the future status distribution for each of

' the two player sets. If the current status distribution is p, then the distribution of status levels k periods

from now, p‘®’(8,p), can be defined inductively as:
PiV(BP) = p;Qi(r.05,p;), and P Bp) = pHQu(r.00pfE ).

We will denote by p‘®)(x,s;;8,p) the status distribution in the k-th period from now if the SSB
is o, the current status distribution is p, but a player of type i with status level xeX; changes his
strategy to s, €S;. Since each player set is a continuum and each player is of measure zero, p®’(x,5,;8,p)
= p®)(8,p) always holds. If the player sets were finite, however, an individual player’s deviation from the
social standard of behavior would alter the probability distribution of status levels in future periods. We
consider this case in section " 6.

We shall say a social norm g is stationary at a status distribution p if p™*’(g,p)=p for all
k=1.2,. . Given (B,p), if a player of type i with status level x chooses a strategy s,eS,, his expected
payoff in each period is defined by,

I, (xs;;8p) = ) P;(@)x,(s;(x.2),0 4(zX)).
ZeXJ

When s, is the SSB itself, i.e., s,=o,, then his immediate expected payoff is denoted as II,(x,0;;8.p)-
Suppose that the social norm B=(r,0) is stationary at the status distribution p. Then for each
i=1,2, there is a well-defined associated present discount payoff (or value) for each status x and for each

Markov strategy s,. These payoffs are defined by simultaneously solving for all xeX;:

VixssBp) = Iy(xs;Bp) + 6 prj(z)vtlr1(x,2»§1(x,2)),spﬂ,p] @i=1)-
Ze 3

If s, is the SSB itself, i.e., when s,=o,, then his present discounted payoff is denoted as:



vi(%o:;8,p) = I;(X0;;8.p) + 6 ZX p;(@Vilr i (x,2,0,(%,2)),0,:8,p)-
. ZeA

J )
= I;(X08p) + § ), Qi(7,0.p)Vi(¥,0::8:p)
yeX;

Definition: A triplet (8",p") = (r",0”,p") is called a norm equilibrium of T®(6) if
@) B" is stationary at p”,
(b) for all i=12, for all xeX; and for all s;eS;,
Vi(o§87p") 7 VIS8T

Two remarks are in order. First, a norm equilibrium is defined as a SSB in which no player can
.ﬁnd any other Markov strategy which unilaterally improves his payoff. It is well known, however, that a
Markov deterministic strategy satisfying (b) is an optimal strategy among all mixed general (including
non-Markovian) strategies (see, e.g., Derman [1970] Theorem 3.1). Second, by the criterion of
unimprovability of Markov decision theory (see, e.g., Howard [1960] or Whittle [1985]), condition (b) of
norm equilibrium can be expressed in terms of unimprovability. To do so, for a social norm g, define
@,(xz,3,8) to be the net gain in a stage game payoff when a player of type i with status xeX, is
matched with player with zeX; and plays aeA, instead of the action prescribed by the SSB, o,(x,z);

a;(x2.a,8) = m,(2,04(2X)) - 7,(0,(%,2),05(2:X))-
Then the next lemma follows immediately.

Lemma 1: (8",p")=(r"0"p") is a norm equilibrium if and only if
(a) g is stationary at p*,
(b) for i,j=1,2 (ij), for all xeX; and zeX;, and aeA,,
o, (22,8") 5 S[V(r, (2.0} (%2)05:8"P") - Vi(r (x22)0 58 P )]

Lemma 1 simply states that for any pair of matched status levels, the immediate gain from
deviating from the SSB must be less than the resulting loss in the future due to a change in status, that is,
the continuation value. This resulting loss, however, is evaluated along the equilibrium path, or evaluated

by the value function vi(-,03;8%p").

S. Foik Theorem
To illustrate the concept of norm equilibrium, we will present several examples. Suppose

K,=K,=2, i.e., there are only two status levels for each type and X;={G,B}. In this section, we shall



use the following stage game T'; with M>O0.

C D P
C 44 0,5 -1,-100
D 50 1,1 0,-M
P -100,-1 -M,0 -100,-100

The game is a simple variant of the prisoner’s dilemma game. The actions C and D are the
usual cooperate and deviate (or defect) actions. There is an additional action, P, which is essentially a
"punishment" action. The maximal symmetric payoff is obtained by the players cooperating, that is, by each
player playing C. We are interested in determining when this cooperative behavior can be supported as

a norm equilibrium by a social norm (B,p). Also note that the security level, u,, is zero for both types.

Example 1: Consider the social norm (B,p) defined as follows.

{ G if (xza) = (G,G,C) or (G,BD),
7,(x,z,a) =
otherwise.
C if x=2=0G,
0,(x2) =
D otherwise.

p;(G) =1 and py(B) = 0.

In words, the social norm prescribes that a player should choose C if both he and his opponent
are good, ie., status G, and should defect (choose D) if either is bad (status B). A player’s status is
revised according to r. A player with status G remains a G so long as he follows the prescribed social
standard of behavior but changes to bad, B, if he deviates from it. The status level B is "absorbing in
the sense that a B remains a B regardless of his action. ;

For this social norm, the present discounted payoff for a player of type i with status x along
the equilibrium path, vi(x), (we suppress other arguments of v{ for ease of notation) is;

vi(G) = 4/(1-6) and vi(B) = 1/(1-6).

In view of lemma 1, the triplet (8,p) is a norm equilibrium if § > 1/4. This is exactly the condition
necessary to make the prescribed behavior (i.e., the one-shot Nash reversion) a perfect equilibrium for the

fixed player repeated game with this stage game.
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We would like to make several comments about this example.

