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Laboratory Experiments in Consumer Research: 
Estimating the Effect of a Manipulation-check Variable 

 
 

ABSTRACT 
 
In consumer research and psychological experiments, subjects' states (attitudes) are 
manipulated by means of stimulus treatment in order to examine the effects of the 
subjects' states (attitudes) on the target variable. The interest here is not the effect of 
the treatment (stimulus) itself, but the effect on the target variable of the difference in 
state produced as a result of the treatment. Therefore, a manipulation check is usually 
performed to establish the validity of the experimental design, i.e., whether the stimulus 
produced the intended difference in state. 
 
When the manipulation-check variable (state) is directly associated with the target 
variable, one encounters the problem of confounding that affects both variables. To 
eliminate this problem, randomized controlled trials (RCTs) are used, but two 
weaknesses exist: first, only a discrete, binary effect of the presence or absence of 
treatment on the target variable can be uncovered. Second, the imperfection of the 
experimental design, in which the state induced by the treatment (stimulus) varies from 
subject to subject, resulting in different effects on the target variable, cannot be taken 
into account. 
 
In this study, we propose an approach that can correctly estimate the effect, which 
relates the manipulation-check variable to the target variable, even when unobserved 
confounding factors are present. By accounting for imperfections in the experimental 
design, the effect of the state variable becomes statistically more efficient than the 
effect of the experimental approach. The simulation analysis confirms that, for the 
same sample size, our instrumental variable approach is more significant than the 
usual experimental approach. 
 
 
Keywords: experiment, marketing, manipulation check, treatment, state, 
instrumental variable 
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1. Introduction 
 
One of the greatest advantages of conducting experiments in empirical marketing 
research is the ability to control various factors of no interest. This is because in a 
randomized controlled trial (RCT), subjects are randomly assigned to an treatment 
group and a control group, allowing for balancing the effects of both observed factors 
(covariates) and unobserved factors between the two groups. 
 
There are two types of experiments: field experiments conducted at actual sites 
(markets) and laboratory experiments conducted in artificial environments. A well-
known example of a field experiment is IRI's research service called BehaviorScan®, 
which was started in the 1970s and used RCTs to verify the effects of TV commercials 
on consumer purchases. Field experiments are also widely used to verify the effects 
of sales promotion activities such as discounts, coupons, and sampling. Recent 
developments in information technology have made it possible to conduct RCTs, called 
A/B tests, at a low cost on the Internet. Laboratory experiments, such as pre-market 
tests like ASSESOR®, are also well known. In these marketing experiments, we are 
interested in the impact of the treatment itself (with or without advertising) on the target 
variable (sales). 
 
Likewise, laboratory experiments are a popular approach in consumer research and 
psychology. In many cases, the subject's state is manipulated by means of a stimulus 
treatment in order to test the effect of the subject's state (attitude) on the target variable. 
The interest here is not the effect of the treatment (stimulus) itself, but the effect on the 
target variable of the difference in state produced as a result of the treatment. 
Therefore, a manipulation check (mostly self-reported responses) is essential to 
establish the validity of the experimental design, i.e., whether the treatment produced 
the intended difference in state. 
 
In this study, we first consider a naive approach in which the manipulation-check 
variable (state) is directly related to the target variable. To avoid the effects of 
confounding factors, which is a problem of the naive approach, we then introduce an 
experimental approach. Next, we propose an instrumental variable approach that can 
correctly estimate the effect, which relates the manipulation-check variable directly to 
the target variable, if the treatment variable is incorporated as an instrumental variable, 
even under the influence of unobserved confounding factors. 
 
There are two advantages of the instrumental variable approach. First, it allows 
estimating the effect of the manipulation-check variable itself, which is continuous, on 
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the target variable. This is particularly useful in consumer research, where the 
manipulation-check variable (attitude, state), rather than the discrete (0/1) treatment 
variable, is of research interest. Second, it allows for imperfection of the treatment on 
the manipulation-check variable. As a result, the effect of the state variable will be more 
statistically efficient than the effect of the experimental approach. 
 
This paper is organized as follows. Section 2 introduces the naive and experimental 
approaches to the analysis of laboratory experiments used in existing studies and 
points out their weaknesses. To overcome the weaknesses, Section 3 describes the 
instrumental variable approach, which can properly estimate the effect of a 
manipulation-check variable on the target variable. In Section 4, we show through 
simulation analysis that the estimation by the instrumental variables approach is 
superior (unbiased and efficient) to that of the naive and experimental approaches, 
even in the presence of confounding factors. Section 5 concludes the paper by 
presenting summary and extensions of the instrumental variable approach. 
 
