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Abstract

This paper presents a multi-agent equilibrium model within an incomplete market framework, introducing a super-long
discount rate for insurance companies while incorporating the dynamics of government financing and central bank operations
in purchasing government bonds.

The financial market under examination includes dividend-paying securities that represent the market value of outstanding
government bonds, categorized by their time to maturity. The model considers the optimal consumption and portfolio problems
of agents, who possess varying risk sentiments and heterogeneous time preferences for consumption.

Applying a convex dual problem approach, we derive expressions for the equilibrium interest rate and market price of risk
associated with government bonds, segmented by their remaining time to maturity. Additionally, we associate exogenously
determined dividend processes, which reflect notional adjustments due to the central bank’s bond purchases, government bond
issuances, and coupon payments, in order to derive the yield curve for government bonds in equilibrium.

Our study’s contribution lies in incorporating changes in the supply of government bonds in the secondary market into
the incomplete market equilibrium model. This approach reveals the heterogeneous perspectives among agents regarding
fundamental risks, represented by Brownian motion, and constructs a model that explicitly calculates the impact of net
supply changes on super-long discount rates.

Lastly, we examine how variations in the supply of government and central bank bonds impact the pricing of insurance
products, including death benefits and pension annuities, through changes in the super-long discount rates. This analysis is
vital for insurance pricing and the evaluation of government bonds on the asset side of insurance companies.

Key words: Incomplete Market; Super-Long Discount Rates; Government Bond Supply; Insurance Asset-Liability
Management
JEL classification codes : C61; D91; E52; G12; H63.

1 Introduction

Life insurance companies require super-long maturity bonds in their asset portfolios to match the cash flows generated
by their liabilities, such as repayments for life and pension insurance. However, government bonds often have limited
maturities, and ideal super-long maturity bonds, such as those with maturities of 50 to 100 years, are not available
for effective asset-liability management within these companies. For instance, the longest maturity for Japanese
government bonds is 40 years (Ministry of Finance, Japan [1]), while the longest maturity for U.S. Treasury bonds is
30 years. Even bonds with a maturity of 30 years experience liquidity issues, as life insurance companies are typically
the only significant investors interested in such long-term investments.

As a result, insurance companies must develop methods to estimate the super-long interest rate for discounting
purposes when pricing their insurance products. This may involve extrapolating their yield curves despite the lack
of tradable super-long maturity assets, which would typically assist in determining the discount rate for pricing
insurance products. This situation not only leads to a mismatch between the asset and liability sides of life insurance
companies but also complicates the pricing of life insurance products. Since the longer the maturity of insurance
products, the greater the impact of discount rate differences on their present value, assumptions about the super-long
interest rate for discounting are critical for these companies.
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Moreover, it is increasingly vital for insurance companies to account for the effects of central bank policies on the
supply of government bonds when estimating the super-long discount rate used in insurance pricing. Recently, central
banks have implemented measures to control long-term interest rates through the management of government bond
supply in the secondary market, which primarily involves institutional investors. For instance, the Bank of Japan
has conducted yield curve control, purchasing long-term government bonds aggressively to maintain low long-term
yields from 2017 to 2024 (Bank of Japan [2], [3]). Even after the policy’s termination, they have also indicated the
possibility of increasing the purchase amount if government bond yields rise due to inflation (Kihara [4]). Similarly, the
European Central Bank has initiated unconventional monetary easing policies and asset purchase programs, buying
assets, including government bonds, to keep yields low (Andrade et al. [5]). While traditional monetary policy focuses
on controlling short-term interest rates, during periods of monetary easing, central banks often purchase long-term
bonds and adjust their supply as part of their easing strategies. This control over the supply of long-term government
bonds significantly influences the long-term interest rates that insurance companies rely on when establishing rates
for future insurance payouts (see Bank of Japan [6]; Pelizzon et al. [7]).

Recognizing the significance of the super-long discount rate for insurance pricing and the central banks’ control
over government bond supplies, we propose a multi-agent equilibrium model. This model aims to determine super-
long interest rates for discounting insurance product pricing, incorporating the bond supply control policies of the
government and central banks. The agents within the model represent institutional investors’ shareholders, who
possess diverse perspectives on risk and varying time preferences for consumption.

Using this model, we can derive a long-term equilibrium interest rate that is useful for estimating the discount rate
for insurance product payoffs. By incorporating dividend processes that reflect government bond supply influenced
by monetary policy, we calculate the equilibrium interest rate, the market price of risk, and the resulting state price
density processes. This allows us to derive the prices of zero-coupon bonds for varying maturities and construct the
corresponding yield curve. The super-long interest rate, which has implications for the pricing of life and pension
insurance products - potentially with maturities exceeding 100 years when considering increasing life expectancy
in the future (Ministry of Health, Labor and Welfare, Japan [8]) - is determined endogenously through the multi-
agent equilibrium model. This model incorporates the time preferences and perspectives of institutional investors’
representative shareholders, as well as the dividend processes reflecting government policy actions.

We remark that our model utilizes a time and state-dependent expected utility, in which the utility function of agent
i is defined as u(t, ω, c) = exp(−βit)η

i
t log c. This function incorporates heterogeneous time preferences βi and views

λi on the fundamental risks represented by Brownian motion. Here, βi > 0 is the time preference parameter, and ηi is

an exponential martingale of the form ηit = exp
(
− 1

2

∫ t

0
|λi

s|2 ds+
∫ t

0
λi
s dWs

)
, which will be explained in Section 2.2

in detail. Due to ηit in the expectation, this can be considered the subjective probability of the agent. This time and
state-dependent utility function expresses agents’ varying time preferences and reflects their heterogeneous views on
fundamental risks. Additionally, this utility is analytically tractable, enabling us to determine an equilibrium state
price density process for agents in an incomplete market setting.

Numerical examples illustrate how policy changes by the authorities and sentiment changes of the institutional
investors’ representative shareholders affect insurance pricing through the change in the super-long discount rate.
A decrease in bond supply in the secondary market, typically resulting from the central bank’s bond purchasing
operations in monetary easing, for instance, tends to lower interest rates and increase insurance prices. Our model
can estimate the effects of changes in bond market supply on insurance companies’ insurance pricing through the
change in the super-long discount rates.

For related literature on equilibrium models that derive the term structure of interest rates and address optimal
consumption problems in an incomplete market setting, Vasicek [9], [10] developed a term structure of interest rates
under complete market equilibrium, involving heterogeneous agents and a production process. Kizaki et al. [11] pro-
posed a multi-agent equilibrium model in a complete market setting, where agents have differing sentiments about the
fundamental risks represented by Brownian motion. Karatzas et al. [12] tackled the optimal consumption and portfo-
lio problem for an agent in an incomplete market model using a convex dual approach, which incorporates fictitious
securities. In research concerning an incomplete market equilibrium model, Kizaki et al. [13] explored multi-agent
equilibrium scenarios in an incomplete market context. This research focused on obtaining risk-neutral measures for
different agents and applying these measures to price reinsurance claims and analyze life-cycle investments under
exponential utility, considering varying risk attitudes and views on fundamental risks.

While Kizaki et al. [13] model the stock market within a financial market framework, our study aims to explicitly
model the bond market. We categorize government bonds by their time to maturity and analyze how changes in
their supply, influenced by unhedgeable economic factors, affect insurance pricing through variations in super-long
discount rates.

Moreover, in empirical studies examining the effect of central banks’ outright purchases on the term structure of
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interest rates using a reduced-form model, Nakano et al. [14] analyzed the impact of the Bank of Japan’s (BOJ)
purchases of Japanese government bonds (JGBs) during the Qualitative and Quantitative Easing (QQE) period
on the yield curve. They estimated this effect by directly linking the purchase amount to the yield curve using a
state-space model. Koeda and Sekine [15] evaluated the dynamic Nelson-Siegel model for Japanese government bond
yields, suggesting that QQE negatively affects the time-dependent decay factor in Nelson’s model. Jarrow and Li
[16] investigated the effect of quantitative easing on the term structure in the US by estimating an arbitrage-free
term structure model that integrates the price impacts of central bank purchases of government bonds. Ray et al.
[17] examined preferred habitat theory as a policy channel for quantitative easing, analyzing demand shocks within
an equilibrium model. Additionally, Joyce et al. [18] studied the Bank of England’s gilt purchases using an event
study on announcements integrated with a portfolio balance model.

While these empirical studies assess the impact of monetary policies on yield curves, our research is novel in con-
structing a model that examines these effects through a general equilibrium framework, allowing for endogenous
observation of impacts.

Regarding research on insurance problems, particularly concerning the optimal portfolio issues faced by insurance
companies in asset-liability management (ALM), Thomson [19] examined market-consistent pricing of financial
institutions’ liabilities within an incomplete market that is in equilibrium. Wang and Zhang [20] addressed ALM
challenges in incomplete markets and derived robust optimal investment strategies. Additionally, Wang et al. [21]
investigated equilibrium investment strategies for defined contribution (DC) pension plans amid stochastic markets
and variable contribution rates within a game-theoretic framework. For yield curve analysis related to insurance
companies’ asset-liability management, Vereda et al. [22] demonstrated that incorporating macroeconomic variables
and market data enhances the estimation of an existing VAR model’s yield curve. Zhao et al. [23] constructed a yield
curve featuring endogenously determined very long-term interest rates, consistent with market conditions within an
optimization framework.

Our study distinguishes itself from previous research by deriving equilibrium super-long discount rates within an
incomplete market model that incorporates agents’ heterogeneous time preferences and views on fundamental risks.
This study aims to elucidate the intrinsic effects of a multi-agent equilibrium model on the yield curve by modeling
the trading behaviors of institutional investors’ representative shareholders as individual optimal consumption and
investment problems. By this approach, we can determine the super-long discount rate in market equilibrium when
the total supply of government bonds aligns with the demand from representative shareholders of institutional
investors. While we have presented numerical examples illustrating the model’s impacts on insurance pricing through
changes in the super-long discount rate based on specified parameter sets, conducting an empirical analysis based
on this model remains one of our future research objectives.

The organization of this paper is as follows: Section 2 introduces the incomplete market model, detailing the securities
that represent the secondary market outstanding values of government bonds, categorized by time to maturity, along
with the dividend processes that reflect the net supply changes of government bonds influenced by the central bank
and government. This section also addresses an individual optimal consumption and portfolio problem within the
incomplete market setting. Section 3 presents the calculations of interest rates and the market risk premium. Section
4 provides numerical examples illustrating how changes in the supply of government bonds and agents’ sentiments
impact insurance pricing through super-long discount rates. Finally, Section 5 concludes the paper.

2 Discrete cash flow model

This section introduces a discrete cash flow model for multi-agent equilibrium in an incomplete market setting.
This model incorporates the government and central bank’s control of bond supply to the secondary market, which
comprises representative shareholders from banks and institutional investors such as life insurance companies and
pension funds.

First, we suppose a financial market consisting of N groups of the government bonds categorized by time to maturity,
one representative stock index in the country, and a money market account. Thus, N+1 securities and money market
account are traded.

