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1. PRINCIPLE OF SELECTION OF STATISTICAL MODELS

The m kinds of models M M

1° zg,o., Mm are considered as the possible

models concerning the distribution of the observed random variable x. Each
model Mi is supposed to be specified by the following assumptions.

@b Mi has the unknown parameter 91 with the parameter space Oi'

(2) For given M, and 6, x has the known p. d. f. p(xIMi, ei) with respect
to some measure u on the measureable space (%, B(X)), where ¥ and B() are
the sample space and a o-field of* » respectively.

(3) The prior p. d. f. p(ei[Mi) (w. r. t. v;) of 8., given M., is known,

i’

where vy is a measure on (91, B(@i)), B(Oi) being a o-field of @i.

(4) The prior probability of Mi is available and denoted by P(Mi) (i=1,
m

eeey m). Of course, I p(M,)=1.
. i
i=1

From the above assumptions we can obtain the posterior probability

p(Mi|x) of the model Mi for the observed value x=x by

PM)p(x[M,)

(1.1) P [x) = — (i=1,..., m)
r PM)p(x M)
j=1i J J
where

From the Bayesian viewpoint, our selection should be made solely on
the basis of the posteriof probabilities p(Milx) (i=l,..., m). Of course,
we may decide to take further observations if any of p(M1|x), coey p(Mmlx)

is not sufficiently near to 1. Thus, the principle of selection is stated



as follows:
(1) If max p(Milx) is sufficiently near to one, it is reasonable for us to

i
choose the model Mi* such that m?x p(Mi|x)=p(Mi*|x)e

i

(ii) On the contrary, if none of p(Mi|x) (i=1,.,., m) are sufficiently near
to one, it is difficult for us to choose a model with confidence. In order
to overcome this indecisive situation, we should gather more sample infor-
mation. Thus we are naturally led to sequential (or multi-stage) selection
procedures (Suzuki [2]).

As is seen from the above principle, the posterior probabilities of
models Mi(i=1, «v., m) are fundamentally important. Hence, throughout this
paper, our concerns are concentrated on the derivation of posterior proba-
bilities of models.

In the following sections, we will treat several examples of selection
of models, on the basis of the above principle. The selection of shape
parameters of gamma distributions and Weibull distributions are treated in
sections 2 and 3, respectively. In section 4, problems of selection con-
cerning normal distributions are discussed. In section 5, the selection of
regressors in a linear regression model is considered. Further, in section
6, we treat the selection of regressors in a linear regression model in
case of vague prior information, where we use the concept of intermediate
prior distributions and the corresponding concept of intermediate posterior
distributions which were first introduced by the author in [1]. 1In section

7, the selection of orders of polynomial regression models is treated as a

special case of section 6.

2. SELECTION OF SHAPE PARAMETER OF GAMMA DISTRIBUTIONS

Let x=(x oo fcn) be the observed random variable and let ;(—=Ri={(xl,

1’

ceos xn)|xi>0 (i=1,..., n)}be the sample space. The m kinds of models
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Ml,.oo, Mm are the possible candidates which are specified as follows.

(L) Mi has the unknown parameter ei with the parameter space ®i=R+ and has
the known shape parameter o (i),

(2) For given M; and 0, ii,..., in are independent and iﬁ,vGamma(a(i), 6;1)’

(j=1,..., n), where o(i) is known, that is,

n ° o
(2.1) pOe| M, 6 )=T { 1, a(d)a(i)-1

TR e A R A

(i)~1 n
1 no (1) o
@‘Gx(l))) 05 ( H XJ) exp(~6i ) xj)

j=1 j=1
Without loss of generality, we can assume that O<a(l)<a(2)<...<a(m).

(3) The prior distribution of éi’ given M., is Gamma(ao(i), Bo(i)), that is,

-0 (1) a (1)-1 __6i 6
(2.2) P60, M) = (1))(8 (1)) 6,0 exp( BO(i)) (6 €R.)
Clearly, this is a conjugate prior distribution which is easily seen from

(2.1).