 

2. Existing Approaches in the Analysis of Laboratory Experiments 
 
In explaining the naive and experimental approaches, consider the following marketing 
problem. Corporate SDG activities require significant resources, but do they really 
increase the profit of the company? To address this managerial issue, the following 
research question (RQ) is considered. 
 
[RQ] To what extent does a company's SDG image affect the purchase intention of the 
company? 
 
The simplest approach to this RQ would be to present examples of SDG activities of 
various companies in a questionnaire and ask consumers to self-report their attitudes 
and purchase intentions. For example, for each activity, we would ask consumers to 
answer “SDG image of that company” (x) on a 5-point scale and “purchase intention 
toward that company” (y) on a 7-point scale, and estimate a model y = a + bx + e 
regressing y on x. If b is significantly positive, we conclude that there is an effect. 
 
However, this approach is problematic because the estimate is affected by factors that 
are correlated with both the explanatory and target variables. 
 
The SDG activities of a large company with more resources and better public relations 
skills may appear to be more impressive than those of a small company, and at the 
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same time, consumer purchase intentions may favor the large company over the small 
company. In other words, the confounding factor of firm size is positively correlated 
with both the explanatory and target variables. In that case, a regression model 
ignoring the confounding factor would overestimate the true value of b. 
 
Conversely, consumers who anticipate the strength of public relations of large firms 
may discount their SDG activities more than those of small firms. In other words, the 
confounding factor of firm size is negatively correlated with the explanatory variable 
and positively correlated with the target variable. In this case, a regression model that 
ignores the confounding factor will underestimate the true value of b. 
 
One might think, then, that it would be better to estimate a regression model with the 
confounding factor added as a covariate. However, if the confounding data is not 
observable, or if we do not even know what kind of confounders exist, we cannot 
incorporate them into a model as covariates. 
 
This is where RCTs come in. We randomly present subjects with a SDG activity in the 
treatment group (T=1) and a non-SDG activity of the same firm in the control group 
(T=0), and ask them to self-report their SDG image and purchase intention toward the 
firm. Because randomization results in confounding factors having equal effects across 
the two groups, the average treatment effect (ATE) of SDG activities (vs. non-SDG 
activities) on purchase intention can be estimated by comparing the values of the target 
variable across the two groups. That is, ATE = E[y|T=1] - E[y|T=0]. Here, to establish 
whether the experimental design is valid, we perform a manipulation check to see 
whether the treatment changed the value of the explanatory variable (x = SDG image). 
That is, we need to check that b>0 in a regression model, x = bT + e. 
 
 

3. Instrumental Variable Approach 
 
The experimental approach eliminates the confounding factor problem, but only yields 
a binary-level difference in the degree to which the presence or absence of SDG 
activity (T = 1/0) is reflected in differences in purchase intention (y). However, even 
with the same stimulus (SDG activity), the degree of psychological state brought about 
(SDG image) would differ among subjects. Usually, the interest in consumer research 
is not the effect of the treatment (stimulus) itself, but the impact on the target variable 
of the difference in the state produced as a result of the treatment. Therefore, the 
“degree of influence” (continuous) from the SDG image (x) to y is more useful than the 
“influence” (discrete) from the treatment (T) to y. In other words, we want to relate y 
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with x but not T, and at the same time, we would like to avoid the influence of 
confounding factors that would be problematic in a naive approach. 
 
Therefore, in this study, we propose an instrumental variable approach that allows us 
to correctly estimate E[y|x] by associating the manipulation-check variable (x) with the 
target variable (y), even in the presence of unobserved confounding factors. In other 
words, we take advantage of the property that RCT randomly assign different values 
of the manipulation-check variable to confounding factors (Angrist and Pischke 2009). 
 
Figure 1 summarizes the relationships among the variables that have emerged so far. 
x is the manipulation-check variable (SDG image), y is the target variable (purchase 
intention), u is the confounding factor (firm size), and T is the treatment variable (=1 for 
SDG activity, =0 for non-SDG activity). 
 