For a trading period [0, T ], T > 0, let (Ω,F , {Ft}0≤t≤T , P ) be a filtered probability space satisfying the usual
conditions. Let W be a d-dimensional Brownian motion where d ≥ N + 1 and {Ft}0≤t≤T be an augmented filtra-

tion generated by the Brownian motion W . Let δj , r, µj
S , σ

j
S be R-valued (R1×d-valued for σj

S) {Ft}-progressively
measurable processes.

We also suppose that security j, j = 1, . . . , N + 1, that is, government bonds in the zones categorized by time to
maturity Tj , 0 < T1 < · · · < TN ≤ T and the stock index for security N + 1, pay out δj as dividends at K discrete
times {t1, t2, . . . , tK}, 0 < t1 < t2, . . . , < tK ≤ T .
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Namely, let Sj , j = 1, . . . , N + 1 be the market value process of the j-th security satisfying an SDE

dSj
t = µj

S,tS
j
t dt+ Sj

t σ
j
S,tdWt − dDj

t

= rtS
j
t dt+ Sj

t σ
j
S,t(θtdt+ dWt)− dDj

t , (1)

where θ is an Rd-valued {Ft}-progressively measurable process defined as

θ = σ⊤
S (σSσ

⊤
S )

−1(µS,t − r) ∈ Range(σ⊤
S ), (2)

and Dj is a cumulative dividend process defined as Dj
t =

∑K
k:tk≤t δ

j
tk
, and dDj

t := Dj
t − Dj

t−. Here, σS =

(σ1⊤
S . . . σN+1,⊤

S )⊤, µS = (µ1 . . . µN+1)
⊤, and Range(σ⊤

S ) is a linear space spanned by σ1
S . . . σN+1

S .

Also, we denote the price process of a money market account with instantaneous interest rate r by B, i.e.,

Bt = e

∫ t

0
rsds. (3)

2.1 Interpretation of the market outstanding value processes Sj , j = 1, . . . , N + 1

In detail, we interpret the secondary market outstanding values Sj , j = 1, . . . , N + 1 of the securities in the model
as follows. We consider Sj as a secondary market outstanding value of the government bonds with time to maturity
in zone Tj for j = 1, . . . , N and the stock index in the secondary market for j = N + 1. µj

S j = 1, . . . , N is the
expected return of the secondary market outstanding value of the government bonds in the zone Tj categorized by

time to maturity. Thus, we may understand µj
S as the instantaneous return of the government bonds categorized in

the zone with time to maturity Tj , where 0 < T1 < T2 < · · · < TN . We consider δjtk as the net receipt amount for
the representative shareholders of institutional investors, derived from the redemption minus issuance of government
bonds and coupons from the government bonds within the zone categorized as security j. This amount is controlled
exogenously by the government and central bank. Additionally, it includes the roll-down effect from long maturity
to short maturity, where, as time passes, the bond’s time to maturity shortens, causing it to be regarded as a bond
in a zone of shorter time to maturity.

In summary, the outstanding market values of government bonds, categorized by time to maturity in the secondary
market comprising agents such as representative shareholders of institutional investors, are denoted as Sj , j =
1, . . . , N . Additionally, the central bank’s monetary policy and the government’s fiscal policy are reflected in the
dividend process δj , j = 1, . . . , N .

We remark that the agents representing the shareholders of institutional investors trade the government bonds in the
zones as the baskets of the bonds with constant maturities, which pay dividends expressing the coupon payments,
redemption by the government, and the outright purchase by the central bank.

Remark 1 More in detail, the finance and treasury department’s bond issuing and the central bank’s bond outright
purchasing operations take place as follows.

Ministry of Finance, the finance and treasury department, submits the issuing plan for the government bond every
year. They investigate the average duration of the outstanding bonds they will need to redeem in the future and the
coupons they will need to pay. Then, they decide how much and how long they borrow from the market by newly
issuing bonds in addition to reissuing bonds for the redeemed amount. In detail, they determine the notional they
issue along with the maturity of the bonds to compensate for the redemption.

On the other hand, the central bank also decides for which sector of time to maturity they will purchase the bonds
by considering the outstanding notional of the government bonds in the sector and the yield to maturity. Then, they
determine the amount they purchase for the bonds in the zones categorized by time to maturity. They buy government
bonds called current bonds, issued in the latest among the bonds with the same time to maturity. For instance, in a
simple case, if the central bank aims to buy bonds with a 9-year time to maturity, it would buy a 10-year bond issued
one year ago, which is most recent, rather than a 20-year bond issued 11 years ago. Here, the 10-year bond issued
one year ago is the current bond.

Moreover, representative shareholders of institutional investors, such as pension funds and life insurance companies,
manage their portfolios by monitoring the notional amounts of bonds categorized by remaining time to maturity and
their corresponding yields.

For instance, a representative shareholder of a large institutional investor may hold 1 trillion yen of JGBs with a
time to maturity within five years, yielding 0.5%. They may also hold 2 trillion yen of JGBs with a time to maturity
of 5 to 10 years, yielding 1.0%; 3 trillion yen of JGBs with a time to maturity of 10 to 20 years, yielding 1.5%; and
2 trillion yen of JGBs with a time to maturity exceeding 20 years, yielding 2.0%. These shareholders continuously
monitor the yield curve of JGBs, which represents the yields corresponding to these different times to maturity.

Remark 2 The primary feature of the model is the incorporation of trading strategies from the perspectives of
institutional investors’ representative shareholders. These shareholders manage their government bond portfolios by
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categorizing bond positions based on time to maturity and monitoring their yield to maturity. The model is also
aligned with the perspectives of the government and the central bank, which issue or purchase government bonds
according to their plans. They monitor the outstanding notional amounts of bonds by time to maturity and their
yields.

Although one straightforward way of modeling their strategy is implementing the issuing, redemption, and purchasing
of government bonds, modeling in the way accompanies too many factors to be considered. First, each time, bonds with
different maturities are issued or redeemed. Second, though various bonds have been issued in the past at one point,
the bonds with the same time to maturity must have the same yield to maturity due to the arbitrage-free condition.
For example, the ten-year bond, the 20-year bond issued ten years ago, and the 30-year bond issued 20 years ago
have the same bond price if it is quoted in terms of zero coupon bond prices and the same yield to maturity. Thus,
modeling all series of bonds issued during the period is excessively complex, and we need to focus on a reasonable
way to capture the features of the model we deal with.

Thus, we develop a model that is useful for portfolio management by institutional investors’ representative share-
holders. This model focuses on bonds categorized by time to maturity and their yields, incorporating the impacts of
outright purchases by the central bank and reissuances by the government.

This modeling is unique in that it captures institutional investors’ representative shareholders’ portfolio management,
who aim to maximize their expected utility. It also incorporates the central bank’s outright bond purchases and the
government’s issuance schedule management, focusing on the time to maturity, outstanding volume, and yield curve
of government bonds. Thus, we can monitor the impact of the government’s and the central bank’s supply control of
the government bonds on the term structure of interest rates.

2.2 Individual optimization problem of the agents

Next, we introduce the individual optimization problems of the I agents. We suppose that there are I (I ≥ 2) agents
who have the log utility on K discrete-time consumption with heterogeneous beliefs on the Brownian motion W . Let

πi and πi,0, {Ft}-progressively measurable RN+1-valued and R-valued processes satisfying
∫ T

0
|πi

t|2ds,
∫ T

0
|πi,0

t |2ds,<
∞, P − a.s., be agent i’s position of the N +1 securities and the money market, respectively, and Xi be the wealth
process of agent i, the total value of agent i’s portfolio. We also suppose that agent i invests πi on value basis in the
N+1 securities and the rest πi,0 in the money market account and continuously rebalance its position. At K discrete
times t1, . . . , tK , agent i consumes cik where cik, k = 1, . . . ,K are Ftk -measurable non-negative random variables

satisfying E[
∑K

k=1(c
i
k)

2] < ∞,

Xi
t = πi,0

t + πi⊤
t 1, (4)

where 1 is an N + 1 dimensional column vector whose elements are 1. Firstly, the wealth process Xi satisfies the
following SDE,

dXi
t = πi,0

t

dBt

Bt
+

N+1∑
j=1

πi,j
t

dSj
t + dDj

t

Sj
t

− dCi
t

= rtX
i
tdt+ πi⊤

t σS,t(θtdt+ dWt)− dCi
t , Xi

0 = xi
0 > 0, (5)

where
dCi

t = Ci
t − Ci

t−; Ci
t =

∑
k:tk≤t

cik. (6)

Moreover, we impose
Xi

t ≥ 0, 0 ≤ ∀t ≤ T, P − a.s., (7)
which indicates that agent i’s wealth is always non-negative, that is, agent i does not go bankrupt.

Remark 3 (5) indicates that the agents’ holding position for security j changes in proportion to securities j’s
aggregate market value Sj at the discrete times tk, k = 1, . . . ,K. That is, if one percent of the outstanding notional
of security j is purchased back by the central bank or newly issued by the government, then one percent of the agent’s
holding security j is also bought back or added. In detail, let πj

i be the value of agent i’s position on the j-th zone
of government bonds categorized by time to maturity. At the discrete time t = tk, for example, agent i’s position on

security j on value basis also changes by −πi,j
tk

δjtk
Sj
tk

.

Secondly, we consider the following set of consumption processes ci as

Ai =

{
ci = {cik}k=1,...,K | E

[
K∑

k=1

Zθi

tk

Btk

cik

]
≤ xi

0, for all probability densitiesZθi

for risk-neutral probability measures

}
,

(8)
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where the probability density Zθi

is of the form

Zθi

t = e

{
− 1

2

∫ t

0
|θs+νi

s|
2ds−

∫ t

0
(θs+νi

s)·dWs

}
, σS,tν

i
t = 0, ∀t ∈ [0, T ], (9)

where νi is an Rd-valued {Ft}-progressively measurable process satisfying a weak version of Novikov’s condition
(e.g., Corollary 3.5.14 in Karatzas and Shreve [24] ).

Remark 4 The above admissibility of the consumption process derives from the condition in (7) where agent i does
not go bankrupt, i.e., its wealth is always non-negative. Since

Xi
t = xi

0 +

N+1∑
j=1

∫ t

0

πi,j
s

dSj
s + dDj

s

Sj
s

−
∑

k:tk<t

cik ≥ 0, (10)

taking expectation with the state-price density Hi
t =

Zθi

t

Bt
for t = T yields

xi
0 ≥ E

[
K∑

k=1

cikH
i
tk

]
. (11)

Thirdly, we assume that each agent has the log utility u(x) = log x on the consumption with subjective belief λi on
the Brownian motion W and maximizes the sum of its expected utility on the discrete consumption with discounting
for time-preference αi

t = e−βit, where βi > 0.

