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1. Introduction

Two important underlying assumptions of the traditional simultaneous equation ap-
proach in econometrics are the identifying restrictions and predeterminedness (or exogene-
ity in some sense) of several variables in the system of structural equations. Although
these assumptions are often made on a priori ground, in practice it may be advisable to
examine these two conditions from ‘a statistical point of view. In this respect a number
of statistical testing procedures for these restrictions have been proposed by econometri-
cians. For instance, the test procedures of Anderson and Rubin (1949), Koopmans and
Hood (1953), Basmann (1960), Byron (1972), Wu (1973), Revankar and Hartley (1973),
Revankar (1978), Hausman (1978), Kariya and Hodoshima (1980), Hwang (1980a), Hillier
(1987), and Revankar and Yoshino (1989) among many others have drawn attention and
have been applied in empirical works. However, since many testing procedures have been
introduced based on intuitive reasoning, it may be difficult to understand the meaning of
the statistics proposed.

The main pﬁrposes of this paper are to derive systematically several test procedures for
each condition and to obtain the relationships among the different test statistics. For these
‘intentions we consider a subsystem of structural equations and regard the single equation
method as a special case of our formulation. Then we shall derive three types of test
procedures, namely, the likelihood ratio (LR) test, Lagrange Multiplier (LM) test, and the
Wald test for the block identifiability restrictions and the predeterminedness restrictions
in the subsystem of structural equations. In this framework the test statistics we shall
derive include most of the test statistics mentioned above as special cases and give new
interpretations to some of them. These interpretations also apply .to some test statistics
commonly known in multivariate statistical analysis.

In a subsequent paper we shall derive the asymptotic distributions of these test criteria
under very general conditions, based on a new central limit theorem using a Lindeberg-type
condition for martingale differences [Anderson and Kunitomo (1989a,b)].
| In Section 2 we formulate a subsystem of structural equations. In Section 3 we de-
rive several statistics for testing identifying restrictions. We also relate these statistics to

the statistics in multivariate statistical analysis yielding new interpretations of statistics
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commonly known among statisticians. Subsequently, in Section 4 we derive a number of
test procedures for testing econometric predeterminedness restrictions. Finally, in Section

5 some concluding remarks are given. Useful lemmas are given in the appendices.

2. Two Hypotheses in a Subsystem of Structural Equations
2.1. The model.

We consider a subsystem of Gg structural equations
(2.1) YB=2Z;T'+U,

where Y is a T X G matrix of observations on the endogenous variables appearing in the
first G structural equations, Z; is a T' X Ky matrix of observations on the K; exogenous
variables, B and T are G x G and K x G matrices of (unknown) parameters, respectively,
and U is a T x G matrix of unobservable disturbances. When Gp = 1, (2.1) is the usual
single structural equation. We require the columns of B to be linearly independent; that
is, the rank of B is Gj.

The reduced form equation for the endogenous variables Y appearing in the first Go

structural equations (2.1) with K (K = K; + K3) predetermined variables is
(2.2) Y =211+,

where Z = (Z1,2,) is a T x K matrix of predetermined variables (T > K) of rank K,
and Z is a T' X K3 matrix of predetermined variables that are not included in (2.1). The
predetermined variables may include lagged endogenous variables. V' is a T x G matrix of

disturbances whose t-th row is denoted by v;. We assume that

(2.3) E(vy) =0,

(2.4) E(vvy) = Q,

where Q is a G x G positive definite matrix.
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In this paper we shall consider two hypotheses. One is that the set of Gy equations
(2.1) is identified as a block. That is, any matrix B such that ZIIB = Z1T for some
T is obtained from any other by multiplication on the right by a nonsingular Go X Go
matrix. The other hypothesis that we consider is that a subset of the endogenous variables

is uncorrelated with the disturbances in the block of equations.
2.2. Block identification.

The relationship between the reduced form and the structural equations involves

(2.5) I =1,.B,
(2.6) U =VB.

where II has been partitioned as
, .
(2.7 II= .
(2.1 ()
Let u} be the t-th row of U. From (2.3), (2.4), and (2.6) we obtain

(2.8) E(us) =0,

(2.9) E(uuy) = B'QB = T,

where ¥ is a Gy X Gy positive definite matrix. The block identifiability conditions are

expressed as

(2.10) He: (=0,
where
(2.11) ¢ =TI,.B.

From (2.11) we obtain the rank condition for the identifiability of (2.1),

(2.12) rankIl;. = G — Gp.
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The order condition is
(2.13) L=K;—(G—Go)>0.

In the above notation, L is called the degree of overidentification.

Let vg > -+ > vy > 0 be the roots of

11
(214) I“T‘QT -8l = 0,
where
(2.15) Or = II’2_A22.1H2.,
(216) A = ZéZz - Z;Zl(Z{Zl)"lZ{ Z3.
The block identifiability conditions are equivalent to the hypothesis H, : v1 = -+ = vg, =

0 and vg,4+1 > 0. The existence of a matrix B such that { = 0 is equivalent to (2.12),
which, in turn, is equivalent to H,.

Note that the model (2.1) and the hypothesis H; are invariant with respect to linear
transformations on the right; that is, (2.1) and (2.10) can be multiplied on the right by an

arbitrary nonsingular matrix A to yield another set of structural parameters
(2.16') B=BA T=TA4, £ =ASA.

It may be convenient for some purpose to select a particular triple (B,T', X) by a suitable
normalization of B such as requiring a submatrix of B to be Ig,. The test procedures are
invariant with respect to the group of transformations and hence do not depend on the

normalization.

2.3. Exogeneity.

An essential difference between a system of structural equations and regression mod-
els in the multivariate analysis is that in the former correlation may exist between the

- endogenous variables y;, which is the t-th row of Y, that is, v; and the corresponding
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disturbance term u}, but in the latter some components of y} and u} may be uncorre-
lated. In order to state this hypothesis we partition ¥ = (Y1,Y3) into Gy and G, columns
(G =Gy + Gz), V= (Vl,Vz), and

Q1 o )
2.17 Q= .
(2.17) (921 Q22
From (2.9) the covariance matrix of vy, and u; is

(2.18) n = Cov(vat, Uy)
= (D21, 8022)B.

