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Probability-based A/B testing with Adaptive Minimax Regret (AMR) criterion 
for long-term customer metrics 

 
 

ABSTRACT 
 
In economics, uncertainty is distinguished into two types: risk, which can be evaluated 
in terms of probability, and ambiguity, in which the probability is unknown. In decision 
making under risk, the rational course of action is to make a choice that maximizes 
expected utility, which is the utility of an event weighted by its probability. On the other 
hand, under ambiguity, where the probability is unknown, how should decisions be 
made? 
 
We first introduce the Minimax Regret, a decision-making criterion under ambiguity 
where probabilities are unknown but the interval is known. As a concrete example, 
consider two slot machines: one existing and one new. The winning probability of the 
former is known, while the winning probability of the latter is unknown, with only the 
interval provided. In this case, the optimal strategy according to the Minimax Regret 
criterion would be to randomly pull each of the two slot machines with a certain 
probability. 
 
Next, when utility is measured by a long-term metric, the interval of uncertainty for this 
metric decreases over time. To address this, we introduce the Adaptive Minimax Regret 
(AMR) approach, which maximizes utility by updating the probabilities according to the 
Minimax Regret criterion based on the information available at each point in time. 
Simulation testing on the case of the existing and new slot machines mentioned earlier 
showed that AMR produced high performance comparable to bandit algorithms. As an 
application of AMR in marketing, we propose sequential campaign strategies and 
probabilistic A/B testing aimed at maximizing the average customer lifetime (utility) of 
the target audience. 
 
 
Keywords: Minimax Regret, Bandit Algorithm, Probabilistic A/B Testing 
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1. CONCEPTUAL FRAMEWORK 
 
As the importance of long-term customer metrics such as lifetime value and churn rate 
continues to grow, companies find themselves compelled to make prompt decisions 
before observing the full results. 
 
First, let us consider the following scenario: 
 
In an existing campaign, E, with a track record of 4 years, the average lifetime of 
acquired customers was 2.7 years. Now, to increase the lifetime, a new campaign, N, 
is being planned. If we were to implement N and compare its effectiveness with E, we 
need to wait for 4 years for the results to come out. If, however, we knew the probability 
distribution of the average lifetime of N from prior market research (e.g., 2 years with 
0.4 and 4 years with 0.6), we would choose N with the higher expected value (3.2 
years) over E (2.7 years). However, under "ambiguity," where this probability 
distribution is unknown but only its interval (support) is known, how should decisions 
be made? 
 
This situation is related to decision-making in situations where uncertainty is 
distinguished into two types: ‘risk’, which can be assessed with probability, and 
‘ambiguity’, where the probability is unknown (Savage 1951). In decision-making under 
"risk," the Bayesian decision is rational, where one chooses the option with the higher 
expected utility weighted by the probabilities of outcomes. On the other hand, in 
decision-making under "ambiguity," where probabilities are unknown and only intervals 
are known, criteria such as the Maximin (maximizing the minimum utility), Minimax 
Regret (minimizing the maximum regret), and Maximax (maximizing the maximum 
utility) have been proposed. 
 
Here, we propose an approach called Adaptive Minimax Regret (AMR), applying the 
Minimax Regret criterion to the selection of campaigns E and N based on the results 
obtained at each point in time and updating it sequentially (Manski 2011). 

 
 

2. RELEVANT LITERATURE 
 
The minimax regret criterion is a decision-making principle that aims to minimize the 
maximum possible loss in utility. On the other hand, the maximin criterion tends to be 
overly conservative in decision-making as it focuses on maximizing the worst-case 
scenario. Conversely, the maximax criterion tends to be overly optimistic as it aims to 
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maximize the best-case scenario. The key feature of the minimax regret criterion is 
that it strikes a balance in decision-making orientation (Manski 2007). 
 
The second feature is that decisions are made probabilistically. In the previous 
campaign example, Minimax Regret is achieved by randomly implementing E and N 
with probabilities 1-d and d, respectively, as shown in the table. 
 

campaign utility 
u(⋅) 

implementation 
probability 

E: existing a 
fixed value, known 

1-d 

N: new b ∈ [ bL, bU ] 
pdf is unknown 

d 

  

 
Regret R is defined as the difference between the utility obtained from the best action 
(max(𝑎𝑎, 𝑏𝑏)) and the utility obtained from the chosen action (u(d,b)), as in (1). 
 