In detail, the probability density ηiT for the subjective belief λi of agent i, is defined as

ηiT = exp

(∫ T

0

λi
s · dWt −

1

2

∫ T

0

|λi
s|2ds

)
, (12)

where λi is an Rd-valued {Ft}-progressively measurable process satisfying a weak version of Novikov’s condition
(e.g., Corollary 3.5.14 in Karatzas and Shreve [24] ). Here, λi represents agent i’s subjective views on the Brownian
motion W . Namely, for the probability measure P i defined as

dP i

dP
= ηiT , (13)

by Girsanov’s theorem, WP i

defined as dWt = dWP i

t +λidt is a P i-Brownian motion and λi indicates agent i’s bias
on the Brownian motion W under the physical probability measure P .

Then, we consider the following individual optimization problem of agent i.

(Individual Optimization Problem)

Maximize
K∑

k=1

E[ηitkα
i
tk
log cik], (14)

with respect to ci ∈ Ai.

Specifically, ci is subject to the budget constraint

E

[
K∑

k=1

Hi
tk
cik

]
≤ xi

0, (15)

where αi
t = e−βit, and Hi

t =
Zθi

t

Bt
, for all density processes Zθi

for the risk-neutral probability measures of the form

Zθi

t = e

{
− 1

2

∫ t

0
|θs+νi

s|
2ds−

∫ t

0
(θs+νi

s)·dWs

}
, σS,tν

i
t = 0, ∀t ∈ [0, T ]. (16)

This individual optimization problem indicates that agent i aims to maximize its expected utility on its consumption
at discrete times with the time preference βi by choosing the consumption amount while continuously trading on
N + 1 securities and the money market account.

2.3 Solving a dual problem for the individual optimization

This section solves a dual-problem for this individual optimization problem (14) and (15). In the following, noting
that the individual optimization problem (14) and (15) is described as

sup
ci

inf
yi>0,νi,σSνi=0

K∑
k=1

E[ηitkα
i
tk
log cik] + yi

(
xi
0 − E[

K∑
k=1

Hi
tk
cik]

)
, (17)

we solve the dual problem of this and later confirm that the obtained solution is optimal.

Remark 5 The primal optimization problem describes the individual optimization problem (14) and (15) for the
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following reasons. If the given ci does not satisfy the budget constraint (15) for some Hi, the inf part is −∞ by
taking yi any large number. Thus, the sup part indicates that the sup is taken with respect to ci satisfying the budget
constraint (15). Hence, the primal problem expresses the individual optimization problem (14) and (15) where taking
supremum on the expected utility with respect to ci satisfying the budget constraint (15).

As we will observe in Section 2.5 for arbitrary {ck}k=1,...,K , where ck, k = 1 . . . ,K are non-negative Ftk -measurable
random variables, we determine (πi, πi,0) so that ci ∈ Ai, we have only to consider the following dual problem.

(Dual problem)

inf
yi>0,νi,σSνi=0

sup
ci

K∑
k=1

E[ηitkα
i
tk
log cik] + yi

(
xi
0 − E[

K∑
k=1

Hi
tk
cik]

)
, (18)

Proposition 1 ci,∗, νi, yi set as

ci,∗k =
xi
0∑K

k=1 α
i
tk

αi
tk
Zi
tk
Btk

Zθ
tk

> 0, (19)

νit = −λ̂i,⊥
t , (20)

yi =

∑K
k=1 α

i
tk

xi
0

, (21)

(22)
attain the inf-sup dual problem (18), where

Zi
t = exp

(
−1

2

∫ t

0

|λ̂i
s|2ds+

∫ t

0

λ̂i
s · dWs

)
, (23)

Zθ
t = exp

(
−1

2

∫ t

0

|θs|2ds−
∫ t

0

θs · dWs

)
. (24)

Here, λ̂i,⊥ is an orthogonal part of λi to the linear space spanned by σS, i.e., λ
i = λ̂i+λ̂i,⊥, λ̂i ∈ Range(σ⊤

S ), σS λ̂
i,⊥ =

0.

(Proof). First, for fixed yi, νi, we consider for each k and sample ω ∈ Ω,

sup
ci
k
≥0

[αi
tk
ηitk log c

i
k − yiHi

tk
cik]. (25)

This supremum is attained at

ci,∗k =
αi
tk
ηitk

yiHi
tk

. (26)

Setting

Ũ(yiHi
tk
, tk) := αi

tk
ηitk log c

i,∗
k − yiHi

tk
ci,∗k , (27)

we consider

inf
νi, σSνi=0

E

[
K∑

k=1

Ũ(yiHi
tk
, tk)

]
. (28)

First, we calculate

E

[
K∑

k=1

Ũ(yiHi
tk
, tk)

]
= E

[
K∑

k=1

αi
tk
ηitk log

(
αkη

i
tk

yiHi
tk

)]
− E

[
K∑

k=1

yiHi
tk

αi
tk
ηitk

yiHi
tk

]

= E

[
K∑

k=1

αi
tk
ηitk{logα

i
tk

+ log ηitk − log yi − logHi
tk
}

]
−

K∑
k=1

αi
tk
. (29)

Thus, we have only to consider

inf
νi, σSνi=0

E

[
−

K∑
k=1

ηitk logH
i
tk

]
= (30)

inf
νi, σSνi=0

E

[
K∑

k=1

ηitk

{∫ tk

0

rsds+
1

2

∫ tk

0

|θs + νis|2ds+
∫ tk

0

(θs + νis) · dWs

}]
(31)
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Noting that θ · νi = λ̂i · νi = 0, since

inf
νi, σSνi=0

Ei

[∫ T

0

(
1

2
|νis|2 + νis · λi

s

)
ds

]
(32)

is attained at νi = −λ̂i,⊥, we observe that the infimum is attained at νi = −λ̂i,⊥. Then, we have

Hi
t = exp

[
−
∫ t

0

rsds−
1

2

∫ t

0

|θs − λ̂i,⊥
s |2ds−

∫ t

0

(θs − λ̂i,⊥
s ) · dWs

]
=

Zθ
t

Bt exp(− 1
2

∫ t

0
|λ̂i,⊥

s |2ds−
∫ t

0
λ̂i,⊥
s · dWs)

(33)

where Ei denotes the expectation operator under the measure induced by λi, i.e., dP i

dP = ηiT , which implies that

dWt = dW i
t + λi

tdt, where W i is a Brownian motion under P i, by Girsanov’s theorem.

Finally, noting that consumption, dividend, and redemption occur at tk, k = 1, · · · ,K with t0 = 0 and tK = T , yi

is calculated as

inf
yi

K∑
k=1

E[ηitkα
i
tk
log ci,∗k ] + yiE

[
xi
0 −

K∑
k=1

Hi
tk
ci,∗k

]
, (34)

where

ci,∗k =
ηitkα

i
tk

yiHi
tk

=
αi
tk
Zi
tk
Btk

yiZθ
tk

, (35)

where we used
ηitk
Hi

tk

=
Zi
tk
Btk

Zθ
tk

. (36)

Substituting (35) into (34), we observe that this infimum is attained at

yi =

∑K
k=1 α

i
tk

xi
0

, (37)

and thus

ci,∗k =
xi
0∑K

k=1 α
i
tk

αi
tk
Zi
tk
Btk

Zθ
tk

. (38)

2

2.4 Confirmation of the optimality by convex duality argument

Then, we confirm that the obtained solution, ci,∗, νi, and yi, of the dual problem (18) is also a solution of the primal
problem (17) as follows.

Theorem 1 The solution of the dual problem (18), ci,∗, νi, yi obtained as

ci,∗k =
xi
0∑K

k=1 α
i
tk

αi
tk
Zi
tk
Btk

Zθ
tk

> 0, (39)

νit = −λ̂i,⊥
t , 0 ≤ t ≤ T (40)

yi =

∑K
k=1 α

i
tk

xi
0

, (41)

(42)
also attains the sup-inf of the primal problem (17).

(Proof). We show this by a convex duality argument. Noting that for y > 0, u : R+ → R twice continuously
differentiable with u′(x) > 0, u′′(x) < 0, and ũ(y) := supx(u(x)− xy),

ũ(y) ≥ u(x)− xy

ũ(u′(x)) = u(x)− xu′(x), (43)
we consider

uk(x) = αi
tk
ηitk log x,

u′
k(x) =

αi
tk
ηitk
x

, (44)
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uk(x) ≤ sup
x
(uk(x)− xy) + xy

= ũk(y) + xy (45)

For ci,∗k =
ηi
tk

αi
tk

yiHi
tk

and arbitrary cik satisfying the budget constraint, with y = yiHi
tk
,

ηitkα
i
tk
log(cik) ≤ ũk(y

iHi
tk
) + ciky

iHi
tk
,

ũk(y
iHi

tk
) = ηitkα

i
tk
log(ci,∗k )− ci,∗k yiHi

tk
, (46)

where the second equation follows since u′
k(c

i,∗
k ) = yiHi

tk
.

By the budget constraint, we have
K∑

k=1

E[cky
iHi

tk
] ≤ xi

0, (47)

Also, since
K∑

k=1

E[ci,∗k yiHtk ] = E

[
ηitkα

i
tk

Htk

Hi
tk

]
= yi

K∑
k=1

αi
tk

= xi
0, (48)

holds for all state price density processes H, ci,∗k satisfy the budget constraint for arbitrary state price density process
H.

Therefore, we have
K∑

k=1

E[ηitkα
i
tk
log(cik)] ≤

K∑
k=1

E[ũk(y
iHi

tk
)] +

K∑
k=1

E[ciky
iHi

tk
]

≤
K∑

k=1

E[ũk(u
′
k(c

i,∗
k ))] + E[ci,∗k yiHi

tk
] =

K∑
k=1

E[ηitkα
i
tk
log(ci,∗k )]. (49)

2

2.5 Optimal wealth and portfolio processes of the agents

Finally, for the optimal consumption ci,∗ obtained as the solution of the primal problem, the corresponding portfolio
process (πi,∗, πi,0,∗) satisfying the non-negative wealth process condition (7) is obtained as follows.

Theorem 2 Under the assumption that rank(σS,t) = N + 1 for 0 ≤ t ≤ T , the optimal wealth process Xi,∗ and the
portfolio process (πi,∗, πi,0,∗) corresponding to the optimal consumption ci,∗ in (39), i.e., (πi,∗, πi,0,∗) that generates
the wealth Xi,∗ satisfying the non-negative wealth process condition in (7), for the individual optimization problem
(15) are given as follows.

Xi,∗
t =

BtZ
i
t

Zθ
t

xi
0∑K

k=1 α
i
tk

K∑
k:tk≥t

αi
tk

> 0, (50)

πi,∗
t = Xi,∗

t (σS,tσ
⊤
S,t)

−1σS,t(λ̂
i
t + θt), (51)

and
πi,0,∗
t = Xi,∗

t − πi,∗⊤
t 1. (52)

(Proof).

