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l.Introduct

Fconometric analyses with rational expectations (RE) have been
expanding in the last decade. The type of cross-equational consiraints
under the rational expectation (RE) hypothesis of interest in the present

paper is expressed as

m1 ni—l
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for t=0, +1, +2,..., where wij(i = 1,...,m1; j= 0,1,...,ni-1) are some

constants, m is the number of relevant variables included in the cross-

1
equational constraints under the RE hypothesis, and ni (i = 1,...,m1) are

positive integers, which can be infinity; a vector (y“,...,ym t) is a
1

subset of an mxl vector Yy of a stochastic process {yt} we are considering;
It = {ys;s < t} is the information set available at period t and EC. It) is
the conditional expgctation operator given It.l/

Several methods have been proposed to test the cross-equational
constraints (1.1) under the RE hypothesis. Among them, one method commonly
used in empirical sfudies is to fit vector autoregressive (VAR) time series
models and construct statistical test procedures on the nonlinear cross-
equational restrictions imposed by the RE hypotheses. Originally, Sargent
(1979) proposed this method in connection with a cross-equational
restriction under the RE hypothesis in the term structure of interest rates.
Later, Hakkio (198la), (1981b), Baillie et.al. (1983), and [to (1985)
applied some variants of this method in order to test the RE hypotheses in
the foreign exchange rate market. In the following, we give only three
important examples of the cross-equational constraints under the RE

hypothesis, which are special cases of (1.1).



Example 1: The cross-equational constraint under the RE hypothesis in
Sargent (1979) is that the long-term interest rate is a weighted average of
expected short-term interest rates in future. This hypothesis can be
expressed as (1.1) when

m, = 2 and
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where y1t is the long-term interest rate and y2t is the short-term interest

rate.

Example 2: In Hakkio (198la), (1981b), Baillie et. al. (1983), and Ito
(1985), the cross-equational constraint under the RE hypothesis of interest
is that the forward exchange rate is equal to the expected spot exchange

rate in future. This hypothesis can be expressed as (1.1) when m, = 2 and
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where h stands for the prediction horizon of economic agents, Y1t is the

forward exchange rate, and y2t is the spot exchange rate.

Example 3: The present-value relation under the RE hypothesis written

in the form:
m1 ©

- i)
(1.4 Yy = L LR E(y;4,;114)
i=2 j=0

is often of our interest, where RB(i) 1is the coefficient of the i-th

explanatory variable vy.,. A typical example of this type is the case when



ylt is the stock price and yit are some measures of earnings. It is clear

that this relation is a special case of (1.1).

The purpose of this paper is to point out two serious problems which
are inherent in testing these cross-equational constraints under the RE
hypothesis by fitting VAR models and which econometricians have been often
unaware .of. Our fesults imply tﬁat many previous studies using this
approach are logicélly migleading. More specifically, first, in Section 2
we show that if we fit VAR models to pre-filtered time series, the cross-
equational constraints of the type (1.1) under the RE hypothesis are not
necessarily realized With respect to the original stochastic processes in
many cases. The common difference filter widely used in practice is an
example of our general formulation. Incidentally, Shiller's similar
assertion on the cross-equational constraints under RE hypothesis for the
term structure of interest rates (1981) is a special case of Corollary 2.3
in Section 2. We also relate our results to the cointegrated processes ,
which has been recently proposed by Engle and Granger (1987) to describe the
non-stationary stochastic processes with unit roots in thier autoregressive
representation. In order to avoid the logical inconsistency problem, new
sufficient conditions on the cointegrated filter will be given. Second, in
Section 3 we discuss a problem which originates from an improper treatment
of information sets when we construct statistical tests based on the VAR
models. [t will be seen that the conventional test procedure based upon a
limited information set, which is seemingly justified by law of iterated
projection, is likely to lead to a model misspecification. In such a case,
we show that VARMA models, rather than VAR models, are more appropriate for
testing the cross-equational constraints (1.1) under the RE hypothesis. We

shall point out that a number of previous studies suffer from the above two
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inconsistency problems with respect to their cross-equational constraints
under the RE hypothesis in their theoretical frameworks. Section 4
summarizes our results in fhis paper. We further discuss the implication of
our results to more general VAR modelling in recent macroeconometric
applications by using pre-filtered time series data. It appears that, in
many cases, the method frequently used in macroeconometric studies is not

consistent with the cross-equational restrictions under the RE hypothesis.

2. Testing Cross-Equational Constraints by VAR Models

In this section we first present a general method of testing the
cross-equational constraints under RE hypothesis by VAR models, and then
show a serious incoherency when VAR models are fitted to filtered time
series. Suppose that an m-variate time series {yt} is generated by the
following vector autoregressive (VAR) process with order p, denoted by

VARm(p),

(2.1) Yy TAY e ¥ Apyt_p ALY

L] 1]

where yt = (ylt""’ ymt) s ut = (ult""’ umt) is the disturbance vector

with E(u,) = 0, E(utut) = Q (positive definite), and E(utus) = 0 for t » s;

i
A .,Ap are mxXm coefficient matrices.g/ The process {yt} can be either

1,00

stationary or nonstationary at this stage. However, if some of the absolute

; : p —
values of characteristic roots of the associated equation | zplm— Z A.zp Jl
i=1

= 0 are equal or greater than one, we assume that the initial values Yo
Yoqseees y—(p-l) are fixed. The order p is either known or unknown, and can
be infinite. However, when p is infinite, some care should be taken to use
the following discussion in this section. The derivations of Lemma 1 can
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always be stated in terms of finite size matrices by choosing components
from vectors and matrices with infinite dimension. (See Appendix for this
further discussion of this case.) When p is finite, the process (2.1) can

be expressed in a Markovian form:

(2.2) Y

AY, +U, ,

r t ? t

where Yt = (yt’yt—l""’yt-p+1) is an mpxl vector, Ut= (ut,o,...,O) is an

mpxl vector, and

A, A, ... A
172 P=1 Py (mpxmp).