First, the fact that the probability distribution over status levels is degenerate is not important. If
for i=1,-2, pi(B) <t and p,(G) = 1-r, r > O then similar calculations reveal that (8,p) would be a
norm equilibrium for §=1/[4-3r]. Thus, the presence of a small proportion of status B people in the
society increases the threshold discount factor which is consistent with this norm being an equilibrium, but
continuously. This is to be contrasted with example 3 below.

The second observation is that while the outcome is the same as at a conventional Nash
equilibrium, playing the equilibrium strategy may require a vast amount of information if the information
about status levels is not available. Suppose it is possible to obtain records of a player’s past plays.
Suppose further the player who is matched in a certain period has played D sometime in the past, say in
period t. This does not necessarily imply that he has deviated from the equilibrium path since this is the
prescribed behavior against some opponents. To check whether he has deviated or not, we must check
whether or not the player he was matched in period t had played D before. If this player had, we must
check the history of the player with which this player was matched in the period, and so on. To play this
equilibrium strategy without knowing status levels, essentially knowledge about the history of the entire
society would be required.

The last observation is that the social norm in this example is not optimal, in the sense that for
some parameter values it will not support cooperation for which other social norms could support

cooperation. The following example demonstrates this fact.

Example 2: Consider the following pair of social norm and status distribution (8,p) = (7,0,p) with the

same stage game T,.

G if (xza) = (G,G,C) or (GB/P),
73(x2,3) = B herwi
otherwise

C if (x2) = (G,G),
o, (x2) = P if(x2) = (GB),
D otherwise.

p(G) = 1 and p,(B) = 0.

This social norm differs from that in the previous example in that a good player is to "punish” his

opponent if the opponent is bad (status B) by playing action P. As before, a player with status G
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retains that status so long as he follows the social standard of behavior and reverts to B if he deviates
from it. _'I"he status level B is absorbing, as before.

The corresponding discounted payoffs are;

vi{(G) = 4/(1-6) and vi(B) = 0.

In light of lemma 1, three inequalities must be satisfied for this to be a norm equilibrium, associated
matchings of a G with another G, a G witha B, and a B with a G. The inequality associated
with the last match, a- B meeting a G, is vacuously satisfied since the SSB prescribes that the B play
a one shot best response in this case. The other two inequalities are respectively, 1<§(4/(1-§)-0) and
M+1=<6(4/(1-6)-0). It can' be easily checked that these constraints are satisfied if § 32
max{(1+M)/(5+M),1/5}. Hence, there are pairs of M and § for which this social norm can support
cooperation, (C,C), while the social norm of example 1 cannot.

There are three points we want to make about this example. First, note that in the social norm
of example 2,

7;(GB}P) = G, but r,(GG,P) = r,(BBP) = B.

Status transition does not depend only upon current status and current action, but depends also
upon the opponent’s status level. Unlike the status transition function in example 1, o,(B,G), 0,(G,G)
and 0,(G,B) are all distinct. This aspect distinguishes our model from reputation models (e.g., Kreps
[1989], Kreps and Wilson [1982], Kreps, et. al [1982] and Rosenthal [1979]), where the choice of action
depends only upon the reputation of one player and the new reputation does not depend upon the
opponent’s reputation. (See, however, Rosenthal and Landau [1979)).

The second point is that as in the previous example, while the probability distribution over status
levels is degenerate, the social norm would still have been part of an equilibrium with a positive proportion
of people having status B. As in that example, the minimum § that was consistent with equilibrium
would increase as the proportion of people with status B increased.

The third point we wish to make is that it is easier to support cooperation with random matching
than if there were a fixed match. To see this, note that when a player deviates from the SSB, he will
become status B; the SSB prescribes that in this case, he is to be punished forever, that is, if a player of
status G is matched with a B the G player is to play P. If M>1, this is not a best response to D,
hence there is a cost to the G. For a fixed matching, this cost would be borne by the same status G
player each period, while in the random matching case, a given G player will not be matched each period
with this given status B player, and hence will not incur the cost of punishing every period. As a result,
the constraint associated with a G matched with a B will be more easily satisfied in the random
matching case than in the fixed matching case. That is, for a given M, there will be a larger set of §’s

that satisfy the constraint in the random matching case.
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Example "2 suggests that a version of the Folk theorem may hold with two status levels. For

i =12 let u, = min max =,(a,a;), i.e, u, is the security level player i can guarantee himself in
' a; a
!

the stage- game payoff with pure strategies.

*
J
with two status levels when § is sufficiently close to 1.

Theorem 1: If =,(aj,aj) >y, for i =12, then (a},a;) is supported as a norm equilibrium outcome
Proof: Let X, = {G,B}. Define a} and a} sothat u, = ny(atal). Let (q1.qz) be the stage -game
one-shot (possibly mixed strategy) Nash equilibrium where qi(a;) denotes the probability of playing a;.

For any arbitrary pair (a;,a;) satisfying the condition, let

G if (xza) = (G,G,a]) or (GBa)),
7,(x,z,a) = '
B otherwise.

[ a} if (xz) = (G,G),
al if (x2) = (G,B),

o, (xz) = 4
aji if (xz) = (B,G),

a, with probability qj(a,) if (xy) = (B,B).

.

p;(G) =1 and p (B) = 0 i=12

Clearly, v{(G) = x,(a},a;)/(1-6) and vi(B) = u,/(1-8). It follows from lemma 1 that the triplet (1,0,p)
is a norm equilibrium. Q.E.D.

By allowing coordination through time, any strictly individually rational payoff vector can be
approximated as the average payoff outcome with two status levels when § is sufficiently close to 1.