(4) pM)), pM,)),..., p(M ) are prior probabilities of models M,,..., .
1 2 m 1 m

From the above assumptions, we obtain by (1.2)
(2.3) p(xIM.)
(NP n

= (mox )¢ Btpeg agnalD-1, 1 v x,)0,)a0,
Pag(D) ( (@(@)™ j=1 3 Jo't By

T (on(1)4na (1)) O ) n . .
= 0 (Bo(i))“ao(l)( I x,)a(l)ml(B %. + I x.)_(a0(1)+nu(l))
T (o (1) (M a()N™ j=1 7 0@
I {0 (1) 400 (1)) y D . n N analt
g i B ™ (1 x ) D T4 (1) 7 5 )T (D)
n 0 0
M (ag (1)) (T(a(1))) j=1 j=1 4

where x=(xl,..., xn). Thus, for the observed value %=x, we have p(Milx)

(i=1l,..., m) easily by the formula (1.1).
n
‘REMARK 2.1. From (2.3) it is easily seen that the statistic ( I %.,

£.)
=173

1 3

[ =]
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is sufficient for our selection problem.
n

REMARK 2,2. The statistic I ij is sufficient with respect to the parameter
j=1

ei in the model Mi’ but is not sufficient for our selection problem.

3. SELECTION OF SHAPE PARAMETERS OF WEIBULL DISTRIBUTIONS
Let iz(ﬁl,,,y, in) be the observed random variable and let)§=Ri be the

sample space., The m kinds of models Mly,@g, Mm are the possible candidates

which are specified as follows.

(1) Mi has the unknown parameter 91 with 9i=R+ and has the known shape para-

meter a(i).

(2) For given M, and ei’ il,.e,, in are independently and identically dis-

1
tributed with ijfw'Weibull(O‘(i)9 ei 0L(i)), (j=1,..., n), that is,

n .
G ey, =T e P e o ) D))
5=

o1 .
@ @0 T x ) D laxpes Ta3M) Ger?)
j:l J j=l J
Also we assume that 0<a (1)<oa (2)<.,.<a(m).

(3) The prior distribution of ei, given Mi’ is Gamma(uo(i), Bo(i)). This is

a conjugate prior distribution as is easily seen from (3.1). Thus,

° 2y e.
(3.2) PO M) = (1))(80(1)) (1)e°io<1) lexp('mBO](‘i)) ® R)

(4) Prior probabilities p(Ml)Qemw, p(Mm) are available.
From the above assumptions, we obtain by (1.2)

(3.3) plx|M,)

o

e’ ST %,
P (1) 6 (1)) 0P g=1 3

- ! (1)
X (60(1) )ei}dei

@ W n DL 7 2 WD) =C o)

=T x,
T a2 G () 0D g1 ] 0o j=1d




_T (0‘0(1)+n) i

. n, X a{i)~-1 .
(50(1)@(1)) (I Xj) (1+50(1) 3

DGy _ca (4
=9 5 (1)) (¢, (1)+n)
RRCINCHY 3=1 3=
and the posterior probabilities p(Milx) from (1.1) and (3.3).
n D o(1)
REMARK 3.1. TFrom (3.3) we can see that the statistic ( I x,, 2 X,
n -0 (m) j=1 J j=1 J
L x ) is sufficient for our selection problem.
j=1
REMARK 3.2. It is easily seen that the statistic

geeey

n .
D ia(l)
5=1

we o L., in the model Mi (i=1,..., m), but is not sufficient for our

is sufficient

selection problem.
n D a(4)

REMARK 3.3. The statistic ( I X5 I %¥,%7) is also sufficient w. r. t.
3=1 3 3=1

ei in the medel Mi (i=1,..., m), but is not sufficient for our selection

problem.

4., SELECTION OF MODELS CONCERNING NORMAL DISTRIBUTIONS
4.1. CASE 1
let X=(il,..., in) be the observed random variable and letﬁf=ﬂpp be

the sample space. The m kinds of models M Mm are the possible models

1,o-o,

which are specified as follows.
0 Mi has the unknown parameterei with @i=Rp and the known variance matrix
n(i).