 

 
 

Figure 1: Relationship among relevant variables 
 
 
3.1.1 Instrumental Variables 
 
A variable z that satisfies the following two assumptions is called an instrumental 
variable (Wooldridge 2020). 
（１） cov[z, u] = 0 

（２） cov[z, x] ≠ 0 

 
Using this property, the instrumental variable method says that the effect b of x on y 
can be expressed by equation (3), even in the presence of unobserved confounding 
factors (Appendix 1). 
 
（３） b(IV) = cov[z, y] / cov[z, x] 
 
Whether the treatment variable T (1/0) satisfies the instrumental variable assumption 

SDG image
x

b

c1 c2

a
purchase
intension
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is examined in detail in section 3.2. If it does, z = T and equation (3) can be derived as 
in equation (4) (Appendix 2). 
 
（４） b(IV) = { E[y|T=1] – E[y|T=0] } / { E[x|T=1] – E[x|T=0] } 

 
3.2 Assumptions of the Instrumental Variable Approach 
 
In order to properly estimate the effect of x using the instrumental variable method, z 
must also satisfy assumptions 3 and 4, in addition to assumption 1 (equation (1)) and 
assumption 2 (equation (2)) in the previous section. (Wooldridge 2020). 
 
[Assumption 1] exogeneity: presence of treatment is uncorrelated with confounding 
factors (firm size). 

cov[z, u] = 0 
This assumption is satisfied because the presence or absence of treatment is random 
in RCTs. 
 
[Assumption 2] relevance: the presence or absence of treatment is associated with 
the difference in state (image) 

cov[z, x] ≠ 0 

The association of the treatment can be confirmed by the F-test of the regression 
model (treatment ⇒ image) (if F>10 or more, there is an association (Staiger and 
Stock 1997)). 
 
[Assumption 3] exclusion restriction: treatment affects the target (purchase 
intention) only through the state (image). In other words, once the value of x is 
determined, the impact on y is the same regardless of z. This means that z is excluded 
from the expression for y (y does not include z). 
 
To see if assumption 3 is satisfied, we can check that in a mediation analysis with y as 
the target variable and z as the causal variable, the direct effect becomes non-
significant when the indirect effect through the mediating variable x is included. In this 
mediation analysis, however, the effects of confounding factors must be controlled for. 
 
[Assumption 4] monotonicity: The image increases with the presence of treatment. 

{E(x|T=1) – E(x|T=0)} > 0 
We can check if the regression (treatment => image) coefficient for the t-test is 
positively significant (assumption 2). This assumption is usually satisfied because the 
experimental manipulates x in the intended direction by the treatment (T) unless the 
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design is flawed. 
 
3.3 Advantages of the Instrumental Variable Approach 
 
There are two advantages of the instrumental variable approach. First, it is possible to 
estimate the effect of the manipulation-check variable itself, which is continuous, on 
the target variable. This is particularly useful in consumer research and psychology, 
where the manipulation-check variable (attitude, state), rather than the treatment 
variable, is of research interest. 
 
Second, it allows for imperfection of the treatment effect on the manipulation-check 
variable. The same treatment may significantly increase the SDG image of the 
company in some subjects and only slightly in others. As a result, subjects in the same 
treatment group will exhibit different effects on the target variable. By accounting for 
these differences, the effect of the state variable will be more statistically efficient than 
the effect of the experimental approach. Thus, for the same sample size, the 
instrumental variable approach tends to yield more statistically significant results than 
the usual experimental approach. 
 
 

4. Simulation Study 
 
In this section, we compare the results of the three approaches (naive, experimental, 
and instrumental variable methods) to estimate the impact of SDG image on purchase 
intention. As represented in Figure 1, x is the manipulation-check variable (SDG image), 
y is the target variable (purchase intention), u is the confounding factor (firm size), and 
T is the treatment variable (= 1 for SDG activity, = 0 for non-SDG activity) that 
corresponds to the instrumental variable. 
 
In the simulation analysis, we set a=b=1 and consider four cases, representing different 
confounding situations with different values of c1 and c2. An error term following an 
independent standard normal distribution (mean 0, variance 1) was added to x and y, 
respectively (not shown in Figure 1 for simplicity), generating 1000 data points. Let us 
summarize the three approaches to estimation. 
 
