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Abstract

We show two methodological difficulties for testing rational
expectation (RE) hypotheses based upon fitting vector autoregressive (VAR)
time series models. The methods used in a number of econometric studies to
test RE hypotheses for the term structure of interest rates and the forward
foreign exchange markets are shown to be incoherent with the RE hypotheses
in their theoretical consideration. We found that in most cases random walk
processes are not consistent with RE hypotheses. Incidentally, Shiller's
assertion on the RE hypothesis for the term structure of interest rates
(1981) can be viewed as a special case of our Corollary 1 in Section 2. We
explore the relationship between the RE hypotheses and the cross-equation
restrictions imposed by those in the vector autoregressive moving-average
(VARMA) time series models. Our results suggest that in most cases the
conventional wuse of VAR modelling in macroeconometric applications is not
consistent with RE hypotheses.



l.Introduction

Econometric analyses with rational expectations (RE) have been
voluminous in the last decade. The type of rational expectation (RE)

hypotheses of interest in the present paper is expressed as
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for t=0, +1, +2,..., where wij(i=1,...,m j=0,1,...,ni~1) are some
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constants, m1 is the number of relevant variables included in RE hypotheses,

and ni (i=l,...,m;) are some fixed integers; a vector (ylt""'ym t) is a

1

subset of én mx]l stochastic process {yt) we are considering; It is the

} is the conditional
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information set available at period t and E(.IIt
expectation operator given It'

Several methods have been proposed to test the RE hypotheses (1.1).
Among them, one method commonly used in empirical studies is to fit vector
autoregressive (VAR) time series models and construct statistical test
procedures on the nonlinear cross-equation restrictions imposed by the RE

hypotheses. Originally, Sargent (1979) proposed this method in connection

with a RE hypothesis in the term structure of interest rates. In his study,

the hypothesis of interest is (1.1) when m 2 and
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where is the long-term interest rate and y2t is the short-term interest

Y1t
rate. Later, Hakkio (198la, 1981b), Baillie et.al. (1983), and Ito (1985)

applied some variants of this method for testing the RE hypothesis in the



foreign exchange rate market. In their studies the hypothesis of interest

is (1.1) when m1 = 2 and
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where h stands for the prediction horizon of economic agents, ylt is the
forward exchange rate, and y2t 1s the spot exchange rate.

This paper exhibits two Kkinds of serious problems inherent in this
method of which econometricians have been often unaware. Our results imply
that most previous studies wusing this approach, some published in this
journail, are logically misleading with questionable empirical
results. More specifically, Section 2 shows that if we fit VAR models to
filtered time series, the RE hypotheses of the type (1.1) never hold for the
original stochastic processes. The difference filter commonly used in
practice is an example ‘of our general formulation. Incidentally,
Shiller's assertion on the RE hypothesis for the term structure of interest
rates (1981) is a special case of Corollary 1 in Section 2. In Section 3 we
discuss a problem in treating information sets when we construct statistical
tests based on the VAR models. It will be seen that the conventional
procedure using the statistical tests based upon a limited information set
is likely to lead to a model misspecification. It is not necessarily
appropriate for testing RE hypotheses of the type (1.1). We shall point out
that a number of previous studies suffer from incoherency problems with
respect to their RE hypotheses in the theoretical consideration. Section 4
summarizes our results in this paper. We shall point out that our results
have implication for VAR modelling in recent macroecanometric applications.
In most cases, the method frequently wused in empirical studies is not

consistent with the RE hypotheses.



2. Testing RE hypotheses by VAR Models

In this section we first present a general method of testing the

RE hypotheses - by VAR models, and then show a serious incoherency when VAR
models are fitted to filtered time series. Suppose that an m-variate time
series {yt} is generated by the following vector autoregressive (VAR)

process with order p, denoted by VARm(p),

(9 =

(2. Yy Alyt~1 MR Apyt_np Uy,

where yt = (ylt""’ ymt) 5 ut = (ult"" umt) is the disturbance vector
with E(ut) = 0, E(utut) = @ (positive definite), and E(utus) = 0 for t # s;

1,...,Ap are mxm coefficient matrices.l/ The process {yt} can be either

stationary or nonstationary at this stage. However, if some of the absolute

A

p .
values of characteristic roots of the associated equation | szm- Z A.zp J |
i=1

= 0 are equal or greater thanyone, we assume that the initial values yo,

Yoqreees Y o(p-1y are fixed. The process (2.1) can be expressed in a

Markovian form:

(2.2) Y, = AY + U, ,
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where Y, = (yt’yt-l""’yt~p+1) is an mpxl vector, U,= (u

t
mpXx1l vector, and
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Using the above representation, it is straightforward to derive the optimal
predictor of Yt+h(h & 1) given the information set It’ where
It={yt,yt_1,...}. By repeating the insertion of (2.2). we express Yt+h as

The second term on the right-hand side of (2.3) consists solely of future
disturbances while the first term is in the set It‘ Thus in this case the

optimal predictor of Yt+h given It is the least squares prediction of Yt+h

h

(2.4) ECY Ilt) = A

t+h

From (2.4) we obtain the following lemma.

Lemma 1: Let {yt} be generated from a VAR process (2.1). Then (1.1)

holds if and only if

1 i .
(2.5) . e, (mp) wi.AJ ) =0,
i=1 j=0 M
where ei(n) is the nXxl vector with one in the i-th element and zeros in all

others.

Proof: Let c¢' be the left-hand side vector of (2.5). Then (1.1) is
equivalent to the condition c'Yt = 0, Using (2.2), this condition is

rewritten as

(2.5)



where Ji(p) = ei(p)®Im = (0,...,O,Im,0,...,0)' is an mpxXm matrix with
identity matrix 1in the i-th block and zero matrices in others. From (2.2)

and (2.6), c'AJ,(p) = c'(Jl(p)A1+J2(p)} = Q0. Since ¢'J. (p) = O from (2.6},

1 1
we have c'Jz(p) = 0. Similarly we obtain c'Ji(p) = 0 (i=l,...,p) and thus
¢' = 0'. The other direction is obvious. Q.E.D.

This lemma is a slight geheralization of previous studies which
considered some special cases of the hypotheses (1.1).

We now consider the effects of linear filters on the testing procedure
of RE hypotheses by VAR models. Since most observed data of economic time
series exhibit considerable nonstationarities including trends and
seasonality, many econometricians have applied the difference filter and the
seasonal adjustment procedure +to remove the observed non-stationarities.
These transformations of data are generally expressed by the linear filter

1
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where cj (j=0,1,...,r+s) are fixed scalars and F and L are forward and

backward shift operators such that y = Fky and y = ka . The linear
t+k t t-k t

filter (2.7) inciudes the d-th difference operator A = (1—L)d and the moving
average operators on which most seasonal adjustment procedures are based.
The filtered data is denoted by yf = Ayt in what follows.

Sargent's strategy (1979) of testing RE hypotheses (1.1) can be
summarized as follows. The assumption of RE hypotheses gives a set of
nonlinear cross-equation restrictions on the underlying stochastic process
(yt}. Then by the law of iterated projection the same restrictions should

be 1imposed on the stochastic process {yf}. If the restrictions on the VAR

model of (y:) cannot be rejected by any statistical standard (say, 1 %



significance level), it has been usually interpreted that RE hypotheses on
{yt} cannot be rejected. We argue that this procedure sometimes leads to a
false conclusion and thus is not valid for testing the RE hypotheses (1.1).

Suppose that a filtered series {yf) is generated by the VARm(p*)
2/

process—

¥ %

(2.8) yf = A% e et ¥,
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or equivalently, {Ayt) is generated by

* *
2 =
(2.9) Ayt Alﬂyt_1 ..+ Ap*Ayt—p* *

where A is defined by (2.7). Let A' = LrA, and noting that A’yt = {Im -

(Im- A')}yt, we can write (2.8) in terms of yt as follows:
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. r+s
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Collecting terms, we rewrite (2.10) as
(2.11) Yy = Alyt-l LA Apyt_p tuy o,

where p = p*+ r + s and
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Let Aj( i=1,...,9; Q2 S r+s ) be non-zero solutions of
. r+s r+s-1 -
(2.12) o A clk ces Cryg = 0.

Now we make an additional assumption:

(A1) There exists at least one solution of (2.12) such that for some i
1‘ .
Tow.. A e

Then we have the following result:

Theorem 1: Let & filtered series {yf) be generated by the VARm(p*)
process (2.8), or equivalently {yt} from (2.11). Then under (Al) the

restriction (1.1) does not hold.