(2) For given Mi and © sos s in are independent and ijVN(Bi, L(i)),

., X
i* 71

(3=1,..., n). Thus,

p(X|M,, ei>=°§1n<xj|eig 2(5))
and it is easily shown thatJ
~eDp p ol
G p&N,e =N 2 alli@] 2 exp(-grr(siTT () Inley, 1)

-1 n n
where x=ﬁ:2 xj, S= i

(x.-x) ' (x.-x) and n(-|6, ©) indicates the p. d. f.
j=1 j=1 )

1

of N(g, 1).

(3) The prior distribution of éi’ given Mi’ is N(Ub(i)), Zo(i)),
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((uo(i), Zo(i))z known), that is,
(4.2) PO, IM)=n® | (1), (1)
Obviously, this is a conjugate prior p. d. f..
(4) The prior probabilities p(Ml),..,, p(Mm) are available.
From these assumptions, we have, by (1.2), (4.1) and (4.2),

_(n-1)p p o1

@3 pahp=en ? oa izl % epl-fersiT())

. . - 1o, .
°JanGBilu0(1), Iy &[6,, $1(1))db,

n-1
= [2] % explger (s @) InGlig (1), I (D42 (0)
n-1 1

—elz@ | 2 1z Zexpl-ter &)+ ()27 ()

"(x-1 (1)) ']}

_(o-Dp p _hp _p
where c'=(2m) 2 n 2, e=(27) 2 ) 2
(4.4) I (1) =Ly (D+EL(H)

Therefore, we have
p Q) p(X M)

m

%
j=lp<Mj>p<lej)

4.5 p0eylx)=

=1 1

20 120 | 2 15 @] Zexp -3 er 7))+ G4 (1)

T G () ') (i=1,..., m)
4.2. CASE II

Let f?(il,,,.9 in) be the observed random variable and let¥ =R"P be

the sample space. The possible models Ml,.,o, Mm are specified as follows.
(1) Mi has the unknown parameter (UE, Ti)€@i=RPXR+ and has the known para-
meter 2(1)68;, where S; is the set of all positive definite matrices of
order p.

(2) For given (Mi, o Ti), ¥

- -~ -1
. u .
L 15005 X are independent and xjru N( D ti (1)),
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(3=1,..., n). Thus, we have

n
_ -1, .
(4.6) p(X|M,, 1, Ti)~’£ln(leui, ()
70 mp n np

- T, O -
=(zr) Yzl % Zexpl-zE T (e, )P l(a) e n )t
i 2 j=1 j i j i
Since it holds that

j ey ET D) Gyt e O ()5 Gty )2 () G

(4.6) is rewritten as

Mg

_(n-1)p p (2=1)p _n-1 .
ty=m) % a2 % |3 Zewpl-der@l(i)s)}
i i 2
1 |
el - =t o )L (1) Ry )
2 i i

1
(4.6)"  p(xlM, u,,

P -
21 1 .
() ‘=2
1
n
x. and S= 2 (x,-x)'(x,x).
= j=l( j )" ( i x)

1

n,

J

where X%

[ el =

(3) The prior distribution of (ﬁi, %i), given Mi’ is N—Gamma(uo(i), Zo(i),
ao(i), Bo(i)), that is,

~

4.7 i | (E =t )~n e (1), T ()

(4.8) T, ~ Gamma (% (1), B (1))
where uo(i), Zo(i), “O(i) and Bo(i) are known. This is a conjugate prior
distribution as is easily recognized from (4.6)'.
(4) Prior probabilities p(Ml)"'"’ p(Mm) are available.
From these assumptions we obtain
(4.9 P&lM)

=JR JRpp(ui’ Ti)p(XIMi’ My, Tydidry

Ry
) I BN | -0 (1) o (1)-1 i
""(R Jan(uiluo(l)s Ti 20(1))1-,(&0(1))(60(1)) 0 Tio exp("BO(i))

B

~1 (n~1)p

7 7 T4 -1 - 1 .
° ! i - I i (i
c'|2(d)] T, expl 5 tr( (1)S)}n(x|ui, nTiZ(l))duidTi