Im(p-l) 0

Using the above representation, it is straightforward to derive the optimal

predictor of Y ¢(h P4 1) given the information set I where

t+h
It={yt’yt—1""}‘ By repeating the insertion of (2.2), we express Yt+h as

t’

The second term on the right-hand side of (2.3) consists solely of future
disturbances while the first term is in the set It’ Thus in this case the
optimal predictor of Yt+h given It is the least squares prediction of Yt+h

on It:
(2.4) BCY. 11 =AMy

t+h’ 't t

From (2.4) we obtain the following lemma.



Lemma 1: Let (yt} be generated from a VAR process (2.1). Then (1.1)
holds if and only if

m1 n.-1

' i .
(2.5) L e mp( L wi‘A" =0,
i=1 j=0 M

where ei(n) is the nxl vector with one in the i-th element and zeros in all

others.

Proof: Let c¢' be the left-hand side vector of (2.5). Then (1.1) is

equivalent to the condition c‘Yt = 0. Using (2.2), this condition is

rewritten as

pi-l WPy -
c'A Jl(p) LPUPUORR A Y =0,

(2.6) _
1 i t-p

n o

i

where Ji(p) = ei(p)®1m = (0,...,0,Im,0,.'.,0)' is an mpxm matrix with
identity matrix in the i-th block and zero matrices in others. From (2.2)

and (2.6), c'AJ,(p) = c'{Jl(p)A1+J2(p)) = 0. Since C'Jl(p) = O from (2.6),

1
we have c'Jz(p) = 0. Similarly we obtain c'Ji(p)v= 0 (i=1l,...,p) and thus
¢' = Q'. The other direction is obvious. Q.E.D.

This lemma is a slight generalization pf previous studies which
considered some special cases of the hypothesis (1.1)., (Sargent (1979),
Baillie et. al. (1983), for instance.)

We now consider the effects of linear filferslon:the testing procedure
of the cross-equational constraints under the RE hypothesis by VAR models.
Since most observed data of economic time serieé exhibit considerable

nonstationarities including trends and seasonality,’many econometricians

6



have applied the difference filter and the seasonal adjustment procedure to
remove the observed non-stationarities. These transformations of data are
generally expressed by the linear filter

_ r_ r-1_ _ ~ _ _ s
2.7) A= COF ClF . Cr Cr+1L oo uCr+sL ,
where Ck = (cij(k)) (i,j=1,.0.,m; k= 0,1,...,r+s) are mxm matrices with
lCOI ¥ 0, and F and L are forward and backward shift operators such that

_ oK _ .k \ . .

yt+k‘ F yt and yt-k" L yt. When (Ck) matrices are diagonal, O is called
diagonal filter. Also when Cii(k) = c(k) for all k, A is called common
filter. The linear filter (2.7) includes the d-th common difference
operator Al = (l—L)dIm, which is a diagonal filter, and the moving average
operators on which' most seasonal adjustment procedures are based. The
filtered data is denoted by yt = Ayt in what follows.

Suppose that a filtered series (yt} = {(y?t)} is generated by the

VARm(p*) process

*

*-
(2.8) Yy = A1

% * % %
yt_1 + ...+ Ap*yt-p* + ut ,

or equivalently, {Ayt} is generated by

(2.9) Ayt = ATAyt_l + ..t A:*Ayt_p* + ut .
where 4 is defined by (2.7).Y/

Testing the cross-equational constraints under the RE hypothesis, which
was originally proposed by Sargent (1979) and has been adopted by many
subsequent empirical studies, can be summarized as follows. The assumption

of RE hypothesis gives a set of nonlinear cross-equation restrictions on the



coefficient matrices {Ai, i2l} of the underlying stochastic process (yt}
given by (2.5). We transform the original process (yt} into a filtered
process (yt} by a common filter such as Al and use the law of iterated
projection. Then the same restrictions (A?. izl} should be imposed on the
stochastic process {yt}. If the restrictions on the VAR model of {y:}
cannot be rejected by any statistical standard (say, i % significance
level), it has been usually interpreted that the cross-equational
constraints imposed by the RE hypothesis on {yt} cannot be rejected. We
first argue that this procedure sometimes leads to a false conclusion and
thus is not necessarily valid for testing the cross-equational constraints
under the RE hypothesis given by (1.1). We then shall give a sufficient
condition for justifying the above procedure.

Let A' = Lra, and noting that A'yt = {CO - (C,.- A')}yt, we can write

0
(2.8) in terms of yt as follows:

= - ' y * 0 * ' *
(2.10) Co¥y = € Cy AN A1A Yoy ¥ ooee t Ap*A yt_p*+ Uy

. r+s . r+s
= LG MG "Ly

% rYs *
et Ap*(coyt—p* ‘iglciyt—p*~i Yot Uy
Collecting terms, we rewrite (2.10) as
(2.11) Vi S AV et Apyt;p tu, o,

ok _ %
where p = p +r + s, Cout = U and



%
Coh, = C, * ACq

% *
Cohy = C, = ATC) * AyCy

% % %
Cohg = Cy = A1C, = AyCy + ALCq
C.A * a¥ ¢

0p-1 'Ap*—lcr+s T Ppx-res-1’

*

Let also {Ai} and {d{l)} be the roots and mxl vectors satisfying

r+s r+s-1 _
We now present the fundamental result for our arguments on the inconsistency
of testing the cross-equational restrictions imposed by the RE hypothesis in

this section.