We define the econometric predeterminedness restriction considered in this paper to be
the hypothesis H, : n = 0. The two hypotheses He¢ and H, imply the hypothesis
Hg,,, : € =0, n =0. When the disturbance terms follow the multivariate normal dis-
tribution, the uncorrelatedness implies an independence between a subset of regressors Y3
and disturbance terms in (2.1). This testing problem has been sometimes called the test
of independence. The hypothesis of predeterminedness in this paper has also been called
weak exogeneity in econometrics. T here are several different concepts of econometric ex-
‘ ogeneity in simultaneous equation systems. Engle, Hendry, and Richard (1983) surveyed
this issue in a systematic way. See Holly (1987), also.

The hypothesis of exogeneity is also invariant with respect to linear transformations
on the right; that is, 7 in (2.18) can be multiplied on the right by a nonsingular matrix
A. The test criteria for exogeneity are also invariant with respect to such transformations
and hence with respect to normalization of B. |
| In Section 3 we obtain the likelihood ratio, the Lagrange multiplier, and Wald-type

' tests of over-identification. In Section 4 we find test criteria for predeterminedness.

3. Tests of Block Identifiability

In order to derive test statistics we assume that the disturbance terms {v¢} are in-
dependently and normally distributed. The derivation here is considerably simpler than

alternatives already known.



3.1. Likelihood ratio test.

Under the assumption of normal disturbances, the log likelihood function for Y' =

(y1>°' . 7yT) 1s
1
(3.1) logLy; = ¢1 — %Tlog || — —?:tr(Y — ZI)(Y - 211,
where ¢; = —2GT log(2r). To maximize Ly with respect to the covariance matrix 2, we

use Lemma A.1. The concentrated likelihood function is
: 1
(3.2) log Ly = ¢ — —éTlog |S|,

where ¢; = ¢; + $GTlogT — 3GT and S = (Y — ZI)!(Y — ZII). The log likelihood

maximized under the alternative hypothesis Hy4 : £ # 0 (that is, no restriction) is
1 —_
(3.3) log Ly = ¢z — §Tlog Y'PzY|,

where Pp = F(F’ F)™1F' denotes the projection operator onto the space spanned by the
columns of F and Pr = I — Pp for any matrix F of full column rank.
To maximize the likelihood under the null hypothesis He : £ = 0 we define the G X G

matrix

(3.4) | H:(B 0 )

IG*

where G, = G—Gy. Since B is of rank G, there is a Go X Go submatrix that is nonsingular.
When the numbering of components-of y; is such that this matrix consists of the first Gy

rows of B, then H is nonsingular. The concentrated likelihood is rewritten as
1 , 1 .
(3.5) log Ly = ¢c2 + —éTlog |H'H| - ETlog |S*,
where S* = H'SH = (W — ZII*)(W — ZII*),W = (Wo,W,) =Y H = (YB,Y,), and
* * * F *
(3.6) m* = (I, 10%,) =1IH = (5 I'I_*> .

The unrestricted least squares estimate of II* is
(3.7) fi* = ({i%,0%) = (2'2) ' z'W.
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Then

(3.8) S* = (W — ZII*)(W — ZII*)
= W'PZW + (II* - 1*)2' 2(I1* — 11*)
— W'P,W + [2(T1% - Iy), 2(fi, — )] 20, - 1), (T, —1)].

By Lemma A.2 the minimum of |S*| with respect to IL, =1I7, is

‘W'ﬁ2W| ) |W6-P_2W0 + (ﬁfo - H‘*o)'zlz(ﬁ‘*o “ Hfo)l )

3.9 —
(39 |W{PzWo|

The second determinant in the numerator of (3.9) is |(Wo — ZI1%)"(Wo — ZII%)|, which is
|(Wo — ZiT)' (Wo — Z1T')| if £ = 0. That determinant is minimized with respect to I' at
T = (Z,2,)"1Z,Y B. The log likelihood ratio criterion is the maximum with respect to B
of

. ! . W/"' B' 5) B
(3.10) .—l-Tlog 151 iH | (EZWOI == lTlog | Y_I_)ZY | .
2 (W'PzW|- |W{Pz Wo| 2 |B'Y'Pz, Y B|
Lemma A.3 implies that the maximum of (3.10) is 7'/2 times the sum of the Go smallest

~characteristic roots of Y'Pz, Y(Y'PzY)!. The log likelihood ratio times —2 is

Go
(3.11) LRy =T log(1+\i),
i=1
where Ag > -+ > A; > 0 are the roots of
(3.12) |Y'(Pz — Pz,)Y = Y'PzY|=0.

The above equation is a sample analogue of (2.14).

The likelihood ratio statistic (3.11) for Go = 1 was derived by Anderson and Rubin
(1949); LR, corresponds to the smallest root in the limited information maximum likeli-
hood (LIML) estimation method. When G = 2, LR, is identical to the statistic proposed
by Koopmans and Hood (1953) as the non-identification test. Anderson (1951) was the
first to obtain the likelihood ratio criterion (3.11), which he did by differentiation.



3.2. Lagrange multiplier or score test.

The Lagrange Multiplier statistic, which is identical to the Rao score statistic, has

been developed as a test statistic to test a hypothesis H about a vector parameter 8 in a
likelihood L. In these general terms the criterion is

dlogL| \' [ 8%logL| \ ' (dlogL
s o= (Y] ) (-Gkel) )
u 9606' | 30 |y

99
where H denotes the null hypothesis and the value of the parameter in (3.13) maximizes

the likelihood under the null hypothesis. If the null hypothesis is
(3.14) H:h6) =0

and ) is vector of Lagrange multipliers

dlog L 1 Oh
315) L)'
Then
(3.16) LM = (\|n)'(est. asymp cov. of N7 A R).