1

=C

(T o® ke TN I
Mg (D) |£(1) | O{ an(wilub(lx;gzo(l))n(xlui, 6?12(1))dui
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Ty exp{ [ 0% )+ tr(z (i)S)]ri}d'ri
@, (1) oW -“;fj ag(D+EP
=c' F(a D) | (1)] | n(xluo<1),--z (i),
exp{ -~ oy (1)+;tr(2 (i)S)]Ti}dTi
, (i) n—l B P np
=C(Bo<1>> 0 12| Iz (1)|-~f o (1)+5-1 exp{_[ 1
ONEN)) , By (D
430 TN (D95 G (D)2 (D) Gty ()] bar
P+ 8, @)%+ 2l =
D) G EACII
g (8o (1)) 0
_(n-1)p P o p
where c'=(2n) 2 n 2, c=(2m) 2 n 2:

(4.10) (8 (1) =08 () Hger 609G Ry (1) (1) Ry (1)

(4.11) Zl(i)=20(i)+%l—2(i)
and, thus, np
(Y.O(l)-’-"z' _Il_—_]___

o (D+E) (8. (1))
e RICT IR PNEN

ey (D)) (8 (1)) 0

1
T2
(4.12) p(Mi|X)£p(Mi)

(i=l,ve., m)

4.3. CASE 1II
Let i=(il,..., in) be observed random variable and let ¥ be R'P. The
possible models Ml""’ Mm are specified in the following.
(D) Mi has the unknown parameter (ui, Z(i))eRpxs;.
(2) For given (Mi, M, L(i)), il,..., in are independent and ij»«N(ui, (i),

(j=1,..., m). Thus, like (4.1) or (4.6)"',

n
(4.13) PEXM,, ;s 2(D))=1T n(x lu , (1))
3=1 n-1

pp—

=c'|Z(1)] 2exp{—%tr(s Z_l(i))}
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n G fuy, TE(D)

_(o-1)p p
2

where c'=(2T) 2 n“, x=

=R E o
[ -]

®,, 5= ; (e, -x) ' (x,-x) .
e

(3) The prior distribution of (ﬁi, iml(i)), given Mi’ is the normal-Wishart
distribution, N-Wishart (uo(i), To(i), Z_é(i), Ps vo(i)), with v, (1)>p-1,
that is,

(4.14) i | GD=2(D) ~ Ny (1), 15 (1) 2(5))

7 (3) ~ Wishare (5H(1), p, V()
(4) The prior probabilities p(Ml),..., p(Mm) are available.
From these assumptions we have
(4.15)  p(xln >=f J pGug, THEPEIM,, g, £ () dudzs ()
. g 17 Jgt/gp i’ P 1 "4 i
-1
=c'f SCT@DIT @, b, vy 2@ 2 expl-ger(szH ()}

S
P

-f ao h @, gtas@inGlug, Zx@)aa™ @

R
-1
=C'J +W(Z_1(i)|251(i), Py V(1)) [2(1) ] 2 exp{—%tr(sz_l(i))}
SP
X |y (D) s ( S+ E(0)dr T (1)
V(1)
2
=cC(p, vy (1)) pps (1) SIIPREN E
vl(1)~P -1
.fs+|z"1(i)| 2 exp{—%tr(zl(i)z'l(i))}
%
P v, (i) v, (1)
2 0 1

2

C(p’ \)O(i)) nTO(i) . 5 . -
~Clp, v, () §0<i>+n @l T @

p, v) is the p. d. f. of the Whishart distribution with the

parameter (&, p, v) and



(4.16) c'=(27) n -, c=(2m) n°,
pv plp-1) p
G o, w=2iw Y &
i=1
(4.18) ‘vl(i)=v0(i)+n
nTO(i) _ _
(4.19) El(i)=20(i)+s+m(x-uo(i)) "G (2))

Therefore, for the observation R=X, we have

Vo (D) v, (1)
cp, Vo) [ 7o) 3 7 -3
(4.20)  p(My | X)=p (M) G e e RNENY 12, @]
(i=l,..., m)
Since
A
Clp, Vo) —5—— P F((vl+1~j)/2)
(4.21) =) I .
Clp, v;) j=lr((v0+l-J)/2)
and vl(i)—vo(i)=n, we have
Cp, vo(1)) 5 p T ((vy(D)+1-1)/2)
(4.22) c(p, \)l({;'i:z jzlr((vo(i)+lnj)/2) (i=1,..., m)
Hence we obtain
. vo(i) vl(i)

ol ) 2 -
LG o o ENCI IR ENC

(i=l1,..., m)

where
p T ((v; (1)+1-3)/2)

