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1. INTRODUCTION

There are many economic problems which, modelled by games of incomplete
information using sequential equilibrium as the solution concept, give rise to
many (often infinitely many) sequential equilibria. Often many of these
equilibria seem implausible because of the beliefs associated with some
disequilibrium information sets (i.e., disequilibrium beliefs.) Recently a
number of papers have appeared proposing various refinements of the set of
sequential equilibria based on tests of the plausibility of the disequilibrium
beliefs (see, e.g., McClennan [1985], Kreps [1984], Cho and Kreps [1986],
Banks and Sobel [1986], Cho [1986], Farrell [1985] and Grossman and Perry
[1986]). Some of these papers are restricted to signalling games; this paper
will also be restricted to such games.

A signalling game is a game in which there are only two players, I and
11. Player 1 possesses private information, modelled by identifying a type
for player I with each different.information he might have. On the basis of
his type, he sends a message to II. Player 1II, upon observing the message
player I sends but without knowledge of the true type, then takes an action
(reply). The payoffs to each player are determined by player 1's true type
(his private information), his message, and player Il's action.

Many of the refinements mentioned above are based on the idea that some
disequilibrium beliefs are implausible in that they put positive probability
on some types of player I which are not likely to send this disequilibrium
message. Kreps [1984] and Cho and Kreps [1986] refinement may be summarized
as follows. Fix a sequential equilibrium and let m be an associated
disequilibrium message (a message which no type of player I will send in the
equilibrium.) Suppose there is a set of types (say K) who would never want

to send this message because, regardless of the beliefs player II would form



upon observing this message and regardless of the optimal response II would
subsequently choose, these types would obtain smaller payoffs than they would
have obtained had the original equilibrium been played. Suppose further that
for any beliefs that puts no weight on the set K of types which must be
worse off by sending m, any best response by II yields a higher payoff than
the original equilibrium payoff to all types not in K. Then the original
eqﬁilibrium is said to fail their intuitive criteriom. Clearly, the original
equilibrium must have been sustained because disequilibrium beliefs associated
with m are not consistent with the above observation. Specifically, the
original disequilibrium belief must necessarily have put positive probability
on (some subset of) K.

The idea behind their argument is typically illustrated by the following
argument. A sequential equilibrium with a disequilibrium message satisfying
the above property collapses when some type of player I plays this message
with the following speech to player II. "I am sending disequilibrium
message m and you should believe that I am of type t (or in some subset of
types). If I were of other types, I would never have sent this message
because no matter how you interpret this speech I would have obtained higher
payoff had I not sent this message. Any interpretation of this message which
excludes those other types which would not wish to send this message will lead
to a higher payoff for the type t (or set of types) which I claim to be."

Grossman and Perry proposed a variant (further refinement) of Kreps and
Cho's idea by insisting that all disequilibrium beliefs must be consistent
with a similar line of reasoning. Their refinement can roughly be thought of
as follows. Fix a sequential equilibrium and consider any disequilibrium
message. For each subset K of types, we ask whether all members of K

would obtain higher payoff (than the equilibrium payoff) if player II



would obtain higher payoff (than the equilibrium payoff) if player II
conjectured that it is precisely these types who are sending this message and
formed his belief and chose his optimal response accordingly. If there is a
message m and a nonempty set K satisfying such a condition, we say that
the original equilibrium fails the perfect sequentiality test. Grossman and
Perry's refinement requires that the beliefs agssociated with each information
set must be formed so that, when there is a set K of types which would
benefit by playing the message, then player II must believe exactly the set

K of types must be sending this message.

These refinements rely on the idea of forward induction (see Kohlberg and
Mertens [1985]). In the words of Kohlberg and Mertens, a disequilibrium move
and the resulting subgame should be considered as a "very specific form of
pre-play communication.” Any disequilibrium move should mean that the player
is [effectively] sending the following message to other players. "Look, T had
the opportunity to play the equilibrium strategy, and nevertheless I decided
to play this move, and my move is already made. We both know that you can no
longer talk to me, because we are in the game, and my move is made. So think
now well, and make your decision.”

In the usual interpretation of Nash equilibrium, the concept of forward
induction may be justified as follows. A signalling game is to be played with
the help of a computer. At the outset of the game, each player is asked to
program his choice of move for each information set knowing that once he
finishes his programming he can no longer change his choice. An outside
referee suggests a sequential equilibrium to each player. In contemplating
whether the suggested equilibrium is a compelling one, player II asks himself
whether the beliefs associated with a disequilibrium information set is

sufficiently plausible. 1In terms of Cho and Kreps argument, for example, he



may wonder whether some type of player I might deviate from the suggested
equilibrium and actually choose the move that leads to the disequilibrium
information set. He would find the deviation likely to happen if the
equilibrium fails the Kreps-Cho intuitive criterion, for there is certainly an
incentive for those types to deviate from the proposed equilibrium. Then
player II would reject the proposed equilibrium because he now found a
compelling argument, that the disequilibrium move will actually be made if
player 1 happens to be a proper type, making the originally suggested
"equilibrium" no longer a consistent proposal of plays.

1f we interpret arguments of Kreps-Cho and Grossman—Perry this way,
however, a problem emerges. Suppose player I1 is convinced that a set X of
types would choose a disequilibrium message m. This implies that those types
in K will no longer chbose the original (suggested) equilibrium messages.
Thus, player II's beliefs at the information sets associated with these
messages must be revised, leading to different replies by player II. Since,
by assumption, this argument is compelling enough to change I1's beliefs,
those types not in K should similarly find the same argument compelling.
The change in player Il's reply then may change the choice of messages by
those types not in K, as they may find that choosing the original messages
would yield a lower payoff than before. As a matter of fact, they might
choose the message m instead. After these revisions the set of types who
will choose the message m 1is no longer equal to K and it is no longer
apparent that the original disequilibrium belief is implausible.