In our problem h(6) = vecIl;.B, A = vec A, where A is K3 X Go, and the Lagrange

form is
. T 1 -1 ’ ! !
(317) 10g L4 =] — —2‘10g|Q|“ -étI‘Q (Y-—ZH) (Y——ZH)-*—tI‘A HzB

Setting to 0 the derivative of log L4 with respect to each element of II, we obtain

(3.18) Z'(Y - ZIDQ™ + (2) B' =0.

The upper half part of (3.18) gives Zj(Y — Zﬁ) = 0, and we have

(3.19) . = (202,)7 2U(Y — Z,013.).
Then
(3.20) | Yy -zl =Y - 2,11,. — Z,00,.

=Py (Y — Z,01,.).
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Multiplying (3.18) on the right by B, we obtain
0 —
(3.21) (A> =-2'P5 YBY ™.

Using Lemma A.4, we find the first and second derivatives of the log-likelihood function

as

dlogL, Ologl, ' 0\ ., 0% log Ly -1 ,
. = = -0 Z.
(3.22) Ovecll Ovecll Freelia Bl Ovec [19(vec ITY ®Zz

Then we define an LM statistic by
(3.23)

LM, (8logL1

Ovecll

~1 /8log Ly
n=fi 0=0 Ovecll

Q and II are evaluated at their maximum likelihood estimators under the null hypothesis.

Using Lemma A.5, ¥ = B'QB, and

)' < 8% log Ly ) _
=i 0=8 dvec [19(vec IT)' =11 0=6 ’

15} log L]
6vec II

=0,

(3.24)
‘ H=ﬁ,ﬂ=§

we have

(3.25) LMy = {vec KD B'] }I[Q ®(2'Z) vec KD B’]

— trD(0A")(2'Z) ! (D

where the unknown parameters in (3.25) are evaluated at their maximum likelihood esti-
mators under the null hypothesis. (See Engle (1984), for instance.) The LM statistic in
the form (3.23) is known as Rao’s Score test statistic among statisticians. From (3.18) and

P A PzPgz = Pz — Py, we further simplify LM, as
(3.26) LM, = teB,Y'(Pz — Pz,)Y BuS3,

where By and b = (1/ T)E},Y'ﬁzl Y By are the maximum likelihood estimators of B

‘and ¥ under the null hypothesis. Let ¢; satisfy

‘(3.27) Y’(PZ — Pz )WYe= /\iY'P2Yc,
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(3.27") dY'P;Yc=T,
where ); satisfies (3.12), 1 =1,...,Go, and let
(3.27") C =(c1,..-,¢Go)-

Then EH = C A for arbitrary nonsingular A and fJH = (1 /T)E\HY'IT’Z1 YB . (See Ap-
pendix B). When we use the roots of (3.12), this statistic is expressed as

(3.28) LMy =T)Y ———.
=1 1 + )\i

When G, = 1, this statistic LM; is the LM statistic proposed by Byron (1972). However,
his derivation of the statistic is different from ours. It should be also noted that (3.28) is
an analogue of the Bartlett-Nanda-Pillai trace criterion, which is well known in multivari-
ate statistical analysis. (See Anderson (1984), Chapter 8.) Our derivation yields a new
interpretation of »the Bartlett—Nanda-Pillai test.

3.3. Wald test.

In general terms the Wald test is based on the statistic
(3.29) h(8)'[asymp. cov. of h(0)] " h(8),

where 8 is the maximum likelihood estimator of the parameter vector # under the alterna-
tive hypothesis. In our problem the null hypothesis is that the rank of II;. is G —Go = Ge.
To express this in the form of h(8) = 0 we partition Il,. into L = K, — G, and G, rows

and Gy and G, columns:

_ HlO Hé*
(3.30) I, = (Hmo Hm_*> .

Since II,. is of rank G, there is at least one square matrix I, of order G. that is

nonsingular. There exists a G X Gy matrix

(3.31) B = (ﬁB];*),

10



where By is Gg x Gy, such that { =II2.B = 0.

This equation can be partitioned as

(3.32) e = Iy Bo — lex By = 0,

(3.33) € = o Bo — Hmu By = 0.
The second equation yields

(3.34) B, =TI 1,50 Bo.
Substitution into (3.32) yields

(3.35) ¢ = (Mo — M T M0 ) Bo = 0.

Since B is of rank Gg, By is also of rank Go. (If By were of lower rank, there would
exist a vector ¢ such that Boc = 0; then by (3.34) Bc = 0.) Hence, if II,. is of rank G.,
o — He*n;&nm_o = 0. We take

(3.36) h(8) = vec (Mg — Meu T o).

Let Y = (Yo,Y), V= (W, V), ;. = (10, M14), and Zy = (Z¢,Zm). The reduced

form is

(3.37) Yo = Z11l10 + ZeIleo + ZimIlmo + Vo,

(338) Y* = Zlnl* + anf* + Zmnm* + V*-
A just-identified set of structural equations is

(3.39) Yo = YiBy + ZiT + Zebe + U,
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where B, is given by (3.34) and By = I. Then a set of parameters is By, T, €o, Myu, How, I,
and §2; the null hypothesis is defined by £ = 0. The maximum likelihood estimator (un-
der the alternative) of By, I', and £ is the indirect least squares estimator, which is the

solution to

v\ By !
(3.40) 20| ¥ 2,20 T | =12 | Yo,
Z, £e Zy

where Y, = Z (2'Z)~'Z'Y,. Then solving the above equation with respect to £, we have
(3.41) ZiPg 4 Zoky = ZiPg 4 Yo.

Applying Lemma A.6 for T’? 7 and noting that Z, = PzZ,, we write the estimator of &

as
(3.42) _ €= (Z)NZ) 1 Z,NY,,

where

N=Py —Pz— Pz, —Po)Y.[Y!(Pz — P2)Y.]  Y)(Pz, — Pz).