If the discount factor, §, is not sufficiently close to 1, however, allowing more status levels may
support a more efficient outcome. The following example with three status levels, {G,B,H}, but with the
same stage-game ['; as in examples 1 and 2 will illustrate this point.

Example 3: Consider the following triplet, (r,0,p).

G if (xza) = (G,GC) or (GH/C),
r,(x,23) = H if (xza) = (GBP) or (H,-D)

B otherwise.
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Cc if (xz) = (G,G) or (GH),
o,(xz) = P if (xz) = (G,B),
D otherwise.

py(G) = 1, and p,(H) = p;(B) = 0, i=12.

One can interpret the additional status level, H, as that reserved for a "hero". A person with
status level G becomes H by punfshing a B if he meets one. Once a person is an H, the social
standard of behavior is that he is to play D regardless of his opponent. The addition of such a status
level allows a person who has punished a B to be rewarded. Since the act of punishing a B is costly
to the player doing the punishing, there must be an incentive for the player to do so. In example 2 we
used the "threat” of turning a G player into status B if he failed to punish. But there are limits to the
threat of punishing this way; we can think of the addition of the H as using a carrot in addition to the
stick to provide the proper incentives for punishing.>

The corresponding discounted payoffs are:

v{(G) = 4/(1-8), vi(H) = 5/(1-6), and v{(B) = 0.
As in the previous example, there are two relevant constraints. The constraint that a G meeting another
G plays C rather than D is the same as before, and will be satisfied when & = 1/5. The constraint
stemming from a meeting of a G with a B differs in that the future loss from not following o is now
larger by 1/(1-6). This is because following o results in the G being "upgraded” to status H which
yields a per-period payoff of 5 instead of 4. This alters the constraint associated with a G meeting a
B, yielding the inequality § = (1+M)/(6+M) rather than § 2 (1+M)/(5+M) as in example 2. Thus
for 0 <M <23 and (1+M)/(5+M) > § > (1+M)/(6+M), the norm equilibrium of example 3 with

three status levels supports cooperation while that of example 2 with two status levels cannot.

The first comment on this example is that there is no reason in general that we should believe that
three status levels is the maximal number which can be useful. In general, one should expect to be able
to construct games for which arbitrarily large numbers of status levels are necessary in order to support a

particular outcome as an equilibrium.

5 The practice of giving war veterans preference in hiring might be an example of such incentives.
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A second comment is that for this example, unlike the two previous examples, the degenerate
mobablhty distribution over the players’ status levels is important. Suppose ihat there is a positive
proportion of type 1 that is changed to status B. Then in each period, these plavers will be matched with
that proportion of players of type 2, which will result in those type 2 players being converted to status
H if the SSB were followed. Thus, with probability 1, the distribution of the status leveis for type 2
players would converge to that with only H’s. This clearly would violate the stationarity of p that is part
of the definition of a norm equilibrium.

The plausibility of the social norm is somewhat less in that case as well. Part of the definition of
a norm equilibrium guarantees that a player of any status would have an incentive t0 follow the SSB. This
incentive is assured only for the given probability distribution of status levels, p, however. If the
distribution of status levels is not stationary, these incentives may change. In fact, it is clear that in example
3 this is the case. The constraint that a player of status G meeting a G includes v(G), the status he
will have if he follows the SSB. But the value of being a G rather than a B is that when meeting an
G, the payoff will be higher. On the other hand, the payoff is higher to a B than to a G in following
the SSB when matched with an H. If the distribution of type 2 players asymptotically has no G’s, then
asymptotically there is no advantage to a type 1 player in being a G rather than a B. Thus, as the
proportion of G’s decreases, v,(G) decreases; at some point the constraint associated with the match
of a type 1 status G player matched with a type 2 status G will be violated and the type 1 G will
not find it in his interests to follow the SSB.

The above paragraph outlines how the SSB would "unravel” if there is a positive proportion of B
status people in the society initially. At some point, the difference betwen the continuation values for status
levels G and B will be less than the immediate gain from playing D when atype 1 G is matched
with a type 2 G. We have avoided the problems associated with changing values associated with various
status levels by insisting that the distribution of status levels p be stationary when all players are following
the SSB. We will come back to this point in the section on finite player problems.

The unraveling described above stemmed from the fact that whenever a G was matched with a
B, he became an H forever if he followed the SSB. We could have avoided the unraveling if instead of
having H be an "absorbing status, H was granted for a single period only, that is, if the transition
function 7 was altered to:

G if (xza) = (G,GC), (GHC), or (H,-.D),

T,(x,2,3) = H if (xza) = (G,B/P),

B otherwise.

For the case in which the distribution of status levels is p;(G) = 1, and p,(H) = py(B) =
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i=1,2, the discounted payoffs would now be:
v(G) = 4/(1-6), Vi(H) = 5 + 46/(1-6), and vi(B) = 0.

As in example 2, the constraint associated with a G meeting another & is unchanged and will be
satisfied when & = 1/5. The constraint stemming from a meeting of a G with a B differs in that the
future loss from not following o is now larger by § than in the social norm of example 2. This is
because following o results in his having status H for one period, yielding a payoff of 5 instead of
4. For 2/3 > M > 0, the binding constraint on the minimum § for which (r,0,p) constitutes a norm
equilibrium is that arising from the incentive for a G to play D. rather than P when meeting a B, that
is, when he is called upon to punish a past defector. The three-status social norm here has relaxed that
constraint and hence, for small but positive M, there will be §’s such that this social norm supports
cooperation while that of example 2 with two status levels does not.