(4.24) c(i)=j£lr((vo(i)+l_j)/z)

(i=1,..., m)

REMARK 4.1. 1In the above specification, the difference among models Ml""’
Mm is solely due to the assumption (3): the specification of the prior dis-
tribution of (Qi, Enl(i)), (i=1,..., m). Therefore, our selection problem

is nothing but the selection among prior distributions on the basis of the
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observation X=X.

5. SELECTION OF REGRESSORS IN A LINEAR REGRESSION MODEL IN CASE OF

INFORMATIVE PRIOR INFORMATION

Assume that Kygoeos X is the set of possible regressors for a regres-—

sion model. That is, the maximal model is
m
(5.1) y=80+yf Bixi+s
i=1
When the observations on y are considered for the explanatory variables
(xlj’°°°’ xmj) (j=1,..., ), we have, from (5.1),
(5.2) J=BX+e

where

y=(yl”'°s yn)a Bz(BO’ Bl9°°': Bm)a £=(El3"" en)

(5.3) 1 \ 1=(1,..., 1)eR”
x
1
X=!: ),
% xiz(xil’""’ Xin) (i=1,..., m)

Now, let us introduce the concept of selection matrix which seems to be

useful to describe our problem.
DEFINITION For any integer k (Osksm) and any set of k integers {il, i2’°"’
ik} (léil<izo.,<ikém), we define the (k+1, mt+l) matrix D(il,.o., ik) by
ol
il+l

(5.4) D(il’°’°’ ik)= ; D(¢7)=el for k=0

eik+1

. . , . +1 .
and call it a selection matrix, where e, is the unit vector of R" ~ of which

the i-th component is 1(i=1l,..., m+l). We denote
D={D(i,..., ik)|1éil<,..<ikém; k=1,..., m}y{D($)}
REMARK 5.1. C(Clearly, D(1,..., m)=1m+l(the unit matrix of order mt+l).

The regression model corresponding to the set of k explanatory vari-
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ables Xy seees Xy is written as

1 k
1
xz
4 . |
(5.5) §=(Bys By seees By )| +€ ; §=301+5 for k=0
1 k xi
k
This is rewritten as
(5.6) y=BD' DX+€ (D=D(ij,..., 1,) or D(¢))

Moreover, if we denote BD'=§D, using the notation D as a subscript,

(5.7) §n=f3DDX+ED (DeD)

Since the correspondence between the selection {xi,..., xik}and the selec-
tion matrix D(il,..., ik) is one to ome, the regression model (5.7) will be

called model D simply and conveniently.

In the following our attention is confined to the case where

(5.8) rank X=m+l
and, given TD€R+,
~ -1
(5.9) GD’\'N(O,TD In) (DéeD)

Now, let us specify each model D (€D) as follows.
(1) Model D has the unknown parameter (BD, TIQGRF(D)XR+, where r(D) is the

rank of matrix D.

(2) For given D, X and‘(BD, TD), we have, by (5.7) and (5.9),

~ -1
(5.10) y ~ N(BDX, 7,71 )
that is,
-1
(5.10)" p(y[D, X, B, T)=n(y[B DX, T "I )

(3) The prior distribution of (BD, %D) in the model D is the normal-gamma

distribution with (known) parameters (uO(D), ZO(D), aO(D), BO(D)), that is,

(5.11) Bp» )~ N-Gamma (g (D), Z4(D), ag(D), By(D))
or
(5.12) Bpl (Fp=Tp) ~ N(u, (D), Tglzo(D))

- 12 -



(5.13) T ~'Gamma(aO(D), BO(D))
(4) The prior probability of model D is denoted by p(D): DED p(D)=1. 1If
DO={D|p(D)>O, DeD}ED, we can confine our attention on DO.