Theorem 2.1: Let a filtered process {yt} be generated by a VAR(p*)
process with a finite p* given by (2.8). Then the restrictions on the
original process ({y,} given by (1.1) implies g(X) = 0 for any root {Ak} of
(2.12), where

m1 n,-1

i . ,
(2.13) g = T AT w.. Ale.m d, .
i=1 j=o ' !

roof o heore 1: If a root A of (2.12) is zero, it is trivial to

have g(\) = 0. Let Ak be a non-zero root of (2.12) and we constiruct a pmx1 ‘

vector d(k) = (d;(k), d;(k),..., d;(k))' by defining
(k) _ 1-i,(k) .
(2014) di - Ak dl ( 1 = 2,oco’p )o

Then by the structure of Ai in (2.11), we have



r+s . r+s . (K)

- 1-i (k) * - -1
= [‘Z A ci]d1 + Al[ Co izixk ci]d1 + ...

r+s L 3 .
_ -(p -D-i ()
Co i§1 Mo ci)d1

*
-(p -2)
+ A (Ak

Lok r+s *
* -(p -, _. -(p -1)-1 (k)
+ Ap*[ Mo Cq iglxk c,Jd, ™.

* o % *
(K) _ =(r+s+p ~1) (4P  _ %P -1 _
1Cody Mo (N - A2 e Ay

r+s .
r+s r+s-i (k)
X[ €y = DA e )
i=1
In view of (2.12), we have
r+s .
p-2. _ p-2-i (k) _ _
(2.16) [Ak Cy iglxk ci]d1 =0 (2=0,1,2,...,p) .
Thus we obtain the relation:
(2.17) % A.d =g
. o 11 k1o

Then by the structure of A and Ai defined by (2.2) and (2.11), we have

A g oy g

kK
(k)

Thus A and d are the characteristic root and vector of matrix A,

kK
respectively. Accordingly, for any integer %,
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2.18) A% a® - Aﬁ ak .

(k)

Multiplying d from the right to the left-hand side of (2.5) and using

(2.18), we obtain g(xk) = 0 as a necessary condition for (2.5). Q.E.D.

This proposition gives a necessary condition on the filter matrices
{Ci’ i 2 0} for the cross-equational restrictions imposed by the RE
hypothesis given by (2.5). Anvimportant inconsistency result on testing the
hypothesis (1.1) by the VAR modelling, which is a direct consequence of

Theorem 2.1, is stated in the following corollary.

Corollary 2.1: Let a filtered series (y} be gemerated by the VAR_(p")
process (2.8), or equivalently {yt} from (2.11) with a finite p, If theré
exists at least a non-zero scalor A and a non-zero mXl vector d1 satisfying
g(\) % 0, the cross-equation restrictions on {yt} imposed by (1.1) do not

hold.

Let w. = (W,.,.0.,%_ .,0,...,0)' be mx1 vectors for j 2 0 and n =
J 1j m, j

max{ni-l} for i=1,...,M Then the cross-equational constraint given by

1
(1.1) is written as
2.1 E(w®'y 1 I, ) =0,
where
n .
wiF) = L wF .
=0
Because yt = Ayt, (2.19) is rewritten as
2.200  E(w@®'yy 11, )=0,
where w (F) is assumed to be properly defined by w(F)' = w*(F)’A,
i 1j""’w;j)" and for a finite integer 2

11



n-r .
W = ¥ w’;‘FJ )

i=9
Since I* c I, for I* = {y* 38 S t-r) and I, = (y_ ;s S t}, we cobtain the
t-r t t-r s’ t s ’
condition
m n-r
* * *
(2.21) i§1 j=§ wijE[ Yitaj! Tier J=0 ,

which is the cross-equation restriction on the filtered process {yt} imposed
by the RE hypothesis. Then the condition we obtained in Theorem 2.1 is also
a sufficient condition under additional assumptions, which are stated

formally in the following proposition.

Theorem 2.2: Suppose that (i) we have (2.21) with 2@ 2 -r, (ii) the

coefficient matrices {AT) satisfy

n , n-r . ,
(2.22) ) ei(mp*)[ ) w?.A*J+r =0,
i=1 j=o M
where
% %k % %
A A LN BN A* A*
A = 1 P2 Pl (p*smp) |
Inep*-1) 0
and (iii) the roots of
* X
p _oa¥p -1 _ _oa¥
(2.23) A1 - AJA e Ap*l = 0

and the roots of (2.12) are all distinct. Then the condition g(Ak) = 0 for
all roots {Ak} of (2.12) implies the restrictions on the original stochastic

process {yt) given by (1.1).
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Proof of Theorem 2.2: Let A(k) and f{k) be the non-zero roots and
vectors of (2.23). Then A(k) and
(K) _ (I¥8, _ +s iq -1,k
4,7 = [y G Z ¢;) g

satisfy (2.17) since the first term on the right-hand side of d{k) is non-

singular under the assumptions in Theorem 2.2, Let Jﬁ = ei(p)®lm. Then

n n-r-9
"1eadq (k) _ Q -5 U £ 1- PR r+ (k)
(2.24)  LwJad = { Z Ak) Q+J (% S Z A )
j=0 i=1
n-r X .
= A TTCL ot }f{k)
j=2 !
= 0% rf" ij 3 AT
=9
which 1is zero-vector from (2.22), where f(k) is constructed from f{k) as
a"® in Theorem 2.1. If A =0, dik) - 0 because Ad'®) = 0 and 4¥ # o.
(k) _

In thls case, the left-hand side of (2.24) becomes wod1 0. Then we can

construct a pmxpm matrix D such that the first mxp (p-= p*+r+s ) columns

(1)

*
are (477, ..., g (<P ))

and the remaining mx(p—p*) columns are the
characteristic vectors, which are corresponding to the characteristic roots
of (2.12). Since all roots of (2.12) and (2.23) are distinct under the
assumptions in Theorem 2.2, the matrix D is non-singular. Thus the
conditions of (2.22) and g(kk) = 0 imply that

m1 n -1

(2.25) Le, (mp) Z W AdyD = o'
i=1 j=0 J

Multiplying D-1 to (2.25) from the left, we obtain (2.5). Then we use Lemma
1 to establish the result. Q.E.D.
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When the filter matrices (Cj, 0 & j S r+s} are diagonal in (2.7), we
have stronger results than Theorems 2.1 and 2.2. Let {Ai} be the roots
satisfying