First, we note that if we find Xi,∗ associated with (πi,∗, πi,0,∗) such that Xi,∗
t Hi

t +
∑

k:tk<t c
i,∗
k Hi

tk
is a martingale

and Xi,∗
T = 0, ci,∗ is in the admissible set Ai, since

x0 = E[
∑

k:tk<T

ci,∗k Hi
tk
]. (53)

We can find such wealth process of agent i Xi,∗ by

Xi,∗
t =

1

Hi
t

E[
∑

k:t<tk<T

ci,∗k Hi
tk
|Ft] (54)

since
Xi,∗

t Hi
t +

∑
k:tk<t

ci,∗k Hi
tk

= E[
∑

k:tk<T

ci,∗k Hi
tk
|Ft]. (55)
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As agent i’s optimal consumption is ci,∗k =
ηi
kα

i
tk

yiHi
tk

, we calculate

1

Hi
t

E[Hi
tk
ci,∗k |Ft] =

1

Hi
t

E

[
ηikα

i
tk

yi
|Ft

]
=

ηit
Hi

t

αi
tk

yi
, (56)

where

ηit = exp

[
−1

2

∫ t

0

|λi
s|2ds+

∫ t

0

λi
s · dWs

]
. (57)

Then, noting that
ηit
Hi

t

=
Zi
tBt

Zθ
t

, (58)

since

Hi
t =

1

Bt
exp

[
−1

2

∫ t

0

|θs − λ̂i,⊥
s |2ds−

∫ t

0

(θs − λ̂i,⊥
s ) · dWs

]
(59)

=
1

Bt
exp

[
−1

2

∫ t

0

(|θs|2 + |λ̂i,⊥
s |2)ds+

∫ t

0

(−θs + λ̂i,⊥
s ) · dWs

]
, (60)

we have
1

Hi
t

E[Hi
tk
ci,∗k |Ft] =

αi
tk
BtZ

i
t

yiZθ
t

. (61)

Thus, we obtain Xi,∗ as

Xi,∗
t =

K∑
k:tk≥t

1

Hi
t

E[Hi
tk
ci,∗k |Ft] =

BtZ
i
t

yiZθ
t

K∑
k:tk≥t

αi
tk
, (62)

=
BtZ

i
t

Zθ
t

xi
0∑K

k=1 α
i
tk

K∑
k:tk≥t

αi
tk
, (63)

where we used
1

yi
=

xi
0∑K

k=1 α
i
tk

. (64)

Next, we calculate πi,∗ associated with the wealth process Xi,∗ as follows.

Recalling

ci,∗k =
BtkZ

i
tk

Zθ
tk

xi
0∑K

k=1 α
i
tk

αi
tk
, (65)

ci,∗k is paid out from Xi,∗ as consumption at each tk.

Accordingly, with Ci,∗
t :=

∑K
k:tk≤t c

i,∗
k , and dCi,∗

t := Ci,∗
t − Ci,∗

t− , applying Ito’s formula to (63), we have

dXi,∗
t = rtX

i,∗
t dt+Xi,∗

t {θt · (λ̂i
t + θt)dt+ (λ̂i

t + θt) · dWt} − dCi,∗
t , (66)

and for t ∈ (tk−1, tk),

dXi,∗
t = rtX

i,∗
t dt+Xi,∗

t {θt · (λ̂i
t + θt)dt+ (λ̂i

t + θt) · dWt}. (67)

The optimal portfolio of agent i in equilibrium is calculated as follows.

Agent i’s optimal portfolio should satisfy

(πi,∗
t )⊤σS,t = Xi,∗

t (λ̂i
t + θt)

⊤, (68)

where σS,t :=


σ1
S,t

...

σN+1
S,t

. Then, under the assumption that rank(σS,t)= N + 1 (N + 1 ≤ d), that is σ1
S,t, · · · , σ

N+1
S,t

are linearly independent, i’s optimal portfolio πi,∗
t is obtained as

πi,∗
t = Xi,∗

t (σS,tσ
⊤
S,t)

−1σS,t(λ̂
i
t + θt). (69)

Finally, agent i’s position on the money market account πi,0,∗ is Xi,∗
t − πi,∗⊤

t 1. 2

Remark 6 First, Xi,∗
t in (50) corresponding to (ci,∗, πi,∗, πi,0,∗) in (39),(51) and (52) satisfies Xi,∗

t > 0, 0 ≤ ∀t ≤
T, P − a.s. Since ci,∗ is the optimal consumption in the admissible set Ai, in which all the consumption processes
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in (5), (6) with non-negative condition (7) are included as shown in Remark 4, it follows that (c∗, πi,∗, πi,0,∗) is

the optimal consumption and portfolio among triplets (c, πi, πi,0) for a problem sup(ci,πi,πi,0)

∑K
k=1 E[ηitkα

i
tk
log cik]

subject to (5),(6), and the non-negative wealth condition (7).

3 Market clearing condition and equilibrium

This section provides the expression of the interest rate r and the market price of risk θ in equilibrium using the
optimal consumption processes of the agents ci,∗, i = 1, . . . , I obtained in Theorem 1 and imposing the market
clearing condition (70). Moreover, we show an expression of the outstanding market value of the government bonds
in zone j categorized by time to maturity, Sj in equilibrium.

Specifically, we consider the following market clearing condition where the aggregate consumption over the agents is
equal to the dividends from the securities. Here, we assume the aggregate redemption amount δtk is positive, while

each δjtk may not necessarily be positive.

(Market Clearing Condition)

At each discrete time tk, k = 1, . . . ,K, the following equation holds.
I∑

i=1

ci,∗k =

N+1∑
j=1

δjtk ≡ δtk . (70)

When the optimal consumption processes of the agents satisfy this clearing condition, we call that the market is in
equilibrium.

Firstly, we obtain the following expressions for the interest rate r and the density process Zθ for the common part
of the risk-neutral probability measure, which includes the market price of risk process θ in equilibrium.

Theorem 3 In equilibrium, Zθ in (24) is expressed as

Zθ
tk

=
Btk

δtk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

(71)

for k = 1, . . . ,K and for t ∈ (tk, tk+1),

Zθ
t = E

[
Btk

δtk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

|Ft

]
. (72)

Moreover, supposing that the interest rate process r is piece-wise Ftk−1
-measurable random variable between the

discrete times (tk−1, tk], r is expressed as

rt =
1

(tk − tk−1)
log


1

δk−1

∑I
i=1

xi
0α

i
k−1Z

i
tk−1∑K

k=1
αi

k

E

[
1

δtk

∑I
i=1

xi
0α

i
tk

Zi
tk∑K

k=1
αi

tk

|Ftk−1

]
 for t ∈ (tk−1, tk], (73)

(Proof).

By the market clearing condition (70),
K∑

k=1

ci,∗k =
Btk

Zθ
tk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

= δtk . (74)

(75)
Then, for k = 1, . . . ,K we have

Zθ
tk

=
Btk

δtk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

. (76)

Since Zθ
t is a martingale, for t ∈ (tk−1, tk],

Zθ
t = E

[
Btk

δtk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

|Ft

]
. (77)

For the interest rate r in equilibrium, at tk−1, noting that

Btk−1

δk−1

I∑
i=1

xi
0α

i
k−1Z

i
tk−1∑K

k=1 α
i
k

= E

[
Btk

δtk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

|Ftk−1

]
(78)

11



and Btk is Ftk−1
-measurable, since Btk = Btk−1

e

∫ tk

tk−1
rsds

with B0 = 1, we have

Btk

Btk−1

= e

∫ tk

tk−1
rsds

=

1
δk−1

∑I
i=1

xi
0α

i
k−1Z

i
k−1∑K

k=1
αi

k

E

[
1

δtk

∑I
i=1

xi
0α

i
tk

Zi
tk∑K

k=1
αi

tk

|Ftk−1

] , B0 = 1, (79)

and equivalently,

Btk = Btk−1

1
δk−1

∑I
i=1

xi
0α

i
k−1Z

i
tk−1∑K

k=1
αi

k

E

[
1

δtk

∑I
i=1

xi
0α

i
tk

Zi
tk∑K

k=1
αi

tk

|Ftk−1

] , B0 = 1. (80)

Particularly, rt is obtained as

rt =
1

(tk − tk−1)
log


1

δk−1

∑I
i=1

xi
0α

i
k−1Z

i
k−1∑K

k=1
αi

k

E

[
1

δtk

∑I
i=1

xi
0α

i
tk

Zi
tk∑K

k=1
αi

tk

|Ftk−1

]
 for t ∈ (tk−1, tk], (81)

Bt = Btk−1
ert(t−tk−1) for t ∈ (tk−1, tk], B0 = 1. (82)

2

Next, we provide the expression of Sj , the aggregate market value of security j, in equilibrium.

Proposition 2 The aggregate market value Sj associated with the dividend process δj in equilibrium is expressed as

Sj
t =

Bt

Zθ
t

K∑
k:tk≥t

E

[
δjtk
δtk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

|Ft

]

=
1

E

[
1

δtk

∑I
i=1

xi
0α

i
tk∑K

k=1
αi

tk

Zi
tk
|Ft

] K∑
k:tk≥t

E

[
δjtk
δtk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

|Ft

]
. (83)

(Proof).

Since Sj
t
Zθ

t

Bt
+
∑

k:tk<t δ
j
tk

Zθ
tk

Btk
is a martingale and Sj

T = 0, we have

Sj
t =

Bt

Zθ
t

K∑
k:tk≥t

E

[
Zθ
tk

Btk

δjtk |Ft

]
=

Bt

Zθ
t

K∑
k:tk≥t

E

[
δjtk
δtk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

|Ft

]
. (84)

Particularly, for t ∈ (tk−1, tk], k = 1, · · · ,K, since

Zθ
t = BtkE

[
1

δtk

I∑
i=1

xi
0α

i
tk∑K

k=1 α
i
tk

Zi
tk
|Ft

]
, (85)

Bt

Zθ
t

=
Btk

Zθ
t

=
1

E

[
1

δtk

∑I
i=1

xi
0α

i
tk∑K

k=1
αi

tk

Zi
tk
|Ft

] , (86)

we have

Sj
t =

1

E

[
1

δtk

∑I
i=1

xi
0α

i
tk∑K

k=1
αi

tk

Zi
tk
|Ft

] K∑
k:tk≥t

E

[
δjtk
δtk

I∑
i=1

xi
0α

i
tk
Zi
tk∑K

k=1 α
i
tk

|Ft

]
. (87)

2

Finally, we show that in equilibrium, the total of the I agents’ wealth is equal to the total of the aggregate market
value of N + 1 securities. That is, another feature of the market clearing holds. We denote S by the total of the
aggregate market value of N + 1 securities and X by the aggregate wealth process of I agents, that is,

St :=

N+1∑
j=1

Sj
t , (88)

12



and

Xt :=

I∑
i=1

Xi
t . (89)

Proposition 3 The total of the aggregate market value of N + 1 securities in equilibrium S has the following
expression

St =

N+1∑
j=1

Sj
t =

Bt

Zθ
t

K∑
k:tk≥t

I∑
i=1

xi
0Z

i
tα

i
tk∑K

k=1 α
i
tk

=
1

E

[
1

δkt

∑I
i=1

xi
0α

i
kt∑K

k=1
αi

tk

Zi
kt
|Ft

] K∑
k:tk≥t

I∑
i=1

xi
0Z

i
tα

i
tk∑K

k=1 α
i
tk

, (90)

where
kt := min{k ∈ {1, · · · ,K} : k ≥ t}, (91)

In particular, at t = kt,

St = Skt =
δkt[∑I

i=1

xi
0α

i
kt∑K

k=1
αi

k

Zi
kt

] K∑
k:tk≥kt

I∑
i=1

xi
0Z

i
kt
αi
tk∑K

k=1 α
i
tk

. (92)

Moreover, S, the total of the aggregate market values of the N+1 securities, equals to X, the aggregate wealth process
of I agents.

