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Abstract

We systematically derive a number of test procedures for testing the |
block identifiability condition and ' the predeterminedness condition in a
subsystem of structural equations. We generalize the test statistics
proposed in the past for these hypotheses and give them some new
interpretation. We explore the relationship between test statistics in
econometrics and those in multivariate statistical analysis. Our results
give some new interpretation to a number of test statistics. We also obtain
the asymptotic distributions of statistics under a set of fairly general
conditions on the disturbance terms. For this purpose, we derive a new
Martingale Central Limit Theorem, which is based on the Lindeberg condition
for the Martingale difference sequences and hence useful for applications.
Our results on the asymptotic distributions of test statistics give
justification for wusing the test procedures commonly kKnown even if some of
the usual underlying assumptions for their derivations are not satisfied.



1. Introduction

Two important underlying assumptions of the traditional simul taneous
equation approach in econometrics are the identifying restrictions and
predeterminedness (or exogeneity in .some sense) of several variables in the
system of structural equations. Although these assumptions are often made
based on a priori ground in practice, it may be advisable to examine these
two conditions from a statistical point of view.  In this respect, a number
of statistical testing procedures'for these restrictions have been proposed
by econometiricians. For instance, the test procedures by Anderson and Rubin
(1949), Hood and Koopmans (1953), Basmann (1960), Wu (1973), Byron (1972),
Revanker and Hartley (1973), Revanker (1978), Hausman (1978), Kariya and
Hodoshima (1980), and Hwang (1980a) among many others have drawn some
attention and have been applied in empirical works. However, since manyb
testing procedures have been introduced based on intuitive reasoning, it may
be difficult to understand the meaning of the statistics proposed.

The main purposes of this paper are to systematically derive several
test procedures and to obtain the relationships among different test
statistics. For these intentions, we consider a subsystem of structural
equations and regard the single equation method as a special case of our
formulation. Then we shall derive three types of test procedures, that is,
the likelihood ratio (BL) test, the Lagrange Multiplier (LM) test, and thé
Wald test for the Dblock identifiability restrictions and the
predeterminedness restrictions in the subsystem of structural equations. In
this framework, the test statistics we shall derive include all test
statistics mentioned above as special cases and give new interpretation to
some of them. Incidentally, we shall also give some new interpretation to

the test statistics commonly known in multivariate statistical analysis.



We shall also ‘derive the asymptotic distributions of test statistics
under a set of fairly general conditions on the disturbance terms. For this
purpose, we shall obtain a new Martingale Central Limit Theorem based on the
Lindeberg condition for the Martingale difference sequences and apply it to
the present situation, We allow.that there are a finite number of lagged
endogenous variables and the disturbance terms are not necessarily
independent. We shall show that the limiting distributions of test
statistics considered in this papér are the non-central X2 distributions
under local alternative hypotheses and are the centiral X2 distributions
under the null-hypotheses when the disturbances are the Martingale
difference sequences. Because test statistics have been often proposed
under a set of relatively restrictive assumptions, it may be important to
show that the assumptions usually made are not essential for the testing
procedures in practice.

In Section 2, we formulate a subsystem of structural equations. In
Section 3, we shall derive several statistics for testing identifying
restrictions. We shall also relate those statistics to the statistics in
multivariate statistical analysis yielding some new interpretation of
statistics commonly known among statisticians. Subsequently, in Section 4,
we shall derive a number of test procedures for testing econometric
predeterminedness restrictions. In Section 5, we give a new Martingale
Central Limit Theorem and present some general results on the asymptotic
distributions of test statistics introduced in the previous two sections.
Finally, in Section 6, some concluding remarks are given. Useful lemmas and

some detailed proofs of theorems are given in the Appendices.

2. Two Hypotheses in a Subsystem of Structural Equations

0~



We consider a subsystem of G0 structural equations

. (Y, Y,) B=ZT+U,
where Y* = (Yl’Yz’YS) consists of all endogenous variables in the complete
system of G1+ G2 + G3 equations, Y =V(Y1, Yz) is a TXG (G = Gl+ Gz) matrix

of observations on the endogenoﬁs variables appearing in the first GO(GO s
Gl) structural equations, Z1 is a TXK1 matrix of observations on the K1

exogenous variables, B'= (B;, -Bé) and T are GOX(Gl+ Gz) and K1><G0 matrices
with unknown parameters, and' U is a TXGO matrix of unobservable
disturbances. ¥When GO = 1, (2.1) is usually called a single structural
equation.

» We consider the reduced form equation for the endogenous variables Y

appearing in the first GO structural equations (2.1) with K (K = K1+ KZ)

exogenous variables defined by

(2.2) Y=ZI + V,
where Z = (Zl, Zz) = (zti) is a TxK matrix of exogenous variables (T > K)
with full rank, and 22 is a T><K2 matrix of excluded exogenous variables in

(2.1). We note that the exogenous variables include lagged endogenous

variables. The reduced form coefficient matrix I = ( Hl H2 ) is partitioned

into (K1+ KQ)X(G1+ G2) submatrices

Hll n12
21 722 _
and V = (Vl, Vz) is a TX(G1 + Gz) matrix of disturbances whose t-th row is
denoted by v%. We assume that
(2.3) E(vtl Ft~1) =0,
(2.4) E(vt vtl Ft—l) =Q,



where Ft-l is the od-field generated by the information from exogehous as

well as endogenous /yariables available at the period t-1 and Q is a G X G

+ G IX(G,+ G,) submatrices

positive definite matrix partitioned into(Gl 9 1 2

( 911 912 )
Q21 922
In order to relate (2.1) and (2.2), (2.1) is postmultiplied to produce

(2.5) r

it

(I I.,)B,

11* 712

(2.6) U=VB.

Let ui be the t-th row of U. From (2.4) and (2.6), we have

(2.7 E| F,_p) =0,

R
(2.8)  ECuw, uj | F_,

where ¥ is a GOXGO positive definite matrix.

We also note that the block identifiability conditions are expressed as

Hg: £ = 0, where

(2.9 £= (I I,,) B.

21 T22
From (2.9) we obtain the rank condition of the identifiability for (2.1),

9 = -
(2.10) rank(][21 sz) G GO ,

and columns of B are linearly independent. The order condition is given by

9 - - -
(2.11) L1 K2 (G GO) & 0.

In the above notation, L., is often calied the degree of overidentification.

1
Let vG 2 2 Vl 2 0 be the characteristic roots of

1

2 o - =
(2.12) ! 7 eT v Q| 0,
where

T
(2.13) 8 = ( n;D] A22.1[H21’ n22]

~ 7 _ -1
(2.14) A22.1 = 2222 2221(2121) 2122 .



Then from (2.10), it is clear that the block identifiability conditions are

equivalent to the hypothesis H : v, = <+ = v
v 1 GO

hypothesis for the rank test in multivariate analysis.