(2.26)  c.(oATTS - e AT L - (res) = 0 .
il i1 Uil

%

Theorem 2.3: Let a filtered process {yt} be generated by a VAR(p )
process with a finite p* given by (2.8). Then the restrictions on the
original stochastic process {yt) given by (1.1) implies gk(Ak) = 0 for any

root {Ak} of (2.26), where
n.-1

1 .
(2.27) g, (N = ) Vs Ak’.
i=0

Theorem 2.4: Suppose that (i) we have (2.21) with 2 2 -r, (ii) the
coefficient matrices (A?} satisfy (2.22), and (iii) the roots of (2.23) and
the roots of (2.26) are all distinct. Then if there are at least m roots
of (2.26) satisfying the condition gk(Ak) = 0, then the restrictions on the

original stochastic process {yt} given by (1.1) hold.

Proofs of Theorems 2.3 and 2.4: Because the matrices {Ci, i 20} are

(k)

diagonal, we‘ can take d1

= e, (m) in the proof of Theorems 2.1 and 2.2.

k

Then from (2.13) and (2.27) g(Ak> = gk(xk ) for k = 1,...,m1‘ We note that
- - . (k) _ s .
gk(Ak ) =0 for k = m1+1,..., m since d1 = ek(m). Thus the conditions in

Theorems 2.1 and 2.2 become the conditions in Theorems 2.3 and 2.4. Q.E.D.

Theorem 2.3 gives a necessary condition on the diagonal filter matrices
{Ci' i & 0} for the cross-equational restrictions imposed by the RE
hypothesis given by (2.5). Thorem 2.4 shows that the condition we obtained

is also a sufficient condition under additional assumptions. An important
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inconsistency result on testing the hypothesis (1.1) by the VAR modelling,
which is a direct consequence of Theorem 2.3, is stated in the following

corollary.

Corollary 2.2: Let a filtered series {yt} be generated by the VARm(p*)
process (2.8) and the filter matrices {Ci’ i 2 0} are diagonal. [If there
exists at least a non-zero scalor Ak satisfying gk(kk) ¥ 0, the cross-
equation restrictions on {yt} imposed by (1.1) do not hold.

Corollaries 2.1 and 2.2 state that when VAR models are fitted to
filtered series, the original (or non-filtered) stochastic process does not
satisfy the cross-equation restrictions imposed by the RE hypothesis in
(2.5) unless g(Ak) = 0 or gk(kk) = 0. Therefore, the statistical tests
based upon the VAR models fitted to the filtered time series are
meaningless, if we are interested ih the cross-equation restrictions imbosed
by the RE hypothesis for the original stochastic process unless g(kk) = 0 or
gk(kk) = 0. Actually, as soon as fitting a VAR model to the filtered series
is judged appropriate, we must automatically reject the cross-equation
restrictions imposed by the RE hypothesis for the original series if these
conditions are not satisfied.

It should be stressed that the conditions g(kk) % 0 or gk(Ak) # 0 are
not restrictive in many applications when we use linear diagonal filters.
Violation of these conditions seems to require very rare specifications of
the cross-equation restrictions imposed by the RE hypothesis and linear
diagonal filters. Actually, it is easily seen that the condition gk(kk) % 0
is always satisfied for the cross-equation restrictions imposed by the RE
hypotheses (1.2) and (1.3). Thus, an immediate but important consequence of

the above result is given as follows:
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Corollary 2.3: Let {Alyt} be generated by a VAR process (2.9) and a
common filter
_ - d
(2.28) Al = (1-~-L) Im
for any integer d, then the cross-equation restrictions (1.2) and (1.3)

imposed by the RE hypothesis do not hold.

Shiller (1981) has suggested a special case of this result ford = 1, m
= m1= 2, and the RE hypothesis (1.2). The above corollary is particularly
interesting because in many empirical studies VAR models have been fitted to
kthe differenced time series and statistical tests have been conducted based
upon them. The common difference filter of the type Al has been widely used
since many observed economic time series exhibit nonstationarities. It is
sometimes asserted that they are well characterized by the existence of unit
roots in the aﬁtoregressive parts of the time series models. In other
words, random walk processes are appropriate for describing macroeconomic
time series. ( See, for example, Meese and Singleton (1982), and Nelson and
Plosser (1982).) However, our result suggests that the usual practice of
applying the common difference filter Al to time series in VAR models is
often inconsistent with the cross-equation restrictions imposed by the RE
hypothesis for the original stochastic process. Thus, the studies by
Sargent (1979), Hakkio (1981a,1981b), and Baillie et.at. (1983) are subject
to this inconsistenccy. Further, a part of the results by Shiller (1979)
where his discussion is based upon the differenced model should be

reconsidered.

It may be natural to ask if we obtain the corresponding result for the
vector autoregressive moving average (VARMA) models. So far, we have

obtained only the necessary part to answer this question, which is an
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extension of Theorems 2.1 and 2.3. The proof, which is given in Appendix,

is similar to those of Theorems 2.1 and 2.3.

Theorem 2.5 Let a filtered series (yt} be generated by the
VARMAm(p*,q) process with a finite g

*

(2.29) yf = A +u +Bu, .+ ...+Bu__,

% *
Viep ¥ oeee YA p r By

%
p*yt—p*
where Bl""’Bq are mxm coefficient matrices and {ut} are defined as in

2.1). Let P be the maximum absolute value of the roots of the associated

q .
MA equation lqum- A lBiI = 0 and A be the roots of (2.12) or (2.26).
i=1

We assume that IAkI > pand P ¢ 1. Suppose the restrictions on (yt} imposed
by (1.1) hold. Then the restrictions on {yt) imposed by (1.1) implies that
(i) for any root {kk} of (2.12) g(Ak) = 0 in the general case and (ii) for

any root {Ak} of (2.26) g(Xk) = 0 when {Ci’ i 2 0} are diagonal.