In the above we have utilized the fact that Z,NZ, is nonsingular because the matrix
(Y, Z1,Zy) is of full rank (a.s.) and rank (N) = rank (Z,) = L (a.s.). Then the covariance
matrix of the limiting normal distribution of VT vec (Eg — &;) is the probability limit of

(3.43) T[Ig, ® (ZsNZe)  ZiN| (S ® It) [Ia, ® (ZNZe)™' ZN]'
1 -1
:2®(T%N&> ,
We now define a Wald-type statistic by
(3.44) Wy = (vec&)' [S1 ® (ZiNZe)™H] 7 (vec &),

where £ = ﬁ}@ﬁf, B = (Ig,, »ﬁfd), and Q = (1/T)Y'P ;Y. Since we have normalized
B, = Ig,, the two-stage least squares estimator of B under He : { = 01is Bl = (Ig,,—B.)
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and B, satisfies [Y,(Pz — Pz, )Y.] B, = Y!(Pz — Pz,)Y,. Thus using Lemma A.6 again,

we have

(3.45) W = {vec [(ZiNZe) " Z,NYo) }' [E ® (ZiNZ¢)™"] “vec [(ZiNZ) "1 ZiNYo)
= [vec(ZyNY,)]' [I ® (ZiNZ0) ) [E7! @ (2N Z0)] [I ® (24N Ze) ™" | vec(Z;NYo)
= [vec(ZiNYo)]' [E7! ® (ZiNZ¢) " vec(ZNYo)

= tr{S Yy NZy(ZiNZe) "' Z;NYo }.
Since N? = N, there exists a T' x L matrix X such that N = X(X'X)"'X' and

(3.46)  NZ«(Z,NZy)'Z;N
= X(X'X)"'X'Z, [Z{,X(X'X)"X'Zg]“IZQX(X'X)‘IX'
=X(X'X)"'X'=N.

Then we have

(3.47) W, = tr {STYyNY, }
= tr {S7Y(Y, - YuB.) (Pz — Pz,)(Yo — YaB.)}
= tr {871 BysY'(Pz - Pz,)Y Brs}.

The above derivation is an extension of Hwang (1980b). The last expression in (3.47)
shows that except for $ the criterion does not depend on the selection of variables to
define &; and &, but it does depend on the selection of variables to define Yy and Y;. The
criterion (3.47) can be modified by defining S as B'QB with B as some other estimate of
B. The estimate of B obtained when &, = 0 (that is, the alternative hypothesis holds) is
(I, -—ﬁi)', where B, is defined by (3.40). If B = Brg, then (3.47) is completely independent
of the selection of variables in &, and &n,. This is the statistic derived by Wegge (1978) for
Go = 1. Hwang (1980b) has shown that it is identical to the Wald statistic proposed by
Byron (1974). If we use the maximum likelihood estimator of & under the null hypothesis,

| =

(3.48) S =_-B'Y'PsYB,

~
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the resulting statistic reduces to the statistic proposed by Basmann (1960) for the case of
Go = 1. It can be interpreted as a Wald-type statistic in the present context.
If B = By, the limited information maximum likelihood estimator under Hg : § = 0,

and ﬁTg in (3.47) is replaced by ﬁLI, the statistic is
(3.49) Wl' = Ttr(EiIY'ﬁzlYB\L])"lﬁLIY'(PZ — Pz, )YﬁL[
Go )
=TY N,
=1

where A1, ..., Aq, are the Go smallest roots of (3.12).

It should be also noted that W! is an analogue (or generalization) of the Lawley-
Hotelling Trace Criterion, which is well-known in multivariate statistical analysis. (See
Anderson (1984), Chapter 8.) Thus our derivation also gives a new interpretation to the

Lawley—Hotelling type statistic.

3.4 An Inequality Among Statistics.

We have derived three types of statistics for the block identifying restriction in a
subsystem of structural equations. There is a simple inequality among the statistics we

have derived. Using Lemma A.7, we have
(3.50) 0 < LM; <LR; <Wj.

This type of inequality among three different types of statistics has been well-known for
testing linear restrictions in the multivariate regression model (Anderson (1984), Chapter
8, for instance.) If we use the same significance point (based on the asymptotic x? distri-
bution), the Wald-type statistic tends to reject the hypothesis more often than the other
statistics while the likelihood ratio statistic tends to reject the hypothesis more frequently

than the LM statistics.

4. Tests of Predeterminedness

In this section we shall derive several tests of the null hypothesis of econometric

predeterminedness Hg , : € = 0, = 0. We suppose that Go < G1.
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4.1. The likelihood ratio test.

We first find the likelihood function maximized under Hg¢,y. The hypothesis H, is

B
(4.1) 0= (921,922)( 11; )
—B,
= Q1 By — Q22B,
= Qa9(pB1 — Ba), |

where p = Q55 Q21 and B’ has been partitioned as B' = (Bj,—B; with B; having G
22 1

rows. This fact suggests a re-parametrization since By = pB; under H, and then Hg is

(4.2) 0 = M1 By — M2 By = (M3 — Ia2p) By,

where II;; denotes the ¢, j-th submatrix of II partitioned into K; and K2 rows and G; and

G, columns. Let

(4‘3) ] Yl* == Yl — ng, Vl* et ‘/1 — Vzp’

ok ek H H I 0
4.4 I = (TI%* . I1%) = 11 12 ) 11 12) (
(44 (I3, I5) (H;I ;;) <H21 II32 —p I

_ (Hn —Ti2p Ihe
Mgy —Ma2p a2 /-
Then Hp is 133 By = 0. The reduced form for (Y,Y3) is
(4.5) (Y1, Ys) = ZI + (W, Va).
The covariance matrix of each row of (V{*,V2) is
(4.6) I =y Q1 Qa2 I 0y _ (2 O
) 0 I Q21 922 —pP I - 0 Q'22 ’

where 21120 = Q11 ~912Q;21 Q21. The likelihood function of the parameters Qaa, Qq1.2, I,
and p (subject to (4.2) or alternatively I3} By = 0) is

- 1 - * *oK * * ok
(4.7) L5 = CllQ]_l.Zl T/2 eXp ["—"é'trﬂlll,z(yl - ZIIl )'(}/l - Zn_l )}
- 1
XIQZZI T/2 €exXp [“"étrﬂzzl(YZ — ZH.Z)’(Y2 - ZHQ)] .
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The function Ls is maximized with respect to Iz, Q92, and Q1.2 at

(4.8) fi, = (2'2)12'Ys, TQyn =Y{PzYs,

(4.9) TQu. = (¥y — ZIY) (Y] - Z10Y)
~ [Y1 - (Yz,zl)(nﬂ*) -~ ZzII;}‘]
11

and the concentrated likelihood is

!