= 0, which is the well-known

There is an essential difference between a system of structural
equations and regression models {n the multivariate asalysis. In the
former, we allow some correlation between the endogenous variables yét,
which is the t-th row bf Y2, and the corresponding disturbance term u%. We
consider the condition that yét and u'! are conditionally uncorrelated given

t

the information set Ft-l available at t-1. From (2.8), the covariance

matrix of yét and u% is given by

(2.15)  n = Cov (y,,, u b F )
= (921 922) B .
Then we define the econometric predeterminedness restrictions considered in

this paper +to be the hypothesis Hn: n=0. We note that two hypotheses

H£ and Hn imply the hypothesis Hg n: € =0, h =0, When we take the

unconditional covariance in (2.15) and disturbance terms follow the
multivariate normal distribution, the uncorrelatedness implies an
independence between any subset of regressor and disturbance terms in (2.1).
This may be the reason why this testing problem has been sometimes called
the test of independence. The hypothesis of predeterminedness in this papar
has been sometimes cailed weak exogeneity in econometrics. There are
several different concepts of econometric exogeneity in simultaneous
equation systems. Engle et. al. (1983) surveyed this issue in a systematic

way.



3. Tests of Block Identifiability

In this section we assume G0 = G1 & 1 and
(3.1) det B1 ® 0
without 1loss of generality. In order to derive test statistics, we also
assume that the disturbance terhs { vy } are indepéndently and normally
distributed. Later in Section 5, however, we shall obtain the asymptotic
distribution of statistics in a more general situation. It should be noted

that our derivation is considerably simpler than the methods already known.

(3.a) Likelihood Ratio Test

Under the assumption of normal disturbances, the likelihood function

for {yl,...,yT} is given by

L= clagl'T/Zexp{- Loir(y - 2D - mey
where c1 = 1/(J2n)GT. To maximize L1 with respect to the covariance matrix

Q, we use Lemma A.l1. The concentrated likelihood function becomes

(3.2) L

(3.3) L, = c,Is17"",

TGT/2

where ¢, = ¢ exp (-GT/2) and S = (Y - ZID'(Y - ZID.

2 1

Let a G X G matrix

(3.4) A1

where Jé = (0, I.) is a G.x G choice matrix. Because of (3.1), A is

G, 2

(B, Jz),

nonsingular. Then the concentrated likelihood is rewritten as

[}

. T, %,~-T/2
(3.5) L2 021A11 1§ 1| ,

where %= (W - ZI) ' (W - ZID), W = YA, and



Let

3.6 TF= @, T = @n’lzv.
Then

¥ _ o3 | R el r ., _3 ok
3.7 ST =wPW+ (Cg) L L) 'z0z(C ¢ . n?, “Z 5)

1

- '
where P.= F(F'F) 'F denotes the projection operator onto the space spanned

F

by the column vectors of F and ?F= IT- PF for any full column matrix F. Ve

note that the maximized likelihood function under the alternative hypothesis

HA: £ ¥ 0 is given by

(3.8) L3 = c2|Y’PZY|

Thus, using Lemma A.2, the likelihood ratio criterion for Hg Vs HA is

~T/2

rewritten as

H, 2
(3.9) R, = 71
b2
1 .
IB’Y'?Z VBl
= [ min —-————:;———— ]-T/2 .
B IB'Y'P,YBI

By the use of Lemma A.3, we define the likelihood ratio test by

(3.10) LR -2 log Rl

1

Gy

T L logC 1+ X)),
. i
i=1

where AG 2 v 2 Al 2 0 are the characteristic roots of

(3.1 | Y'(PZ~ P,OY - A Y’PZY [ = 0.

Zy

The above equation is a sample analogue of (2.12).

0 (= Gl) = 1, the likelihood ratio statistic (3.10) has been

derived by Anderson and Rubin (1949). In this case, LR1 corresponds to the

When G



smallest characteristic root in the limited information maximum likelihood

(LIML) estimation method. When G (= Gl) = 2, LR, is identical to the

0 1
statistic proposed by Koopmans and Hood (1953) as the non-identification
test. 1t should be also noted that Anderson (1951b) has obtained a

likelihood ratio criterion in mhltivariate statistfcal analysis by a

different method, which corresponds to (3.10) in the general case.

(3.b) Lagrange Multiplier Test

We shall derive a Lagrange Multiplier (LM) testvstatistic for the

hypothesis of (2.7). Let A be a szG1

parameters. The Lagrange form in this case is written as

matrix of Lagrange multiplier

(3.12)  logL, = loge,- gloglﬂl - %tr glay - zmr Y -z

+ ir A'(HZI, H22) B .
Differentiat;ng logL4 with respect to each element of I, we get
(3.13)  2'(Y - ZDe 2 ] B' = 0.

i(Y - ZIH = 0, and we have

Zi(Y - ZZJéH),

The upper half part of (3.13) gives Z

VA -— ‘ _1
LT = (Z,'Z))

where J!= (1

,0) is a K XK choice matrix. Then
1 K1 1

(3.14) Y -Zi =Y - ZlJiH - ZZJéH

it

PZ Y - ZzJéH ).
1
Multiplying @B from the right hand side of (3.13), we obtain

(3.15) | 0 ) =-2Z'P,YB gL

A Z



Using Lemma A.4, we have the first and second derivatives of the

likelihood function as follows

alogL4

3ogl o . 3%1ogL
Jvecll = Jvecll

1y vee [-A JB* = 0, 1 71

dvecll a(vecD' ™ ~ 87 e 2'Z.

(3.16)

Then we define a LM statistic by

along azlong =1 along
(3.17) LM, = [ '

1= Uoveen V' svect 3cveen 5&26&_
Using Lemma A.5 and £ = B'@B, we have

(3.18) 1M, =[vec S B )1 (2 0z'2) ") (vect © )B']
1 A \

L9
A

= tr T(0 A"(Z'Z)

’

where the unknown parameters in (3.18) are evaluated at their maximum
likelihood estimators. (See Engle (1984), for instance.) We note that LM
statistic in the form (3.17) has been known as the Rao's Scoring test among

statisticians. From (3.15) and P, P, P, = P, - P , we further simplify LM
Z1 Z Z1 Z Z1 1

as

- P, HyBE' L,
Zy

where B and £ are the maximum likelihood estimators of B and & under the

(3.19) LM1 = tr B'Y (PZ

null hypothesis. If we use the characteristic roots of (3.11), this

statistic has an expression of



Gy A
TE —

i
(3.20) LM . TSR
i=1 i

it

1

When G0 (= Gl) = 1, this statistic.LM1 is identical to the LM statistic
proposed by Byron (1972). However, it should be noted that the derivation
of his statistic is different from ours. It should be also noted that
(3.20) is an analogue of the Barilett-Nanda-Pillai Trace Criterion, which is
well known in multivariate statistical analysis. ( See Anderson (1984).)
Oour derivation vyields a new interpretation of the Bartlett-Nanda-Pillai

test.