Proof: We prove this proposition by showing that the necessary and
sufficient condition (2.5) cannot be satisfied. Let D be given by
(2.13) D=4ds Im s
where d = (dl,dz,...,dp)', and di= Ap—l(i=l,...,p) and we take some Aj in

(2.12) as A here. Then by the structure of Ai in (2.11), we have
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In view of (2.12), we have

r+s X
(2.15) 7 aP 1ci = 3,
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r+s .
DLAE S P e, =0 ksl,2,...,p) .
i=1

Thus we obtain the relation:

P p
(2.16) Y d.oA = AL .
i=1 1 1 m

Then by the structure of A and Ai defined by (2.2) and (2.11), we have
(2.17) AD=AD.

Thus Aj(j=1,...,r+s) and row vectors are the characteristic roots and
vectors of matrix A, respectively. Accordingly, for any integer Kk,

k

(2.18) Ak p = Afp .



Multiplying D from the right to the left hand side of (2.5) and using

(2.18), we obtain

(2.19) L e:mp) D [ Xwi.)\J ) = L e

n, -1 m n.-1
i=1 j=0 i=

m i 1 i
Leam (Lw A1)

1 j=0

By assumption (Al), (2.19) cannot be equal to zero. This contradicts the

equation given by (2.5). Q.E.D.

The above proposition states that, wunder (Al), when VAR models are
fitted to filtered series, the original (or non-filtered) stochastic process
does not satisfy the cross-egquation restrictions imposed by the RE
hypotheses in (2.5). Therefore, the statistical tests based upon the VAR
models fitted to the filtered time series are meaningless, if we are
interested in the RE hypotheses for +the original stochastic process.
Actually, as soon as fitting a VAR model to the filtered series is judged
appropriate, we must automatically reject RE hypotheses for the original
series under (Al).

It should be stressed that the assumption (Al) is not restrictive in
most applications. Violation of (Al) seems to require very rare
specifications of the RE hypotheses and linear filters. Actually, it is
easily seen that (Al) is always satisfied for the RE hypotheses (1.2) and
(1.3). Thus, the immediate but important consequence of the above result is

given as follows:

Corollary 1: Let {Ayt} be generated by a VAR process (2.9) and
(2.20) A= (1-1L )d

for any integer d, then the RE hypotheses (1.2) and (1.3) do not hold.



Shiller (1981) has suggested a special case of this result for d = 1, m
= m1= 2, and the RE hypothesis (1.2). The above corcllary is particularly
interesting because in many empirical studies VAR models have been fitted to
the differenced time series and statistical tests based upon them have been
conducted. The difference filter of the type (2.20) is widely used since
many observed economic time series exhibit nonstationarities. It is
sometimes asserted that they are weil characterized by the existence of unit
roots in the autoregressive parts of the time series models. In other
words, random walk processes are appropriate for describing macroeconomic
time series. ( See, for example, Meese and Singleton (1982), and Nelson and
Plosser (1982).) However, our result suggests that the usual practice of
applying the difference filter to each series in VAR models is not coherent
with the RE hypotheses for the original stochastic process. Thus, the
studies by Sargent (1979), Hakkio (1981a,1981b), and Baillie et.at. (1983)
are subject to this incoherency. Further, a part of the results by Shiller

(1979) where his discussion is based upon the differenced model may be

questionable.

3. Roles of Information Set in VAR Models

In this section we re-examine the misspecification problem which arises
when VAR models are fitted to the smaller rather than the full information
set, As a solution to this problem, we present a proposition later, which
generalizes Lemma 1 to the vector autoregressive moving-average (VARMA)
models.

First we consider the following example. Suppose that yt=
(ylt,yzt,ygt)‘ = (y%',ygt)' is generated by the VARS(I) with
* (€

A= (Y o) ey, AF - )
o' ¢ -¢ ¢
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where ¢ = .5,' is the forward exchange rate, y2t is the spot exchange

"1t
rate, and y3t is the interest differential. By construction, ei(3)Af =
eé(S) and the original stochastic process {yt} satisfies (1.3) with h=2.

Suppose that we ignore the third variabie y3t. Then we can write

¥ k% ¥
3.1) yt = A yt_1 + ut ,
where
u -C
¥ 1t _
uy = { ] o+ ( c ) Ug, /(1-cL} .