[Y1 - (Yz,Zl)( l,),*) - ZzH%"{] ;

11

(4.10) Lo = co|TQa| ™7/ T01.2| "7/

Since Tﬁzg is a sample quantity, we want to minimize |T§11.2| with respect to p, I}, and
31 subject to II51 By = 0.
The general alternative to Hg,, is that II and Q are unrestricted; we term this as
H,. The problem of testing Hg,, vs H 4 has been reduced to testing (4.2) II37B1 = 0 vs
I3 By # 0. The likelihood ratio criterion by the algebra of Section 3.1 is

Go
(4.11) LRy =T log(1+ X)),
) =1
where \g; > -+ 2 A} > 0 are the roots of
(4.12) IY{(Py, z — Py,,z,)Y1 — X'Y{ Py, zY1| = 0.

Another possible alternative to H¢ , may be He, which defines the structural equations
with the block identifiability restrictions. Because Hg, is nested within Hg, the log-
likelihood ratio criterion for He , vs He is the difference between the statistic for He 5 vs

H 4 and the statistic for He vs H4, namely

Go GO
(4.13) LRy =T ) log(l+A})— T log(l+ )
=1 =1
Go
14 X!
= T;log T A



When Go = 1 and Gy > 1, LR; reduces to the statistic obtained by Hwang (1980a).
Furthermore, L R3 reduces to the statistic obtained by Kariya and Hodoshima (1980) when
Go=G; =1

4.2. Lagrange multiplier test.

The Lagrange multiplier statistic for testing Hep:E=0,n=0vs. Hpis the Lagrange
multiplier statistic for testing He : ( = II57 By = 0 vs. Hy Itis

‘ G |
4.14 LM, =T Lo
(414) Ms ; 1+
where ¥, ..., N4  are the Gy smallest roots of (4.12). This statistic LM, does not seem

to have been derived previously.
Now consider testing He , vs. He. Let A and Ag be K3 x Gy and G3 X G matrices of
Lagrange multiplier parameters for He y : ¢ = 0, n = 0, respectively. The Lagrange form

in this case is written as

(4.15)log L7 =log c1 — %log 2] — %tr QY — ZN)' (Y — Z10) + tr A'(Tl21, Ma2) B

b Ao(p,Ic,)B.
Setting to 0 the derivative of log L7 with respect to the components of Bz, we have
| (4.16) 1y, A + Ao = 0.
Substituting this relation into log L7 and ignoring a constant term we obtain

T 1
(417) IOg Lg = ~—2—'10g 1911‘2H922| - Etr Q_I(Y - ZH)'(Y - ZH)
+tr A' (Mg — M22p)B1,

and H is (TIg1 — M22p)By = 0 under Hn.

The derivatives with respect to the elements of II are

v ey—1 / -1 0 0
(4.18) Z'yQ " - Z'ZIIQ +(AB{ ——AB;p')'

17



Setting this matrix to 0 yields
4.19 Z'Z0=2'Y + 0 0
(4.19) = AB!Quiz 0)
We can write
~1 _o=1
(4’20) Q——l — ( Qll_:_zl _.191,1-2p ‘_1) .
The derivatives of log Lg with respect to the elements of p are

Ig,

(4.21) (Ya — ZuTly — ZuTlas)' (¥ — Z10) ( )9;11,2 I, AB.

When (4.21) is set to 0 and multiplied by 2112 we obtain
(4.22) Y{FZYl - Yé?zi@p = HI22AB£QH.2
by use of (4.19). From the first set of columns of (4.19) we obtain
(4.23) AB\Q41.0 = Z4P 7, (21121 — Y1).
‘When we use this in (4.22), we obtain

5 Ig, 1)
(4.24) Y;PgY | L) =152;Pz, (2,11 — Y1),

Multiply (4.24) on the right by B; and replace Il B by H22pB;. Then solve (4.24)
multiplied by B; with respect to pBy using (4.19) to obtain

(4.25) pBy = (Y{P2Ya) YyPzYiBi.
Lemma A.6 has been used. Multiply (4.23) on the right by By using (4.25) to obtain

(4.26) A = Z4P g, (Z2Tlazp — Y1) B
= —2Z3Py,,2,Y1B1,

where ¥ = B|§;1.2B1. In this derivation we have used Lemma A.6 for (Y3, Z1).
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From (4.26) we find that the Lagrange multiplier matrix in the sample for Hy : 7 =0
is
(4.27) Ao = —II5A
= —Y[P2,2:(2,P 2, 2:) " ZyPy, z, 1B: 87
=-Y,(Pz, — P2)Py, zViBiT™
= —Y,P;Py, 7, 1 BiS7,

where ¥ and El are the maximum likelihood estimators of 2 and Bj. Since ¥ is a consistent

estimator of £ and (1/T)Ao -2, 0, we consider the quantity

(4.28) A = YZ'PZ‘P_szlYlﬁlz_l

— Y!P;Py, 7,Y1B15™' + Y} Pz Py, 7,Y1(B1 — B))=™
which is asymptotically equivalent to Ag. We note that Py, z,Y1B, = Py, 7, U under
H, : n = 0. Now we apply the method to derive the asymptotic distribution in Lemma