(3.c) Wald Test

Let us consider a Wald type statistic for the present testing problem.
For this purpose, we first consider a subset of structural equations using
all exogenous variables appearing in the reduced form and write

(3.21) YlBl = Y2B2 + er + Zzi + U.

We decompose matrix 22 into TX(L1+ G2) submatrices Z2 = (221,

Similarly, two matrices &€ and (I, , L,,) are decomposed into (L+ G,)xGy and

222).

(L G IX(G+ G ) submatrices

2 2

3 I I
(3.22) £ = | gl]’ T, T, - (L2l 22y

2 ]51.2 ]52.2

In this formulation, the testing problem of overidentifying restrictions can

be interpreted as the one in which the null hypothesis is HE: £1= 0, £2= 0,

and the alternative hypothesis is HE : 81 ¥ 0, Ez = 0. If we further assume
2

10



that a G,xG

9 %Gy reduced form coefficient matrix H22.2 is of full rank, H& is

expressed as zero restrictions because

(3.23) & = (M) 4 - Tyy 4Ty o1y 0B -

Hence in principle we can construct a Wald type statistic from the sample
analogue of El based on the unrestricted least squares estimator of T.

Allow partition of a KZXK choice matrix J.! into (L|+ G

3 )XK submatrices

2

Jél)

2 I3a

The‘ alternative hypothesis Hg implies that the subsystem of structuralz
2

equations is just-identified. If we take B1 = IG for normalization, thev
1

estimator of (B,, T, El) can be obtained by regressing (Yz, Zl’ 221) on Yl’

where Y2 = (Z'Z)“1

could be written as

Z'Y,. Then from (3.23) and Lemma A.6, an estimator of 81

A...q 1_11 - [} v_lv "10 1_1"
(3.25) & =13,(Z'D) L' YZ[J32(Z ) 'Z Y2] 33,(Z'2) "Z'}YB,
= (Z: N.Z. ) 'z: N.Y.B
- 2171721 2171°1°1°
where
N, = PZ1 P, (le P )Y2(Y2(PZ1 PZ)YZ] Y2(le P).
In the above we have utilized that ZélN1221 is nonsingular because the
matrix (Yz, Zl’ 221) is of full rank and rank(N) = rank(ZZI) = Ll' Then
the asymptotic covariance matrix of vec(&l) is calculated as
+ —11 1 —1'
(3.26) [IG1®(221N1221) 221N1)[z ®? IT](Iq.® (Zy Ny Zy ) 221N1]

11



- ' -1
= B o (ZyNjZy) "~ .

We now define a Wald type statistic by
_ -1y-1 .
(3.27) W, = (vec a ) (Z®(221N1221 } (vee £ .
where El and E are constructed from the maximum likelihood estimators of

parameters when the subsystem of structural equations is just-identified.

In the situation where we normalized B1 = IG , the maximum likelihood
1

estimator of B is the two-stage least squares estimator of B. Thus using

Lemma A.6 again, we have

- 10y )
(3.28) W = tr{ £ B1Y1N1221(221N1221) 21N1Y Bl}
= tr{ £ lB'Y' (P, - P, )YB}
Z Z1
G0
=T &L Ai .
i=1
where an estimator of & is constructed from B and @, and Ai ( i=1,...,G1 )
are the characteristic roots of (3.11).
When we use the unrestricted estimator of @,
A o - 1 o3
(3.29) Q= T Y PZY,
the resulting Wald statistic Wl is identical to the one derived by Wegge
(1978) for the case of G, (= G,) = 1. In this case, Hwang (1980a) has shown

0 1
that Wegge's statistic is identical to the Wald statistic derived by Byron

(1974) . When we use the maximum likelihood estimator of @ under the null
hypothesis

(3.30) Q=

12



the resulting w1 reduces to the statistic proposed by Basman (1960) for the
case of GO (= Gl) = 1. It can be interpreted as a modified LM statistic in
the present context. It should be also noted that (3.29) is an analogue of
the Lawley-Hotelling Trace Criterion, which is well-known 1in multivariate

statistical analysis. (See Anderson (1984).) Thus our derivation also gives

a new interpretation to the Lawley-Hotelling type statistic.

(3.d) An Inequality Among Statistics

We have derived three types of statistics for the block identifying
restriction in a subsystem of structural equations. There is a simple
inequality among the statistics we have derived. Using Lemma A.7, we have
(3.31) 03 LM1 S LR1 s Wl.

This type of inequality among three different types of statistics has been
well-known for testing linear restrictions in the multivariate regression
model. ( Anderson (1984), for instance. ) If we use the same asymptotic X2
distribution, the Wald type statistic tends to reject the hypothesis more

than other type statistics while the likelihood ratic statistic tends to

reject the hypothesis more than IM statistics.

4. Tests of Predeterminedness

In this section we shall derive several statistics for the hypothesis
of econometric predeterminedness H; n we defined in Section 2. We assume
g ]

that G0 s G1 and the multivariate normal distribution for disturbance terms.

(4.a) Likelihood Ratio Test

Let a GXG matrix

13



(1 0
(4.1) Ay =y 1)

where P = 92;1921. Multiplying A2 to (2.2) from the right, we obtain
¥ Aok * -
(4.2) ‘(Yl’ Yz) = Z(I[1 , Hz) + (V, V2) ,
where '
* ) * _
(4.3) Y1 = Y1 sz s Vl = V1 Vzp R
H**
%k 11 I
(4.4) I = ( **] = T ).
I -p
21

By this transformation of the system, the covariance matrix of (VT. V2) is

given by
Q 0

! 11.2
(4.4) AQA = ),

272 0 9&2

_ ) -1 o o
where 911.2 = 911 912922 921. From (3.2), the likelihood function is
rewritten as
A - -T/2 B! ) PN L N e
(4.5) L5 = Cllgll.Zl exp{ 2tr911.2(Y1 ZKl ) (Y1 ZHl 3]
l’T/Z

1, o -1 Yy
X 19, expl-5trQ,," (Y, ZI) (¥, - ZI)}.