Thus, when player IT is contemplating whether the suggested belief is
appropriate at an information set, he must check whether his beliefs at all
other information sets are consistent with his logic simultaneously. In other

words, the "speeches" that player I attempts to convey to IT with forward



induction must include not only what belief at the disequilibrium information
set he proposed and what reply II should choose accordingly, but also how all
other types might play and what beliefs II should form at all other
information sets. For the speech to be compelling, all of these proposed
strategy choices and beliefs must be consistent. That is, the speech must be
a proposal of an alternative sequential equilibrium.

This argument does not preclude the possibility of using forward
induction to refine the set of equilibria. It means that when player IT
contemplates the appropriateness of a sequential equilibrium and of the
beliefs associated with a disequilibrium message m, he must check whether
some types of player I might want to deviate from the suggested equilibrium by
proposing an alternative equilibrium. Suppose there is an alternative
sequential equilibrium for which the méssage m 1is played in the equilibrium
by some set of types. 1If the set which plays m prefers the alternative
equilibrium, the given sequential equilibrium should be rejected. We shall
describe such a situation as the alternative equilibrium defeating the
original equilibrium.

The plan of this paper is as follows. In section 2, we present the
formal model and present examples showing how our refinement differs from
those of Cho-Kreps and Grossman-Perry. In section 3 we prove that the set of
(pure strategy) sequential equilibria which satisfy our refinement test is
non—empty for an important class of signalling games. We prove this by
showing a particular equilibrium always satisfies our refinement test.
Section 4 contains concluding remarks including the relationship between our

refinement and other refinement notions based upon perturbation.



2. FORWARD INDUCTION
2.1 PERFECTLY SEQUENTIAL EQUILIBRIUM
We begin with notation. There are two players, I and II.

T=1{1l,ee0,n} set of player I's types,

p(t) probability of type t; assumed to be common
knowledge,

M set of moves for player I,

R set of moves for player 11,

u(m,r,t) payoff for type t of player I for the pair of

- moves (m,r) € M x R,

v(m,r,t) payoff for player II for the pair of moves
(m,r) € Mx R when player I 1is of type ¢,

AM’ AR’ AT set of all probability distributions on M, R
and T respectively,

ue T » AM a mixed strategy for I,

p: M+ AR a mixed strategy for 1II,

B: M » AT I1' belief function, assigning a probability
distribution over T upon observing m

u(mlt) probability I plays m when his type is t € T,

p(r|m) probability II plays r when he observes m€ M,

8(t|m) I1's conditional belief over T when he observes
mE M,

U(m,p (m),t) expected payoff of sending m for type t of

player I when his true type is t and when IlI's
strategy is p, 1i.e.,

U(m,p (m),t) = Ler p(r|m) u(m,r,t)



BR: Mx A+ R set of best responses to m given B8(m), i.e.

BR(m,8(m)) = arg max B(t[m) v(m,r,t).

r€R ztET
* x k%
Definition: o = (u ,p0 ,8 ) 1is a sequential equilibrium if:

* *
1) VmeM t€T u (mlt) >0 only if me€ argmax . U(m',p (m'),t),

* *
2) ¥reR m€M p (rlm) >0 only if r € BR(mB (m)),

* (&) 1 (mlt)
3)  ¥tCT, and me M 8 (t|m) = —BRELH IWMIEJ if the
e & p(e") u (m'|t)
denominator is positive.

With an abuse of notation we will write u(o*,t) to be the expected payoff
associated with 0* for type t.

Grossman and Perry (1986) introduced a refinement of sequential
equilibrium based on a restriction of the beliefs that an agent could hold at
disequilibrium information sets. Roughly speaking, Grossman and Perry
restrict an agent finding himself at an information set which should not have
been reached during the play of the game to "try to interpret the move as a
signal by the player I." They test a given sequential equilibrium in the
following manner. For each information set which is not reached in the given
equilibrium, player II hypothesizes that the move was made by some set of types
of player I and revises his prior by Bayes rule counditional upon.player I being
in the specified set of types. If his best response given these beliefs is
preferred by precisely the prespecified set of types, the given sequential

equilibrium is said to fail the Grossman—-Perry test.



* * k%
Formally a sequential equilibrium o = (u ,0 ,8 ) falls the perfect
sequentially test if I m€ M, B(m) € AT’ p(m) € AR and 7:T > [0,1] such

that:

*
@) ¥t: u (m|t) = 0,

p(t) m(t)
Zorep PCEDT(ED) !

(2) ¥t: B(t|m) =

(3) ¥r: p(rlm) > 0 only if r € BR(m,8(m)) ,

(4) m(t) =1 if u(G*,t) < Um,p (m),t)
T(t) = 0 1f u(o ,t) > Ulme(m),t) ,

(5)  {t] we”,t) < Ulm,p(m), )} # 6.

A sequential equilibrium which passes this test is said to be perfectly
sequential.

Condition (1) states that m 1is a disequilibrium message. Conditions
(2)-(5) state that, if player II conjectures that each type t of player I
will play m with probability w(t) and hence his posterior belief becomes
B(m) by Bayes rule (condition (2)), then p(m) 1is his best response
(condition (3)). Moreover, with such a conjecture, precisely the non—empty
set described in (5) will become better off and all types in this set are
conjectured to send this message with probability 1 (the first half of
condition (4)), while no type whose payoff becomes lower is conjectured to

send this message (latter half of comndition (4)).



For some commonly analyzed games, the Grossman-Perry test rejects what
seem to be unintuitive equilibria, leaving more reasonable equilibria.

However it may be that all sequential equilibria fail this test. Grossman and
Perry provide an example of such a game attributed to Maskin.

We provide below another example of a game in which the set of perfectly
sequential equilibrium is empty. In this example it is somewhat easier to see
why the set is empty than in other examples (we hope); also, the example
illustrates how the concept may be altered in interesting ways.