In the naive approach, the effect is estimated by regressing the state (image) variable 
x on the target variable y, which we call AT (As Treated). 

y = a + b(AT) x + e,  estimate of b(AT) 
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The experimental approach is called ITT (Intention To Treat) because it is the difference 
between the means of the target variable y in the treatment and control groups and is 
an estimator based on the treatment intention. 

b(ITT) = E[y|T=1] – E[y|T=0]  

 
The estimator for the instrumental variable approach is expressed in equation (4) of 
Section 3.1. 
（４）  b(IV) = {E[y|T=1] – E[y|T=0]} / {E[x|T=1] – E[x|T=0]} = b(ITT) / {E[x|T=1] – E[x|T=0]} 

 
Let us now consider whether the treatment variable (T) satisfies the four assumptions 
of the instrumental variable approach. 
 
[Assumption 1] exogeneity: cov[T, u] = 0 
The presence or absence of a treatment is randomly assigned and is thus uncorrelated 
with confounding factors. So the assumption is satisfied. 
 
[Assumption 2] relevance: cov[T, x] ≠ 0 
Since the purpose of the experiment is to manipulate subjects' SDG images (x) with 
and without treatment, T and x is expected to be correlated. Here we will confirm by 
statistically verifying that the F-test (or the square of the t-value of the slope coefficient) 
for the regression model (treatment ⇒ image) is significant. 
 
[Assumption 3] exclusion restriction: the treatment affects the target only through 
the state. 
In the simulation data generated according to Figure 1, this is satisfied because T is 
excluded from the expression for y (T is not included in the expression for y). 
 
[Assumption 4] monotonicity: {E[x|T=1] – E[x|T=0]} > 0 
Since the purpose of the experiment is to manipulate subjects so as to increase their 
SDG image with treatment, this assumption is expected to be satisfied. Here we will 
confirm that the t-test of the regression (treatment ⇒ image) coefficient is significantly 
positive. 
 
Table 1 shows the estimation results and their standard errors by the naive approach 
b(AT), the experimental approach b(ITT), and the instrumental variable approach b(IV). 
Note that the true value of b is 1. 
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Table 1： Estimation Result of Unstandardized b 
The effect of confounding adds bias to b(AT), but there is no bias in b(ITT) and b(IV). 
Also, standard errors are smaller for b(IV), which accounts for the imperfect 
experimental design, than for b(ITT). (standard errors in parentheses, Gelman and Hill 
2007) 
 

confounding a b c1 c2 b(AT) b(ITT) b(IV) F-
value 

t-
value 

b(AT) 
biased? 

No 1 1 0 0 1.01 
(0.03) 

1.05 
(0.09) 

1.02 
(0.06) 

249.7 15.8 unbiased 

No 1 1 0 1 1.06 
(0.04) 

1.09 
(0.12) 

1.05 
(0.09) 

249.7 15.8 unbiased 

Positive 1 1 1 1 1.47 
(0.03) 

1.12 
(0.16) 

1.05 
(0.09) 

127.2 11.3 over-
estimation 

Negative 1 1 1 -1 0.57 
(0.03) 

1.05 
(0.09) 

0.98 
(0.09) 

127.2 11.3 under-
estimation 

  

 
When there is no effect of the confounding factor (c1=0), b(AT) has no bias and its 
standard error is smaller than that of b(IV) and b(ITT). However, when the confounding 
factor is positively correlated to the state and target variables (c1=1, c2=1), b(AT) 
overestimates the true value, and when the confounding factor is negatively correlated 
(c1=1, c2=-1), b(AT) underestimates the true value. In contrast, b(IV) and b(ITT) are 
estimated without bias. Standard errors tend to be smaller for b(IV), which takes into 
account imperfections in the experimental design, than for b(ITT). 
 
Next, let us verify whether the four assumptions of the instrumental variables are 
satisfied. 
Assumption 1 (exogeneity) is satisfied because the treatment is uncorrelated with 
confounders in a randomized controlled trial. 
Assumption 2 (relevance) is satisfied because the F-value for the regression model 
from treatment (T) to image (x) in Table 1 is significant (and >10). 
Assumption 4 (monotonicity) is met because the t-value of the regression coefficient 
from treatment (T) to image (x) in Table 1 is significantly positive. 
Assumption 3 (exclusion restriction) is satisfied because, in the two mediation 
analyses (Figure 2) where confounding do not exist (c1 = 0), the significant direct effect 
from treatment (T) to target (y) becomes insignificant when mediated by image (state 
x). 
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Figure 2: Results of the Mediation Analysis 

The significant direct effect from intervention to purchase intention become 
insignificant when mediated by image. (Standard errors in parentheses) 

 
 
Table 2 shows the standardized estimates. As with the unstandardized estimates, 
when there is no confounding (c1=0), b(AT) has no bias. When a confounding factor is 
present, b(AT) is subject to bias in the direction of over- or underestimation, so the 
estimate is not informative. On the other hand, for b(ITT) and b(IV), where the problem 
of confounding does not occur, we find a larger effect for b(IV) than for b(ITT), which 
accounts for imperfect experimental design. 
 