(1) 𝑅𝑅(𝑑𝑑, 𝑏𝑏) = max(𝑎𝑎, 𝑏𝑏) − 𝑢𝑢(𝑑𝑑, 𝑏𝑏)         where  𝑑𝑑 = probability of choosing N 

 
Minimax Regret criterion minimizes the maximum regret (worst scenario) as in (2). 
 

(2) min
𝑑𝑑

max
 𝑏𝑏

{𝑅𝑅(𝑑𝑑, 𝑏𝑏)} = min
𝑑𝑑

max
𝑏𝑏

{max(𝑎𝑎, 𝑏𝑏) − 𝑢𝑢(𝑑𝑑, 𝑏𝑏)} 

 
The optimal solution d* is represented by (3) (see Appendix 1). 
 

(3) 𝑑𝑑∗ = 𝑏𝑏𝑈𝑈−𝑎𝑎
𝑏𝑏𝑈𝑈−𝑏𝑏𝐿𝐿

 

 
Expanding the situation to where the utility a for E is also unknown to the lesser extent 
and only its interval (aL, aU) is known, the optimal d* is represented by (4) (see Appendix 
2). 
 

(4) 𝑑𝑑∗ = 𝑏𝑏𝑈𝑈−𝑎𝑎𝐿𝐿
𝑎𝑎𝑈𝑈−𝑎𝑎𝐿𝐿+𝑏𝑏𝑈𝑈−𝑏𝑏𝐿𝐿

   where 𝑏𝑏𝐿𝐿 < 𝑎𝑎𝐿𝐿 < 𝑎𝑎𝐻𝐻 < 𝑏𝑏𝐻𝐻 
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3. METHOD 
3.1. Adaptive Minimax Regret (AMR) 
 
Uncertainty in a long-term metric (utility), defined by its bounds [bL, bU], decreases as 
new data become available over time. Therefore, AMR is an approach that updates 
the optimal probability d* of Minimax Regret based on the information obtained up to 
that point in time.  
 
In our campaign case, bL(t) and bU(t) are updated based on the observed customers’ 
survival up to period t. Based on the optimal probability 𝑑𝑑t* derived from Equation (3) 
at that point in time, E and N are selected and implemented. 
 
3.2. Comparison with Bandit Algorithms 
 
AMR shares similarities with the framework of bandit algorithms, which aim to 
maximize cumulative return by continuously pulling the arm with the higher return, 
given the uncertainty about which arm (E or N) yields higher returns. In bandit 
algorithms, balancing "exploitation" (pulling the arm with a higher return) and 
"exploration" (inferring the return of each arm) is crucial. Various methods have been 
proposed for this purpose (Lattimore and Szepesvári 2020). Therefore, the 
effectiveness of AMR is first compared with three commonly used bandit algorithm 
methods (ε-greedy, Upper Confidence Bound, Thompson Sampling). 
 

 
4. SIMULATION STUDY 

 
In this study, two arms A and B with different winning probabilities (a=0.5, b=0.7) are 
prepared. The objective is to maximize the cumulative number of wins while 
continuously pulling the arms 1000 times, with unknown winning probabilities for both 
arms. After each pull, the result of a win/loss is observed. In AMR, the uncertainty in 
the winning probability of each arm is updated based on the information obtained up 
to that point, using the 95% confidence interval estimated from the data. 
 
The left figure plots the probability of pulling the arm with the higher return (B) against 
the number of pulls. Initially, exploration is conducted through trial and error, but 
eventually, the probability of pulling B approaches 1. AMR performs second best after 
Thompson Sampling based on Bayesian methods. The right figure plots the cumulative 
return against the number of pulls. If only arm B is continuously pulled, the line would 
have a slope of 0.7. In this study, AMR showed the best performance. 
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This simulation experiment showed that AMR produces performance that is 
comparable to or exceeds that of existing methods commonly used in bandit algorithms. 
 

 
5. MARKETING APPLICATION 

 
The bandit algorithm cleverly exploits the improvement in the estimation accuracy of 
the static parameter, which is the winning probability of the arms, as the number of 
trials increases. The true advantage of AMR lies in its ability to leverage dynamic 
parameters in situations where they are censored, which cannot be addressed by 
traditional bandit algorithms. Let us examine this in the context of the previous 
campaign case, focusing on customer lifetime. 
 
