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Abstract

We shall propose a new method for estimating the volatility parameters
of security prices, which 1is an improvement of the estimation method by
Parkinson (1980). We assume that the security prices follow the geometric
Brownian Motion. However, contrary to the setting of Parkinson (1980), the
geometric Brownian Motion can have drift terms. We show that the efficiency
of our estimator is about 10 in comparison with the standard sample variance
estimator. Since the efficiency of the estimator by Parkinson (1980) is
about 4.91, our estimation method may considerably improve the estimation
methods already known in financial economics.

1/ The research was supported by Grant-in-Aid 01301075 of the Ministry of
Education, Science and Culture at the Faculty of Economics, University of
Tokyo. I am grateful to Masashi Ikeda for constructive comments to an
earlier version of this paper.



1. Introduction

In recent financial economics it has been usually assumed that security
prices follow the diffusion stochastic processes. In particular, the
geometric Brownian Motion process has been often used in the theoretical as
well as the empirical studies. See the Back=Scholes option pricing model
explaihed in textbooks such as Cox and Rubinstein (1985), for instance.
Also there has been a growing interest in estimating the parameter values of
the stochastic processes governing the historical security price movements.
Especially, since the option pricing formulae are usually nonlinear
functions of the volatility parameter in the original geometric Brownian
Motion process, some special attention has been paid to estimate its
numerical value.

In this respect, several methods have been proposed to estimate the
volatility parameters in dynamic security price models. Parkinson (1980)
proposed the extreme value method for estimating the variance parameter of
the rate of returns. It has been known that the efficiency of his estimator
is surprisingly high and about 4.91 in comparison with the standard sample
variance estimator. Since then several methods have been proposed for
estimating the volatility parameters including Garman and Klass (1980). See
Cox and Rubinstein (1985) for some other estimation methods known in finance
literatures.

In this paper we shall propose a new estimation method for estimating
the volatility parameters, which is an improvement of the estimation method
by Parkinson (1980). Contrary to the setting of Parkinson (1980), we assume
that the geometric Brownian Motion can have drift terms. We shall show that
the efficiency of our estimator is about 10 in comparison with the standard

sample variance estimator. Since the efficiency of the estimator by



Parkinson (1980) is about 4.91, our estimation method may considerably

improve the estimation methods already known in financial economics.

2. A New Estimation Method

Let the security price S(t) at t follow a geometric Brownian Motion
process
(2.1) dS = uSdt + aSdw ,
where W(t) stands for the standard Brownian Motion process. Then the
transformation X(t) = 1n(S(t)) follows a Brownian Motion with the drift
parameter u' = U - 02/2 and variance parameter c? by Ito's lemma. We allow
that the drift parameter u' is not necessarily zero. We assume that we have
n observations of {S(t)} in n intervals. Define the rate of return in the

i-th interval as di = Xi(t) - X t) (i =1,...,n). The classical sample

i~1(

variance estimator of the parameter 02 is given by

N

(2.2) «jz(c) = )2

R
= L (d; - ),

T(n 1)i=1 i

where d = (1/D)X?=1di and T is the length of each interval. On the other

hand, Parkinson (1980) proposed to use the range of X(t) in n intervals.

Let the range of X(t) in the i-th interval Ii (i=1,...,n) be
(2.3) Qi = max X(t) - min X(t) .
t:f:I:.l tsli '

Then the unbiased estimator of 02 proposed by Parkinson (1980) is

~9 ) _1“—_ n
(2.4) o=(p) = (41n2)Tni=21 9“3



When the drift parameter u' = 0, it has been known that

Var{&z(c)} 32(ln2)2

(2.5) 5 = 9
var{g“(p)} 95(3)-16(1n2)
where &(p) is the Riemann's & function and &(3) ¥ 1.20206. It implies that
the efficiency of 32(p) against &z(c) is about 4.91. However, it is
important to note that this result is valid only when there is no drift term
in the underlying stochastic process. This is because Parkinson (1980) used
the density function of the range in every interval originally derived by
Feller (1951), which in turn does depend on the assumption of no drift
terms. |

Now we introduce the transformation
(2.6)  Y(1) = gX(t) - § X(T)}

T
for O02ts<T. Then if we take X(0) = 0 for normalization, we have E(Y(t)] = 0

and
(2.7 EY()Y®) - ad@ - H
for O0ssstsT. Since {Y(t)} 1is the Brownian Bridge process with Y(0) = 0

(a.s.), Y(s) 1is independent of the drift terms in the original stochastic

process {X(t)}. Let the range of {Y(t)} in the i-th interval Ii be

(2.8) Ri = max Y(t) - min Y(¢t) ,
tEIi tSIi

which is called the adjusted range by Feller (1951). Then our basic
intuition can be simply explained by Figure 1.(See Figure 1.) The original
range for {X(t)} corresponds to the difference of X(t3) and X(tl) while the
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adjusted range corresponds to the difference of X(tz) and X(t4). To
estimate the variance parameter 02 we should use the adjusted range instead
of the original range because the former is free from the drift terms and it

is c¢xpected to be more stable than the latter. Then we have the density

function of R:

(2.9) f£(r) = re (r) + ¥ {2k(k-1)[e ((k-1)r) - e (kr)]
k=2

v L ]

+ (k—l)zre ((k-1)r]) + k2re (kr)}.

where e(x) = exp(—2x2/T). This equation has been obtained by Feller (1951),
but for the sake of completeness we give its simpler derivation in Appendix.