 

Table 2： Standardized Estimation Result of b 
The effect of confounding adds bias to b(AT), but there is no bias in b(ITT) and b(IV). 
The effect size is larger for b(IV) than for b(ITT), which accounts for the imperfection 
of the experimental design. (standard errors in parentheses, Gelman and Hill 2007) 
 

confounding? a b c1 c2 b(AT) b(ITT) b(IV) b(AT) 
biased? 

No 1 1 0 0 0.75 
(0.02) 

0.34 
(0.03) 

0.75 
(0.05) 

unbiased 

No 1 1 0 1 0.64 
(0.02) 

0.28 
(0.03) 

0.63 
(0.06) 

unbiased 

Positive 1 1 1 1 0.88 
(0.02) 

0.21 
(0.03) 

0.63 
(0.05) 

over-
estimation 

Negative 1 1 1 -1 0.58 
(0.03) 

0.34 
(0.03) 

1.00 
(0.09) 

under-
estimation 

  

 

1.03***

treatment
T

intention
y

SDG image
x 1.01***

1.05*** --> 0.008 (0.109) 

c1=0, c2=0

1.03***

treatment
T

intention
y

SDG image
x 1.06***

1.09*** --> -0.006 (0.105) 

c1=0, c2=1
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5. Conclusions 
 
In laboratory experiments in consumer research and psychology, subjects' state 
(attitude) is usually manipulated through stimulus intervention in order to test the effect 
of the subjects' state (attitude) on the target variable. A manipulation check is then 
conducted to establish the validity of the experimental design, i.e., whether the stimulus 
produced the intended difference in state. 
 
Usually, the interest of the study is not the effect of the treatment (stimulus) itself, but 
rather the effect of the difference in state produced as a result of the treatment on the 
target variable. When the manipulation-check variable (state) is directly associated 
with the target variable, one encounters the problem of confounding that affect both 
variables. To eliminate this problem, randomized controlled trials (RCTs) are used, but 
two weaknesses exist: first, only a discrete, binary effect of the presence or absence 
of a treatment on the target variable can be uncovered. Second, the imperfection of 
the experimental design, in which the state induced by the treatment (stimulus) varies 
from subject to subject, resulting in different effects on the target variable, cannot be 
taken into account. 
 
In this study, we proposed an instrumental approach that can correctly estimate E[y|x], 
even when unobserved confounding factors are present, if the treatment variable is 
incorporated as an instrumental variable. This approach exploits the idea of the 
instrumental variable method that the RCT intervention randomly assigns different 
values of the manipulation-check variable to confounding factors. In the simulation 
analysis, we compared the estimation of causal effects in the naive, experimental, and 
instrumental variable approaches in the presence and absence of a confounding factor. 
 
In operation, there are two advantages of the instrumental variable approach. First, it 
allows estimating the effect of the manipulation-check variable itself, which is 
continuous, on the target variable. Second, it allows for imperfection of the treatment 
on the manipulation-check variable. As a result, the effect of the state variable will be 
more statistically efficient than the effect of the experimental approach. 
Thus, for the same sample size, the instrumental variable approach produces more 
significant result than the usual experimental approach. 
 
One limitation of this approach is that, in the presence of unknown confounding factors, 
one must rely on theory to determine whether Assumption 3 is satisfied, because a 
proper mediation analysis cannot be performed. A situation in which assumption 3 is 
not satisfied is when a treatment changes a state other than that monitored by the 
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manipulation-check variable and that state affects the target variable. Therefore, it is 
important to adequately capture the state that is being changed by the treatment, such 
as by making the manipulation-check variable a multiple-item sum. 
 