Thus, the change to a "one-period” reward as an H still reduces the minimum § for which
cooperation can be supported below that of example 2, although not as much as if the H status were
permanent. However, for this case in which the status H is accorded for a single period only, the social
norm will not unravel as it does when the status H is permanent. Even if there is a positive proportion
of B’s, the proportion of H’s in the next period can be at most the proportion of B’s this period (at

most because some of the B’s will be matched with each other and not generate an H next period).

6. Finite Player Sets

In the previous sections we assumed that the player set for each type was a continuum. Since each
player is of measure zero, no unilateral deviation from the social norm by a single player will alter the
status distribution. If there is a finite number of players, deviations from the social norm by a single player
may alter the status distribution even when the equilibrium status distribution is stationary. The social norm
and discussion of example 3 point out that a deviation by a single player from the SSB might have very
different consequences in a continuum model than in a model with a large but finite number of players.
This leads us to a direct investigation of social norms in finite societies.

Until now, we have assumed that a player’s choice of action in any matching depended only on the
pair of statuses in that matching. In general, a Markov strategy allows the choice to depend on the status
distribution as well. We did not explicitly consider this additional aspect because any unilateral deviation

could have no effect on the status distribution in the model with a continuum population.®  Since in the

& In the case of continuum, one may also allow a Markov strategy to be contingent on the underlying
distribution. However, we could alter the SSB’s in the previous sections so that, if a positive measure of
the population has deviated from equilibrium behavior (and hence, the distribution differs from the
equilibrium distribution), the social norm requires all the players to play the one-shot Nash equilibrium.
This is clearly a perfect equilibrium.
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finite population case individual deviations may alter the status distribution, we must take expiicit account
of the fact that the choice of action in each period may depend upon the underlying status distribution.”
in this section, we shall prove a result analogous to Theorem 1 for finite socieiies. For our result,
we will strengthen somewhat our definition of a norm equilibrium. The definition of a norm equilibrium
guarantees that a player of any status level meeting a player of any other status level will find it in his best
interest to follow the SSB. This should hold even if the status distribution does not have full support, and
hence some matchings are impossible. The reason that we insist that following the SSB be optimal even
for matchings that are impossible given the status distribution is similar to the argument for perfect Nash
equilibrium. If a player plays differently from the SSB, the status distribution will change; matchings that
are impossible given the (proposed) equilibrium status distribution will not necessarily be impossible
following a deviation from the SSB. An SSB that prescribes for some matchings actions that are not
optimal for a player are the same as the non-credible threats that subgame perfection eliminates.

We note that in our definition of a norm equilibrium, we have not gone as far as subgame
perfection does toward this end. In the continuum case, we do not ask that the strategy described by the
SSB in a norm equilibrium be optimal for all distributions, only for the stationary distribution that is part
of the definition of a norm equilibrium. Since any countable number of deviations cannot alter the status
distribution, one might think of the definition of a norm equilibrium as requiring the prescribed strategy
to be optimal as long as there are no more than a countable number of deviations from the strategy.®

The finite society case is different in that a single deviation may alter the distribution. As example
3 demonstrates, a single deviation in an arbitrarily large finite society asymptotically can have a large effect
on the status distribution. For the finite case, we would like to preserve the property described above: a
single deviation from the SSB should never lead to the matching of a pair, one of whom would want to
deviate from the SSB. We must strengthen the definition of a norm equilibrium to do this. We will
strengthen the definition by (1) requiring that the social norm be such that any single deviation not have
a large effect on the status distribution, even asymptotically, and (2) requiring that the SSB be optimal not
only for a given status distribution, but also for all distributions "close” to it.

Let player set I, (i=1,2) be a finite set {1,---,n}. Let 8 be the set of all permutations of
{1,---,n}. In each period t=0,1,2,---, §,e6 is chosen randomly and, for each hel,, (h,6,(h)) are

7 It is clear that a strategy that depends on the actual status distribution is somewhat inconsistent with
the limited information available to players with which we motivated our interest in this model. However,
distribution dependent strategies will only be considered by players contemplating deviations from an SSB;
any constraint on the strategies allowed players that restricts the information dependence would only
strengthen our results.

8 Kalai and Neme [1989] have considered the implications of asking for subgame perfection for a
restricted set of subgames.
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wmatched. A matching history from t to t+k is a k-tuple, % **=(6,,- - .64 ;). The probability that
the currently matched players will be matched again in a given future period is i/n. The set of status
distributions in this section is denoted as:

A, = {p=(p1,p2)eAK1,1xAK2_1|pi(x) = k/n for some k=0,1,---,n}.

We shall denote the random matching game with stage game I' and the population size n by '™(6) when
the discount factor is 6.

A distribution dependent Markov-strategy for a player of type i is a mapping §;:XXA A,
specifying a choice of action s,(xz,p)eA; in a stage game when players with status levels xeX; and zeX;
are matched and the current (announced) status distribution is p. Namely, s, depends upon the state
of each matched game defined as a triple (x,2p). In this section S; will denote the set of all such
strategies. We call a strategy distribution independent if it is independent of the distribution p. An SSB
is a pair of distribution independent strategies o=(0,,0,), where o;:X~A;. We shall allow, however, that
each individual can deviate from a social norm by taking any distribution dependent strategy.