Consider the game in figure I. Player 1 has four moves while player II
has five. One equilibrium of this game is that player 1 plays strategy 4,
giving both player I and II payoffs of 2 regardless of type. A set of
disequilibrium beliefs for player II which support this as an equilibrium have
player II believing that strategy 1 1s played by type i of player I and
playing strategy 1 as his best response. These beliefs do not satisfy the
Grossman-Perry test. If player II observes strategy i, he could conjecture
that it was played by types 1 and 3, giving rise to a probability distribution
over the types of (1/2,0,1/2), that is, that is equally likely that the types 1
or 3 played this strategy but never type 2. With these beliefs, II's best
response is to play strategy 4. The set of types who prefer this outcome to
the proposed equilibrium consists of types 1 and 3, the two types with
positive probability in the proposed beliefs. Type 2 would strictly prefer
the outcome in the existing equilibrium to this outcome. It should be noted
that only beliefs that lead to player II choosing strategy &4 make type 1 (or
any other type in fact) better off than in the existing equilibrium. These
beliefs, in the case that strategy 1 is played, then rule out the beliefs that
supported the original equilibrium described above. Thus the proposed

equilibrium is not perfectly sequential. It should be noted that the set
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consisting of types 1 and 3 is the only set which could be "conjectured" by
player II which leads to a rejection of the proposed equilibrium.

In a similar manner, player II could conjecture upon seeing strategy 2
that it was chosen by types 1 and 2 which would lead him to a probability
distribution (1/2,1/2,0) in the case that strategy 2 was chosen by player L.
With these beliefs his optimal choice is strategy 4, which is preferred to the
existing equilibrium by types 1 and 2 but less preferred by type 3. Thus the
beliefs in the proposed equilibrium which follow player I's choosing the non-
equilibrium strategy 2 also fail the Grossman-Perry test. Similarly, the
beliefs of player II given strategy 3 by player I fail the test since a
conjecture that this strategy is played by types 2 and 3 leads to beliefs of
(0,1/2,1/2) and a best response by II of strategy 4. This leads to an outcome
preferred by types 2 and 3 and less preferred by 1.

Thus there are beliefs for player II following any disequilibrium move by
player I such that II's best response with these beliefs is to play strategy 4
which in each case is preferred to the existing equilibrium outcome by
precisely those types of player 1 which were conjectured to have played the
disequilibrium strategy. None of the disequilibrium beliefs associated with
any non-equilibrium move by player 1 in the proposed sequential equilibrium
satisfy the Grossman-Perry test.

But now suppose that player I1I were to follow the suggested logic. 1f
the logic is compelling, player I ought to be able to calculate in the same
way as player II does. What would player I do? Since any disequilibrium move
by player I leads player II to play strategy 4, type 1 should play strategy 1
because this leads to the highest possible utility. It is true that playing
strategy 2 also leaves type | better off than in the existing equilibrium, but

we should assume that he would optimize. Similarly, type 2 would play
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strategy 2 and type 3 would play strategy 3. In summary, player II's original
disequilibrium beliefs were ruled out by the Grossman-Perry test because of
the existence of other "self-fulfilling" beliefs on II's part. But if II were
to adopt these beliefs and behave optimally with these beliefs, the optimal
behavior on I's part preceding II's move would not support these revised
beliefs, but rather, would support II's original beliefs. Player II, who can
calculate these changes in player I's choice of optimal strategies, might not
be persuaded to change his original beliefs.

The argument above suggests that the mere existence of other "self-
fulfilling" beliefs in the sense of Grossman-Perry is not enough to convince
player II to change his beliefs, because changing his beliefs is bound to
create further adjustments in player I's choice of strategies, which would
force further revisions in player II's beliefs, creating yet further change in
I's optimal strategies and so on. If both players I and II are rational and
if it is common knowledge that they are rational, player II would change his
disequilibrium beliefs only when all types of the prescribed set of player I
types prefer to choose the strategy after taking account of all the subsequent
adjustments that will take place once such revisions in disequilibrium beliefs
are made. But once all the subsequent adjustments are made, we must be at an
equilibrium; if not some further adjustments should be contemplated. Hence,
if players are to engage in an exercise such as is involved in the definition
of perfectly sequential equilibrium and all players carry the forward
induction to completion, we are led to a test as follows. Consider a proposed
sequential equilibrium. For each information set which is not to be reached
in equilibrium, player II should conjecture that there is a set of types of
player I which is playing an alternative equilibrium. If there is an

alternative equilibrium for which some non-empty set of types of player I



-12-

choose the given strategy and that set is precisely the set of types who
prefer the alternative equilibrium to the proposed equilibrium, forward
induction requires that the beliefs associated with this information set in
the original equilibrium be consistent with this set. If the beliefs are not
consistent with forward induction, we say the second equilibrium defeats the
proposed equilibrium.

Formally, we say that an equilibrium o = (u,0,8) defeats another

equilibrium o' = (u',p',8') if I me€ M, and ¢ # K< T such that:

(1) #%t:u'(mft) =0 and K={te T | u(m|t) > 0},

(2) 3te K: u(o,t) Du(c',t) and ¥ t € K: u(o,t) 2 u(o',t),

(3) For all w: T+ [0,1] and q € A_ satisfying

T

(a) w(t) =1 if te€ K and u(o,t) > ulo',t), and
m(t) =0 if td K,
(b) q(t) = p(t)m()u(m|t)

Lover peT(eDu(m|t’) °*

B'(m) # q.