(Proof).

First, by noting
∑N+1

j=1 δj = δ, the expression of the total of the aggregate market value of the securities (90)

immediately follows from (83).

Next, by the expression of the optimal wealth (50) for the individual optimization problem, we have

X∗
t :=

I∑
i=1

Xi,∗
t =

I∑
i=1

BtZ
i
t

Zθ
t

xi
0∑K

k=1 α
i
tk

K∑
{k:tk≥t}

αi
tk

(93)

=
Bt

Zθ
t

K∑
k:tk≥t

I∑
i=1

xi
0Z

i
tα

i
tk∑K

k=1 α
i
tk

. (94)

Since

St =
Bt

Zθ
t

K∑
k:tk≥t

I∑
i=1

xi
0Z

i
tα

i
tk∑K

k=1 α
i
tk

, (95)

we have Xt = St. 2

Remark 7 The market clearing condition also derives the clearing equations for each security and the money market
account in the following way.

For each agent i,

Xi,∗
t = πi,0,∗

t +

N+1∑
j=1

πi,j,∗
t , i = 1, · · · , I (96)

Then, a consumption-financed strategy yields that

dXi,∗
t = rtX

i,∗
t dt− dCi,∗

t +

N+1∑
j=1

πi,j,∗
t σj

S,tdW
∗
t , i = 1, · · · , I, (97)

where dW ∗
t = dWt + θtdt, and with C∗ :=

∑I
i=1 C

i,∗,

dX∗
t = rtX

∗
t dt− dC∗

t +

N+1∑
j=1

I∑
i=1

πi,j,∗
t σj

S,tdW
∗
t . (98)

13



On the other hand, with S =
∑N+1

j=1 Sj and D :=
∑N+1

j=1 Dj,

dSt = rtStdt− dDt +

N+1∑
j=1

Sj
t σ

j
S,tdW

∗
t . (99)

Since C∗ = D from the consumption market clearing and Xt = St, it must hold that
N+1∑
j=1

(

I∑
i=1

πi,j,∗
t − Sj

t )σ
j
S,t = 0. (100)

Then, if σj
S, j = 1, · · · , N + 1 are independent vectors, we obtain the market clearing for every risky asset,

I∑
i=1

πi,j,∗
t − Sj

t = 0, j = 1, · · · , N + 1, (101)

and also have the market clearing for the money market account
∑I

i π
i,0,∗
t = 0, since

St = X∗
t =

I∑
i=1

Xi,∗
t =

N+1∑
j=0

I∑
i=1

πi,j,∗
t = St +

I∑
i=1

πi,0,∗
t . (102)

3.1 Dividend process as a realizations of a continuous stochastic process

Next, this section provides a case where the interest rate r, the market price of risk θ, and the aggregate market
value of security j, Sj , are obtained explicitly. Particularly, we consider a case where the dividend processes δjtk , k =

1, . . . ,K, j = 1, . . . , N + 1 are given as a realization of continuous processes δj satisfying an SDE.

In Theorem 3, we obtained a piece-wise Ftk -measurable version of the interest rate process r and the aggregate
market value of security j, Sj , in equilibrium. In this section, we further obtain expressions of a continuous version
of the interest rate process r, the market price of risk θ in equilibrium. Moreover, although the expressions include
the volatility processes σj

S , which is also determined in equilibrium, we also show a condition where the volatility

process σj
S is explicitly determined by the assumptions on the dividend processes δj .

First, we suppose that δjtk , j = 1, . . . ,K are driven by the common stochastic process δj satisfying the following

SDEs. Here, we suppose σδ,j , j = 1, . . . , N + 1 are Rd×1-valued {Ft}-progressively measurable process. We note

that we set σδ,j , j = 1, . . . , N +1 to be d× 1 column vector, while we assumed σj
S , j = 1, . . . , N +1 to be 1× d row

vectors.

Let δt =
∑N+1

j=1 δjt and

dδjt = δjt [µ
δ,j
t dt+ σδ,j

t · dWt], σδ,j
t > 0, (103)

dδt = δt

N+1∑
j=1

δjt
δt
µδ,j
t

 dt+

N+1∑
j=1

δjt
δt
σδ,j
t

 · dWt

 (104)

= δt[µ
δ
tdt+ σδ

t · dWt], (105)
where

µδ
t :=

1

δt

N+1∑
j=1

δjtµ
δ,j
t

 , σδ
t :=

1

δt

N+1∑
j=1

δjtσ
δ,j
t

 . (106)

and we assume that δ0 =
∑N+1

j=1 δj0 satisfies

δ0 =

I∑
i=1

xi
0∑K

k=1 α
i
tk

. (107)

Proposition 4 Suppose that λi ∈ Range(σ⊤
S ), i = 1, . . . , I, where the agents’ biases on the Brownian motion can be

hedged with the risks of the N+1 securities. With a money market account price process B, where Bt = exp(
∫ t

0
rsds),

and the interest rate process r given as a continuous process

rt = µδ
t + βt − |σδ

t |2 + σδ
t · λ̂t, (108)

the probability density process for the risk neutral probability measure Zθ in equilibrium in (72) in Theorem 3 satisfies

Zθ
t =

Bt

δt

I∑
i=1

αi
tx

i
0Z

i
t∑K

k=1 α
i
tk

, 0 ≤ t ≤ T, (109)
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and particularly is an exponential martingale with an expression Zθ
t = exp(− 1

2

∫ t

0
|θs|2ds −

∫ t

0
θs · dWs), where the

market price of risk θ is given by

θt = σδ
t − λ̂t. (110)

Here, we set the aggregate view λ̂ and the aggregate time preference β of the agents as

λ̂t =

I∑
i=1

λ̂i
tw

i
t, (111)

and

βt =

I∑
i=1

βiw
i
t, (112)

where

wi
t =

αi
tx

i
0Z

i
t∑K

k=1
αi

tk∑I
l=1

αl
tx

l
0Z

l
t∑K

k=1
αl

tk

. (113)

Moreover, assuming that E[
∫ T

0
(σδ,j

s − θs)
2H2

s δ
j2
s ds] < ∞, the volatility process of the j-th security σj

S in equilibrium
is expressed as follows.

σj⊤
S,t =

∑
k:tk>t δ

j
tHt∑

k:tk>t δ
j
tHt +

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)δjsHs|Ft]ds
σδ,j
t

+

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)δjsHs|Ft]ds∑
k:tk>t δ

j
tHt +

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)δjsHs|Ft]ds
θt

+

∑
k:tk>t

∫ tk
t

E[Dt

(
(µδ,j

s − rs − σδ,j
s · θs)δjsHs

)
|Ft]ds∑

k:tk>t δ
j
tHt +

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)δjsHs|Ft]ds
, (114)

where Dt is a Malliavin derivative with respect to the Brownian motion Wt, and Ht =
Zθ

t

Bt
= 1

δt

∑I
i=1

αi
tx

i
0Z

i
t∑K

k=1
αi

tk

is a

state-price density process obtained by (109), corresponding to the market price of risk θ in equilibrium in (110).

Remark 8 The expression of r in (108), which is

rt = µδ
t + βt − |σδ

t |2 + σδ
t · λ̂t, (115)

indicates that equilibrium interest rate r increases when the expected return of the total dividend process µδ increases.

The second term indicates that if the time preferences of the agents increases, the interest rate also increases, and
the third term implies that if the total dividend’s volatility increases, the interest rate decreases due to the agents’
risk aversion for uncertainty of the total dividend process.

The fourth term also describes how the agents’ aggregate view on the Brownian motion affects the interest rate risk.
Here, we may interpret the Brownian motion as the risks related to the economic(growth) factor, inflation factor,
fiscal condition(extent of deficit/surplus) factor, and factors characteristic to each market value process of security
j.

The aggregate view of heterogeneous agents λ̂ in (111) is weighed averaged of each agent’s view on the Brownian

motion λ̂i, with the weight

αi
t
xi
0
Zi
t∑K

k=1
αi
tk∑I

l=1

αl
t
xl
0
Zl
t∑K

k=1
αl
tk

, consisting of
αi

t∑K

k=1
αi

tk

, where αi
t = e−βit is the agent’s discounting on

its consumption with time preference parameter βi, the initial wealth xi
0, and the density process corresponding to

the agent’s view Zi
t .

Therefore, noting that the inner product σδ
t λ̂t =

∑d
j=1 σ

δ
j,tλ̂j,t can be interpreted as the total dividend volatility

weighted aggregate view by considering σδ
j,t as the weight on the aggregate view on the j-th risk λ̂j,t, we observe that

if the total divided volatility weighted aggregate view is positive/negative, then it affects positively/negatively the short
rate r in equilibrium.

Next, the expression of the market price of risk θ in (110),

θt = σδ
t − λ̂t. (116)

This expression indicates that σδ, the volatility of the total dividend process, is the required excess return for each fun-
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damental risk i.e., d-dimensional Brownian motion. Also, if the aggregate view on the Brownian motion is aggressive,
the market only requires a smaller excess return, and vice versa.

Also, µj
S, the expected return of the security j, is expressed as

µj
S,t = rt + σj

S,tθt. (117)

The second term indicates if the inner product of the security j’s market value process σj
S and the market price of

risk θ is positive, the term has a positive effect on the expected return process, which will be further discussed in
Section 3.2 as a term premium in the case of the central bank’s purchasing reduction.

Remark 9 Although Proposition 4 indicates that σS is also determined in equilibrium, even if λi ∈ Range(σ⊤
S ) is

not satisfied, when λ̂i, the orthogonal projection of λi, is set as in (118), r, θ, and σj
S are explicitly determined and

the market is in equilibrium. In detail, as long as λ̂i, i = 1, . . . , I, given by

λ̂i
t = aitσ

δ
t =

ait∑N+1
j=1 δjt

N+1∑
j=1

δjtσ
δ,j
t

 , (118)

for some {Ft}-adapted R-valued process ait, satisfy λ̂i ∈ Range(σ⊤
S ), and thus λ̂i, i = 1, . . . , I given by (118) can be

the orthogonal projection of some belief of agent i λi onto the linear space spanned by σj
S, j = 1, . . . , N + 1, which

is proved as follows.