Suppose a social norm B=(r,0) is given. In each period r, the current status assignment x-
and the realized permutation §, determine the status of each player’s opponent; these and the choice of
actions in the match determine the new status assignment for the subsequent period. Thus, even if all
players of each type choose the SSB, (0,,0,), the resulting status distribution in (the beginning of) period
t+k depends upon the current (period t) status distribution, p,, and the matching history,
Btt*%=(g,,- - -,0,,-,)- We shall denote this stochastic process by P{*’(8,p.) = (P (B.p )P’ (B:P))s
which is dictated by the realization of §%-**k,

Suppose a player of type i has a status level xeX; in t and the underlying status distribution
is pea, Even if all players follow the social norm g, this player’s future status level is similarly
determined by the matching history 8% ®*X. Thus, we denote by x{§’(x,p;8) the stochastic process of the
status of a player of iype i if he currently has the status x and the underlying population is p. We shall
denote by QU)(x’,px,p,8) the probability that the two stochastic processes P{(Bp) and x{P(x,p;B)
take the values p’ and x. '

Suppose a social norm g=(r,s) is given and the current status distribution is p. Suppose further
that a player of type i with a status level xeX, chooses a distribution dependent strategy s; instead
of the SSB o,. This deviation from the social norm will change the underlying stochastic process from
PX(Bp) to PE(xs;8p) and QX (,pxpB) to QU (x.pisyxp.p) in an obvious manner.

Given a social norm, B, and the current status distribution, p, the expected discounted payoff
vi(x,s,;6,p) for a player of type i with a status x if he uses a Markov strategy s, €S, is defined by
simultaneously solving for all (x,p)eX xAy:

VIsBp) = M(xsgBp) + = 65 5 Q0K pNs xpB)v,(x*s;B8p¥)-
. ‘

(xk,pk)



16

Similarly for all xeX, and peA,, define his payoff if he follows the SSB as:

VI(koiBp) = Ty(koipp) + 6 = QuPpiosXpAVIK.ouBP)-

x>p")

A social norm g=(r,0) is called stationary at a status distribution p if the underlying stochastic
process is deterministic and constant at p. Then for T™(§), the stage game [ played in a society with
a finite number of individuals, the analogue of our definition of a norm equilibrium for T(§), the
continuum of players case, would require that for a social norm g* and status distribution p*, (1) g
should be stationary at p*, and (2) for all i, s, and x, v¥(xoLA"P") 2 VI(Xs;;:8%p").

This straightforward extension of the definition of a norm equilibrium is unsatisfactory, however.
As the following example will show, an SSB that is part of a norm equilibrium may not even be consistent

with Nash equilibrium.

Example 4: Let the stage game be:

N C D
N 1,1 0,0 0,0
C 0,0 44 0,0
D 0,0 0,0 0,0

Note that the stage game has three pure strategy one-shot Nash equilibria. Action N is the play to
achieve the inferior Nash equilibrium, while C corresponds to the superior Nash equilibrium. We call the
action D deviation. Let the social norm be as follows:

G if (xza) = (G,G,N)
7,(x,2,3) =

B otherwise.

N if (x2) = (GG)
Loz = {C if @2)= (BB
D  otherwise.
py(G) =1 and p,(B) = 0.

For this social norm and status distribution, v}(G) = 1/(1-§) and v{(B) = 0.
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In words, the social norm can be described as follows. There are two status levels, G (good) and
B (bad). If two G’s are matched, they are to play the intermediate level Nash equilibrium and, if they
do so, eéch will retain his G status. If either deviates, his status will be altered to B. If iwo B’s are
matched, they are to play C, the best of the Nash equilibria. When a B is matched with a G, both
are to play D. An important feature of this social norm is that, when the matching is either a B and
a G ortwo B’s, regardless of their choice they will be assigned B status in the next period. Thus B
is an absorbing status level and whenever a G is matched with a B, the G will be converted to this
absorbing status.

Clearly, this social norm satisfies the definition of norm equilibrium for any § < 1. However, in
a society with finite population, it may not be stable. To see this, consider a society consisting of just one
individual in each type (i.e., n=1). This society would be the same as the usual fixed player repeated game,
as the same two players will be matched in each period. In the social norm above, each player will receive
1/(1-6). If either player unilaterally deviates, he will lose 1 in the period in which he deviates and in
addition he will lose 1 in the next period while converting his opponent to status level B. However, from
the third period on, his payoff each period will be 4 rather than 1, his payoff per period had he not
deviated. Hence if §21/2, each player has incentive to deviate from the first norm.

If n is large, the expected time it takes to "convert" sufficiently many players to increase one’s per
period payoff increases; nevertheless, if § is sufficiently close to 1, each player will have an incentive to
deviate from the social norm, knowing that the distribution of status levels in society will (with very high
probability) ultimately change in a way that makes the initial deviation worthwhile (if the discount factor
B is sufficiently close to 1).

The above example clearly shows that for a social norm to be plausible for finite societies, we must
take into account the changes in the distribution of status levels that result from an individual’s deviation
from the SSB. There are several ways in which we can strengthen the definition of a norm equilibrium that
take these changes into account. The "strongest” concept would ask that following the prescribed behavior
of an SSB in a social norm be optimal not only for the assumed stationary distribution p", but for all

status distributions.

Definition: (8",p") is a strong norm equilibrium of I™(§) if;
¢)) B* is stationary at p”, and
(2) for all =12, s,€S,, xeX;, and pea,
Vi(xo;8°p) % Vi(xs;:8°.p).

However, we use a weaker concept than this. We do not use this stronger concept of strong norm

equilibrium because it requires that a social norm provide proper incentives to follow the SSB even at
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distributions that might never arise for any given actions the players take. We could ask it be optimal for
a player of any status to follow the SSB at all status distributions that could result from some combination
of actions the players might choose, but even this is stronger than we will ask. Asking that a SSB provide
correct incentives for every distribution that could result from some set of actions is essentially asking that
the prescribed strategies constitute a subgame perfect equilibrium. This requirement seems overly strong

as the next example illustrates.