Condition (1) says that m 1is a disequilibrium message at o', but this
message 1s sent with positive probability by a non-empty set of types K 1in
0. Condition (2) says that all members of K are as well off in ¢ as in
o' and some members are strictly better off. Condition (3) says that if
those types who are strictly better off send this message with probability 1
and if those who are worse off send it with probability 0, the resulting

beliefs (as defined in (3b)) are not equal to the original disequilibrium
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beliefs B'(m). Condition (1) may be weakened to "K 1is included in the set
{te T | ulm|t) > 0}," namely there may be some types outside K who send

the message m with positive probability. Such a weakening of the concept of
defeat would cause an equilibrium to be more easily defeated and thus make the
set of undefeated equilibria smaller. For example, in the now famed Kreps'
quiche~beer example, the quiche~quiche equilibrium is defeated by the beer-beer
equilibrium if we use the weaker notion but not the stronger notion.

In the example presented above, there are three other sequential
equilibria besides the one in which all three types of player I play strategy
4. Equilibrium 2 has types 1 and 3 of player I playing strategy 1 and type 2
playing strategy 4. The beliefs associated with the strategies not played in
equilibrium are that strategy i 1is played by type 1, 1 = 2,3. Theré are
two other similar equilibria, equilibrium 3 in which types 1 and 2 play
strategy 2 while type 3 plays strategy 4 and equilibrium 4 in which types 2
and 3 play strategy 3 while type 1 plays strategy 4. The disequilibrium
beliefs are similar to those in the equilibrium described just above. Nomne of
these equilibria passes the test we proposed above. Equilibrium 2 defeats
equilibrium 3, equilibrium 3 defeats equilibrium 4, equilibrium 4 defeats
equilibrium 2 and each of these defeats the equilibrium in which all types of
player 1 play strategy 4.

We believe that conjectures about the types of player I who might have
made disequilibrium moves should satisfy a complete forward induction test,
that is that the conjectures should be consistent with equilibrium behavior as
in the notion of defeat. For the above example, however, the notion of defeat
leads to the same set of resulting allocations as the set of perfectly
sequential equilibria: the empty set. To see that the two notions do lead to

different conclusions in some games, consider example 2, shown in figure 2.
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This game is essentially a signalling game in a slightly different form
than is usual. Player I is of two possible types and has four pure
strategies; player II has three pure strategies. € is any number between 0
and 1. There are two equilibria for this game in which player I plays a pure
strategy. In the first (separating) equilibrium, type 1 plays strategy 1
followed by player II playing strategy 3, and type 2 plays strategy 4
followed by player 2 playing strategy 1. The beliefs associated with any
disequilibrium move is that it was made by type 1. Payoffs are 3.5 and 3
respectively for each type. The second (pooling) equilibrium has both types
playing strategy 2 and player II playing strategy 2. Again, the
disequilibrium beliefs are that any other strategy was played by type 1.

The associated payoffs are (4.5, 4.5).

Besides these two equilibria which have player I playing a pure
strategy, there is an additional equilibrium in which he plays a mixed
strategy. This equilibrium has type 1 of player 1 playing strategies 1 and
3 with probabilities Vv and 1-v respectively where v = 2¢/(14+c), and type 2
playing strategy 3 with probability 1. Player II plays strategies 1 and 2
with probabilities 2/3 and 1/3 respectively when player I plays strategy 3.
Player II plays strategy 3 otherwise. Payoffs are 3.5 and 4.33 respectively
for each type.

None of these equilibria is perfectly sequential. For the first
equilibrium, suppose the second player cohjectures that strategy 2 was played
by both types. 1In this case the probabilities that he should use are the
prior (.5,.5) and a best response is to play strategy 2. This gives rise
to expected payoffs of 4.5 for each type as opposed to the payoffs to the two
types of 3.5 and 3 respectively in the original equilibrium. Thus, the

separating equilibrium is not perfectly sequential.
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Now consider the second equilibrium, the pooling equilibrium. BSuppose
that the second player conjectures that strategy 3 is played by type 2.

Player’ I1's best response is then to play strategy 2. If type 2 of player I



did play strategy 3, this would be an improvement over the proposed
equilibrium which gives him 4.5. 1If type 1 were to play strategy 3, this
would result in a payoff of 4 also, but this would be worse than at the
proposed equilibrium which gives him an expected payoff of 4.5. Thus with the
conjecture that strategy 3 comes from type 2, player 11's best response is
such that only type 2 would be better off. Thus this equilibrium also fails
to be perfectly sequential.

The mixed strategy equilibrium is not perfectly sequential since if
player II conjectures that strategy 2 comes from both types his‘best response
is the same as in the pooling equilibrium above which gives both types higher
expected payoffs than in the mixed strategy equilibrium. Thus the set of
perfectly sequential equilibria is empty.

We will turn now to the set of undefeated equilibria. The separating
equilibrium is defeated by essentially the same argument as that used to show
that it was not perfectly sequential. There is an alternative equilibrium in
which strategy 2 (which is a disequilibrium move for the separating equilibrium)
is played. It is played by both types and both types are better off at this
alternative equilibrium than at the proposed separating equilibrium. In exactly
the same way, the pooling equilibrium defeats the mixed equilibrium. Strategy 3
is again a disequilibrium strategy for the given equilibrium which is played by
both types in the pooling equilibrium. Since the pooling equilibrium is better
for both types of player I, it defeats the given equilibrium.

The pooliﬁg equilibrium is not defeated however. It is clear that the
pooling equilibrium is not defeated by any equilibrium since no player is better
off in other equilibria than at the pooling equilibrium. Thus, the set of
undefeated equilibrium is non-empty and contains only the pooling equilibrium.

The example above illustrates nicely the difference between the two
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concepts. The pooling equilibrium is not perfectly sequential; the beliefs at
the disequilibrium strategy 3 upset the equilibrium. The conjecture that this
strategy was played by type 2 gives rise to a best response by player II which
is preferred to the original equilibrium payoff by type 2 and not by type 1.
But this conjecture is inconsistent with any equilibrium so it is not part of
the test involved in the test to see whether this equilibrium is defeated.
Thus the pooling equilibrium passes the test posed by the notion of defeat,

but not that posed by perfect sequentiality.