3 in Anderson and Kunitomo (1989b) and substitute (Y2, Z) and (Y2, Z,) for Z and Zi,
respectively. Let

(4.29) R* = [(ZILy + Vap)J1, Y2, Z1]

= [(Y’27Z) (Hl —pH2p> JlaY2’Zl]
_ RF,

where R = (Y2,2), J{ = (0,I,-6,) is a (G1 — Go) X G1 matrix and F is a (Gy + K) X
(G« + K1) matrix defined by

(4.30) F= Kn.l fﬂ.zp) (IGf-Go) ! (Igzgm)} '

Let normalize By = I, and partition Y = (Yy, Y11) into T'X (Go +(G1—Go )) submatrices.
Then from (4.29) we write

(4.31) (Y1, Y2, Z1) = R* + (V" J1,0).
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Under the hypothesis H, : n = 0 we have

(4.32) U=ViB,~ V2B
= (Vl - Vzp)Bl = Vl*Bl-»

Since each row of R* and R in (4.29) is uncorrleated with each row of V{* = V4 — V;p, R
is uncorrelated with U. Then by using the same argument as in the proof of Theorem 5
in Anderson and Kunitomo (1989b), the asymptotic distribution of vec(Ag) is equivalent

to the asymptotic distribution of

(4.33) vec(Y; PzPreUS ™).

We write (4.33) as

(4.34) vec(Yy PzPrpUL ™) = (87 @ Yy Pz Prr)vec(U).

Then conditional on Y2 the covariance matrix of vec(Ag) is

(4.35) (E'®Y,P;Prr)(E @ Ir) (S © PrrPzYz) = Y"1 ®Y,PzPrrPzY>.
We now define an LM statistic by

(4.36) LM; = (vecAq)' (£ @ Y3 Pz P o 5PzYs) ™" (vecho).

Then by the use of Lemma A.5, we rewrite (4.36) as,

(4.37) LM, = tr{BY! Py, 2, PsY2(YPsP gz P2zY2) 'Yy P; Py, 7, Vi B: 7'},

where we have used the relation ]‘5Y2’ 21FZY2 = ———ijz, 7z, PzY2 and F is evaluated at its
maximum likelihood estimator.

When G; = Gp, we have Prr = ?Yz,zl . Using Lemma A.6, we obtain the expression

(4.38) LM3 = tr{Yl'(_ﬁYz,Zl - Fx)Ylgml}




where \** are the characteristic roots of
(4.39) Y{(Px — Py, 2,)Y1 = X"Y{PxYi| =0,

and X = (Y2, 21, PzY2) is a T x (G2 + K1 + G2) matrix. The second line of (4.38) implies
that & = (1 /T)ﬁilq?XYlﬁl. In the present formulation of the LM test, S should be

based on the maximum likelihood estimator of £ under the null hypothesis:

o~

1

7Y1 P,z 11

= Q1.2 =

™

(4.40)

However, in practice, several estimators of £ could be used. For instance, instead of (4.40),

we may use

1

(4.41) L= T

Y/ PxYi.

In particular, LM; with (4.41) reduces to the statistic proposed by Wu (1973) and Wu
(1974) when Gy = G; = 1.

On the other hand, consider a testing problem for
k (4.42) YiBy =Y2By + Z:T' + EsBs; + U,

where Bj is a G X G vector of unknown parameters, and E3 is the least squares residuals
Es=Y,— 172 = P,Y,. Hausman (1978) proposed the usual F' test for Ho : B3 = 0 against
Hy : B3 # 0 as a specification test when Go = G1 =1 and By = 1. From (4.37) it is
clear that LMj is proportional to Hausman’s statistic in this case. In fact, Nakamura and
Nakamura (1980) has shown this equivalence between Wu'’s test and Hausman’s test for
G, = 1. They also pointed out that a statistic proposed by Durbin (1954) is similar to
them. Our derivation of statistics shows that these statistics can be interpreted as LM test
procedures. Hwang (1985) also has shown the equivalence of Hausman’s test and an LM
test for Go = 1 and Gy > 1 by a different method.
Another possibility of an estimator of 3 may be

1

4.4 S
(4.43) = T~ K — Gs

Y|Py, z11
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because it is an unrestricted sum of squares from the regression residuals. Then, the
statistic LMs with (4.43) reduces to the one proposed by Revankar (1978) when Go =

Gy = 1. Therefore, we can also reinterpret Revankar’s test as an LM test procedure.

4.3. Wald test.

Now we consider Wald-type statistics for the present testing problems. For this pur-
pose we first consider the null hypothesis Hg , : € =0, 7 = 0 vs the alternative hypothesis
Hy : € # 0. In this case, our derivation of a Wald test is similar to Section 3.3. Thus a

Wald-type statistic is

Go
(4.44) Wa=T» A,
=1

where A* are the characteristic roots of (4.44).

When Go = Gy = 1, W3 reduces to the statistic proposed by Revankar and Hartley
(1973). Although their derivation was different from ours, we can interpret their statistic
as a Wald test fér Hg ., against Hq. W, may be called the generalized Revankar-Hartley
test.

We now derive a Wald-type statistic for the null hypothesis He 5 : £€=0,n=0 againét
the alternative H : £ = 0. We note that from (3.18) under Hg

(4.45) T4 = (Y - @)y — z10)
—Y'PsY + QB( ) (2'2) (D B'a.
Using (3.21), we have

(4.46) TGB = Y'P,YB + QBS'B'Y'(Pz — P2,)YB.