Example 5: This example will be a modification of example 2. Let the stage game be as in that example
with M=2:

C D P
C 44 0,5 -1,-100
D 50 11 0,-2
P -100,-1 -2,0 -100,-100

The transition function and SSB are somewhat different than in that example; here the status B has been
replaced with two status levels, B1 and B2.
G if (xza) = (G,G,C), (G,BLP), (G,B2,P) or (B2,-,-)
7,(X,2,3) = B2 if (x,z,a) = (Bl,-,-)

B1 otherwise.

C if x2) = (G,G)
o,(x2) = P if (xz) = (G,Bl) or (G,B2)
D otherwise.

py(G) = 1, and p,(Bl) = p,(B2) = 0, i=12.

In words, the SSB prescribes that if a G is matched with another G he is to play C; ifa G
is matched with a Bl or B2, the G is to choose the punishment action P. Independent of his match
a Bl ora B2 is to choose D. The transition rule specifies that a G deviating from the SSB is to be
punished for two periods, that is, he is to become a Bl for one period, promoted to a B2 for one period
and then will become a G, remaining so as long as he follows the SSB.

For this social norm, v,(G)=4/(1-6), v,(Bl)=6%[4/(1-6)], and v,(B2)=6[4/(1-6)}; it is

straightforward to calculate that for §=1/2, this is 2 norm equilibrium. If we change the status distribution
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1o allow for small proportions of status levels other than G, it will still be optimal to follow the SSB if
6 sufficiently close to 1.

An interesting feature of this social norm is that whatever the status distribution is, if all players
follow the SSB, all players will be status G in at most two periods. Thus, in a given match in a particular
period t, when a player is deciding whether or not to follow the SSB, the current distribution will have
no affect on his decision except in period t+1. Consider then the decision facing a G who finds himself
matched with a Bl or B2. Following the SSB, choosing P, in this case is not a best reponse if he
considers the current payoff only; it yields him an immediate payoff of -2 rather than the payoff of 1
that he could get by playing D. For it to be optimal for a type 1 status G player to follow the SSB
it must be that the discounted future (expected) payoff from playing P exceeds that from playing D by
at least 3. This holds for our given distribution in which all type 2 players are of status G. It is easy
to see that it also holds if nearly ail type 2 players currently are of status G or B2 and § is
sufficiently close to 1 since, as we remarked above, the distribution can only affect a person’s decision
through its affect on his payoff in the next period and any person of status G or B2 will be status G
next period if they follow the SSB. Hence the value to a type 1 player of status G depends only on the
proportion of type 2 players that are of status Bl, P,(Bl).

Hence if 6=1/2 and the distribution of statuses is such that there are no type 2 players of status
B1 it is optimal for a type 1 player in any match to follow the SSB. On the other hand, if some type
2 players are of status B1, a type 1 player of status G may not have an incentive to play P against
a Bl or B2 In fact a simple calculation shows that for any § such that 1/2<§<1, if the proportion
of type 2 players of status Bl exceeds (462+46-3)/75, such atype 1 G player will have an incentive
to devaite from the SSB.

Thus, the only reason for such a player not to follow the SSB would be if the proportion of players
of the oposite type of status Bl was above this threshhold. Since a player will remain of status Bl for
a single period before becoming a B2, this can only happen (given our initial distribution) if a non-
negligible proportion of players simultaneously deviates from the SSB. As we consider increasingly large
(finite) societies, a given proportion of people simultaneously deviating entails a simultaneous deviation by
an increasingly large number of players.

Hence, the strategy associated with the above social norm will not be optimal for all status
distributions that can result from some given actions the players might take. - In other words, subgame
perfection doesn’t hold. One might argue that the above social norm is nevertheless quite plausible for
large societies since the subgames in which subgame perfection fails result only from a large number of
simultaneous deviations.

This discussion leads us to the following definitions.
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Definition: We say that 8" is asymptotically stationary at p* if:

(@) g is stationary at p*

(b) for any €>0, 3 ¢ with O<e’<e and n, such that for i=12, V xeX,;, Vs,;eS;, for
n>n, if peA, and d(pp*)se’, then Prob {P{¥(xs;8",p)=p’ld(p’p")se} =1 for

all k=1,2,--., where d(p,p’) is the distance between p and p’.

That is, B* is asymptotically stationary at p” if it is stationary at p* and if whenever the status
distribution is initially close to p”, any status distribution that can result from a single player’s deviating

from the social norm will also be close to p".

Definition: We say that the pair (8",p") is an asymptotically stationary norm equilibrium if:
(a) B" is asymptotically stationary at p* |
(b) 3 >0 such that for i=12, for all xeX|, and for all s;€S;, if pep, satisfies
d(p,p")<e, then vi(x,00;8°p) 2 Vi(xs.;8".Pp).

In words, (8*,p") is an asymptotically stationary norm equilibrium if % is asymptotically stationary at
p" and if for any status distribution close to p*, every player must be at least as well off by following the
SSB as he would be by deviating from it.

We can now pfcsent the analog of Theorem 1 for the case of finite populations.

Theorem 2: If =,(aja}) > u, for i =12, then (aja]) is supported an asymptotically stationary norm
equilibrium outcome of I'™(§) with two status levels if § is sufficiently large.

Proof: Consider again the social norm B" and distribution of statuses used in the proof of Theorem 1,

G if (xza) = (GGay) or (GBa)),
7;("’2’3) =

=

otherwise.