This proposition shows that if g(xk) ¥ 0 or gk(kk) # 0 for some k, then
the restrictions (1.1) imposed by the RE hypothesis on {yt} can not be true.
It may be interesting to note that the conditions in Theorem 2.5 are the
same as in the VAR models even when the true stochastic process is a VARMA

process.

From Theorems 2.1-2.5 and Corollaries 2.1-2.3 in this section, the
integrated vector autoregressive (IAR) processes and the vector
autoregressive integrated moving average (ARIMA) processes are often
inconsistent with the cross—equafion restrictions imposed by RE hypothesis.
Recently, Engle and Granger (1987) has proposed the cointegrated processes
for dealing with unit roots in the autoregressive part of VARMA stochastic
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processes. The cointegrated process can be defined as the nonstatinary
process having (i) autoregressive (AR) representation, (ii) the number of
unit roots in the AR part‘is less than the dimension of variables {yt}, and
(iii) the absolute values of other roots in the AR part are less than 1.
From Theorems 2.1-2.5, the cross-equation constraints under the RE
hypotheéis in the form of (1.1) often imply that the stochastic process of
{yt} is cointegrated if it is a nonstationary VARMA process with unit rootis
in the autoregressive part.
Levy and Nobay (1986) has used the cointegrated filter

2.3 o, = C7H-(009

2 0 0 1
for testing the cross-equation restriction in Example 2. They rewrite the

L

cross-equation restriction for the filtered process and test the

restriction, which is given by (1.1) with

Soo L iti=o S lifi=1,0.5n
1j 0 if j»*0 ! 2j 0 otherwise

This procedure 1is valid if (i) the original stochastic process is

(2.3 .
cointegrated, (ii) the linear filter A2 remove its non-stationarity, and
(iii) the coefficient matrix A* for the filtered process does not have roots
of 0 and 1. This is because the roots of (2.12) are 1 and 0. If we take
dP= a, n' and a® = 0,1)', g1 = g0 = 0 in (2.13). Thus the
necessary condition in Theorem 2.1 for (1.3) is automatically satisfied in
this case.
Similarly, Campbell and Shiller (1987) used the cointegrated filter

(2.32) b, = [é "?l - [8 ?)L

for testing the cross-equation restriction (1.4) imposed by the RE
hypothesis in Example 3, where B(i) = 9(1-6)6i and B8 and 6 are parameters in

their notation. They rewrite the cross-equation restriction for the

filtered process and test the restriction, which is given by (1.1) with
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(2.33) who=

¥ _ _agl
1 , w..=-86 j21.

if j=0
if j§ 0 2]

h )

1
0

This procedure is valid if (i) the original stochastic process is
cointegrated, (ii) the linear filter AS remove its non-stationarity, (iii)
the coefficient matrix A* for the filtered process does not have roots of 0
and 1, and (iv) the parameter O is a priori known. This is because the
roots of (2.12) are also 1 and 0. If take d(l) = (8,1)' and

a2 = (81-®,1)', g() = g® = 0 in (2.13). Thus again the necessary
condition in Theorem 2.1 is automatically gsatisfied in this case. We

summarize the consistency results for cointegrated processes with filters Az

and AS as the following corollary, whose proof is straightforward.

Corollar 240 Let {Ayt} be generated by a VAR process (2.9). We
assume that the roots of (2.18) are all distinct and they are not 1 and 0.
Then the cointegréted filter Az is consistent with the cross-equation
restriction (1.3) imposed by the RE hypothesis and the cointegrated filter
AS is consistent with the cross-equation restriction (1.4) imposed by the RE

hypothesis.

It is important to notice that a cointegrated stochastic process is not
necessarily consistent with a set of cross-equation restrictions imposed by
the RE hypothesis. For instance, the cointegrated filters used by Levy and
Nobay (1986) and Campbell and Shiller (1987) are valid if the VAR processes
for the filtered time series do not have the characteristic roots of 1 and 0
in their autoregressive parts. Thus it is important to check if a set of
sufficient conditions for (1.1) is satisfied with the linear filter as well
as the VAR process for the filtered time series. For this purpose, our

results in Theorems 2.2 and 2.4 may be useful for empirical studies.
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3. Role formatio VAR Models

In this section we re-examine the misspecification problem which arises
when VAR models are fitted to the smaller rather than the full information
set. As a solution to this problem, we present a proposition later, which
generalizes Lemma 1 to the vector autoregressive moving-average (VARMA)
models in a particular manner.

First we consider the following example. Suppose that yt=

1] - * 1] 2 +
(ylt’y2t’y3t) = (yt',y3t) is generated by the VAR3(1) with
% -C
A= (A ), & =(°,2°) e,
o' ¢ -c- C
where ¢ = .5, ylt is the spot exchange rate, y2t is the forward exchange

rate, and y3t is the money supply. By construction, ei(3)A§ = eé(S) and the
original stochastic process {yt} satisfies (1.3) with h=2. Suppose that we

ignore the third variable y3t' Then we can write

* k% *
(3.1) Yy F A Yiop * Uy o
where
u -c
*® 1t -
ut-[uzt]+[ C]u3t/(1cL).

Thus multiplying (l-cL) to (3.1), we obtain the representation

* LN % %k
3.2) vy = (elp+ Ay, CAY, o * Vi
where
u -C
_ - 1t
v, = (1 el ( Uy, )+ . ) Ugy -

If we treat vt as if it were a white noise process despite a VMA2

and use the condition (2.5), it is easy to see that'ei(4) A2 » eé(4), wvhere

(1) process
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~ * *
A= [ C12+ A cA ] .

12 0

Hence in this case the cross-equation restrictions of the type (2.5) on the

smaller information set It= {y:,yt_l,...} are not necessary conditions of

the RE hypothesis for the original stochastic process {yt}.