Because TS H = B gY' leYE H, where B n=CCy ! we obtain an unrestricted estimator

of n as
(4.47) il = JyQn By
—J %,—Y PyY BuCo(I + K5t
- J;—,}Y P,YB + J2TY'PzYCoKCO'1,
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where J) = (0,Ig,) and A = diag(A1,...,AG,). Since A; = 0,(1/T*~¢) for any € > 0,
VTCoAC;! 25 0. (See Anderson and Kunitomo (1989b).) Then the limiting distribution
of /T(# — ) is the same as the limiting distribution of

(4.49) vee( JIQVT(B — B)) = vec[(Qa1, %2) s, O] VT ["‘_(_]?I;: B f)*)]
is the limiting distribution of

1
(4.50) —Ig, ® [(921,922)1*,0](D'MD)“1D’TT_vec(Z’U),

where J. = (0,Ig, ) and

(4.51) D= [II (I’a’l)}

is a K x (G« + K1) matrix.
The limiting distribution of v/T'vec [(1/T)Y'PzY — Q2] is N(0,Q ® Q). Hence the

limiting distribution of

(4.52) VTvec {Jg (%Y'PZY - Q) B}

is N(0,% @ €g5). From (4.50) and (4.52), the asymptotic covariance matrix of vecn* is
given by

(4.53) z ® (922(pJ1, IG2, 0)(D,MD)_1 (le, IGQ, 0)'Q22 + 922),

where J| = (0, I, -G, ). Hence we define a Wald statistic by
(4.54)
W3 = T'(vec ﬁ)'{§ ® [Tﬁgz(p“Jl,Igz,0)(ﬁ'Z'Z13)"1(ﬁJ1, IG2,0)'§22 + ﬁzz] }ﬁl(vec n)

where i, p, and Q4o are the maximum likelihood estimators of X, p, and {222, and D is the

maximum likelihood estimator of D, respectively. Again, using Lemma A.5, we have
(4.55)  Ws = te{B'Y' P2, Y2 [T2(571, Ie,, 0)(D' 2'2D) " (31, I, 0)' T2
+ T%s] 'y, P, YBS,
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where B is the maximum likelihood estimator of B under He.

This Wald-type statistic is similar to the Wald statistic proposed by Smith (1985)
when Go¢ = 1. Although it is complicated in general, it can be further simplified in
the case when the subsystem of structural equations is just-identified as the alternative
hypothesis. In this case, since A = 0,¢=1,...,Go, in (3.13) we have Ty = Y, PzYs,
I, =(2'2)"12'Ys, TS = ﬁ'Y’?ZlYﬁ. Then, in particular, when G¢ = G1 = 1, it can
be shown that W in (4.55) is equivalent to the statistic proposed by Wu (1973) and Wu

(1974) except $. This may give the Wu test procedure another new interpretation.

4.3. An inequality among statistics.

We have derived three types of statistics for the predeterminedness restriction in a
subsystem of structural equations. There is a simple inequality among the statistics we

have derived for He , : { =0, 7 =0 vs Hy: € #0. Using Lemma A.7, we have
(4.56) \ 0< LM, < LRy <W,.

This inequality is an analogue to (3.50) for the problem of testing of the block identifying
restriction in Section 3. However, a similar inequality can not be obtainable for the testing

problem of He , : £ =0,n=0vs He: { =0.

5. Conclusion

In this paper we have derived systematically a number of procedures for testing the
block identifiability condition and the predeterminedness condition in a subsystem of struc-
tural equations. We generalized the test statistics proposed previbusly and derived the
LR test, LM test, and Wald test for these two problems. This formulation enables us to
give new interpretations to a number of testing procedures. We explored the relationship
between test statistics in econometrics and those in multivariate statistical analysis and
obtained some new interpretations for some test statistics commonly known in multivari-
ate statistical analysis.

Among three types of test statistics discussed in this paper, the LR test procedures

have often turned out to be considerably simpler than the other two procedures. It is es-
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pecially evident for the econometric exogeneity hypothesis when Go < G;. This finding

may be important for practical implementation of the testing procedure in empirical stud-

ies.
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Appendix A

In this appendix we present some useful lemmas. Most of these lemmas are known
in multivariate statistical analysis and their proofs can be found in the works of Anderson
(1984) or Rao (1973). -We shall present only the proof of Lemma A.2, which may be new

in econometrics.

Lemma A.1l: Let D and G be p X p positive definite matrices. Then the function
(A.1) f(G) = —Nlog|G| - tr(G™'D)
is maximized at G = (1/N)D.

Lemma A.2: Let a p X p positive definite matrix A be decomposed into (p1 + p2) X
(p1 + p2) submatrices A = (4;j). For any ¢ X p1 matrix B and ¢ X p2 matrix C,

(A.2) mén

A+<B)(B 0)\ Ve ||A11+BB|

= |A11 + B'B|| Az — Az AT Agg
“and the minimum occurs at C = BA;'I1 Aio.
Proof: Let D = (B,C). Then

(A.3) |A+ D'D| =

A =D
Iq

’ = |A||I, + DAT'D'|.
Let also the inverse matrix A be decomposed into (py + p2) X (p1 + p2) submatrices A™! =
(AY). Then
DA—IDI — (C + BAIZ(A22)——1)A22(C + BAIZ(AZZ)-—I)I + B(All _ A12(A22)-—1A21)Bl
Z B(All _ AIZ(AZZ)—1A21)BI — BA;IIB'.

Hence,
(A.4) |A+ D'D| > |A||I, + BA' B'|.
Finally, we obtain (A.2) by using (A.3). |
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Lemma A.3: Let A be a p X p positive semidefinite matrix and 0 < Ay < -+ < Ap
be its characteristic roots. Let B be a p x ¢ (p > ¢) matrix. Then

q
. 1 — A
(A.5) Jmin |B'AB| = l;IlA

Proof. If A is singular, the left-hand and right-hand sides of (A.5) are 0. For A

positive definite, we use
(A.6) chi(UV) > chj(U)chi(V)

for j + k < i+ 1, U positive definite, and V positive semidefinite. Here ch;(W) is the i-th
smallest characteristic root of W. [See, for example, Theorem 2.2 of Anderson and Das

Gupta (1963).] For any B such that B'B =1,
(A7) chy_gti(BB') = chi(B'B) = chi(ly) =1, 1=1,...,¢.