In the existing campaign E, the customer retention rates for all periods t are known, 
and the average lifetime is calculated to be 2.7 years (=0.8+0.7+0.6+0.6). A new 
campaign N is under consideration, and the goal is to utilize strategies in E and N to 
increase the average lifetime during the first 4 years (ignoring 5th year and beyond). 
 
Since there is no customer retention rate data for N, the average lifetime is unknown 
until it is actually implemented. After implementation, the customer retention rate for 
each period t (0.9, 0.8, 0.7, 0.7) is observed, reducing the uncertainty in the average 
lifetime (bL(t) and bU(t)). Based on the survival information obtained up to period t, AMR 
updates the optimal mixing probability dt*. The results are summarized in the table 
below. 
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year 
survival 

probability 
lifetime bound proportion of N ave. lifetime 

t E N bL bH dt*  

0 1 1 0 4 0.325 2.83 

1 0.8 0.9 0.9 3.6 0.333 2.83 

2 0.7 0.8 1.7 3.3 0.375 2.85 

3 0.6 0.7 2.4 3.1 0.571 2.93 

4 0.6 0.7 3.1 3.1 1.000 3.1 

ave. 

lifetime 
2.7 3.1    3.1 

  
 
For example, in row t = 2, the probability of survival of 0 years (less than 1 year) is 0.1 
(=1-0.9) and the probability of survival of 1 year (between 1 and 2 years) is 0.1 (=0.9-
0.8). Therefore with the remaining probability of 0.8, the shortest survival is 2 years 
and the longest is 4 years. This gives us bL=1.7 (=0.1x0+0.1x1+0.8x2) and bH=3.3 
(=0.1x0+0.1x1+0.8x4). 
 
The average lifetime for N is 3.1 years, but this information is not known until year 4. 
As time progresses, the interval of the average lifetime decreases. Correspondingly, 
the optimal ratio dt* for N, determined by the Minimax Regret criterion, increases and 
eventually reaches 1 (left figure). By implementing a campaign that mixes E and N with 
probability dt*, the average lifetime extends from 2.83 years to 3.1 years (right figure). 
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6. CONCLUSIONS 
 
In this study, we proposed the AMR approach, which mixes the selection of campaigns 
E and N optimally with a certain probability. AMR applies the Minimax Regret criterion 
based on the result of N obtained at each point in time, updating the mixture probability 
sequentially.  
 
Evaluating long-term metrics like customer lifetime requires an extended observation 
period. Even with big data in the absence of statistical error, these metrics cannot be 
fully captured. Companies can calculate the optimal mixing probability based on 
current information at hand and update it sequentially, enabling them to respond before 
knowing the complete results of long-term metrics. As a long-term metric in marketing, 
AMR can also be applied to areas beyond customer lifetime, such as the repeat rate 
of products, subscriptions, and services. 
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Appendix 1: Derivation of d* for Minimax Regret Criterion when b is unknown 
 
Recall the payoff of the two campaigns E and N. 
 
 

campaign utility 
u(⋅) 

implementation 
probability 

E: existing a 
fixed value, known 

1-d 

N: new b ∈ [ bL, bU ] 
pdf is unknown 

d 

 
 
Without loss of generality, assume that the support (uncertainty interval) of b is such that 
𝑏𝑏𝐿𝐿 < 𝑎𝑎 < 𝑏𝑏𝐻𝐻 . 
 
Utility u(⋅) is express as a function of d and the unknown payoff b as (A1). 
 
(A1)  𝑢𝑢(𝑑𝑑, 𝑏𝑏) = (1 − 𝑑𝑑)𝑎𝑎 + 𝑑𝑑 ∙ 𝑏𝑏 = 𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝑑𝑑  
 
Since the regret is defined as follows, 
 

𝑅𝑅(𝑑𝑑, 𝑏𝑏) = max(𝑎𝑎, 𝑏𝑏) − 𝑢𝑢(𝑑𝑑, 𝑏𝑏)      where 𝑏𝑏 is unknown 
 
decision d under the Minimax regret criterion is shown in (A2) 
 
(A2) min

𝑑𝑑
max

 𝑏𝑏
{𝑅𝑅(𝑑𝑑, 𝑏𝑏)} = min

𝑑𝑑
max
𝑏𝑏

{max(𝑎𝑎, 𝑏𝑏) − 𝑢𝑢(𝑑𝑑, 𝑏𝑏)} 
 
Maximum regret max

 𝑏𝑏
{𝑅𝑅(𝑑𝑑, 𝑏𝑏)} is expressed as (A3). 