[ a; if (xz) = (G,0),

aj if (xz) = (G,B),
oi(x2) = 9
i al if (x2) = (BO),

a, with probability qj(a,) if (xy) = (B,B)

..

pi(G) =1 and pi(B)=0 i=12
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This social norm is stationary for every probability distribution, and hence is asymptotically
stationary. It is also clear that v}(G,o};8"p) is arbitrarily close to =;(aj,a})/(1-§) and for any s,eS;
vi(B,s,;8",p) cannot exceed u; by more than an arbitrarily small amount if p is sufficiently close to
the above distribution p*. It foliows then, that for any s.eS; Vi(G,o5;8".p) = vi(Gs;87p) if & is
sufficiently close to 1. For a status B player, the distribution of statuses, p, will be unaffected by his
choice of strategy, s,, if all other players follow B*. Since o prescribes a best response for every
matching a status B player is in, v2(B,o};8",p) = vi(B;s;;8",p). Thus, (b) is satisfied also and (8",p")
is an asymptotically stationary norm equilibrium. QE.D.

Our asymptotically stationary norm equilibrium is something like "local perfect” equilibrium in the
sense that we do not require perfection for all disequilibrium paths, but only for a restricted set: those
associated with a status distribution which is within ¢ of the equilibrium distribution. Kandori [1988] has
shown that it is possible to extend our result (in particular theorem 2) to perfect norm equilibrium. The
basic idea is as follows. First alow any finite number of statuses. Then it is relatively straightforward to
show the Folk theorem holds because it is well-known that punishments for ﬁnite but sufficiently many
periods is enough to support cooperation in (fixed player) repeated games.® More than two status levels
are required for this result as different statuses are necessary to "count” the number of periods a deviant
has been punished. If we allow the transition mapping to be stochastic, however, we can support
cooperation with only two status levels. If the probability of regaining good status is small even when a
bad player accepts punishment, having bad status results in more severe punishments than otherwise. Then

assigning sufficiently small probability of regaining good status will support cooperation.!°

7. Discussion and Conclusion

In this paper, we have introduced a concept of norm equilibrium. Norm equilibrium is a way to
reinterpret Nash equilibrium within the context of an economy. Traditional game theory justifies Nash
equilibrium as a predicted outcome when "rational” players are involved in a situation with a possible
conflict of interest. Norm equilibrium, on the other hand, is a stationary societal equilibrium (in the
language of Rosenthal [1979]) in which players choose their best actions, but information is limited and only
the social norm (and the status distribution) are common knowledge. In order to illustrate norm
equilibrium, we have employed the framework of random matching games in this paper. Several remarks

are in order in this respect.

§ See, for example, Fudenberg and Maskin [1986].

10 For more detail, see Kandori [1988].
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First, as we have emphasized, the informational needs implicit in a norm equilibrium are less than
those associated with Nash equilibrium in general. The informational requirements of a social norm are
still significant, however. A player needs to know, among other things, the status level of his matched
opponent in order to know what action to choose. Evén if not formally modelled, the interest in the model
hinges on the plausibility of this information being available.

One possible way that the information might be transmitted is through a third party. Milgrom,
North and Weingast [1988] (hereafter MNW) analyze a model whose theoretical structure is quite similar
in spirit to our model. MNW are interested in the process of trade in the absence of a governmental
legal system that can enforce contracts. In their model, players are randomly matched for a single encounter
in which they might trade; without some mechanism to enforce contracts, trade will not be possible. MNW
suggest that in response to the inefficiency caused by the lack of a governmental court system to enforce
contracts, there developed an institution called the medieval law judge, a prominent role for whom was to
serve as recorder and conduit of information concerning an individual’s past transactions. Although we have
not done so, one could augment our model to incorporate formally an institution of this sort to perform
the information transmission role we exogenously assume in our model.

In the absence of a formal institution to carry our this informational role, we can imagine more
casual transmission mechanisms. For some types of trials, it is a common practice among opposing lawyers
to discuss, prior to trial, various aspects of the arguments to be made. This eliminates the necessity of both
of the lawyers preparing rebuttals to all possible points that might be brought up, resulting in a reduction
of work for both lawyers without altering the outcome of the case. When asked why there were not lawyers
who would mislead the opposing lawyer to gain an advantage in the trial, Ms. Blackmon said that in fact
there were such lawyers. In practice, when a lawyer is matched with an unknown opponent, she asks various
senior colleagues about the opponent. Some opponents are known as opportunists who cannot be trusted;
if she is matched with one, she simply doesn’t cooperate.!! This informal mechanism provides an almost
perfect example of the way in which the current status of a person can precede him/her in random
matchings.

We should emphasize that we don’t want to hinge the interest in the model that we have presented
on the two examples above. First, we have not modelled the process by which a player learns his
opponent’s status level, and second, even in the examples it may be farfetched 1o believe that the status
levels are common knowledge. However, we do believe in the basic precepts of the model. The conflict
situations a player finds himself in are not independent; how he behaves in a situation today will affect his
future interactions. Precisely how the information about one encounter is relayed on to future players may

be difficult to model, but we believe that the inter-play linkage is important to understanding some problems

11 We want to thank Leslie Blackmon for this remark.
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such as the nature of the Japanese firm and how Congress works. A very interesting research problem
would be the careful modelling of the process by which information is transferred. Such work could
presumably allow for uncertainty about the status of one’s opponent.

We have provided a number of problems to which we think our model applies. For many of these
problems, we don’t believe that the distribution of the status levels in the society is stationary. We should
point out that there are relatively simple extensions of our definitions that would allow for non-stationary.
This also would be an interesting research project.