We now generalize the above example. Let {§t} in (2.1) be the true
process and suppose that yt is decomposed as yt = (yt', yt*')' where yt =
(ylf""’ym*t)" yt*= (ym*+1""’ymt)" n'z 2, n¥2 1, and m = m'+ m . The
law of iterated projection implies that, if (1.1) holds for It=
{yt’yt—l""}’ then we also have

m1 n. -1

(3.3) )
i=1 j

*
wij E( yit+j' It )y =0

([ e R

0

where I,= {yt, yt_l,...) . Needless to say, (3.3) is a necessary condition
of (1.1). Utiliziné (3.3), some previous studies such as Sargent (1979) and
Hakkio (198la, 1981b) have fitted VAR models to a smaller information set
It, and conducted statistical tests of similar cross-equational restrictions
pased upon these models by following the procedure described in section 2.
It has been claimed that those tests were justified as tests of a necessary
condition of (1.1). However, we argue that the justification often made is
not warranted, since fitting VAR models to a smaller information set
involves a high pdssibility of model misspecification as shown below.

Using the above decomposition of (yt), (2.1) is expressed as

(3.4) ALY ¥, = 1y
where
A, (L) A, (L
11 12 P
AL = ( )= 1_-AL-...-AL,
Ay (L) Ay (L) m 1 p
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*! **' 1] 3
and ut— (ut , ut )}' with

e

12
Qe J.

\ - 911
) = [ 9
22

Q@ = E( uu
‘ 21

t

Also let H(L) be an mXm matrix with lag polynomials which is decomposed as
A(L):

Hll(L) H12(L)

HL) = ( )
0 I

To make our discussion meaningful, we further assume the following:

(A) The vector yt* causes the vector y: in the sense of Granger (1969),

that is, AIZ(L) ¥ 0,

Multiplying the matrix H(L) to (3.4) from the left, and the resulting first

* . .
m equations are given by

* k% * %
(3.5) Cll(L) yt + CIZ(L) yt = HIEL) U, + HléL) ut s

where leL) = HlfL)AlfL) + H1§L)A2fL)’ and CléL) = HI{L)AléL) + HléL)AzéL)'

In order +to erase yf* from (3.5), we have to choose HI{L) and HléL) such

that

(3.6) CléL) = HlfL) AléL) + HléL) AzéL) =0 .

~

Let AzéL) be the adjoint matrix of A2§L)‘ Multipying AgéL) from the right

to (3.6), we have

3.7 HlfL) AléL) AzéL) + H1£L) I AzéL) | =0,
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where lAzéL)l is the determinant of AzéL)' Thus if we choose
(3.8 HI{L) = | AzéL) | Im* and HléL) = - AléL) AzéL).

then (3.6) is satisfied. Thus (3.5) can be rewrittep as

(3.9) A% y: = F(L) ut + G(L) u:* ,

* ~
where A (L) = IAzéL)lAI{L) - AléL) AzéL) AZ{L) ’

’ q
. . 1
lAzéL)-Im* = Im* + dlag{fl}L + ...t dlag(fql}L ’

F(L)

~ q
- 2
- AléL) A2§L) = GIL + ... 7 quL )

G(L)

and a, s pm** and 4, s pz(m**-l).
By the Wold's Decomposition Theorem, we can find the appropriate moving
average process such that

%

*ok
(3.10) X, = D(L) v, = F(L) u, + G(L) uy

where vt is the m*xl disturbance vector with E(vt) = 0 and E(vtvé) = 0 for

*

t#s, and D(L) = Dy D)L + ... + D L 4 (D, =1, is appropriately defined
q m

m*xm* lag polynomial matrix with order q* s max{ql, qz}.

It is well known that the necessary and sufficient condition for {xt}

to be a multivariate white noise process (i.e., q*= 0) is given by

(3.11) Iy =0 for k = +1, #2, ..., & max{q;, q,}
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where

9,k %"
(3.12) Ty = L Fp @) Fie LGy,
j=0 j=1
min{qlfk,qz-k} min(ql—k,qz—k)
+ jEO Gj+k921Fj + j§1 Fj+k9126j , k=0,1,2,...

¥hen 912 = 0, the second and third terms of (3.12) are dropped. The above
condition indicates that, in order for {Xt} to be a multivariate white noise
process, strong restrictions must be imposed upon A(L) and .

Since the above condition (3.11) is too general and complicated to use
in practice, we present the next theorem which gives a simple necessary

condition with respect to the order of lags in G(L).

Theorem 3.1: Suppose the moving average process is generated by (3.10).
Assume that (A) holds. Let gi(L) be the i-th row vector of G(L), and q3 be

the lowest lag order in G(L), i.e.,

(3.13) G, =0 fork-= 0,1,2,'°',q3-1, and Gq ¥ 0.
3

Then, 'a necessary condition for {xt) to be a multivariate white noise

process is given as follows:

(1) When 912 ¥ 0, gi(L)ut* is a moving average process with the ql-th

order of lags for i=1.2,~'°,m*.
(ii) When 912 =0, gi(L)ﬁt* is a moving average process with the (q1+q3)th

order of lags, and its spectral density has the same shape for i=1,2,'--,m*.
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Proof: Note that the lag polynomial matrix F(L) is diagonal with a
common element IA22(L)l. Thus, each element of F(L)ut has the ql-th order
of lags and its spectral density has the same shape. In order for (Xt} to
be a multivariate white noise process, every moving average process must
cancel out the autocorrelations derived from the common lag polynomial

-

|A22(L)|. Thus, it is easy to see that statement (i) holds.

When 912 = 0, there is no cross autocorrelations between F(L)ut and
G(L)u:*. Then, in order to cancel out the common lag structure, gi(L)ut*

must have the same spectral shape for all i. Since lags between ut and utfk

( k % 0 ) can be ignored in this case, it is necessary for G(L)ut* to have
the ql-th autocorrelation. It means that the order of lags of gi(L)ut* must
be q1+q3 for all i, when Gk =0 for kK S q3-1. This completes the proof .of

statement (ii). Q.E.D.