Uy

Thus multiplying (l1-cL) to (3.1), we obtain the representation

(3.2) vy =l ANy - oAy, v vy,
where
ult C
vi= (1-cl) Uy, o U ) gy

If we treat vt as if it were a white noise process despite a'VMA2
and use the condition (2.5), it is easy to see that ei(4) A2 » eé(4), where

(1) process

~ * *
A= ( C12+ A cA ]

I, 0

-

Hence 1in this case the cross-equation restrictions of the type (2.5) on the

%

smaller information set It= {yf,yf_l,...} are not necessary conditions of

the RE hypothesis for the original stochastic process {yt}.
We now generalize the above example. Let (yt} in (2.1) be the true

process and suppose that yt is decomposed as yt = (y:', yt*')' where yt =

v - * koK K sk
(ylt,...,ym*t) s Yy S (y *+1,...,ymt), mea2,m 21, andm=m+m . The

law of iterated projection implies that, if (1.1) holds for It=

{yt’yt*l”"}’ then we also have

11
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where L= {yt, yt_l....} . Needless to say, (3.3) is a necessary condition
of (1.1). Utilizing (3.3), some previous studies such as Sargent (1979) and
Hakkio (198la, 1981b) have fitted VAR models to the smaller information set
I*, and conducted statistical tests based upon these fitted models by
following the procedure described in section 2. It has been claimed that
those tests were Jjustified as tests of a necessary condition of (1.1).
However, we argue that the justification often made is not warranted, since
fitting VAR models to the smaller information set involves a high

possibility of model misspecification as shown below.

Using the above decomposition of {yt}. (2.1) is expressed as

(3.4) A(L) yt = ut s
where
A (L) A, (L)

11 12 p
ALY = | )= 1 -AL-...-AL ,
Ay (L) Ay, (L) m 1 p
- *l **! 3
and ut— (ut ’ ut ) with
9] Q
@ =ECuu, )= (0 o).
21 22

To make our discussion simpler in this section, we further assume the
following:
(A2) The vector yt* does not cause the vector yt in the sense of Granger

(1969), that is Al (L) » 0.

2

Also let H(L) be an mxm matrix with lag polynomials which is decomposed

as A(L):

: Hll(L) HIZ(L)

¢ I ok
m

HCL) = )

12



Multiply this matrix to (3.4) from the left, and the resulting first m*
equations are given by

Kok

* *k *
(3.5) C,, (L) vy * C 2(L) Yy = HlfL) u, o+ HléL) uy ,

11 1

where leL) = HlfL)AlfL) + H1éL)A2fL)’ and CléL) = HI{L)AléL) + HléL)AzéL)'

In order to erase yf* from (3.5), we have to choose HlfL) and H1§L) such

that

(3.6) CléL) = HliL) AléL) + HléL) AzéL) =0 .

~

Let A2§L) be the adjoint matrix of AgéL)' Multipying AgéL) from the right

to (3.6), we have

3.7 HlfL) A}éL) AzﬁL) + HléL) ] AzéL) f =0,

where leéL)l is the determinant of AzéL)' Thus if we choose
(3.8) HlfL) = | AzéL) | Im* and HléL) = - AléL) A2éL),

then (3.6) is satisfied. Thus (3.5) can be rewritten as

*%k

(3.9) A¥a yf = F(L) u¥ + QL) ut

t
where A*(L) = IAOéL)iAlfL) - AléL) ZzéL) Asz) )

q
oy _ 1
F(L)y = IAzéL)l = Im* + FIL + ... FélL ,

13



~ q2

G = - AléL) AzéL) = GIL ol t quL ,

and q, s pm** and q2 a pz(m**~1).
By the Wold' Decomposition Theorem, we can find the appropriate moving

average process such that

(3.10) X

t t

. = D) v, = F) ¥ e gy o

where vt is the m*XI disturbance vector with E(Vt) = 0 and E(vtvé) = O for

%
t¥s, and D(L) = D0+ DlL + ... + D *L 4 ( D0 = ] *) is appropriately defined
q m
m*Xm* lag polynomial matrix with order q* s max(ql, qz}. Then we have the

next lemma.

Lemma 2: Suppose the moving average process is generated by (3.10).
Assume that (A2) holds. The necessary and sufficient condition for {xt) to

be a white noise process (i.e. q*= 0) is given by

(3.11) Tx(k) = 0 for k = +1, +2, veertdy

L]

and qls dy when 912 ¥ 0, and q1+1 s a, when le = 0, where I%(k) = gg(-k)

E(thi-k) are defined by (3.13) in detail.