If we set λ̂i proportional to exogenously given σδ,

St =

N+1∑
j=1

Sj
t =

Bt

Zθ
t

K∑
k:tk≥t

I∑
i=1

αi
tk
xi
0Z

i
t∑K

k=1 α
i
tk

(119)

with

Zθ
t =

Bt

δt

I∑
i=1

αi
tx

i
0Z

i
t∑K

k=1 α
i
tk

, (120)

we have

St = δt

∑K
k:tk≥t

∑I
i=1

αi
tk

xi
0Z

i
t∑K

k=1
αi

tk∑I
i=1

αi
tx

i
0Z

i
t∑K

k=1
αi

tk

. (121)

This indicates that σS is a linear combination of σδ and λ̂i, i = 1, . . . , I, and thus is proportional to σδ. Since σS

is a linear combination of σS
j , j = 1, . . . , N + 1, for λ̂i proportional to σδ, we have λ̂i ∈ Range(σ⊤

S ).

(Proof). Firstly, by applying Ito’s formula to

Zθ
t

Bt
=

1

δt

I∑
i=1

αi
tx

i
0Z

i
t∑K

k=1 α
i
tk

, (122)

we observe that

d
(

Zθ
t

Bt

)
Zθ

t

Bt

= −
(
µδ
t + βt − |σδ

t |2 + σδ
t · λ̂t

)
dt−

(
σδ
t − λ̂t

)
· dWt. (123)

Hence, if r and θ are given as in (108) and (110),

d
(

Zθ
t

Bt

)
Zθ

t

Bt

= −rtdt− θt · dWt, (124)

and particularly, Zθ
t = exp(− 1

2

∫ t

0
|θs|2ds−

∫ t

0
θsdWs), which indicates that Zθ is an exponential martingale.

Noting that

Sj
tZ

θ
t

Bt
=

K∑
k:tk≥t

E

[
Zθ
tk

Btk

δjtk |Ft

]
, (125)

and taking Malliavin derivatives of the both hand sides and comparing them, we obtain the expression of σj
S .
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In detail,
K∑

k:tk≥t

Zθ
tk

Btk

δjtk

=

K∑
k:tk≥t

Zθ
t

Bt
δjt +

K∑
k:tk≥t

∫ tk

t

(µδ,j
s − rs − σδ,j

s · θs)
Zθ
s

Bs
δjsds+

K∑
k:tk≥t

∫ tk

t

Zθ
s

Bs
δjs(σ

δ,j
s − θs) · dWs. (126)

Then, taking conditional expectation E[·|Ft], we have

Sj
tZ

θ
t

Bt
=

K∑
k:tk≥t

Zθ
t

Bt
δjt +

K∑
k:tk≥t

E

[∫ tk

t

(µδ,j
s − rs − σδ,j

s · θs)
Zθ
s

Bs
δjs|Ft

]
ds. (127)

Taking Malliavin derivative Dt on both hand sides, we have

Dt

(
Sj
tZ

θ
t

Bt

)
=

 K∑
k:tk≥t

Zθ
t

Bt
δjt

(σδ,j
t − θt

)
+

K∑
k:tk≥t

E

[∫ tk

t

Dt

(
(µδ,j

s − rs − σδ,j
s · θs)

Zθ
s

Bs
δjs

)
|Ft

]
ds. (128)

Since

Dt

(
Sj
tZ

θ
t

Bt

)
= (σj

S,t − θt)

(
Sj
tZ

θ
t

Bt

)

= (σj
S,t − θt)

( K∑
k:tk≥t

Zθ
t

Bt
δjt +

K∑
k:tk≥t

E[

∫ tk

t

(µδ,j
s − rs − σδ,j

s · θs)
Zθ
s

Bs
δjs|Ft]ds

)
, (129)

where we used (127) in the second equality, comparing (128) and (129), we obtain K∑
k:tk≥t

Zθ
t

Bt
δjt

 (σδ,j
t − θt) +

K∑
k:tk≥t

E

[∫ tk

t

Dt

(
(µδ,j

s − rs − σδ,j
s · θs)

Zθ
s

Bs
δjs

)
|Ft

]
ds

= (σj
S,t − θt)

( K∑
k:tk≥t

Zθ
t

Bt
δjt +

K∑
k:tk≥t

E[

∫ tk

t

(µδ,j
s − rs − σδ,j

s · θs)
Zθ
s

Bs
δjs|Ft]ds

)
. (130)

Therefore

σj⊤
S,t = θt +

∑K
k:tk≥t

Zθ
t

Bt
δjt∑K

k:tk≥t
Zθ

t

Bt
δjt +

∑K
k:tk≥t E[

∫ tk
t
(µδ,j

s − rs − σδ,j
s · θs)Z

θ
s

Bs
δjs|Ft]ds

(σδ,j
t − θt)

+

∑K
k:tk≥t E[

∫ tk
t

Dt

(
(µδ,j

s − rs − σδ,j
s · θs)Z

θ
s

Bs
δjs

)
|Ft]∑K

k:tk≥t
Zθ

t

Bt
δjt +

∑K
k:tk≥t E[

∫ tk
t
(µδ,j

s − rs − σδ,j
s · θs)Z

θ
s

Bs
δjs|Ft]ds

=

∑
k:tk>t δ

j
tHt∑

k:tk>t δ
j
tHt +

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)Hsδ
j
s|Ft]ds

σδ,j
t

+

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)Hsδ
j
s|Ft]ds∑

k:tk>t δ
j
tHt +

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)Hsδ
j
s|Ft]ds

θt

+

∑
k:tk>t

∫ tk
t

E[Dt

(
(µδ,j

s − rs − σδ,j
s · θs)Hsδ

j
s

)
|Ft]ds∑

k:tk>t δ
j
tHt +

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)Hsδ
j
s|Ft]ds

, (131)

where Ht =
Zθ

t

Bt
. 2

3.2 Effect of outright purchasing securities: interpretation of the model

This section interprets the effects on the expected return of the market outstanding values and the yield curve
obtained from the implied zero coupon bond prices in equilibrium when the central bank and the government
control the amount of outright purchasing and the new issuance.

As we observe in the market, when the market expects that the central bank will decrease the amount of purchasing,
with the expectation of an increasing supply of government bonds in the secondary market, the bond price goes
down, and the yield rises. Conversely, when the supply of government bonds in the secondary market becomes scarce
due to aggressive outright purchasing of the central bank, the government bond prices go up, and the yield goes
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down. These effects can be observed and understood through the model as follows.

Firstly, when the central bank purchases fewer government bonds upfront, the dividend cash flow into the secondary
market, δjt , at the time of purchase in the front end decreases due to reduced payments made by the central bank into

the institutional investors’ representative shareholders’ current accounts. Conversely, δjt in the long end, following
the time of purchase, increases due to higher coupon payments and redemptions in the future.

More concretely, with the example of the dividend processes as the realization of the continuous stochastic processes
following an SDE (103), the effect is observed as follows.

3.2.1 Effect on the market price of risk θ and the expected return µj
S in equilibrium

First of all, as we observed in Remark 8, when the bonds are less purchased by the central bank, i.e., the dividend
process in the front end decreases while that of the long end increases, particularly when the drift µδ of the total
dividend processes increase, by the expression of r in (108), which is

rt = µδ
t + βt − |σδ

t |2 + σδ
t · λ̂t, (132)

the interest rate r in equilibrium increases in the long run. Also, given σδ,j
t > 0, j = 1, . . . , N + 1 and thus σδ

t > 0,

since the third term and the fourth term are combined as −|σδ
t |2 +σδ

t · λ̂t = −σδ
t (σ

δ
t − λ̂t), unless the aggregate view

λ̂ is excessively aggressive, these terms affect negatively the short rate r in equilibrium.

Next, in the expression of µj
S in (117), with the market price of risk in equilibrium θ is given by (110),

µj
S,t = rt + σj

S,tθt. (133)

This implies that if the inner product σj
S,tθt, where σj

S,tθt = σj
S,t(σ

δ
t − λ̂t) is positive, the term σj

S,tθt works as a

positive term premium of the expected return µj
S over the interest rate r.

More in detail, by the expression of σj
S in (114), σj

S,tθt is expressed as

σj
S,tθt =

∑
k:tk>t δ

j
tHt∑

k:tk>t δ
j
tHt +

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)δjsHs|Ft]ds
σδ,j
t θt

+

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)δjsHs|Ft]ds∑
k:tk>t δ

j
tHt +

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)δjsHs|Ft]ds
|θt|2

+

∑
k:tk>t

∫ tk
t

E[Dt

(
(µδ,j

s − rs − σδ,j
s · θs)δjsHs

)
|Ft]ds∑

k:tk>t δ
j
tHt +

∑
k:tk>t

∫ tk
t

E[(µδ,j
s − rs − σδ,j

s · θs)δjsHs|Ft]ds
θt. (134)

For the leading terms, the first term and the second term, the first term indicates that if the inner product between

σδ,j
t , the volatility of the dividend process for the j-th security, and θt, the market price of risk satisfying θt = σδ

t − λ̂t

in equilibrium, is positive, it affects the term premium positively.

The second term describes that since
rt = µδ

t + βt − |σδ
t |2 + σδ

t · λ̂t,

= µδ
t + βt − σδ

t · (σδ
t − λ̂t)

= µδ
t + βt − σδ

t · θt, (135)
and

µδ,j
s − rs − σδ,j

s · θs = (µδ,j
s − σδ,j

s · θs)− (µδ
s − σδ

s · θs)− βs,

if the expected return of the j-th dividend process µδ,j deviates more positively from σδ,j · θ, the inner product
between the volatility of the j-th security’s dividend and the market price of risk, than the expected return of the
total dividend process µδ deviates from σδ · θ, the inner product between the total dividend process and the market
price of risk, and the deviation is greater than the aggregate market preference β, then the second term positively
affects the term premium.

3.2.2 Effect on the term structure of interest rates for implied government bond prices

Moreover, although we consider the baskets of government bonds categorized by the remaining time to maturity as
the tradable assets and do not directly model the evolution of the zero coupon bond price P (0, T ) corresponding to
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a certain maturity T , the yield Y(0, T ) for the implied zero coupon bond price by a state price density
Zθ

t

Bt
,

Zθ
t

Bt
=

1

δt

I∑
i=1

αi
tx

i
0Z

i
t∑K

k=1 α
i
tk

, 0 ≤ t ≤ T, (136)

by (109), can be obtained as follows.

Y(0, T ) = − 1

T
logE

[
Zθ
T

BT

]
= − 1

T
logE

[
1

δT

I∑
i=1

αi
T x

i
0Z

i
T∑K

k=1 α
i
tk

]
, (137)

where

dδt = δt

N+1∑
j=1

δjt
δt
µδ,j
t

 dt+

N+1∑
j=1

δjt
δt
σδ,j
t

 · dWt

 (138)

= δt[µ
δ
tdt+ σδ

t · dWt], (139)

µδ
t :=

1

δt

N+1∑
j=1

δjtµ
δ,j
t

 , σδ
t :=

1

δt

N+1∑
j=1

δjtσ
δ,j
t

 . (140)

As (137), including the minus sign upfront and 1
δT

in the expectation, indicates, since the implied zero coupon bond

yield Y(0, T ) is mainly affected by the drift of the total dividend δ, which is the drift of the each dividend process
with their weight among the total dividend δ, thus when the drift of the total dividend process µδ

t increases as time
passes, the yield curve steepens.