Since (3.11) or conditions in Theorem 2 are hardly satisfied, it is
natural to regard that {xt} is a VMA process with positive order in general.
Although there is a possibility of cancelling out the lag polynomials in
AR and MA parts, it is natural to assume that (3.9) is a VARMA process with

positive orders p* and q*
(3.14) AW vy = p vy

where p* s max{pzm**, ps(m**~l)}, q* = max{ql, q2}, rather than a VAR
process. The above inequalities for p* and q* are derived after considering
cancelling out effects. (See Granger and Morris (1976).) It may be remarked
that, if the assumption (A) is violated, that is AlﬁL) = 0, (3.14) is always

reduced to a VAR process AI{L)yt = ut. That is, when yt* does not cause yt
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in Granger's sense, it is correct to test RE hyhothses by VAR models based
upon a smaller information set.

The argument here implies that the correct model for a smaller
information set is a VARMA process, and fitting lower order VAR models to a
smaller information set generally involves a high possibility of model
misspecification. Apparently, previous studies by Sargent (1979) and Hakkio
(1981a, 1981b) are likely to be subject to this possibility since the orders
of their VAR models are 4. However, their results are valid if we
reinterpret thatvtheir models are based upon the full rather than a smaller
information set.

To avoid this misspecification problem, we should include all relevant
variables in estimating VAR models. However, this may require a very large
model, and problems of multicollinearity or the degree of freedom shortage
in estimation may arise. An alternative solution is to fit VARMA rather
than VAR models to avoid possible misspecifications. However, it appears
that for VARMA models, (2.5) is no longer necessary or sufficient for the RE
hypotheses (1.1). We present the next theorem which gives the necessary and

sufficient condition of RE hypothses (1.1) for VARMA models.

Theorem 3.2: Assume that {yt} is generated by the vector auto-

regressive moving average (VARMA) process with orders p and g

(3.15) Yy =AY et Apyt_p tugrBiuy bt Bqut-q .

1f the absolute values of some roots of the associated AR equation

p s
|ZPI - 1 Aizp ! | = 0 are not less than one, we assume that Yop» Yogr =ees
i=1 '

are fixed and u_.= u_,= 0. Then the necessary and

Yo (p+1) R S ¢ T D
sufficient condition of (1.1) is given by
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@16 ar O s ¢ 3 e 120 (k= 0, Ly e p*-1)

where Ji(p+q) = ei(p+q)01m is an m(p+q)>*m matrix,

A Jl(p)B1 N Jl(p)B

(3.17) At = 00 o ) mpr)Xm(p+q) ) ,
o e o 0
Ine-1 °
m1 ; ni—l .
(3.18) at = T er(mpra)) L w.  (ADT,
Lo NP B
i=1 j=0

and p* ( & mp ) is the order of minimal polynomial of matrix A and A is

defined by (2.2).

Proof: The process (3.15) can be expressed as
(3.19) Y, = A Y . +1U s

+ ! 4 + -
where Y, = a ,U )' and U, = [Jl(p+q)+Jp+fp+q)]ut are m(p+q)x1 stacked

14
vectors. Using the same argument as in (2.3), we obtain the optimal
+

t+
+

resulting formula is (2.4) where Yt+h and A should be replaced by Yt+h and

predictor of Y h(h 2 1) given the information set Ii= v yt-l""}’ The

A+, respectively. Thus (1.1) is equivalent to the condition

Using (3.19) and repeating its substitution, we get
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k-1
(3.21) a' b,

+.] Vot Byt =
J_O(A () rade I prd Juy g+ @t AT = 0

Therefore (3.16) is a necessary condition. Now we consider the

characteristic equation of A+:

+ PR | _
| A Al = X771 A=A Impl

(3.22) 0 m(p+q)

mg 7P
COPEN™M T A=A
k=1

where Ak(k=1,...,mp) are the characteristic roots of matrix A. Then by the

" Cayley-Hamilton Theorem

* %
+.p +p-1 ’ +
(3.23) (A) = bl(A ) + ...t bp*_1 A ,
where bj(j=1,...,p*-1) are some constants depending upon matrix A. In using

(3.23), the condition (3.16) for k=0,1,...,p -1 implies (3.16) for k=p".

Q.E.D.

The above result is a generalization of Lemma 1 to the VARMA models.
When there exist multiple characteristic roots of the associated equation,
the order of minimal polynomial of the AR part p* is less than mp. This is
always the case if we use the linear filter (2.13) before fitting VARMA
models. We note that when g=0, (3.16) is reduced to the condition a'= O .
But when g 2 1 we cannot necessarily reduce (3.16) to a' = 0 . In this case
a' = O ( and hence the condition (2.5) on the AR part of (3.15) holds ) is

merely a sufficient but not necessary condition for (3.1). For example,
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consider the VARMA(1,1) model. In the present case the conditions given by

(3.16) for k=0 and 1 become
(3.24) a'Jl(Z)[Al + BI] = a'J2(2)[A1 + Bll =0 .

If we take A, and B

1 1
m for identification ( for instance, see Hannan (1969) ), it is clear that

such that rank(A1+ Bl) < m, and rank(Al) = rank(Bl) =

(3.24) does not mean a' = 0'. Thus, the above proposition implies that even
if we reject the condition (2.5), we should not reject the RE hypotheses
(1.1).

Although the condition (3.16) is far more complicated than (2.5), it is
straight-forward to derive some test statistics and the asymptotic test
procedures based on them by following the method developed by Kunitomo and
Yamamoto (1986) if the stochastic process is a stationary vector ARMA
process. AlLso Levy and Nobay (1986) has developed a similar method for a
special case in Example 1. Alternatively, one may test several restrictions
of (3.16) which are necessary conditions for (1.1) in VARMA models. The
condition (3.16) can be simplified further if we have additional information
on the parameters of the VARMA models.