Proof: It is well known that the necessary and sufficient condition of

q*z 0 is generally given by

(3.12) Tx(k) =0 for k = #1, +2, ..., * maxig,, q,}

14



We qualify the above condition in what follows. First in case of 912# o,

Fx(k) is given by

ql-k qznk

(3.13) I (k) = jgo Frog¥iFy 12% Gl ok o G

min{ql-k,qz-k) min{ql—k,q2~k}

+ ji} Gﬁk%l% + jg‘ Fﬁk%Q% L k=0,1,2,....

1f q1>q9, then we have Fx(ql) = Fq 911# 0 since 911 is nonsingular. Thus we
- 1

must have q, & 4, so that (3.12) holds. Second, in case of 912= 0, rx(k) is
the same as (3.13) except the third and fourth terms are dropped. If

q1+1>q2, we have Fx(ql) = Fqlgll ¥ 0. Thus we must have q1+ 1 s a, -

Q.E.D.

The above lemma indicates that in order for {xt} to be a white noise
process, strong restrictions (3.11) must be imposed on A(L) and &. Since
these «conditions are hardly satisfied, it is natural to assume that {xt) is
a VMA process with positive order in general. Although there 1is a
possibility of cancelling out the lag polynomials in AR and MA parts, it is
natural to assume that (3.9) is a VARMA process with positive orders p* and

%
q

(3.14) ¥ y? = D) v,

3

where p* s max(pzm**, p (m**-l)}, q* = max{ql, qz}. rather a VAR process.

The above inequalities for p* and q* are derived after considering

15



cancelling out effects. (See Granger and Morris (1976).) It may be remarked
that, if the assumption (A2) 1is viclated, that is A1§L) = 0, (3.14) is
always feduced {0 a VAR process AlfL)yt = ut.

The argument here implies that fitting lower order VAR models ito the
smaller information set generally involves a high possibility of model
misspecification. Apparently, previous studies by Sargent (1979) and Hakkio
(1981a, 1981b) are likely to be subject to this possibility since the orders
of their VAR models are 4. Of course, their results are valid if we
reinterpret that their models are based upon the full rather than smaller
information set.

To avoid this misspecification problem, include all relevant variables
in estimating VAR models. However, this may require a very large model, and
the problem of multicollinearity or the degree of freedom shortage for
estimation may arise. An alternative solution is to fit VARMA rather than
VAR models t{o avoid possible misspecifications. However, it appears that
for VARMA models, (2.5) 1is no longer necessary or sufficient for the RE

hypotheses (1.1). we present the next result on this problem.

Theorem 2: Assume that {yt} is generated by the vector autoregressive

moving average (VARMA) process with orders p and g

(3.18) Yy = Alyt o +Apyt_p ouy ot Blutvl .. Bqut_q ,

where Bl""’Bq are m>xm coefficient matrices and {ut} are defined as in

(2.1, If the absolute values of some roots of the associated equation

p s
lzp1m~ ) A.lzp Y| =0 are not less than one, we assume that Yops Yogs wees
i=1

Yo(p+e1) 8TE fixed and U )™ U™ vve 5 U (047

sufficient condition of (1.1) is given by

0. Then the necessary and

16



3.1 2@ e ¢ I e )20 (k= 0, 1, Lo, 1)
where

A J,(p)B cee J.(p)B
(3.17) N 17 L7779 ) nprqdxm(peq) )

5 00 ... 0

Img-D 0

m1 niul' o
(3.18) a' = ¥ etmpra)) Y ow.. A,

R 1 . 1]

i=1 j=0

and p* ( & mp ) is the order of minimal polynomial of matrix A and A is

defined by (2.2)
Proof: The process (3.15) can be expressed as
(3.19) Y= Aty s ub

+ ] 1 [} + -
where Yt = (Yt’Ut) and Ut = [Jl(p+q)+Jp+fp+q)]ut are m(p+g)x1l stacked
vectors. Using the same argument as in (2.3), we obtain the optimal
predictor of Y:+h(h 2 1) given the information set It= {yt, yt~1""}' The
resulting formula 1is (2.4) where Yt+h and A should be replaced by Y:+h and

A+, respectively. Thus (1.1) is equivalent to the condition

(3.20) a'y, =0 .

-

Using (3.19) and repeating its substitution, we get

(3.21) 'kil(A+>j[J (p+qQ)+ J_ {p+q)) « a kY
: a P (Bradr I fpradu, L+ oa t-k-1

j=0

=0 .