 
max
𝑏𝑏

{max(𝑎𝑎, 𝑏𝑏) − 𝑢𝑢(𝑑𝑑, 𝑏𝑏)}
= max

𝑏𝑏
{𝑙𝑙(𝑏𝑏 > 𝑎𝑎)[𝑏𝑏 − {𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝑑𝑑}] +  𝑙𝑙(𝑎𝑎 > 𝑏𝑏)[𝑎𝑎 − {𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝑑𝑑}]}

= max
𝑏𝑏

{𝑙𝑙(𝑏𝑏 > 𝑎𝑎)(𝑏𝑏 − 𝑎𝑎)(1− 𝑑𝑑) +  𝑙𝑙(𝑎𝑎 > 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏)𝑑𝑑}
= max

⬚
{(𝑏𝑏𝑈𝑈 − 𝑎𝑎)(1 − 𝑑𝑑), (𝑎𝑎 − 𝑏𝑏𝐿𝐿)𝑑𝑑} 

(A3) 
 
 
Since decision d* that miminizes (A3) satisfies (𝑏𝑏𝑈𝑈 − 𝑎𝑎)(1− 𝑑𝑑∗) = (𝑎𝑎 − 𝑏𝑏𝐿𝐿)𝑑𝑑∗, 
 
(3) 𝑑𝑑∗ = 𝑏𝑏𝑈𝑈−𝑎𝑎

𝑏𝑏𝑈𝑈−𝑏𝑏𝐿𝐿
 

 
 
Figure A1 depicts the maximum regret as a function of d and the optimum decision d*. 
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Figure A1. d* for minimax regret criterion when b is unknown. 

 
 
 

Appendix 2: Derivation of d* when both a and b are unknown 
 
Without loss of generality, assume that the supports (uncertainty intervals) of a and b is such 
that 𝑏𝑏𝐿𝐿 < 𝑎𝑎𝐿𝐿 < 𝑎𝑎𝐻𝐻 < 𝑏𝑏𝐻𝐻 (b is more uncertain). 
 
Utility u(⋅) is express as a function of d and the unknown payoffs a and b as (A4). 
 
(A4)  𝑢𝑢(𝑑𝑑, 𝑏𝑏,𝑎𝑎) = (1 − 𝑑𝑑)𝑎𝑎 + 𝑑𝑑 ∙ 𝑏𝑏 = 𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝑑𝑑  
 
Maximum regret max

 𝑏𝑏
{𝑅𝑅(𝑑𝑑, 𝑏𝑏, 𝑎𝑎)} is expressed as (A5). 

 
max
𝑏𝑏,𝑎𝑎

{max(𝑎𝑎, 𝑏𝑏) − 𝑢𝑢(𝑑𝑑, 𝑏𝑏,𝑎𝑎)}

= max
𝑏𝑏,𝑎𝑎

{𝑙𝑙(𝑏𝑏 > 𝑎𝑎)[𝑏𝑏 − {𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝑑𝑑}] +  𝑙𝑙(𝑎𝑎 > 𝑏𝑏)[𝑎𝑎 − {𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎)𝑑𝑑}]}

= max
𝑏𝑏,𝑎𝑎

{𝑙𝑙(𝑏𝑏 > 𝑎𝑎)(𝑏𝑏 − 𝑎𝑎)(1− 𝑑𝑑) + 𝑙𝑙(𝑎𝑎 > 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏)𝑑𝑑}

= max
⬚

{(𝑏𝑏𝑈𝑈 − 𝑎𝑎𝐿𝐿)(1 − 𝑑𝑑), (𝑎𝑎𝑈𝑈 − 𝑏𝑏𝐿𝐿)𝑑𝑑} 
(A5) 
 
Since decision d* that miminizes (A3) satisfies (𝑏𝑏𝑈𝑈 − 𝑎𝑎𝐿𝐿)(1 − 𝑑𝑑∗) = (𝑎𝑎𝑈𝑈 − 𝑏𝑏𝐿𝐿)𝑑𝑑∗ 
 
(4) 𝑑𝑑∗ = 𝑏𝑏𝑈𝑈−𝑎𝑎𝐿𝐿

𝑎𝑎𝑈𝑈−𝑎𝑎𝐿𝐿+𝑏𝑏𝑈𝑈−𝑏𝑏𝐿𝐿
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Figure A2 depicts the maximum regret as a function of d and the optimum decision d*. 
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Figure A2. d* for minimax regret criterion when both a and b is unknown. 

 
 
 