One may argue that the alternative test procedures advocated by Geweke
and Feige (1979) and Hansen and Hodrick (1980) are guperior to those
discussed in the present paper, since their methods remain valid for a
smaller information set. However, their methods are applicable only to a
very special type of RE hypothsis given in Example 1.1, and their methods
could not be justified if their asymptotic theories were not valid for

4/

nonstationary stochastic processes.™
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4. Conclusion

The present paper pointed out two methodological difficulties in the
test of the cross-equation restrictions under the rational expectation (RE)
hypothesis, which 1is based upon fitted vector autoregressive (VAR) time
series models. The first one, discussed in Section 2, is crucial. We have
shown that a widely accepted practice of pre-filtering or common
differencing of time series is often inconsistent with the cross-equational
constraints under the RE hypothesis and should not be used. We also pointed
out that the cointegration filter can be a solution to this inconsistency,
but should be used carefully. In order to avoid the inconsistency problem,
we have obtained new sufficient conditions for the logical consistency,
which may be useful for empirical studies. The second one, discussed in
Section 3, showed that a high possibility of model misspecification exists
when VAR models are fitted to a smaller information set. We then derived
the necessary and sufficient condition of cross-equational constraints
imposed by the RE hypothsis for vector autoregressive moving-average (VARMA)
models in order to avoid such a misspecification., Since many econometric
studies have been trapped into these troubles, it is worthwhile to examine
the problems and state propositions in formal fashion as we have done here.

Finally, our results have some implications with respect not only to
the testing of cross-equational constraints imposed by RE hypothesis but
also to more general econometric modelling that adopts the RE hypothesis.
In recent macroeconometric studies VAR models are often fitted to pre-
filtered time series. For instance, it seems that Sims (1980) used
seasonally adjusted data and estimated VAR models by the pre-filtered time
series data in most cases. Our results (Theorems 2.1-2.5) indicate that
" this procedure automatically excludes the 'cross—equational constraints

imposed by the RE hypothesis for the original stochastic processes in many
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cases. It always does so if the original stochastic process is an
integrated VAR or an integrated VARMA process for the restrictions such as
(1.2) and (1.3) as is seen in Corollary 2.3. We hope that our finding will

alarm time series econometricians of the fact.

To prove Theorem 2.5, we use a similar argument as in the proofs of
Theorems 2.1 and 2.3. When P<1 for the general VARMA process (2.29), we
obtain the AR representation
(A.1) vy, = LA vy, _.+u.

t izl j t-j t

By the successive substitution, we have

k-1

(A.2) v. = LAY, gyt U * LA, .

t jz1 J t-(k-1)-j t izl 1 t-j
where Aj(k) are defined by the recursive formula
(A.3) Aj(k) = Al(k—l)Aj(l) + Aj+1(k-1) (k = 2,3,...),
and Aj(O) = é(j,l)Im, where 6(j,1) is the delta function. Then Lemma 1
should be modified as the conditions

' m1 ni-l ' .
(A.4) ey = 151 jgo wijei(m)Ak(J) =0 (k=1,2,...).
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Let Ak and d1 be a solution of (2.12) or (2.26). For (2.26), we take d1 =

ek(m). Then we construct {dj; 15j} as in the proofs of Theorems 2.1 and

2.3. By the use of (A.3), we have

(A.5) YA (Dd. = A 4 ,

izl k1

for % 2 0. Since Aj(l) = O0(P) when P<1 (Yamamoto [1981], for instance), we

note that for a sufficiently large M,

M p

[0
A.6) 11 TA MW - TAMAIZsce - )M,
jer 34 gt 15|
where ¢ is a constant and llall2 = Za? for a vector a = (ai). Then we
i

obtain g(Ak) = () as a necessary condition under the present assumptions when

p = @, Q.E.D.
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1/ There are some interesting examples when a finite number of lagged

values of yit and a contemporary disturbance term appear in equation (1.1)
in addition to the expected future values of Vit Since it is

gstraightforward to extend our discussion to thiscase, we deal with only
(1.1) in this paper for simplicity.

2/ In some céses it is necessary to include a constant term and trend terms
when the process is expressed for the original series as in (2.1). It is
easy to incorporate these terms into matrix A as in Fuller and Hasza (1981).
The results of the paper are essentially unchanged by such treatment of the
problem. Thus we ignore those terms for simplicity.

Also if we consider a complete system of endogenous and exogenous
variables in simultaneous equations models in the sense of Koopmans (19507,

a large number of conventional econometric models may be expressed as (2.1).

3/ The original system is a VAR process, then the filtered system is a
vector ARMA process in general. 1f the filter has a unit root in this
formulation, then the MA part is noninvertible. The statistical inference
of vector ARMA processes with unit roots in the MA part may be an
interesting research topic. This problem has been pointed out by a referee.

However, many econometric studies have been made under the assumption that

the filtered system of (yt) is a VAR (or VARMA) process. This formulation
implies 1) that the system for the original process {yt} derived from the

system of the filtered process {y:} is a VAR (or VARMA), and ii) that the
VAR (or VARMA) system for (yt} contains constraints among its coefficient

matrices. We adopted the latter formulation, which is crucial for the

following results.

4/ Vhen the absolute value of the characteristic roots of the determinantal
T -i

equation | 21 - L Aizp | = 0 is not smaller than one, the usual
i=1

asymptotic theory for stationary stochastic processes cannot be used. For
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instance, the order of convergence is not VT but ¢(T), where c(T) is some

function of the sample size T. See White (1958) and Dickey and Fuller
(1979) for wunivariate AR models with unit roots and Anderson (1959) for an
AR model with an explosive root. For the unit root case, the asymptotic
distribution of the ordinary least squares estimator is a function of the
Brownian motion B(t). Phillip (1987) has recently elaborated this finding.
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