In this paper, we use the simplest one-factor (instrumental variable) two-level (with or 
without treatment) ANOVA framework to estimate the effect of a manipulation-check 
variable in a laboratory experiment. There are several possible directions for extending 
this method. The first is to extend it to a two-factor analysis of variance. This extension 
would be very useful since interaction analysis is often the core of research in 
consumer research and psychology. Second, we can extend it to an analysis of 
covariance framework by adding covariates, which are exogenous variables. Third, it 
can be applied to models that include moderating variables. 
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APPENDIX 1 

 
Let x2 be the unobserved confounding factor and define y as in equation (1). 
 
（１） y = b0 + b1・x1 + b2・x2 + e = b0 + b1・x1 + u where u = b2・x2 + e 
 
Thus, the effect of x2 is included in the error term u. 
From the definition of confounding factors, cov[y, u] ≠ 0 and cov[x1, x2] ≠ 0 
 
From endogeneity (explanatory variable x1 and error term u are correlated), there 
exists bias （du/dx1） in the effect estimation of x1 by OLS. 

dy/dx1 = b1 + du/dx1 
 
Now consider an instrumental variable z that satisfies the following assumptions. 

cov[z, u] = 0 
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cov[z, x1] ≠ 0 

Then, 

cov[z, y] = cov[z, b0 + b1・x1 + u] = b1・cov[z, x1] + cov[z, u] = b1・cov[z, x1] 

This leads to 

b1 = cov[z, y] / cov[z, x1] 

 
Multiplying the denominator and numerator by cov[z, z], 
 

b1 = (cov[z, y]/cov[z, z]) / (cov[z, x1] / cov[z, z]) = b / a 

 
b1 can be interpreted as the ratio of the coefficient b (y regressed on z) to the coefficient 
a (x1 regressed on z). 
 
Replacing the instrumental variable z with the treatment variable T, estimator b1 is 
expressed as follows (Appendix 2). 
 

b1 = { E[y|T=1] – E[y|T=0] } / { E[x1|T=1] – E[x1|T=0] } 

 
2SLS can also be used for estimation (Wooldridge 2020). 
 
  

APPENDIX 2 
 
First, 
cov[𝑧𝑧,𝑦𝑦] 

= 𝐸𝐸[𝑧𝑧𝑦𝑦] − 𝐸𝐸[𝑧𝑧]𝐸𝐸[𝑦𝑦] 
= 𝑝𝑝1𝐸𝐸[𝑧𝑧𝑦𝑦|𝑧𝑧 = 1] + 𝑝𝑝0𝐸𝐸[𝑧𝑧𝑦𝑦|𝑧𝑧 = 0] − 𝑝𝑝1{ 𝑝𝑝0𝐸𝐸[𝑦𝑦|𝑧𝑧 = 0] + 𝑝𝑝1𝐸𝐸[𝑦𝑦|𝑧𝑧 = 1] } 
= 𝑝𝑝1{𝐸𝐸[𝑦𝑦|𝑧𝑧 = 1] − 𝑝𝑝1𝐸𝐸[𝑦𝑦|𝑧𝑧 = 1]} − 𝑝𝑝1𝑝𝑝0𝐸𝐸[𝑦𝑦|𝑧𝑧 = 0] 
= 𝑝𝑝1𝑝𝑝0𝐸𝐸[𝑦𝑦|𝑧𝑧 = 1] − 𝑝𝑝1𝑝𝑝0𝐸𝐸[𝑦𝑦|𝑧𝑧 = 0] 
= 𝑝𝑝1𝑝𝑝0{ 𝐸𝐸[𝑦𝑦|𝑧𝑧 = 1] − 𝐸𝐸[𝑦𝑦|𝑧𝑧 = 0] } 

 
Similarly, 

cov[𝑧𝑧, 𝑥𝑥] = 𝑝𝑝1𝑝𝑝0{ 𝐸𝐸[𝑥𝑥|𝑧𝑧 = 1] − 𝐸𝐸[𝑥𝑥|𝑧𝑧 = 0] } 
 
Therefore, 

b(IV) =
cov[𝑧𝑧,𝑦𝑦]
cov[𝑧𝑧, 𝑥𝑥] =

𝐸𝐸[𝑦𝑦|𝑧𝑧 = 1] − 𝐸𝐸[𝑦𝑦|𝑧𝑧 = 0]
𝐸𝐸[𝑥𝑥|𝑧𝑧 = 1] − 𝐸𝐸[𝑥𝑥|𝑧𝑧 = 0] 