4 Numerical Examples

This section presents numerical examples of our equilibrium model developed in the previous sections, which derives
super-long discount rates for insurance products and assesses the impact of policy changes on insurance pricing
through these rates. Specifically, we provide equilibrium super-long discount rates and the pricing of death benefits
and annuities, especially in relation to changes in the super-long discount rates.

Assuming an annual mortality rate λm
t that depends on two factors, namely, unhedgeable economic and public health

deterioration factors denoted by Y 1 and Y 2, respectively which will be explained below, we can price a death benefit
that pays Vτ upon death at exogenously given random time τ , and a life annuity that pays vt annually until time τ .
Particularly, we follow the approach of chapter 8 in Bieleck and Rutkowski [25] with regarding their default time τ
as death time, and re-express the second equation in their Proposition 8.2.1 under the physical measure P : We first
note that their so called spot martingale (risk-neutral) measure Q∗ explained at the beginning of Section 8.1.1 (Risk-
Neutral Valuation Formula) corresponds to a measure under which (Sj +Dj)/B, j = 1, · · · , N + 1 are martingales
in our framework. Then, for simplicity we specifically set a density process for probability measure transformation
from P to Q∗ by Zθ obtained as (72) in market equilibrium. Hence, using the associated state price density process

H = Zθ

B in (136), the initial (time-0) values of death benefit (insurance payable at death) and life annuity are given
as follows:

Death benefit (insurance payable at death) value:

E [VτHτ ] = E

[∫ ∞

0

Vsλ
m
s exp

(
−
∫ s

0

λm
u du

)
Hs ds

]
. (141)

Here, we set t = 0, Γ· =
∫ ·
0
λm
u du, Z = V , and A = X ≡ 0 in the second equation in Proposition 8.2.1 of Bieleck and

Rutkowski [25].

Life annuity value:

E

[∫ ∞

0

vs1{s<τ}Hs ds

]
= E

[∫ ∞

0

vs exp

(
−
∫ s

0

λm
u du

)
Hs ds

]
, (142)

where we set t = 0, Γ· =
∫ ·
0
λm
u du, A· =

∫ ·
0
vudu, and Z = X ≡ 0 in the second equation in Proposition 8.2.1 of

Bieleck and Rutkowski [25].

We present numerical examples to analyze the impact of reducing the central bank’s outright purchase amount of
government bonds on insurance pricing through the term structure of interest rates. Specifically, we set V = v ≡ 1
in pricing death benefit and life annuity for simplicity.

The terminal time is set to T = 100 years, which is sufficient for our analysis, and N = 5, i.e., N+1 = 6. Specifically,
we categorize government bonds into five maturity sectors: 1-3 years, 3-5 years, 5-10 years, 10-25 years, and beyond
25 years, alongside one representative stock price index. We denote these sectors by j = 1, 2, 3, 4, 5 and the stock
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price index by j = 6.

We set I = 3 with an initial wealth xi
0 = 100, representing three distinct types of institutional investor shareholders.

For instance, these types can be interpreted as follows: the first type represents life-cycle investment owners from
the younger generation, the second type represents the older generation, and the third type represents shareholders
of banks and insurance companies. Alternatively, these types may also be considered as representing shareholders of
domestic private investors, institutional investors, and foreign institutional investors.

Furthermore, we consider 100 discrete time points tk = k, k = 1, . . . , 100, for dividend and consumption timings. We
assume the dimension d of the Brownian motion W to be d = 8, which exceeds the number of securities N + 1 = 6.
The drift of the dividend processes is a function of an economic factor Y 1, driven by a Brownian motion component
W7. Additionally, the mortality rate, which will be defined below, is influenced by both the economic factor Y 1 and
the public health deterioration factor Y 2, driven by W8, as follows:

We letW = (W1, . . . ,W8), with the economic factor Y 1, public health deterioration factor Y 2, and dividend processes
δj , j = 1, . . . , 6 satisfying the following SDEs:

dY 1
t = (lY 2

t + µY,1,t) dt+ σY,1 dW7,t

dY 2
t = µY,2,t dt+ σY,2 dW8,t. (143)

We assume that Y 1 and Y 2 are Gaussian processes with a positive initial value and drift, representing an economic
growth factor and a public health deterioration factor, respectively. The public health deterioration factor also
negatively affects the drift of Y 1 through l < 0 in the drift of Y 1 in (143), which implies that as public health
worsens, it negatively affects the economy. We note that although the process may yield negative values with a
small probability, we have carefully set the parameters µY,1, µY,2, σY,1, and σY,2 to ensure that Y 1 and Y 2 remain
positive in nearly all simulated sample paths for calculation convenience. Both factors affect the mortality rate λm

such that as the economy grows, the mortality rate decreases, and as disasters occur, the mortality rate increases,
which defines the survival rate for life insurance pricing as follows:

λm
t = (1 + k1Y

1
t + k2Y

2
t )λ̄

m
t . (144)

Specifically, for insurance products for individuals of age t0, we consider the base mortality rate λ̄m
t corresponding

to that of a population aged t0 + t. In the following numerical examples, we assume t0 = 20, covering the mortality
rate for ages 20-120.

The dividend processes of δjt for j = 1, . . . , 6 are characterized by the drift and diffusion coefficients, µδ,j
t , σ̄δ,j :

dδjt = δjt [µ
δ,j(t, Yt) dt+ σ̄δ,j(ρj dW7,t +

√
1− ρ2j dWj,t)], (145)

where
µδ,j(t, Yt) = βY,j,t + αY,j,tY

1
t , (146)

σ̄δ,j represents the absolute value of the volatility σδ,j for the dividend process δj , and ρj describes the correlation
between the Brownian motions driving the economic factor and the j-th dividend process δj . This indicates that the
dividend processes, corresponding to government bond coupon payments and redemptions from secondary market
outstanding bonds or stock index dividends, have drift components linked to the economic factor and diffusion
components correlated with it.

Assuming constant drift and volatility for the Gaussian processes Y 1 and Y 2, we set Y 1
0 = Y 2

0 = 1, l = −0.003 µY,1 =
µY,2 = 0.1, and σY,1 = σY,2 = 0.1. For the log-normal dividend processes, supposing that the dividend processes are
for the market outstanding values of the government bonds for different time to maturity for j = 1, . . . , 5 and of
the stock price index for j = 6 as mentioned earlier in this section, we assume constant drift and volatility, defined
as αY,j = 0 (j = 1, . . . , 5), αY,6 = 0.02, βY,j = 0.01 (j = 1, . . . , 5), βY,6 = 0.03, δj0 = 1

10δ0 (j = 1, . . . , 5), δ60 = 1
2δ0,

σ̄δ,j = 0.1 (j = 1, . . . , 5), σ̄δ,6 = 0.3, and ρj = 0.5 for j = 1, . . . , 6, where δ0 is the initial value of the total dividend
defined by (107). Here, we set αY,j = 0 (j = 1, . . . , 5) since we consider the impact of the economic factor on the
drift of the dividend processes of the government bonds has both positive and negative sides. In detail, in a good
economy, tightening monetary policy increases the market outstanding in the secondary market, while the increase
in tax revenue leads to less issuance of government bonds.

Three agents, denoted by i = 1, 2, 3, are considered, each with an initial wealth of xi
0 = 100 and time preference

parameters β1 = 0.01, β2 = 0.02, β3 = 0.03. The parameters representing their views on fundamental risks, ai

for λ̂i in (118), are set to a1 = 1.0, a2 = 0, and a3 = −1.0. For example, the first agent holds aggressive views
with a lower time preference, i.e., placing more emphasis on future spending, the second agent has neutral views
with moderate time preference, and the third agent possesses conservative views with a high time preference, i.e.,
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prioritizing near-term spending.

We define the base mortality rate λ̄m as follows: 0.04% (0 ≤ t < 10), 0.06% (10 ≤ t < 20), 0.10% (20 < t <
30), 0.24% (30 ≤ t < 40), 0.63% (40 ≤ t < 50), 1.7% (50 < t ≤ 60), 4.8% (60 < t ≤ 70), 15% (70 < t ≤
80), 40% (80 < t ≤ 100) which approximately corresponds to the mortality rate for ages 20 to over 100 for males in
Japan (Ministry of Health Life and Welfare, Japan [8]). We set k1 and k2 to define λm in (144) as k1 = −0.01 and
k2 = 0.01, implying that the economic factor has a decreasing effect on the mortality rate while the public health
deterioration factor has an increasing effect on the mortality rate.

In summary, the parameters used for the base case are as follows.

Parameter Value

Initial values of the economic and public health deterioration factors Y 1
0 , Y

2
0 1

Drift of the economic and public health deterioration factors µY,1, l, µY,2 0.1, -0.003, 0.1

Volatility of the economic and public health deterioration factors σY,1, σY,2 0.1

Drift coefficients (factor proportional part) of the dividend processes αY,j(j = 1, . . . , 5) 0.00

Drift coefficients (factor proportional part) of the dividend processes αY,j(j = 6) 0.02

Drift coefficients (constant part) of the dividend processes βY,j(j = 1, . . . , 5) 0.010

Drift coefficients (constant part) of the dividend processes βY,j(j = 6) 0.030

Initial values of the dividend processes δj0(j = 1, . . . , 5) 0.1δ0

Initial values of the dividend processes δj0(j = 6) 0.5δ0

Volatility of the dividend processes σ̄δ,j(j = 1, . . . , 5) 0.1

Volatility of the dividend processes σ̄δ,j(j = 6) 0.3

Instantaneous correlation with the economic factor of the dividend processes ρj(j = 1, . . . , 6) 0.5

Initial wealth of the agents x1
0, x

2
0, x

3
0 100

Time preference parameters of the agents β1, β2, β3 0.01, 0.02, 0.03

Parameters for views on fundamental risks of the agents a1, a2, a3 1.0, 0, -1.0

Base mortality rate for age 20-30 λ̄m(0 ≤ t < 10) 0.04%

Base mortality rate for age 30-40 λ̄m(10 ≤ t < 20) 0.06%

Base mortality rate for age 40-50 λ̄m(20 < t < 30) 0.10%

Base mortality rate for age 50-60 λ̄m(30 ≤ t < 40) 0.24%

Base mortality rate for age 60-70 λ̄m(40 ≤ t < 50) 0.63%

Base mortality rate for age 70-80 λ̄m(50 < t ≤ 60) 1.7%

Base mortality rate for age 80-90 λ̄m(60 < t ≤ 70) 4.8%

Base mortality rate for age 90-100 λ̄m(70 < t ≤ 80) 15%

Base mortality rate for age 100 and above λ̄m(80 < t ≤ 100) 40%

Effect parameters of the economic and public health deterioration factors on the mortality rate k1, k2 -0.01, 0.01

Table 1
Summary of parameters for the base case.