2.2 THE INTUITIVE CRITERION

Grossman and Perry's use of a forward induction based refinement of
sequential equilibria followed earlier work in a similar spirit by Kreps
[1985] (see also Cho and Kreps [1986].) Kreps proposed a refinement based on
what he called the intuitive criterion. It is useful to compare our notion of
undefeated equilibrium with Krep's intuitive criterion. With an abuse of
notation we write; ¥ S< T and ¥ m€ M BR(m,S) = u BR(m,B (m)) .

B(m)GAS

*
The Intuitive Criterion: Given a sequential equilibrium o , for each

disequilibrium message m, form the set S(m) consisting of all types t

such that

*
u(o ,t) > max u(m,r,t)

1€ BR(m,T)

If for any message m there is some type t' € T (necessarily not in S(m))

such that

*
A .
u(o ,t") < min re BR(m, T\ S (m)) u(m,r,t')
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then the equilibrium is said to fail the Intuitive Criterion.

This refinement has a nice property not shared by either of the other two
refinements that we have discussed so far, namely that the set of sequential
equilibria satisfying the intuitive criterion is always nonempty. In the case
that the set of undefeated equilibrium is nonempty, it may not be contained in
the set of equilibria which satisfy the intuitive criterion; the sets may in
fact be disjoint.

If we return to example 2 above, we see that the pooling equilibrium
fails the intuitive criterion for roughly the same reason that it fails to be
perfectly sequential. For any beliefs held by player II following strategy 3,
type 1 cannot be better off than at the pooling equilibrium. Restricting
beliefs to those pﬁtting probability O on the strategy having been played by
type 1 leads to player II's choosing strategy 2. This outcome is preferred to
the outcome in the pooling equilibrium by precisely type 2; thus, the pooling
equilibrium fails the intuitive test. The mixed strategy equilibrium and the
separating equilibrium, on the other hand, pass the intuitive criterion. The
set of equilibria which satisfy the intuitive criterion is exactly the set of
equilibria which is defeated. Banks and Sobel [1986] proposed a further
refinement of Kreps intuitive criterion. Our refinement differs from that of

Banks and Sobel for this example as well.

3. UNDEFEATED EQUILIBRIA IN A SIGNALLING GAME
3.1 MODEL AND DEFINITIONS.

In this section, we shall show that, in an economically important class
of (continuous strategy set) signalling games, the set of undefeated
equilibria is non-empty. We shall show this by demonstrating a particular

sequential equilibrium is always undefeated, namely the lexicographically
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equilibrium is always undefeated. The following class of signalling games is
economically important as many asymmetric information situations analyzed in
the literature, such as the signaling game of Spence, the insurance model of
Rothschild and Stiglitz, limit pricing model (e.g., Milgrom and Roberts
[1982]) and some litigation models (e.g., Banks and Sobel [1986]), are all
special cases of such games.

Consider a signalling game G where both M and R are each subsets of
the non-negative half-line (and hence a continuum.) We shall confine our
attention to the set of pure strategy equilibria. Thus in this section,
strategies u and p are mappings from T to M and from M to R,

respectively. We denote the set of pure strategy sequential equilibria for

the game G by PSE(G).

o = (u,p,B) € PSE(G) defeats o' = (u',p0',8') € PSE(G) if

TmeEM and ¢ # K< T such that:

(1) %t: u'(t)# m, and K= {t¢€ Tlu(t) = m}

(2) ¥t € K: u(o,t) z u(o',t), and
It € K: u(o,t) > u(o',t).

(3) For all m: T+ [0,1] and q € A_ satisfying

T

(a) w(t) =1 4if t€ K and u(o,t) > u(c',t), and

0 if t ¢ K, and

m(t)

p(t) ()
T e PCEDT(ETY

]

(b) q(t)

B'(m) #* q.
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o € PSE(G) is undefeated if there does not exist o' € PSE(G) that defeats

0. 0 € PSE(G) lexicographically dominates (2-dominates) o' € PSE(G) if there

exists j € T such that wu(o,j) > u(o',j) and for t > j u(o,t) > u(o',t).

o € PSE(G) 1is the lexicographically maximum sequential equilibrium (LMSE) if

there does not exist o' € PSE(G) that #-dominates o. Finally, o € PSE(G)

is a completely separating equilibrium if ¥t, t' € T, u(t) # u(t') whenever

t#t'.
We shall confine our attention to a class of signalling games which

satisfy the following four assumptions.

Assumption 1: (Continuity and Concavity)

(i) M and R are closed, convex subsets of Eg.
(ii) u and v are continuous in m and r.
(1i1) v 1s strictly concave in r.

Remark: By A.l1 (ii)-(iii), for any q € AT BR(m,q) 1is a single-valued

continuous function on M. Hence u(m,BR(m,q),t) 1is well-defined.

Assumption 2: (Stochastic dominance)

Vte T, ¥meE M, ¥q, q' € AT, whenever q stochastically dominates

|

q', 1i.e., q'(e') 2L q(t') for all t ¢ T and strict inequality

Zt'_<_t t'<t
holds for some t € T, u(m,BR(m,q),t) > u(m,BR(m,q'),t).

Assumption 3: (Weak (resp. Strong) Monotonicity)

¥m m' €M, ¥r, r' ¢ R, ¥t, t'€ T, if
(i) u(m,r,t) 2 u(m',r',t),

(ii) m2m (m>mn', resp.), and
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(iii) t' > t, then

(iv) u(m,r,t") 2 u(m',r',t") (u(m,r,t') > u(m',r',t'), resp.).

For the next assumption, we need an additional definition. For any

nonempty subset K of T, qK € AT is called K-conditional belief if:
= | €
qK(t) p(t)/ Zt,GKp(t ) if t € K
=0 otherwise.

With an abuse of notation, we sometimes write the best response against m,

when the belief is K-conditional belief, by BR(m,K), i.e.,

for all m€ M and for all subset K of T, BR(m,K) = BR(m,qK).