From the above specifications, we easily obtain

(5.14)  p(y|D, X, TD)=f (o) Bl (D), 151 £y (D)) n(y|p DX, T;lIn)dBD
R

=n(y|u, (D)X, TBls“l(D))
where
(5.15) S(D)=IH~X'D'H (D)DX H(D)= T (D)+DXX D'
Further, from (5.13) and (5.14), we can easily obtain

516 2|0, 0= pleplyI, X, T,
0

=jogamma(TDla (D), BO(D))n(yIuO(D)DX, T (D))dT
-2 2 I, (D)42 +
7 A A
(20,(D)) -;;—-7553—|a0(n)30(D)S(D 2
2a0(D)+n
2

.(1+iai?57(y-uo(D)DX)(aO(D)BO(D)S(D))(Y‘UO(D)DX)')

That is, for given (D, X), y follows a n-dimensional t-distribution with

D. F. ZaO(D), i. e.

~ -1
(5.17) (D, X) ~ t(uy(DIDX, (a,(D)B,(DIS(D)) ™, n, 20,(D))
Thus, we have the posterior probability of model D for the observed data

(X, y) from (5.16) and

p(Dp(y|D, X)

z p(Op(y|C, X
CeD

(5.18) p(D|X, y)=

2 Llag(+D) 2 2
<p (D) (ag (D)) ——?“‘2575"(a0(D)30(D)) |S(D)]
ZaO(D)—n

8o ]

G 0 (31, (D)DX) S (D) (-1, (D)DX) )

- 13 -



I (o (D)D) z 2
m.pm)-—-—(——-—(ﬁ)—s—(e 0% s()]

ZaO(D)+n

So® ;

0
REMARK 5.2. The above formulation of selection of regressors has some
difficulties. Among others, it must be very laborious to specify the prior
distribution of (BO’ ;D) for each DE&D, unless DO={D|p(D)>O, DeéD}is reason-

ably small.

6. SELECTION OF REGRESSORS IN A LINEAR REGRESSION MODEL IN CASE OF VAGUE
PRIOR INFORMATION

In this section we will treat the same problem as in the preceding
section in the case where we are almost ignorant of BD and TD for each
model DED.

To express our state of ignorance, we tacitly introduce an intermediate
(proper) prior distribution and then consider its limit to obtain the pos-
terior probabilities p(DIX, y) for vague prior information.

DEFINITION An intermediate prior distribution of (éD, fD) is defined for
parameters a and b (a>0, b>0) as follows.

(1) éD and 1. are independent (DED).

D
2) P(BDtDa a)z%EI(BDIAr ) (ar (D)))

where

(c)=(-c, c)x..c.x(~C, c)CRr(D) (c>0)

Ar(D)
that is, it is a r(D)-dimensional product set of interval (-c, c), and
I(.

In addition, a is given by

r (D)
1
r (D) =%(2a) r

r(D)-‘-Za or a

(Zar(D))

The prior distribution of BD’ given D and a, is the uniform distribution

- 14 -



on the r(D)-dimensional interval Ar(D)(ar(D))'

1 -b b
3 p(rpl Dy D)=t (rpl (7€)
that is,
1og%D ~ U(~b, b) (uniform distribution on (~b, b))

Thus, the intermediate prior p. d. f£. of (éD’ %D) for a and b, is

(6.1) pP@py, 1pID, a, B)=p@pID, a)p(ry|D, b)

L ., -b b
“gabe, EplAr ) Cr(p)))TplCe s e

For this intermediate prior p. d. f. (6.1), we obtain the p. d. f. of
¥, given D, X, a and b, and then the posterior probabilities of model D

(DeD), given X, y, a and b, as follows.

(6.2) p(y|D, X, a, b)={ J (P (BpIDs 2P (rp[D, DIP(YID, X, By, T dppdry
R

0

1
=mq(le’ X, a, b)

where
b
¢ 1 -1
(6'3) CI(Y|D, X, a, b)= ~b; TH(YIBDDX’ TD In)dﬁDdTD
e A ) ar(p)’ D
p(Dp(y|D, X, a, b)
(6.4) P(DIX’ ¥y, a, b)=

z p(C)p(y|C, X, a, b)
CED

p(D) (y|D, X, a, b)