To maximize L5 with respect to @ Q 5 and “2’ we obtain

11.2° *2
A _ ' _1 y A _ =
(4.6) I,=@2 ZY, ,T 922 =Yy PY, ,
N R ~ T
T Q = (1., -p')(Y - ZID'(Y - zh{ ™1].
11.2 G o

14



Then the concentrated likelihood function is given by

. * ookk U ok ek =T/2, o0 -T/2
4.7 L6 = czl(Y1 ZI[1 ) (Y1 ZI[1 ) | T922|
Because the second term in L. can be regarded as a constant, we shall

6
maximize the first term with respect to H;*. From (2.9) and (2.16), the

L = 0, where

hypothesis H&,n implies HC:
(4.8) HZIBl
Let a 61XG1 matrix
(4.9) A3 = (Bl’ J4) ,
where J, = (0, 1 ) is a (G,-G.)XG, choice matrix. Then the concentrated
4 Gl—GO 1 70771

likelihood function is rewritten as

4.100 L. = c.Is* 1"V2 g 7172

7 2711
where
DB DJ
LI S, S T *_ t
(4.11) S11 = (W RHI) (W Rn1> s, W = YIAS’ Hl q;} 4 ,
21 4
and T = HllBl and R = (Y2’ Z) is a TX(G2+ K) matrix.
Let AG Z 2 ATZ 0 be the characteristic roots of
1
(4.12) IYi(PR PL)Y A YlPRYll =0,
where L = (Y2, Zl)is a TX(G2 + Kl) matrix.

First, the alternartive hypothesis against Hg n we consider is the
’

reduced form (2.2) ignoring the block identifiability restrictions, i.e.,
HA: £ % 0, n¥ 0. In this case the maximized likelihood was given by L3 in
(3.8). Using Lemma A.2 as in Section 3.a, the likelihood ratio statistic

for Hi,n Vs HA is given by

15



)

(4.13) LR, = T log I (1 + 25y,
i=1 !

where A? is the characteristic roots of equations (4.12).

Another possible alternative  hypothesis against HE n may be the the

structural equations with the block identifiability restrictions, i.e.,

Ho: £ = 0. In this case the maximized likelihood can be obtained from

£

(3.10). Thus the likelihood ratio statistic for HE n Vs HE is given by

G0 1 + A?
(4.14) LRy = Tifllog[l Y

)

where A: and Ai are the characteristic roots of equations (4.12) and (3.11),

respectively.

When G. =1 and G, 2 1, LR, reduces to the statistic obtained by Hwang

0 1
(1980a). Furthermore, LR, reduces to the statistic obtained by Kariya and

3

3
Hodoshima (1980) when G0 = G1 = 1.

(4.b) Lagrange Multiplier Test

Let A and AO be a K2X61 and GZXGO

parameters for & = 0 and h = O, respectively. The Lagrange form in this

matrices of Lagrange Multiplier

case is written as

- -1 _.1_ -1 - ' - '
(4.15) logL, = logc1 5 log 191 ztrQ (Y - ZID'(Y - ZID + tr) (]l21 Héz)B

8

+ tr AO(D, IGz)B .

Differentiating loglL, with respect to B2, we have

8
(4.16) Hézk + AO = 0.

16



Substituting this relation into logL8 and ignoring a constant term,

(4.17) logL, = - L

1 -1 - ' -
9 2103!911.2|'922l - ztrQ (Y - ZID'(Y - ZID

[k
+ tr A [K21B1] .
where T%= T - I..p and & = I'FB,. (See (4.4) and (4:8))
21~ Mo17 T2 = flg By toee 14 nd (2.877.

By differentiating long with respect to I and P, we also have

) O 0
(4.18) Z'Z0 = Z'Y + (4, :
A1 O
1

0- G - A! A'A
(4.19) Y,P.Y [~5 1) = H22A31911.2 .

The last equality was obtained as a result of the relations

-1 0 -1 G, yo-1
(4.20) Q= | Je. (o, 1. ) + ([ T1)Q (1,, 0},
IGZ 22 G, 0 11.2°°G
(4.21) (Y - ZID'(Y - ZI) = Y'PZY + (© 911.231)‘](2'2)'1[ 0 0.
0 0 AB'Q, , 0

Substituting the upper parts of (4.18) and (4.19) into their lower parts, we
have

(4.22)  AB;Q = Z, P, (Z,0,, - Y ,

1%11.2 g Py (Lollyy = 44

and

1) = n22 Zy P, (zzn21 - ¥ .

17



A

- 0_ -1 1-
(4.24) P = [Yszrzl szzfl .

Multiplying B1 to (4.22) from the right, -we have

(4.25) AL = Zé le(ZZHZZD - YI)B1

=-1Z, BYB,
where & = Bigll 2B1' In the above derivation, we have used Lemma A.7 for
L= (Y2, Zl).

We first consider the testing the hypothesis Hg n Vs HA' A similar

derivation as LM1 in Section 3-(b) can be used to the present testing

problem. We note that Hg n implies HC:E = O instead of HE in Section 3-(b).

Thus a Lagrange Multiplier statistic in this case may be given by

*

Gy 5\*
1

(3.26) IM. =T 5% —-
2 in 1+A}

’

where A? are the characteristic roots of (4.12).

Although the wunderlying idea in (4.26) is straightforward, this type of
statistic LM, has not been previously derived.

2
We now consider the testing the hypothesis HE Vs Hg. In this case, we

confine ourselves to the case of G0 = G1 and use the normalization B1 = IG
1

mainly for simplicity. Although the general case (GIZ GO) can be treated in
the same way as we shall do, the resulting statistic become rather
complicated. From (4.25), we observe that the Lagrange multiplier matrix in
the sample for Hn:n = 0 is

=y pp vl
(4.27) Xy =Y, PP VT 7,

18



A A

where L is the maximum likelihood estimators of £. Since I is consistent

estimator of L, we consider the quantity

¥ _ v oo 3 -1
(4.28) Ay =Yy PP VB,

which is asymptotically equivalent to AO. Using Lemma A.5, we rewrite

(4.28) as

P
(4.29) vec‘AO = (& "o Y2PZPL] vec U .

Then the covariance matrix of vec A; is given by

' D -1 P P -1 ] D
®.Y2PZPL](£®IT)[£ ® YéPZPL] =L e Y,PPPY, .

4.30) (&7}

We now define a LM statistic by

(4.31) IM, = (vec AO)'[z“1

- -1
5 ® Y'P.P.P.Y, ] “(vec Ay

'L 272

Then by the use of Lemma A.5 and (4.27), we rewrite (4.31) as,

(4.32) LM, = tr{YlPLPZYz(Yé ,P PyYy) TY PP
Further, using Lemma A.6, we obtain the expression

[») f—___ A-l
(4.33) LM tr{Yl(PL POYE }

3

L
3
™
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fok —_
where Ai are the characteristic roots of

(4.34) Y, (PX- PL)Y z* YIPXYII =0,

and X = (L, P,Y.,) is a TX(G + K + G,) matrix.