Assumption 4: (Satiation)

For all t€ T, all m€ M, and all q ¢ AT, if q 1is not the
{n} -conditional belief and if t # n, then there exists a(m,BR(m,q),t) €M
such that for all m' ) a(m,BR(m,q),t), u(m',BR(m' ,{n}),t) < u(m,BR(m,q),t).

Assumption 1 is primarily a technical assumption. The second assumption
states that all types of Player I prefer the (best) response of player II when
player II believes I more likely to be of higher type. The third assumption
is similar to a "single-crossing" property. It says that if some type t
prefers a message-response pair (m,r) to a second pair (m',r'), when m
is greater than m', then any type higher than t will also prefer (m,r)
to (m',r'). This is to capture the idea that higher messages are "easier"
for higher types to send than for lower types. The last assumption, 4, says

sending very high message is prohibitively costly in the sense that there is a



..21...
message level such that ne type, except possibly the highest type, would want
to exceed even if the result was the most favorable possible beliefs on player

I1's part.

Main Results

Theorem 1. Under Al-A4, the LMSE is undefeated.

Theorem 2. Under Al-A4, if the LMSE is completely separating, it is the

only undefeated pure strategy sequential equilibrium.

Remark: Thus, if the LMSE is pooling, there may be multiple undefeated pure
strategy sequential equilibria. (Also see example 2 of the previous section

for multiple mixed strategy undefeated equilibria.)

3.2 PROOFS

Lemma 1l: If PSE(G) is non—empty, there exists a LMSE.
Proof: Trivial. Q.E.D.

Lemma 2: Under weak monotonicity, ¥ m, m" € M, ¥r, r' € R, ¥¢t, t' € T, I1if

(1) u(m,r,t) 2 u(m',r’,t)

(11) u(m',r',t') > u(m,r,t'), and
(111) t' > t, then

(iv) m; > m.

Proof: Suppose, contrary to the assertion, m Z m'. Then by weak

monotonicity, (i) and (iii) imply
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u(m,r,t') > u(m',r',t')
contrary to (ii). Q.E.D.

Next we define games truncated from G through restricting player 1's

types to be a subset of the original set, T. Formally for any j € T, let
7 ={1l,¢0.,j}, and
p7 (t) = qqd

A truncated game Gj is"defined by substituting the subset Tj for T and
the Tj-conditional belief pj for p in the original game G. We shall
denote the set of pure strategy sequential equilibria of G by PSE(Gj).

The following property is important. Given any pure strategy equilibrium
of the original game, o € PSE(G), we define j-truncated equilibrium cj for
j €T by simply deleting those types higher than j. It follows trivially

that, as long as no type higher than j 1is sending the same message that j

J

sends at ¢, a j—truncated equilibrium o is a pure strategy equilibrium in

Gj,

Corollary to Lemma 2: If o = (u,p,B) € PSE(GJ), then u(t) { u(t')

whenever t < t' < j.

Proof: Trivial application of Lemma 2. Q.E.D.
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Lemma 3: (Strong monotonicity implies reverse monotonicity) Under strong

monotonicity, ¥ m, m'" € M, ¥r, r' € R, ¥t, t' € T, if

(1) u(m,r,t) > um',r',t),
(i1) m<m', and

(1ii) t' < t, then

(iv) u(m,r,t") > u(m',r',t").

Proof: Suppose, contrary to the assertion, u(m,r,t') S u(m',r',t'). Then,
by strong monotonicity, (ii) and (iii) imply u(m',r',t) > u(m,r,t), contrary

to (i). Q.E.D.

The next lemma is the key lemma for our proof. In effect, we shall prove
the following. Suppose we are given two pure strategy equilibria of the
original game, ¢ and ;. If for some j € T j's equilibrium payoff is no
smaller at ; than at o, then we can construct yet another pure strategy
equilibrium in j+l1 truncated game in which every type less than or equal

to j obtains a payoff at least equal to the payoff obtained at o while

j*l obtains a payoff at least equal to the payoff obtained at o.

Lemma 4: Suppose o € PSE(G) and o € PSE(GJ) for some j < n. Suppose
further that u(o,j) 2 u(o,j). Let H = {t|t 2 j*¥1 and u(t) = u(j+1l)} and

*
h = max{t|t€H}. Then there exists o ¢ PSE(Gh) such that:

(1) u(e”,e) 2 u(o,t)  for all t

[[VaN

j, and

*
(ii) u(o ,t) 2 u(o,t) for all t € H.



-24=

Proof: The proof is by construction. We shall write for all ¢t: u(t) = m,

pu(E)) = £, (E) =m, and p((E)) = £(t)

A A

Cagse 1: u(m ,rj,j+1) > u(mj+1,rj+1,j+1) := u(o,j+l).
*
We shall only prove that there exists o € PSE(Gj+1) which satisfies

(1) for all t £ j and (ii) for ¢t = j+l. For if this were the case, we can

- *
replace j in the original proposition by j+l and o by this new o » and

induction will prove the lemma.

Let K ={t|t < j and m, = mj} and let k = min{t|t € K}. By

-~ ~ ~ ~

i = = = - D .
definition, m = m and £y =Ty BR(mj,K) efine

m; = max {m € M|u(m,BR(m,K U {j+1}),k) 2 u(;,k)}, and
* *
re = BR(mK, Ku {j+1}).

* *
We must show that my exists. For this, denote the set defining my by MK'
We shall show that MK is non—-empty and bounded from above.

Non-emptiness follows because mj is in M. To see this, observe that

assumption 2 implies:
u(mj)BR(mj ,K U {j+1}))k) > U(O',k.), (l)

for KU {j+l}-conditional belief stochastically dominates K-conditional

belief.