In (A.6) letU=_A,V=BB’,i=p-—-q+jandksp«q—{-ltoobtain

(A.8) ¢h;(B'AB) = chy_g4j(ABB') > chj(A)chp—g41(BB')
= ch;(4), j=1,...,q.
Then
q q J
(A.9) |B'AB| = [] ch;(B'AB) > ] ch;(4) = 11>

Equality is obtained when the columns of B are the characteristic vectors of A correspond-

ing to the roots A1,...,Aq. ‘ |

Lemma A.4:

dtr (AB) _ dtr(B'ABC)

A.10 =A A'BC'.
( ) 25 55 BC + A BC
Lemma A.5: For any m X n matrix A = (a1,...,n), We define an mn x 1 vector
vec A = (d},...,al)". Then for any conformable matrices,
(A.11) vec(BXC) = (C' ® B)(vec X),
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(A.12) tr (BCD) = (vec B')(I ® C)(vec D),

(A.13) tr (BX'CXD) = (vec X) (DB ® C')(vec X),

where each K is a commutation matrix defined by vec(C) = Kvec(C') for an arbitrary

matrix C of suitable order.

Lemma A.6:
(A.14) Py =Py —PaC(C'P5C)"'C'P,
where D! stands for the generalized inverse matrix of any matrix D.

Lemma A.7: For non-negative A\;, t =1,...,p,

P

‘ ' . P p
(A.15) > - i‘/\‘ <log[Ja+2) <D A
’ ' =1 i=1

i=1
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Appendix B

Maximum Likelihood Estimators

Maximum likelihood estimators of II, B, and Q under He as well as the likelihood
ratio test of Hg were developed by Anderson (1951). This appendix summarizes the results
needed in the present paper. The exposition will refer to the table of correspondence
between the notation of the present paper and that of Anderson (1951) at the end of this
appendix. The reduced form model is specified in B.1 of the table and the basic statistics
in B.2.

A matrix B satisfying I1.B = 0 can be multiplied on the right by an arbitrary
nonsingular matrix F' to obtain BF, which also satisfies the condition, II;.(BF) = 0.
The maximum likelihood estimators of B similarly can be transformed by multiplication
on the right by an arbitrary nonsingular matrix. Any such estimator is composed of linear

combinations of the Gq characteristic vectors of
(B.1) N (Y'PzY)'Y'(Pz — Pz,)Y

corresponding to the Go smallest characteristic roots. With the normalization defined in

B.3 of the table the matrix is C. When B is normalized so

(B2) | B::(_é#),

the maximum likelihood estimator is

PR I
(B.3) BH‘“‘QCO = (-—C*Co“l .
In Anderson (1951) the likelihood was maximized under the condition that I"XI' = I,

but it was shown that the maximum of the likelihood function was independent of the

normalization. The estimator of I' was normalized by
%ﬁAf:ﬁHf=U+¢ﬂ”.
Then
T=C(+®9)77,
where ®* is the diagonal matrix composed of the smallest characteristic roots of (B.1).

The maximum likelihood estimators of B, 2, £, and II,. are given in B.4.
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Table. Correspondence of Notations

This paper Anderson (1951)
B.1. Model
Y=ZI1+V EX =BZ
TxGTxKKxGTxG pXxNpxqggxN
Evvy = 0 X
.\ K . I Zi\ @1
Z = (21, 2),1 = . B=(B,B,),Z=
(21,22) (H2~) K, (B, B2) (Zz) )
I,,B=0 "By =0
KxGGxGy K xGy mxXppXqmXgq
I{7GaGOaT q)p>m7N

B.2. Descriptive Statistics

(2'2)7'2'Y B=X2'(22")""
S=V'V A=NH = (N -¢)§
=Y'P;Y = (X — BZ)(X — BZ)’
= XPzX'
Agon = ZhZy — Z421(Z12:) " 21 Z, Q = 2,2 — 2,2(2:12y) " 21 2}
= 7} Pz, Z, = Z,Pz, 7}
Y'(Pz — Pz,)Y B,QB,

B.3. Determinantal Roots and Associated Matrices

Y'(Pz — Pz,)Y — AY'PzY| =0 |B2QB) — ¢A| =0
Ag > Ag—1 22 >0 $r1>¢2 > -2, >0
[Y'(PZ — Pz)Y — )wY'le/]C =0 (BzQBé — ¢;iA)c =0
| - c; ¢
%c'Y'PZYc =1 -Ilgc'Ac =cHc=1
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Table. Correspondence of Notations—continued

This paper Anderson (1951)
C':(Cl,u..,CGo)’—‘(_CC[)'*) gz C = (Cp—m+1,-++>p)
A p=—d diag(/\l, .en ,)\GO) (I)* = diag(¢P‘m+1, LR ¢P)
C'lY'PZYC =TI C'—l—AC =C'HC =1
T N
Y'(Pz — Pz,)YC =Y'P;YCA B,QB,C = AC®"
1
—T—C'Y'(Pz — Pz )YC =A :}V—C'BZQB;C = @*

B.4. Estimators

= _ I < ,
BHZCC()lr-‘:(“C*C(;_l) T=C(+d*) %
PO DR S s - - -
§ = ZY'PY + Y P;Y CAC Y PY $ = H+ HY(I + 99 T'H
1., - 1 _ \
= ZV'PY + 5Y'(Ps — Ps, YO LY PrY — H+ HC*C'H
S = ByBy -
L B IST=1
= (C)HT + MGy
1~ _ -~ c'YC =1+ o
= 7BuY'P2Y By
AN 1 1D 1 '
0C = ZY'PZYC + Y'(P7 = P5,)YC
1 _
= ZV'PLYC
1 _
= ZV'PzYC(I+4)
fi, = (0,1x,)(2'2)"12'Y (I - CC'LY' P2Y) By = (I - £TT)B,
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