17



Therefore (3.16) is a necessary condition, Now we consider the

characteristic equation of A+:

*o PR
b At - = ™A= a

2
(3.22) 0 m(p+q)

[H

i

il mp
CDPEN™M o oa- A
k=1 -

where Ak(k=1,....mp) are the characteristic roots of matrix A. Then by the

Cayley-Hamilton Theorem

+ p* + p*vl +
(3.23) (A ) = bl(A ) + ... + Db A s
where bj(j=1,...,p*~1) are some constants depending upon matrix A. In using

(3.23), the condition (3.16) for k=0,1,...,p -1 implies (3.16) for k=p .

QchDo

The above result is a generalization of Lemma 1 to the VARMA models.
When there exist multiple characteristic roots of the associated equation,
the order of mimimal polynomial of the AR part p* is less than mp. This is
always the case if we wuse the linear filter (2.12) before fitting VARMA
models. We note that when g=0, (3.16) is reduced to the condition a'=s O .
But when q & 1 we cannot necessarily reduce (3.16) to a' = 0 , In this case
a' = 0 ( and hence the condition (2.5) on the AR part of (3.15) holds ) is
merely a sufficient but not necessary condition for (3.1). For example,
consider the VARMA(I,1) model. In the present case the conditions given by

(3.16) for k=0 and 1 become

18



+B)=0".

(3.24) a'Jl(Z)[Al + B1] = atl (2>[A1 )

2

If we take All and B1 such that rank(A1+ Bl) < m, and rank(Al) = rank(Bl) =
m for identification ( for instance, see Hannan (1969) ), it is clear that
(3.24) does not mean a' = Q'., Thus, the above proposition implies that even
if we reject the condition (2.5), we should not reject the RE hypotheses
(1.1).

Although the condition (3.16) is far more complicated than (2.5), it is
possible for this problem to derive some test statistics and the asymptotic
test procedures based on them by following the method developed by Kunitomo
and Yamamoto (1985). Alternatively, one may first test several restrictions
of (3.16) which are necessary conditions for (1.1) in VARMA models. The
condition (3.6) can be simplified further if we have additional information
on the parameters of the VARMA models. A fuller investigation on these
problems with applications will be reported in another occasion.

One may argue that the alternative test procedures advocated by Geweke
and Feige (1979) and Hansen and Hodrick (1980) are superior to those
discussed in the present paper, since their methods remain valid for the
smaller information set. However, it may be fair to say that their methods
have not been justified for nonstationary stochastic processes due to their

asymptotic theories,g/

4, Conclusion

The present paper exhibited two methodological difficulties for testing
the rational expectation (RE) hypotheses based wupon fitting vector
autoregressive (VAR) time series models. The first one discussed in Section

2 is crucial. We have shown that a widely accepted practice of differencing
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time series is not coherent with certain RE hypotheses and should not be
used., The second one discussed in Section 3 indicated the possibility of
model misspecification when VAR models are fitted to the smaller information
set, We examined this problem and derived instead a new formula based upon
vector autoregressive moving-average (VARMA) models to avoid such
misspecification.

Once revealed, these two' points may seem trivial to some
statisticians. However, since some econometric studies have already been
trapped into these troubles, it is worthwhile to examine the problem and
state propositions in formal fashion as we have done here.

Finally, our results have some implications not only for the problem of
testing RE hypotheses but also for more general econometric modelling with
RE hypotheses. In recent macroeconometric studies VAR models are often
fitted to filtered time series (for instance, Sims (1980)). Our result
(Theorem 1) indicates that this procedure automatically excludes RE
hypotheses for the original stochastic processes in most cases. It always
does so if the original stochastic processes are random walks. We hope that
this finding will correct a misunderstanding commonly held by time series

econometricians.
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gotnote

1/ The law of iterated projection states that E(ylz) = E(E(ylx,z)lz) where
X, ¥, and z are random variables. See Shiller (1978) for details and their
relevance for the RE hypotheses.

2/ In some cases it is necessary to include a constant term and trend terms
when the process is expressed for the original series as in (3.6). It is
easy to incorporate these terms into matrix A as in Fuller and Hasza (1981).
The results of the paper are essentially unchanged by such treatment of the
problem. Thus we ignore those terms for simplicity,

3/ When the absolute value of the characteristic roots of the determinantal

Py

m .
n ¥ Aizp I = 0 is not smaller than one, the usual

i=1

asymptotic theory for stationary stochastic processes cannot be used. For
instance, the order of convergence is not /T but c(T), where c(T) is some
function of the sample size T. See Anderson (1959), and Dickey and Fuller
(1979) for instance.

equation | =z
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