A A

M is bounded from above because, for any m Z ;(mj,rj,k)

u(m,BR(m,K U {j+1}),k) < u(m,BR(m,{n}),k) < u(;,k)
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always holds as the first inequality follows from the fact that the {n}-
conditional belief stochastically dominates the KU {j+l}-conditional
belief, while the second inequality holds from assumption 4.

A

Since m is in MK’ by (1);
m < mge ' (2)

*
Moreover, in view the definition of my 3

* * - A
u(mg, BR(mg,K U {j+1}),k) = u(my,rp,k) = u(o,k). (3)

We now define c* 1= (u*,p*,B*) in Gj+l. Let:
* A

(a) for all t < k: p () = (t),
* *

(b) for all te€ KU {j+1}: u (t) = L

- * ~ * -
(c) for all m¢m B (m) =B(m) and p (m) = p(m),

* * *
(d) for all n > m with m=m,: B (m) = and p (m) = T

IR u {j+1}
(e) for all m>m, but m# m,: B*(m) = 4 and p*(m) = BR(m,{1}),

Namely, we preserve all equilibrium messages (a) and replies (c) associated

A

with ; for the types smaller than k and messages no larger than mj. For
those types in KU {j+l}, we assign the message m; (b) and the associated
reply r; (d). For other messages, we assign the worst possible belief and
the associated replies (e).

Clearly, the assertion (i) holds for all t < k. For t € K, (i)

follows because of monotonicity and (3). Finally, for t = j+l.
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u(o ’j+1) = u(mK’rK’j+l) 2 u(mK)rKrj+1) = u(mj ’rj ’j+1) Z u(o ,j+l)

where the first inequality follows from monotonicity and (3), and the last
from the condition defining this case. Thus (ii) holds.
*
It remains to be shown that O is indeed a sequential equilibrium of

+
Gj 15 We must prove the following three properties:

*
(A) For any equilibrium message m € M, i.e., m =u (t) for some

*
t € T, 8 (m) is formed by Bayesian updating;

* *
(B) For any m € M, p (m) = BR(m,8 (m));
x  * *
(¢) For any t € T and m € M, u(mt, re t) 2 u(m,p (m), t).

(A) is straightforward from the definition of conditional beliefs. (B) is

straightforward as well. To prove (C), classify the following three subcases;

(Cl) For t < k:
* ~
If m satisfies (¢) in the definition of o , then the fact that o is
itself a sequential equilibrium implies (C).

If m satisfies (e),

o) = u(@,t) 2 u(m, BR(m,é(m)),t)

( *
w(m ,r,

> u(m, BR(m,{1}),6): = u(mp’ (m),t)

where the first inequality holds from the fact that o is a sequential
equilibrium and the second from the fact that B(m) (weakly) stochastically

dominates {1}-conditional belief.
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*
If m= my s

*

u(mt,rt,t) 1= u(mt,rt,t) 2 u(mK,rK,t) > u(mK,rK,t)

as the first inequality follows from the fact that o 1is itself a sequential

equilibrium and the second inequality from (2), (3) and Lemma 3.

(C2) For t € K:

If m satisfies (c¢),

* % * - ~ *
u(m,r ,t) = ulme,re,t) 2 u(Gt,t) 2 u(m,p(m),t) := u(m,p (m),t)
*
where the two equalities follow from the definition of o and the first
inequality follows from (i). The second inequality follows from the
equilibrium condition of 0.

If m satisfies (e),
x  * - -
u(m ,r ,t) 2 u(o,t) 2 u(m,BR(m,8(m)),t)
> u(m,BR(m,{1}), t) = u(m,p*(m),t)

where the first inequality follows from (i), the second from the equilibrium
condition o, the third from the fact that B(m) (weakly) stochastically

dominates q{l}.

(C3) for t = j+l:

*
For all m{{m

X monotonicity and results in (C2) implies (C).
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*
For all m > LI (C) follows because the associated belief is the worst

possible belief.

This proves the lemma for case 1.

a

Case 2: u(m,,r,,j+l) < u(o,j+l) := u( 1’j+1)'

‘3 T
By hypothesis, u(c,j) 2 u(o,j), i.e., u(m ,rj,j) 2 u(mj,rj,j);
combining this inequality with the equilibrium condition for o, we obtain

u(;j,;j,j) 2 u(mj+l’rj+1’j)°

In view of this inequality and the inequality characterizing the current case,

lemma 2 implies m +1 >m,.

h| h|
* * . .
Let ry = BR(mH,H). efine:

*
m, = max {m € M|u(m,BR(m,H), j+1) 2 u(o,j+1)}.
*
By the definition of LD it follows that:
* K .
u(mH,rH,J+l) = u(mj+1,rj+1,j+1) = u(o,j+l). (4)

*
As in the previous case, the set defining is non-empty and compact as
By

*
mj+1 is in the set and it is bounded from above. Hence ny is well defined.
* x Kk _k
Define o := (u ,0 ,8 ) 1in the following way:

(a) for all t ¢ j W =a,
* *
(b) for all t € H: o(e) = my,
N * . * N
(¢) for all m ¢ j: B (m) = B8(m) and p (m) =p(m),
A - * * *
(d) for all nm > mj with m = my: B (m) = ZH and p (m) = 'y

A

* *
(e) for all m > mj but m # m: B (m) = 453 and p (m)

*

BR(m,{1}),
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Property (i) follows trivially and (ii) follows from (4) for j+l1 and
from (4) and monotonicity for other t € H. Using essentially the same
*
arguments as in Case 1, o is readily established as a sequential

equilibrium of Gh. Q.E.D.

Proof of Theorem 1:

*
Let o be the LMSE and suppose, contrary to the supposition, there

%*
exists o € PSE(G) that defeats o via (m,J).