A third feature of our model we wish to discuss is the assumption that the underlying population
is given and all players live forever. It is straightforward to introduce overlapping generations with finite
(expected) life in the model. For example, we may assume that in each period a fixed proportion, say 1-6,
of the entire population (selected at random) will die. An equal number of people will be born in that
period, keeping the size of the population constant. Moreover, if the pure discount factor is 1, then the
discounting factor which takes account of this probabilistic death is exactly § and our model can be easily
extended to this stochastic overlapping generation model.

With this interpretatioﬁ in a continuum population world, the result in section 6 may be
interpreted as follows. Even if some fraction of population actually deviates from the social norm, as long
as the size of deviant population is small and the condition of Theorem 2 is satisfied, the fraction of the
population that follows the social norm never falls below a certain level and eventually goes back to 1.
In this sense, the social norm is dynamically stable.

The next comment is on the relation of our work to that of Abreu [1988]. In a game played
repeatedly by a fixed set of players, Abreu used the notion of optimal punishment schemes to characterize
the degree to which players might be able to achieve cooperation in the game. In several of our examples,
the social norm bears some similarity to the equilibria Abreu considers. There is one important difference,
however. While the optimal punishment schemes considered by Abreu are simple to describe, they might
be complicated to carry out. Recall that in our model the action taken in any encounter can depend only
on the status levels of the two players in the encounter. If one wanted to encode a punishment following
some history that had a player taking a particular action for n periods, one would need at least n status
levels to "count" what stage of the punishment the player is in. We aren’t suggesting that this sort of
complexity makes Abreu’s punishment strategies uninteresting; rather, for the random matching games
involving large numbers of players in which we are interested, there should be a role for the type of social
norms we consider to simplify the strategies that agents are following. There is a second point at which
there would be some difficulty in embedding in a social norm an optimal penal code of the sort that Abreu
considers. In Abreu’s optimal penal codes, if a person deviates, thé other players are to play the strategies
that are part of the subgame perfect equilibrium that yields the lowest payoff to the deviator. In a social

norm this could be accomplished by the transition function assigning the deviating player a particular status,
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say B, and having the social standard of behavior prescribing that any person matched with a B choose the
strategy that would correspond to the play in an optimal penal code. The difficulty would arise if there
were a second deviator. In Abrew’s optimal penal codes, for such a history, the strategies have players
choosing those actions that are part of the subgame perfect equilibrium yielding the lowest payoff to the
second deviator. For our symmetric games, this would be equivalent to assigning the second deviator the
status B, but simultaneously reverting the previous deviator back to "normal” status. This isn’t possible
within a social norm, as a person’s status is to depend only on his status and that of his current opponent
and the play of their stage game; it is not allowed to depend on the play of others’ stage games. Of course,
we could have altered the transition function to allow this, but this would violate the informational
decentralization which has motivated our study.

The first difficulty mentioned above in embedding Abreu’s penal codes into social norms had to do
with the number of status levels necessary to do so. This difficulty - that one would need as many status
levels as periods in which a deviator was to be punished - is reminiscent of the questions of complexity of
strategies in modelling play by automata (see, e.g., the survey by Kalai [1987]). There is a great deal of
similarity both between the motivations behind modelling play by finite automata and behind social norms
and in the problems the two studies raise. The status levels in our model have a close relationship with
the states of an automaton. The main differences formally between those models and ours is that a social
norm prescribes an action as a function of both his and his opponent’s status. This would be equivalent
to having an automaton-like machine whose action was a function of both its state and the state of the
opposing automaton.

This discussion highlights a feature of our approach that is worth discussing a bit further. A social
standard of behavior prescribes an action that is a function of the status levels of the matched pair. This
allows for a comparison of a particular strategy across different sized games, that is, across random matching
games with different numbers of players. This allowed us to investigate how well the continuum model
approximated large finite societies keeping fixed the stage game to be played. This question is of interest
in its own right.

We should point out that the relative ease of constructing social norms that sustain cooperation
comes at a cost. The strategies embodied in a social standard of behavior need not (and will not, in
general) be subgame perfect. Massive deviations from the social standard of behavior may cause the status
distribution to change so dramatically that it is no longer optimal to follow the standard of behavior. As
emphasized above, however, we think the "local perfectness” of norm equilibria serves much the same
purpose as subgame perfection.

The last comment we will make about the model is our choice of a random matching game. In
reality, social status is likely to be linked to the organization for which a player works and the job status

he holds. In this sense, we think that it is appropriate to apply norm equilibrium in the case in which the



25

stage game a player will play in each period may depend upon his status as well. A simple version of this
idea is exploited in Okuno-Fujiwara [1989]. We plan to extend our analysis to this more general setting
in the future.
1.1 Related Work

Bendor and Mookherjee [1990] present a model in which they compare third party sanctions with
direct sanctions. In their model a group of n people is to play a game repeatedly. In each period, each
player is to choose a distinct action toward each of the other n-1 players. They examine when third party
sanctions can be useful, that is, they ask when higher payoffs can be supported by equilibria in which a
given player punishes "bad" behavior of other players, even when the bad behavior was not directed toward
the given player. There is a similarity between our work and that of Bendor and Mookherjee in that one
can think of our social standard of behavior calling upon players to carry out what might be termed third
party sanctions. Our model and motivation differs from theirs, however, in that our main concern is in the
informational role that what we call status plays in the coordination of play among a large number of
people who are randomly matched.

Akerlof [1980] presents a very interesting discussion of caste béhavior that bears a resemblance to
some of the norm equilibrium examples in this paper. As in the Bendor and Mookherjee paper, the

Akerlof model is one of fixed matching and, hence, can play no informational role.
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