Next, by shifting parameters in the model, we examine the impact of changes in bond supply in the secondary
market, market expectations of agents on the market outstanding securities, and public health conditions on the
super-long discount rate and insurance pricing.

After investigating the parameter shifts corresponding to the observed impact in the following historical events, we
calculate 100-year discount rates and the insurance prices with the shifted parameters.

(1) Bond Purchase in the Japanese Market under the Unconventional Monetary Easing: First of all, we
examine the impacts on insurance pricing of monetary easing and tightening accompanying supply changes of
government bonds in the secondary market by the central bank and the government by shifting the parameters
βY,3, βY,4, and βY,5, the constant part of the drift in the dividend processes δ3, δ4, and δ5.
Under the unconventional monetary policy conducted by the former BOJ governor Kuroda, in addition to

the minus rate policy, large amounts of government bonds were purchased for monetary easing, and the market
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outstanding in the secondary market decreased. We observed a 1.4% decrease in the 30-year discount rate from
April 2013, when the monetary easing began, to July 2016, before the yield curve control, in which unlimited
amount of bond purchase was attempted to keep the ten year yield at zero, started (Ministry of Finance, Japan
[26]). This yield change corresponds to the shifts in the parameters βY,3, βY,4, and βY,5, the constant part of
the drift in the dividend processes δ3, δ4, and δ5, by -0.045.

Base case Easing case Tightening case

Death benefit 0.082 0.148 0.026

Life annuity 25.4 32.9 17.6

Discount rate for 100 years 4.8% 3.7% 7.6%

Table 2
Insurance pricing in the base, the easing, and the tightening cases. βY,3, βY,4, βY,5 = 0.010 for the base case, βY,3, βY,4, βY,5 =
−0.035 for the easing case, and βY,3, βY,4, βY,5 = 0.055 for the tightening case.

Firstly, in Table 2, if βY,3, βY,4, and βY,5, the drift of the dividend processes δ3, δ4, δ5 that affect the market
outstanding of the securities, shift from the base case of 0.010 to -0.035, which is the same magnitude as the
yield decrease resulting from the decrease in the secondary market outstanding caused by the government bond
purchasing for monetary easing during the aforementioned period, the supply of bonds to the secondary market
decreases, as observed in the central bank’s bond purchasing operation, leading to lower yields. As a result, the
death benefit price increases from 0.082 to 0.148 and from 25.4 to 32.9 for the life annuity price.

On the contrary, if βY,3, βY,4, and βY,5 shift from 0.010 to 0.055, corresponding to an increase in bond supply
and thus monetary tightening resulting in higher yields, the death benefit price decreases from 0.082 to 0.026
and from 25.4 to 17.6 for the life annuity price.

These insurance price changes are mainly due to the shift in the discount rate. In detail, in this scenario, the
super-long discount rate for 100 years is estimated at 4.8%, changing to 3.7% for easing and 7.6% for tightening.

Specifically, as Figure 1 illustrates, the discount rate increases with tightening monetary policy, whereas
it decreases with easing monetary policy. Moreover, the yield curves are steeper than the base case in both
easing and tightening scenarios. This steepness arises from the difference between the two parameter sets
(βY,3, βY,4, βY,5) and (βY,1, βY,2, βY,6) in δj , j = 1, . . . , 6 in (146). In detail, these values are all 0.01 in the base
case, i.e., βY,1, . . . , βY,6 = 0.01, while in the tightening case, βY,3, βY,4, βY,5 = 0.055 and in the easing case,
βY,3, βY,4, βY,5 = −0.035. As a result, when we consider the total dividend δ deriving the yield Y(0, T ) in (137),
the parameters of greater values, i.e., βY,3, βY,4, βY,5 = 0.04 in the tightening case, and βY,1, βY,2, βY,6 = 0.01 in
the easing case, are dominant as time passes in the total dividend δ due to the effect of those parameters in the
exponential form of δj in (146). As a result, both easing and tightening scenarios display steeper yield curves.

Fig. 1. Discount rate for the base, the easing, and the tightening cases. βY,3, βY,4, βY,5 = 0.010 for the base case,
βY,3, βY,4, βY,5 = −0.035 for the easing case, and βY,3, βY,4, βY,5 = 0.055 for the tightening case.

(2) Market Expectation Change by the Announcement for Monetary Tightening by the Bank of
Japan: Next, we investigate the impact on the insurance pricing of the market expectation changes on the
secondary market outstanding values of the assets by shifting a1, a2, and a3, the parameters for the views on

fundamental risks for Agents 1-3 defined as λ̂i
t = aitσ

δ
t in (118).

Following the Bank of Japan’s announcement of its exit from yield curve control in March 2024, market expec-
tations of a future reduction in the BOJ’s government bond purchases intensified. This expectation continued
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until the official announcement of the reduction in government bond purchases in July 2024. The increased
market expectations resulted in lower bond prices and higher yields.

Specifically, we observed the rise in long-term interest rates, a 0.4% increase in the 30-year yield between
March 2024, when the Bank of Japan exited the yield curve control policy, and July 2024, when the BOJ
announced reduced bond purchases (Ministry of Finance, Japan [26]). We note that an increase in the market
outstanding correlates with an increasing dividend process in our model, reflecting increased coupon/dividend
payments. This 0.4% increase in the 30-year yield corresponds to shifts of a1, a2, and a3 in (118), market
expectations on the return of the secondary market outstanding values, by 0.1 in our model.

Then, Table 3 shows the impact on insurance pricing via the discount rate of the view change on the risks,
i.e., the market expectation change on the expected return of the secondary market outstanding of Agents 1-3.

If we set a1 = 1.1, a2 = 0.1, a3 = −0.9, i.e., the agents are more aggressive, that is, the agents expect the
secondary market outstanding values to increase in this example, the discount rate is higher, and the death
benefit price is lower. This change in the discount rate agrees with the result in equation (108) in Proposition

4: when a1, a2, and a3 in λ̂1, λ̂2, λ̂3 are higher, due to the inner product λ̂ · σδ, the interest rate becomes high.

Base case Aggressive case

Death benefit 0.082 0.074

Life annuity 25.4 24.4

Discount rate for 100 years 4.8% 5.0%

Table 3
Impact of aggressive agents on the 100 year discount rate and insurance prices. a1 = 1.0, a2 = 0, a3 = −1.0 for the base case
and a1 = 1.1, a2 = 0.1, a3 = −0.9 for the aggressive case.

(3) Mortality Rate Changes after the Tohoku Earthquake: Finally, we investigate the impact on insurance
pricing of public health deterioration leading to an economic downturn by shifting µY,2, the drift of the public
health deterioration factor Y 2.

After the 2011 Tohoku earthquake, the mortality rate in Iwate Prefecture, which was the area most severely
affected, relatively increased by approximately 7% over the following decade compared to the pre-earthquake
mortality rate (Iwate Prefecture, Japan [27]). This 7% relative increase in mortality rate over the ten-year
period corresponds to a 0.7 shift in the public health deterioration factor drift because of k2 = 0.01.

Moreover, we set l in (143), the parameter indicating impact of the public health deterioration factor Y 2 on
the drift of the economic factor Y 1, as −0.003 so that with the shift of µY,2 above, the 30-year yield changes by
-0.30%, which corresponds to the 30-year yield drop after the Tohoku earthquake from March 2011 to September
2011. In detail, with the shift of µY,2 by 0.7, through the drift of the economic factor Y 1 negatively impacted by
the public health deterioration factor Y 2, the economic factor lowers, and accordingly, the yield curve lowers.

Table 4 presents the insurance prices in the case of public health deterioration, especially when the economy is
led to a downturn and the central bank purchases government bonds, decreasing the secondary market supply of
government bonds, for monetary easing. In this example, we set µY,2, the drift of the public health deterioration
factor Y 2, as 0.8 by shifting 0.7 from the base case in the high mortality rate case. We also set βY,3, βY,4, and
βY,5 to −0.035 as in the monetary easing case investigated in the first example.
By the shift in the public health deterioration factor, which directly affects mortality such as pandemic,

earthquake, or deterioration of public health, the mortality rate increases and, at the same time, negatively
affects the economic factor. This negative impact on the economic factor magnifies the lowering effect on the
discount rate in the easing case.

Base case Easing case with high mortality

Death benefit 0.082 0.248

Life annuity 25.4 35.6

Discount rate for 100 years 4.8% 1.9%

Table 4
Insurance prices with high mortality rates during monetary easing. µY,2 = 0.1, 0.8 for the base case and the high mortality
rate case, and βY,3, βY,4.βY,5 = −0.035 for the monetary easing situation.

Then, Table 4 indicates that in the high mortality case with the monetary easing scenario, where the central
bank purchases the market outstanding bonds, and the supply of bonds in the secondary market decreases,
insurance companies need more reserves for the insurance payment due to the effect on the discount rate of the
public health deterioration factor.
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Specifically, the result indicates that higher reserves are required for both products due to the lowering of
discount rates amplified by public health deterioration in the monetary easing situation. Thus, it is essential
for insurance companies to consider the impact of public health deterioration on the necessary reserves, taking
into account the economic downturn and the resulting monetary easing situation.

5 Conclusion

We have effectively solved the multi-agent equilibrium problem in an incomplete market with discrete-time re-
demption, issuance, and coupon payments for groups of government bonds categorized by time to maturity and
intermediate consumption. Our model specifically targets the optimal portfolio and consumption decisions of in-
stitutional investors’ representative shareholders, with a particular emphasis on the market outstanding value of
government bonds within the same maturity zone.

Moreover, we have derived equilibrium interest rates and yields for government bonds across different maturity
sectors. By considering the supply control of these bonds by central banks and governments, particularly observed
post-global financial crisis, our model incorporates changes in the market supply of government bonds. This allows
the model to quantify the impact on the term structure of interest rates.

Additionally, we have examined the effects of net supply changes of government bonds in the secondary market,
influenced by central bank and government policy changes, on insurance pricing such as death benefits and life
annuities and their value at risk via the yield curve.

Furthermore, we have presented numerical examples demonstrating the impact of monetary policy changes, sentiment
transitions, and mortality rate changes during periods of monetary easing on insurance prices, analyzed through shifts
in super-long discount rates. Our model has proven to be valuable for estimating long-term discount rates, which
are essential for insurance companies’ claim pricing, and for comprehending the effects of central bank government
bond purchases on insurance pricing.

This study is novel in investigating the impact of net supply changes of government bonds in the secondary market,
driven by central bank and government policy changes, on insurance pricing through the term structure of interest
rates using an endogenous approach within an incomplete market equilibrium model.

Future research will involve using empirical data to estimate our incomplete market equilibrium model and to assess
its impact on the term structure of interest rates.
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