*

mj+1} and

*

Let j = max{t|t € J}, k = min{t|t € J}, H = {t 2 j+l|m_=

h = max{tItEH}, The restriction of o on TJ = {1,2,...,j} 1s obviously a
*

PSE of Gk and u(o,t) 2 u(o ,t) for all te J with strict inequality for

at least one t € J by the definition of defeat. Thus, by the previous

lemma, there exists o' € PSE(Gh) such that:

for all t € j: u(o',t) 2 u(o,t), and

*
for all t € H: u(o',t) 2 u(c ,t).

It follows that:

*
for all t € JU H: u(o',t) 2 u(o ,t), and

for some t € J: ufo',t) > u(o ,t).

1
But then, we can apply lemma 4 again, and there exists o" € PSE(Gh ), where

* *
(- . ' (- - .
h max{t|t € H'} and H {t]t 2 h+l and m =m .}, satisfying:
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for all t < h: u(o",t) 2 u(o',t), and

=

*
for all t € H': u(@",t) 2 ulo yt)e
It then follows that:

*
for all t€ Ju HU H': u(e",t) 2 ulo ,t), and

*
for some t € J: u(e",t) > u(o ,t).

Repeating the argument, we obtain o € PSE(G), a pure strategy equilibrium

for the original game, satisfying:

- *
for all t 2 k: u(o,t) > u{o ,t), and

v

A *
for some t € J: u(o,t) > u(o ,t).

A * *
But then o f-dominates o , contrary to our supposition that o is the

LMSE. Q.E.D.

Proof of Theorem 2:

In view of theorem !, we only have to show that, if the LMSE is a
separating equilibrium, there is no undefeated pure strategy equilibrium which
is not the LMSE. So suppose, contrary to our assertion, there exists an
undefeated o € PSE(G) which is £-dominated by the LMSE, 0*. Then there
exists j € T such that:

(1) a(e™,3) > u(@,i),

*
(2) u(o ,t) 2 u(o,t) for all t > j.

*
We shall assume that p (j) is a disequilibrium message under o, for
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*k *

otherwise we can construct O € PSE(G) slightly perturbed from o by
ek
assigning a new message u (j) to Jj from the open interval
k * Kk Kk ke
(u (3), v (j*1)) and a new reply p (u (j)) € BR(w (3),{j}), still
preserving
k&
(1) u(o ,3) > u(o,j), and

*k
(1i) u(o ,t) 2 u(o,t) for all t > j.

Note that we can construct the above perturbed equilibrium because the LMSE,
c*, is separating equilibrium. Otherwise, a change in message u*(j) may
affect the equilibrium payoff of other types, in particular type j+l.
Obviously, B(u*(j)) is not q{j}, for otherwise an equilibrium
condition is violated. Since u*(j) is sent only by type j as " is

* *
separating equilibrium, o defeats o via (u (j),{j}), contrary to our

suposition. Q.E.D.

4. CONCLUDING REMARKS

The definition of defeat might be altered in several interesting’ways.
In the test of whether an equilibrium is defeated, each disequilibrium
strategy is conjectured to be a "signal" by some set of types that an
alternative equilibrium is being played. If there are several alternative
equilibria in which a given disequilibrium message is sent, player II will not
be able to make an unambiguous comparison between the proposed equilibrium and
possible alternatives. The test of whether a given equilibrium is defeated or
not could be strengthened to ask whether there is a unique alternative
equilibrium in which the given disequilibrium message is played and which has

the additional properties in the definition of defeat. This would make it
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less likely that an equilibrium is defeated and would make the set of
undefeated equilibria larger. It would not solve the problem that for general
games the set of undefeated equilibria may be empty, but it might make the
concept of defeat more plausible.

In the definition of defeat, an equilibrium is tested according to the
beliefs held by player II at disequilibrium information sets. In this sense
the refinement is similar to that introduced by Grossman and Perry. The test
to which an equilibrium is put to determine whether it is defeated or not is
different in that it may be used to generate a partial ordering on the set of
sequential equilibria. In the case that the set of undefeated equilibrium is
empty, we can form a set of sequential equilibria such that every sequential
equilibrium is defeated Ey a sequential equilibrium in this set. A minimal
set, that is, a set such that no proper subset has the property must trivially
exist. There may be multiple sets, but such a set would constitute a
refinement which trivially must be non-empty. For some examples, this may
reduce the set of equilibria in reasonable ways.

A third way in which the concept might be altered is to extend the
definition to more general games. It should be straightforward to define the
concept of defeat for games with more stages and with more than two players.
For each history which is an equilibrium history except for a single move by
some agent, we can ask whether there is an alternative equilibrium which is
consistent with the history. If there is we can again compare the payoffs to
the types who prefer the alternative equilibrium to the proposed equilibrium
to determine whether the disequilibrium message can be interpreted as a signal
that the alternative equilibrium is being played by that set of types.

In this paper, we have taken the position that refinement may be carried

out in terms of forward induction. Alternatively, we can choose a refinement
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based upon a perturbation of the equilibrium strategy. Many refinements, such
as Selten [1975], Myerson [1978] and Kalai and Samet [1984], use such
perturbations to refine Nash equilibria. Kohlberg and Mertens [1985] base
their concept of stability upon a similar consideration as well. Perturbation
based refinements and forward induction based refinements are not unrelated,
however. As is evident from the discussion of Cho and Kreps [1985] and Banks
and Sobel [1986], the two types of refinements are inherently related. Our
concept of defeat can be alternatively defined as follows in terms of
perturbations (generically at least).

Suppose there are two sequential equilibria ¢ and o'. We write o

i

and di to denote corresponding behavioral strategy of player 1 € N where

N 1is the set of players. Suppose for any ¢ > 0, there exists some 60

such that for any {Gi} (0 < Gi < 60), the perturbed game where every

i€N
strategy of player 1 1s replaced by (I—Gi)s + Gici has no equilibrium
€-close to the equilibrium o'. Then, we could say ¢ strongly defeats o'.

It can be trivially seen that concept of defeat and that of strong defeat are

generically equivalent.
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