" 1 p(Qaly[C, X, a, b)
CeD

Now, in order to obtain the posterior probability of model D for vague prior
information, we consider the limits of q(y|D, X, a, b) and p(D|X, y, a, b)

when a»~ and b»w , Thus,

(6.5) q(y|D, X)= lim q(y|D, X, a, b)
a, b“)oo

/)

1 -1
. Rr(Dy?bn(yIBDDX, T In)dBDdTD
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={(2m) J Tg [ r(D)exp{ (y ﬁDDX)(y'B DX)' }dﬁDdT

It is easily shown that

(6.6) (y—ﬁDDX)(y»BDDX)'=(5D~ﬁD)(DXX‘D‘)(pD~éD)'+ﬂy-ﬁDDX”2
where
(6.7) éD=yX'D'(DXX’D“)”]

Hence, we have

n

=]

5 T

T2
6.8 = 2
(6.8) q(y D, X)=(2m) jzrn exp (-3 uy BDDXH )f £ (D)S*P1~3 (ﬁD “fp)

(DXX'D') (B ~Bp) ' }dpdr,

_n-r(D) . n 1 l
~omy 2|2 D
- 5  (DXX' D’ N exp(--_ny p DX )dT
_n-r (D) 1 . n-r(D) 1
=c2my % mxxxt| 2| - B Do i
OrD exp(—j-ny_ﬁDDXﬂ )dTD
_n-r(D) 1
=T 2 I.(n"lz’-' (D)) IDXX'D' ’ zuy_BDDX"""(n"r(D))
and thus
(6.9) p(D|X, y)=lim p(D|X, y, a, b)
p(Dqly|D, X)
1 p(0)qy|C, X)
CD
r(D) l
B Eﬁﬁl L
2 p(C)m 2 1“(———-—~“‘§(C))lcxx'c'[ jjy=B cxi(er ()
ceD
or
r(D) L
6.10)  p@|%, epn 2 rEEO pxxrpr| g pxi” T
(DED)

REMARK 6.1. The dimension dimGJD) of the parameter space op of model D
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depends on model D (¢D), since

dim(eD)=dim(Rr(D)

XR+)=r(D)+l
Our intermediate prior p. d. f. (6.1) (in particular, (2) of DEFINITION) is
devised to make the degree of uncertainty in each model D the same in spite
of the difference of dim(@D). For instance, if we express the degree of
uncertainty by the concept of entropy,
(6.11) the entropy of p(BD9 TD|D9 a, b)

ﬁmj@ (log p(Bys 5D, a5 BIIP By, |0, a, b)dppdry

D

*“JRr(D)(log p(BD|D, a))p(BDlDy a)dp,
—Jo(log p(tDlD, b))p(TDID, b)dt,
=log(2a)+log(2b) (DeD)

which is independent of DE€D.

7. SELECTION OF THE ORDER OF POLYNOMIAL REGRESSIONS IN CASE OF VAGUE PRIOR
INFORMATION
Let the following polynomial regression models MO, Ml,..., Mm be the

candidates of our selection problem:

k .
.Y = 3= _
(7.1) Mooy .Z Bjxi+ei (i=l,..., n)
j=0
or
(7.2) M, §=skxk+§ (k=0,..., m)
where
}F(Ylwn, yn)s Bkz(BO’ Bl:“’“a Bk)9 €=(€ls‘°" En)
and
1
R 3 3
(7.3) Xk= . xj:(xl,«o., Xn) : XO=1
. (3=1l,¢0., m)
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As in the preceding section, model Mk is written with selection matrix D=D(1,

ce., k) for k=1,..., m and D=D(¢) for k=0 as follows:

(7.4) y=BD'DX+E
or

.Nm e o = ¥
(7.5) y=p D5t (B =BD")

where Bzﬁm, Xixmo Hence, the model Mk can be regarded as the model D(1,...,

k) and thus the selection among Mﬂ,g M,geoes Mm can be regarded as the selec-

1
tion from Doz

(7.6) %ﬁ{ln(cp)y D(1), D(L, 2),e.0y D(1, 2,c.., m)}
Therefore, our selection problem in case of vague prior in each model is

nothing but a special case of the selection problem which was treated in the

preceding section.
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