Z°2 2
In the present formulation of the LM test, 2 should beibased on the maximum

likelihood estimator of I under the null hypothesis:

An A _ .l_
(4.35) L= 911.2 = 7 Y1PLY1

However, 1in practice, several estimators of £ could be used. For instance,

instead of (4.35), we may use

(4.36) E = Y'P, Y

T - ZGQ K1 1X1°

In particular, LM3 with (4.36) reduces to the statistic proposed by

Wu (1973) and Wu (1574) when G1 =1,
On the other hand, Hausman (1978) considered a testing problem for

(4.37) Y1 = YZB + Z =+ E3B3

where G1 =1, B3

squares residuals E2 = Y2— Y2 = §ZY2‘ Hausman (1978) proposed the usual

F test for HO: B8 = O against le B3 ¥ 0 as a specification test.
From (4.34), it 1is clear that LM

is a G3X1 vector of unknown parameters, and E3 is the least

3 is proportional to Hausman's statistic

when G1 = 1. In fact, Nakamura and Nakamura (1980) has shown this
equivalence between Wu's test and Hausman's test for G1 = 1. They also
pointed out that a statistic proposed by Durbin (1954) is similar to them.
Our derivation of statistics shows that these statistics can be interpreted
as LM test procedures.
Another possibility of an estimator of £ may be
1 g

(4.38) L= T——_—'k-—‘:'"Gz Y1PRY1

because it is an unrestricted sum of squares from the regression residuals.

Then, the statistic LM3 with (4.36) reduces to the one proposed by Revankar
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(1978) when G1 = 1. Therefore, we can also reinterprete Revankar's test as

a LM test procedure.

(4.c¢) Wald Test

Let us derive Wald type statistics for the present testing problem. For

this purpose, we first consider the null hypothesis HE h vs hypothesis HA'

]

In this case, our derivation of a Wald test is similar to

Section 3-(c). Thus a Wald type statistic may be given by

(4.39) W, =TZ A, ,

where A? are the characteristic roots of (4.12).

When G0 = G, = 1, W, reduces to the statistic proposed by Revankar and

1 2
Hartley (1973). Although their derivation was different from ours, we can

interpret their statistic as a Wald test for Hg n against HA' W2 may be
]

called the generalized Revankar-Hartley test.

We now turn to derive a Wald type statistic for Hg n against Hg. In
b

this testing problem, we confine ourselves to the case of G0 = G1 and use

the normalizatioh B0 = IG mainly for simplicity. Although the general case
1

(Glz GO) can be treated in the same way as we shall do, the resulting

statistics become rather complicated. We note that from (3.13)

(4.40) TQ = (Y — ZID'(Y - ZID

6]

0
[ A

~ '_ AN [} , _1 A'A
—YPZY+SZB }‘) z'2) " (Y)B'Q .

Using (3.15), we have
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(4.41) TRB = Y' P YB + QBL 1B 'Y’ (PZ- PZ )YB .
1
Because TE = B'Y'FZ YB, we have an unrestricted estimator of h,
1
(4.42) n = JéQB = JéY'PZYB(I + A),

where A diagonal matrix with GO characteristic roots

diag (Xi) is a G ><GO

of (3.11) and 0 & A S +++ S A, . Since A

q) i

~

= Op(l/T) as shown in (B.12) in

Appendix B, the asymptotic distribution of h is the same as that of
(4.43) n* = 3,9 JT(B - B) + J) JT[ Y PZY - Q)B
Using Lemma A.5, we rewrite

)vecJT[ Y'PY - @) .

)y + (B'e]) 7

(4.44) vec(n) = (1, o%,,)vec JT(B -B

0 2

2
Under the assumption of normal disturbances, the asymptotic covariance of

vec T [ Y’ P Y - Q) is given by

(4.45) (1. .+ K. . )90%,
GoGy "Gyl

where K is the commutation matrix, that is, vec(A) = K vec(A') for any
arbitrary matrix A. <(See Anderson (1987), for instance.) By the use of

Lemma B.1, the asymptotic covariance of n* is given by

: -1 '
(4.46)  Zo(Qy, (Mo M)y (T0) "8y, gp) + (B'8J5) Q,%( QB @ QJ,).

Using (A.10) in Lemma A.5, the last term of (4.43) becomes a zero-matrix

under the hypothesis HO: n = 0. Hence, we define a Wald statistic by

A

1y Livee ny,

~

_ A , A 1/\ A
(4.47) Wy = (vec M) (£ ® (TQ Typhyy 1Top) 922+ 922]
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A

where E, @ and sz are the maximum likelihood estimators of E, 922, and

22°
sz, respectively. Again, using Lemma A.5, we have

A A

- A"l Av D | _IA
(4.48) Wy = tr(l + ME (1 + MB'Y'P,YI, [T922 5oy 1n22 922

~

where B is the maximum likelihood éstimator of B,.where its elements are the
characterestic vectors of (3.11).

This Wald type statistic has not been obtained before. Although it is
complicated in general, there is a situation where it can be further

simplified. We consider the case when the subsystem of structural equations

is just-identified as the alternative hypothesis. In this case, since Ai

0 (i=1,...,G,) in (3.11) and A =0 in.(4.47), we have T92 = Y'P,Y,, I

1 2°Z7°2 2
(Z'Z)°1Z'Y2, TE = B'Y'PZ YB. Then, in particular, when Gy = G;= 1, it can
1
be shown that w3 in (4.47) 1is -equivalent to the statistic proposed by

~

Wu (1973) and Wu (1974) except E. This may give the Wu test procedure

another new interpretation.

(4.d) An Inequality Among Statistics

We have derived three types of statistics for the predeterminedness
restriction in a subsystem of structural equations. There is a simple

inequality among the statistics we have derived for HE n Vs HE' Using

Lemma A.7, we have

<
(4.49) 0 s LM2 s LR2 =W
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This inequality is an analogue to (3.31) for the testing problem of the
block identifying restirction in Section 3. However, a similar inequality

can not be obtainable for the testing problem of HE n Vs Hg.

’

5. Asymptotic Distributions of Statistics

We now return to the assumptions (2.3) and (2.4) on disturbances we

made in Section 2. We note that the assumptions (2.3) and (2.4) imply (2.5)

L]

and (2.6) because ut = th. In the conditional expectation operator in

(2.3)-(2.6), F,_, s the information set available at t-1. The exogenous
variables Zy inciude a finite number of past endogenous variables Vi1
yy_q, tety yt;p. In order to investigate the asymptotic distribution of

test statistics in this situation, we obtain a new Martingale Central Limit

Theorem.
Theorem 5.1: Let {zt, vt} be a sequence of pairs of random vectors,
and let Ft~1 be the o-field generated by zl, vl, ens Zt—l’ vt-l’ zt.

Suppose (i)

=1
(5.1) My = T,

2,2 — M,
1 17t

o3

(i1) E(v IF, ) =0 a.s., E(vtvtlFt-l) = @ a.s.,
and (iii)

(5.2) sup I v'v th —=> 0 a.s.
t v've

as ¢ — + o, vhere Gt is the conditional distribution function of vt given

Ft—l' Then
1 T L
(5.3) vec[JT b ztvi] => N (0, & ® M).
t=1
24



This theorem generalizes Theorem 5(i) of Lai and Robbins (1981), where

the scalar v, are independently identically distributed. Because it is

t
relatively easy to check the conditions (i)-(iii), it may be useful for many
applications.