From this density we have the simple moment formula of R in the following.

Lemma: For p 2 2,

(2.10)  E(R®) = 20°(0-1rB22) £ 2cp)

where L(p) is the Riemann's & function. For p=1,

(2.11) E(R) = oy %1 .

The proof of Lemma is given in Appendix. Using this lemma for p=2 and
£(2) = n2/6, we have
(2.12) E(R

Hence when we have n observations Ri (i=1,...,n) in n different intervals,

we define an unbiased estimator of 02 by



Next we compute the efficiency of this estimator in comparison with the

classical estimator 02(0). Using Lemma for p=4 and 5(4) = n4/90, we have

. 4

(2.14)  var(c®(0)) = 2 (5)7E(R] - (ERD))?)
nT" n

4 4 2 ?

06 2 W2y 0

“n ["2] {30 [6 ] } " 5n

~

Since it is well-known that Var(az] = 204/(n-1), we have

Var{&z(c)}
(2.15) 3 = 10
var{d“ (k) }

o
n-1 °

Hence we summarize the main result in this paper.

Proposition: The efficiency of the unbiased estimator 62(k) given by
(2.13) of 02 is 10n/(n-1) against the classical estimator 52(0).

When n 1is large, the efficiency of 62(k) against the classical
estimator 82(0) is about 10. In practice we are sometimes interested in the
unbiased estimation of the standard deviation parameter o instead of
the variance parameter 02 in the geometric Brownian Motion. From the above

lemma it is apparent that an unbiased estimator of o is given by

SHIX

n
¥ R,

(2.13)  o(k) = n—\l/T v i
i=1



3. Some Concluding Remarks

In‘ this paper we propose a new estimation method based on the adjusted
range, which may improve the method proposed by Parkinson (1980). Our
estimation method allows the presence of the drift terms in stochastic
processes. Also we have shown that the efficiency of our estimator is about
10 in comparison with the classical estimation method and it is more
efficient than any other estimator already known in financial economics.
Since we have daily observations on a large number of securities in
financial markets, our method proposed in this paper may give a new useful
estimation procedure on their volatility parameters in the underlying

stochastic processes.

4. Appendix
In this Appendix we give some details of our derivations in Section 2.
Although the results in the following may not be new in probability theory,

1 suspect that many researchers in finance are not familiar with them.

(i) Density Function of R:

Since Feller (1951) did not give the detailed derivations of the
results, we first derive the density function of R. Using Theorem 2 in Page
286 of Gikhman and Skorokhod (1969), we start with the joint density
function of the three random variables

( min X(t), max X(t), X(T)) ,
0stsT O<tsT

which is given by

(A.1) P{a< min X(t) £ max X(t) <b, X(T) £ [c, d]}
0stsT 0stsT



- Z / [exp{ [x + 2k (b- a)) } - exp{—z%{x - 2b +2k(b-a))}]ldx

JZnT k=-o ©

Let e(x) = exp(—2x2/T). Then conditioning the terminal value of X(t) by

X(T) = 0, we have

(A.2) G(a,b) = P{a < min X(t) £ max X(t) <bl X(T) = 0}
0St<T OStsT

P{a < min X(t) £ max X(t) < b, X(T)€[0,A]}
liu 0St<T OStET

A»0 P{X(T)=[0,A]}

©

k[ {e(k(b-a)) - e(-b + k(b-a))}

00

1+ e(b-a) - ) {e(-b + k(b-a)} + e(a + k(b-a))
k=1

- e(k(b-a)) - e((k+1)(b-a))} ,

which is equivalent to (4.1) in Feller (1951). By transforming S = min X(t)
and R = max X(t) - min X(t), the conditional density function of R given

X(T) =0 is given by

l\D

(A.3) r(ry = 100 °

8a3b a=§s

We differentiate and integrate each term in the parenthesis of (A.3). For

instance, we use the relations:



(A.4)

(A.5)

9 2 2
rl aaiéﬁ‘b*a’]1a=sds - AP - Deknas

2

=k re'ikr) ,
r Fel-btk(b+a)) Cak(k-1) Ry, 4. .
fol “same lg-gds = 7 5o {1- pls-(k DRF Je(kr)ds
b=r-s

- k(k-1){e ((k-1)R) - e (kR)} .

Collecting each terms in (A.3), we have (2.10), which is the result obtained

by Feller (1951). Rearranging each term in (2.9), we obtain

(A.6)

(A.7)

£(r) = 2 T {2ke' (kr) + rkPe'' (kr)) .
-1

(ii) Proof of Lemma: Let

i}

H(T,p) fgxpe(x)dx

(507 2r&5h)

1
2 2

Then by integration we have

(A.8)

A}

1% Pe ikr]dr = (l)pd{[xpe'(x)]oo - p fwxp—le'(x)dx}
k 0 0

8

<o

= GP e (P @I - (0-1) 5P Pe(x)dx)



= &P p(p-1)H(T,p-2) .

Similarly,
(A.8) foooxpe'[kr]dr = (llz)pﬂ{[xpe(x)]g -p f:;xpe(x)dx}

p+l

- P epEp) Lo
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