From Assumption (i) in Theorem 5.1, we note’ that a (G2+ K)X(GZ+ K)

matrix
1 P T Q. 0
(5.4) SRR—Q=( "2 )M (m, 1)+ [ *227)
T Tor
I 0 O
K
as T = +m,

Consider a local alternative hypothesis for the identifiability

restrictions,
r 1
(5.5) TB=1(")+ &,
o vT =1

where '81 is a non-zero K X G0 matrix. When £1 = 0, (5.6) reduces to (2.7)
and (2.8). Kunitomo (1987) discussed the formulation of these local
alternatives in some detail. Subsequently, we obtain the next result, for

which the proof is given in Appendix B.

Theorem 5.2 : Under the assumptions we made in Theorem 5.1, the three

statistics LRl’ LMl’ and Wl are asymptotically distributed as noncentral X2

with GOXL1 degrees of freedom and the noncentrality
2 _ -1

(5.6) 61 = tr(elz )

where

5.7 8, = £(M - MD(D'MD) D' M) £

where D is a KX(Gz+ Kl) matrix
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1
degrees of freedom. This result for the case of G0 =:1 has been obtained

When & = 0, the three statistics are distributed as X2 with GOXL1

under the assumptions that disturbances are independently, identically, and
normally distributed and there are no lagged endogenous variables in the
explanatory variables.

Next, we consider a local alternative hypothesis for the

predeterminedness condition,

= 1
(5.8) (R, 9,0 B= gn

where nl is a non-zero G2XG1 matrix. In this formulation of alternatives,

we obtain the next result, for which the proof is given in Appendix B.

Theorem 5.3 : (i) Under the assumptions we made in Theorem 5.1, three

statistics LMS’ LR,, and w3 are asymptotically distributed as noncentral x2

3
with GOXG2 degrees of freedom and the noncentrality
2 -1
(5.9) 62 = tr(8,5 )
where
- 1 ' _1 —1
(5.10) 8, = nj (R, + 2, (MM, (Tpp) "8yn) "y,
) i -1
(.11 Myy = Myp= My My My s

and we decompose M into (K1+ KZ)X(K1+ Ko) submatrices
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(ii) Under the same assumptions we made in Theorem 5.1, the three statistics

LR2 s LMZ’ and w2 are asymptotically distributed as a noncentral X2 with

GOXK2 degrees of freedom and the noncentrality 6%.

When n1= 0, the iwo statistics LM3 and LR3 are asymptotically
distributed as X2 with GOXG2 degrees of freedom and statistics LR2 and W2
are asymptotically distributed as X2 with GOXK2 degrees of freedom. These
results for the case of G0 =1 havé been obtained under the assumptions that
the disturbances are independently and identically distributed and there are
no lagged endogenous variables. Furthermore, in this case it is known that
Wa's statistic, Revankar's statistic, and Revankar-Hartley statistic

adjusted by their degrees of freedom are distrubuted as F when the

disturbances are normally distributed.

6. Conclusion

In this paper, we have systematically derived a number of test
procedures for testing the block identifiability condition and the
predeterminedness condition in a subsystem of structural equations. We
generalized the test statistics proposed in the past and derived the LR
test, LM test, and Wald test for these two testing problems. This
formaulation enables us to give new interpretationé to a number of testing
procedures. We explored the relationship between test statistics in
econometrics and those in multivariate statistical analysis and obtained
some new interpretations for some test statistics commonly known in
multivariate statistical analysis.

We have also derived the asymptotic distributions of test statistics

under a set of fairly general conditions on the disturbance terms. For this
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purpose, we have derived a new Martingale Central Limit Theorem and applied
it to the present situation. We allow that there are a finite number of
lagged endogenous variables and the disturbance terms are the Martingale
difference sequences, which are not necessarily independent. We have shown
that the limiting distributions of test statistics considered in this paper
are the non-central X2 distributions under local alternative hypotheses and
are the central X2 distributions under the null-hypotheses. Because test
statistics have often been proposed under a set of relatively restrictive
assumptions, it may be important to show that the assumptions usually made
are not essential for the testing procedures. Our results on the asymptotic
robﬁstness of tests give justification for using the test procedures
commonly known in econometrics and multivariate analysis even if some of theb

usual underlying assumptions for their derivations are not satisfied.

Appendix A:

In Appendix A, we present some useful lemmas. Most lemmas here are
known in the multivariate statistical analysis and their proofs could be
found in the works of Anderson (1984) or Rao (1973). We shall present only

the proof of Lemma A.2, which may be new in econometrics.

Lemma A.1 : Let D and G be pxp positive definite matrices. Then the
function
(A1) £(G) = - N log 1GI- tr6 ;)

is maximized at G = (1/N)D.
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Lemma A.2 : Let a p X p-positive definite matrix A be decomposed into

(p1+ pz)x(p1+ p2) submatrices A = (Aij)’ For any q><p1 matrix B and qXp2

matrix C,

(A.2)  min | A+ [ 2:] (B, C) AL |, + BBl

C T 1A,

Proof: Let D = (B, CJ. Then

_D'

(A.3) |A + D'D| = Ig R VYIS pa ip ],
q q

Let also the inverse matrix A be decomposed into (p1+ pz)x(p1+ pz)

submatrices A = (A1), Then

pa"Ipt = (c + B A% a22)"1)a22( ¢ + B Al?( A%%)7]

11_ 12 1

2 B AllB’

(A22)-1A21)B,

+ B(A
Hence,
] _1'
(A.4) A + D'D] 2 lAlqu + B AllB l.

Finally, we obtain (A.2) by using (A.3). ®

Lemma A.3: Let A be a pXp non-negative definite matrix and
0 = Al S+ 35 Ap be its characteristic roots. Let also B be a pxq (p > q)

matrix. Then

q q-1
(A.5)  min [B'ABl = T A, max IB'ABl = TA_..
B'B=1 i=1 ' B'B=1I izo P

Lemma A.4:
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3tr (AB)

D =, Str(B ABC) _ apc + A'BC'.

(A.6) B

Lemma A.5: For any mxn matrix A = (a1,~'°,ah), we define an 1xmn

vector (vec A)' = [al’,...,an‘]. Then for any conformable matrices,
(A.T) vec(BXC) = (C'eB)(vec X),

(A.8) tr(BCD) = (vec B')'(I & C)(vec D), .

(A.9) tr(BX'CXD) = (vec X)'(DB ® C')(vec X),

(A.10) (A ®B) K=KB®oA),

where K is the commutation matrix defined by vec(C) = K vec(C') for any

matrix C.

Lemma A.6: Let A = (B,C) be a p X (q1+ q2) matrix. Then
1

(A.11) PA = PB - PBC (C'PB C‘PB s

where D_1 stands for the generalized inverse matrix of any matrix D.

o)

Lemma A.7: For non-negative Ai (i = 1,*°°,p),

p Ai p p
. <
(A.12) ‘E 17 S log‘H (1+Ai) s X Ai.
i=1 1 i=1 i=1
Appendix B

In Appendix B, we give the proofs of Theorems 5.1, 5.2, and 5.3 in

Section 5.

Proof of Theorem 5.1: The conclusion holds if

4 1 T 1] 1 T *
(B.1) (vec A) vec{ = L z,v, } = = tr ¥ z,v,A
VT = bt VT =g bt
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T L
JT tr 2 z Avt —  N(O, QM)

1

for every A. Let x, = A 2

t £ Then

, T P
(B.2) = L xx, —m AMA=D,
T t7t
t=1
say. We want to show that
1 T , L
(B.3) JT t§1xtvt —-  N(O,tr@D) .

Because of (5.1),

T+1 , 1 T 1 ' 1 T , p
Tor, 2 X% T TE XX T Tl Fre®Ter T T(OD), f xx — 0

and hence XT+1XT+1/(T+1) —- 0 , which implies

X, X, P
(B,5) max T —3 0 .

t=1,...,T

See Lemma 2.6. of Anderson (1971), for instance. Let

.1 2 .. - -
(B.6) Wy JTXtI(!'xtll gD, t=1,...,T, T=1,2,...,

where I(.) is the indicator function. Then

(B.7) Pr{ Wp t=1,...,T } —> 1

-1
t T TR

as T —» ©, Then

(B.8) E(thvtIF 1] =0,
T T , P
(B.9) § E[(thvt) IF,_ 1] = f A QD .
t=1 t=1 ,
Now consider
Telow by ) How v 3
(B.10) izﬁ{(w e (v 1y} §JIF ,_}
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T , W W 6
- pwow B(C—E vl =Lt vobh —  JIF )
el TETE e Y Y g 11 2
Tt Tt Tt
T 1 1] 1 6
s = ththE{vtvtI(vtvt'> — 2]IFt_l} .
t=1 | g, ! |

But (B.5), which is equivalent to max t=1 TIIW.HH2 — 0, implies that

for any & > 0 if T is sufficiéntly large the probability is arbitrarily

close to 1 that llet|12< €. Hence, for sufficiently large T and with

arbitrarily high probability the right-hand side of (B.10) is less than or

equal to

' ' 6
sup E{vtvtl(vtvt > g]lFt_l}
t ‘

é
> g]lF

T

L]

t

1

T
L] L] 1
< =
tElethtE{vtvtI[vtvt t-1 } =,H=§ 2,2,

which is arbitrarily small by Assumption (iii). Hence

T .
(B.11) £ E{(w
t=1

2

9 ' p
v (i, v 8)IF, ;) — 0,

Tt t Tt t

The theorem follows from Theorem 2.2 of Dvoretzky (1972) or Colloraly 3.1 of

Hall and Heyde (198G). ®&

A

Lemma B.l: Let B be a matrix consisting of the characteristic vectors
gf (3.11) and normalize B such that B1 = IG in Séction 3. Then under the
0

assumptions we made in Theorem 5.1, B — B in probability as T — ® and

B, - B
vee VT K 2 )
r -T
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is asymptotically distributed as N(0, Ee(D'MD)"!).

Sketch of Proof of Lemma B.1: The proof of this lemma is quite similar

to that of the consistency and .the asymptotic normality of tﬁe limited
information maximum likelihood estimator of B when G0 = G1 = 1. Thus we
only sketch the proof. Because of (B.12), this problem reduces to the proof
of the consistency and the asymptotic normality of the two-stage least

squares estimator. Then we apply Theorem 5.1 for this case. ®

Proof of Theorem 5.2: The proof consists of showing the following

three propositions (B.12), (B.13), and (B.14).

(B.12) T

as T 2 o, Using (B.12), we have

(B.13)
as T =~ , where B is the maximum likelihood estimator of B under the
block identifiability restrictions. By the use of Theorem 5.1, we have

Ayn_ AL..
(B.14) B'Y (PZ PZ J)YB =- WG (8

1 0

L., ¥)

1’ 7

L ¥) is the G.-dimensional

as T -» o, In the above notation, WG (8 1 o

0

noncentral Wishart distribution with L1 degrees_of freedom and the non-

1)

centrality matrix is given by (5.7).

Derivation of (B.12): Let ui =1+ xi (i =1, **-, Gl)' From (3.11),

we have
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G | B'Y'P, YB | | B'Y'P, YB |
1 z z
(B.15) Tu =min ———— < e e £ Q.
i=1 B | B'Y'P,YB | | B'Y'P,Y B |

Under the local alternative (5.5), we write

LUk, v 1w,
Zl 1

(B.16) Q= — = —

I U PZU | | W2 |
where U* = U + (1/YyT) Z‘El. Let Qi (i =1, <, Gl) be the characteristic
roots of

1 - 1 -

(B.17) | T Wl Qi T Wé | =0

1 P
(B.18) Lv, — =,
(B.19) V. - W, =W, (0 £)
' 1~ ¥ G, O L% ,

where the noncentrality matrix

My

%1

-1

(B.20) B = E (M- (., ") Mll[Mll, M12] Y.

3

Since Anderson (1951a) and (1963) have shown that T(Qi- 1) converge to the

characteristic roots of the noncentral Wishart matrix WG (93, KQ, ),
1 2

Tlhg(ﬁi— 1) converges to zero in probability for any 0 < € ¢ 1. Then
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G

1
(B.21) % e -1 =718 8- 1)
. i=1
. G G, G, \
=T {1 (9, D + & L 8- (= 1)+ ==¢ + B (4~ 1}
i=1 j=1iwj J , i=1

converge to zeros in probability. Because Ai 20 (=1, -, Gl) we obtain

(B.12). ®

Derivation of (B.13) Using Lemma B.1, B ByBas T — + », Noticing

that
1 _ p
(B.22) T v PZV. - Q,

we obtain (B.8). |

Derivation of B.14): Using the fact that B = B + (B - B), the right

hand side of (B.14) is decomposed as

(B.23) B'Y'( PZ- PZI)YB + B'Y'( PZ- le)Y( B-B)

) YB+ (B-B)Y'(P,-P, )Y(B-B).
1 Z 'z ‘

From (5.5), the first term of (B.23) becomes

+ (B-B)'Y'( PZ— PZ

% _ %
(B.24) U< PZ PZI)U .
By the standardization of B1 = Bl = IK , We write
' 1
" - BZ— B2)
(B.25) YCB-B) = (Y, Z) ( R
- -T)
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VT ( ﬁ - B,)
- - (J%zn . 4%(Vz' o) 2 2
JICT =T

Using Lemma B.1, the second term of (B.25) is asymptotically equivalent to

f _1'_1,¢*
(B.26) (D'M D) D JTZ U
and so YO B - B ) is asymptotically equivalent to
(B.27) - ( J% Z'D ) ( D’J% 2'Z D) L J% 7' ) Ut
Let denote E = ZD. Then PZPE = le and PZIPZ = PE’ Thus, the second
term of (B.23) is asymptotically equivalent to
¥, _ X _ %, _ *
(B.28) - U < PZ PZI) PEU = U ' ( PE P21>U .

By a similar consideration on the third and fourth terms of (B.23), we find

that (B.23) is asymptotically equivalent to

E _ % _ ¢ Lox,o 1,,..-1/2 [P) TRIG U5/ N RS ~1
(B.29) U C P POUT = [JTU Z(:2'D) ][IK (FZ'D7°DC 3 D'Z'Z D)
Cl o 1/2y 1o -1/2 1, %
X D' (GZ'Z) )[(Tz Z) Ji2'V ) .

Since the rank of the middle parenthesis of (B.29) is K - ( G2+ Kl)’ we
obtain (B.23). ®

Extending the method by Anderson (1951b), we obtain the asymptotic
distribution of the characteristic roots §f the noncentral Whishart random

variables. This completes the proof of Theorem 5.2. ®

Proof of Theorem 5.3: Here we give the proof for the case of G0 = Gl'

However, it can be extended to the general case by modifying the proof given

below. Let
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* _ _ -1 * _y¥*
(B.30) V1 = V1 V2922921, Y1 = Y1 V1 .

1

Under the local alternative (5.7),

Then each row of V* is conditionally uncorrelated with each row of V2.

*

Z T +v.e lg

(B.31) Y 1 %9y oq

[y

(Y

B 1y o
SNSRI ARSI

Since the first term of YT is orthogonal to L and X, the noncentrality

matrix is given by

(B.32) 92 = plim
T

—

v o~ lur o -1
ny 922v2(PX PL) v2922n1 .

We notice that

(B.33) P = plim % X'X

T

D'MD O €y 0 %y,

SRR S A SR
22 22
(B.34) plim l X'V, = J.Q
T T 2 22 °

where Jé = [IGZ, 0, IGZ] is a sz( G2+ K1+ G2 ) choice matrix. We also note
that L =

X J6, where Jé’= [IG2+ Kl, 0) is a ( G2+ Kl)x( G2+ K1+ GZ) choice

matrix. Then
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(B.35) 8, =n

2 = MY

P - J.4; PJB) J‘ J.n

5 676 RRILIE

Using the inversion formula of partitioned matrices, we have

- [ -1 - 3 -1

(B.36) 8, = nl[ Qyy = oM, 1n22 2,,) ) ny
o -l 17ln
= (R, + Ry CTooMy, 1 Myp) "yp) 70y -

: . - * -
Since the rank of PX PL is 2G2+ K1 ( G2+ Kl) = G2 and Vl is conditionally

uncorrelated with V2,

*

- * [ - *
(B.37) F =« Y1 + Vl) ( PX PL)( Y1 + Vl)

is asymptotically distributed with W, (8,, G,, @ ). Under the local
G2 2 2 11.2

alternative (5.8), the estimator (4.36) is written as

(B.38) L= VT V2922n1) P ( V JT V2922ﬂ1)

As T — ®, L = 911 9 in probability, which is the covariance matrix of
each row of V*

1
in probability as T — ®, Thus we obtain the asymptotic distribution of LM8

By a similar argument, (4.35) and (4.38) converge to 911 5

statistics.

We now turn to derive the asymptotic distribution of w2 and LRB’ We

note that under the local alternative (5.8),

(B.39) U= JT Vzﬂzzn1 .

We shall first obtain the asymptotic distribution of
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| . - 1 o y* 15, -1
(B.40) vec( JI R'U ) = vec( JI R lel) + vec( T R V2922n1).
Noting that R = z[nz, IK] + [v2. 0) and (5.4), the first term of (B.40) is
asymptotically distributed as N(O, 911 2@ Q). The second term of (B.40)
converges to vec(nl) in probability as T =—» o, Hence the asymptotic
distribution of (B.40) can be denoted by vec(C) ~ N[vec(nl) , 911 5 © QJ.

Because of L = R J5 = X J6 , we have

vv
D' 2
leiy*) - 1,y 1 B
(B.41) vec[JTX Vl]‘- vec{(o ]JTZ vl} + Vec{JT( o ) V1} ,

-~
N"‘U

which is asymptotically distributed as N(O, 911 5 © P) and vec[J%L'VT] is

.

asymptotically distributed as N[O, 911 , ® JéPJﬁ]. Therefore, the

asymptotic distribution of Yi( PR- PL) Y1 is equivalent to

(B.42) U'C Pp- P U
- (J%U’R)(%R'R)_1/2[1G2+ . (%R'R)l/zJ S0 MBI
x drntt)drn 2R
which is the same as the distribution of
21 1 1 _1
B.49) A =caQ g, - draeipTidle

2
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Since the rank of - A1 is G2+ K - (G2+ Kl) = K2 and (4.38) is a consistent

estimator of 2 we obtain the asymptotic distribution of Wz as stated in

11.2°

Theorem 5.3.
Let J% = (o, IK) be a KX( G2+ K ) choice matrix and Z = R J7. Then
from the derivation of (B.12) Abpendix B, the asympfotic distribution of

- P.) U, which is written as

(B.13) is equvalent to that of U'( PZ E

1o, vl_y _1_.'01-,4 ‘_1001_'
B.40) (U R)I {3 GR'RI,) - DD GR'BYI,D) D N, (5 R'UD,

where D is given in (5.7) and E=Z D. As T — «, (B.44) converges to the

distribution of A2,

1 1 1 L
(B.45) Ay = C'IM (1~ MDCD'M D) D W) Misc
11, 6 L Lo o 1oL
= 0QHQP (|, 1) @ - -1,,)e% Ja %c
o M o DM D" ’

Define P, and P2 such that

f——y

C,Q-I/Z PiQ1/2C

(B.46) Ai

for i = 1 and 2 in (B.43) and (B.45). Subséquently, by some calculation, we

2 2 _ B _ . _ _
can show that P1 = Pl’ P2 = P2’ PIPZ = PZPI = P2. Since trPl— G2+ K (G2+
Kl)’ trP2= K - (G2+ Kl)’ and trPl- trP2 = G2, we know that Al— A2 ~ wcl(ez.

G Q ). Because of (5.4), the asymptotic distribution of LR3 is

2° 11.2
equivalent to that of

G

(B.47) T £ (A% A.).
i=1 '
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Hence we obtain the asymptotic distribution of LR3 as stated in Theorem 5.3.

The asymptotic distribution of w3 can be obtained by a similar argument. ®
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