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Abstract

This paper presents an asset pricing model in an incomplete market involving a large number of heterogeneous
agents, based on the mean field game theory. The primary objective of this study is to derive the equilibrium
risk premium process endogenously by considering the optimal consumption-investment problem and the market
clearing condition. In the model, we incorporate habit formation in consumption preferences, which has been
widely used to explain various phenomena in financial economics. In order to characterize the market-clearing
equilibrium, we derive a quadratic-growth mean field backward stochastic differential equation (BSDE) and
study its well-posedness and asymptotic behavior in the large population limit. Additionally, we introduce an
exponential quadratic Gaussian reformulation of the asset pricing model, in which the solution is obtained in a

semi-analytic form.

Keywords mean field game, asset pricing, optimal consumption-investment problem, exponential utility, market clearing

1 Introduction

1.1 Preliminary

Asset pricing theory plays a crucial role in financial economics as it investigates how asset prices are determined through
market interactions. The fundamental objective of the theory is to establish the equilibrium price at which the supply
of assets matches its demand. See, for example, Back [1] and Munk [35] for details. Karatzas & Shereve [29] also offers
comprehensive descriptions for the equilibrium asset pricing in complete markets. The continuous-time stochastic equilibrium
pricing problems in incomplete markets are being actively researched as there are still many open issues. In recent years,
numerous research efforts are devoted to show the existence of equilibrium solutions in incomplete markets under various
conditions. See, for example, Christensen & Larsen [7], Cuoco & He [9] and Zitkovié¢ [42] and references therein. Let us
further refer to Jarrow [27] [Part III] for a well-integrated review on this subject.

The mean field game theory, first introduced by Lasry & Lions [33] and Huang, Malhame & Caines [26], has emerged

as a powerful framework for studying multi-agent games. Traditional approaches to such games usually result in intractable
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problems due to complex interactions among agents. The mean field game theory overcomes this challenge by replacing
such problems with a stochastic control problem of a single representative agent and a fixed point problem. Lasry & Lions
[33] and Huang, Malhame & Caines [26] presented an analytic approach, in which they show that the problem can be
framed as two highly coupled nonlinear partial differential equations. Meanwhile, Carmona & Delarue [3, 4] introduced the
probabilistic approach to the mean field problem employing forward-backward stochastic differential equations (FBSDEs) of
McKean-Vlasov type in lieu of a system of partial differential equations. The solution of these mean field equations is known
to provide an e-Nash equilibrium of the original game with a large but a finite number of agents. The probabilistic approach
is extensively covered in two volumes of monographs Carmona & Delarue [5, 6], offering thorough details and applications.
Furthermore, the mean field game theory has been applied to various studies in the field of financial economics. For instance,
Fu, Su & Zhou [14], Fu & Zhou [15] and Fu [13] propose stochastic games among multiple agents with exponential or power
utility competing in a relative performance criterion. These examples illustrate the relevance and usefulness of mean field
game theory in tackling complex interactive problems, providing valuable insights in financial economics and related fields.

In recent years, there have been an increasing number of studies on asset pricing theory adopting the mean field game
approach. They aim to determine the equilibrium price process based on the optimal behavior of the market participants
under the market clearing condition. One notable area of interest has been the investigation of price formation in electricity
markets. Shrivats, Firoozi & Jaimungal [39] employs FBSDEs of McKean-Vlasov type to study pricing model in Solar
Renewable Energy Certificate (SREC) markets and Firoozi, Shrivats & Jaimungal [12] studies principal agent mean field
games in REC markets. Gomes & Sdude [24] develops a deterministic price formation model in which agents can both store
and trade electricity. Gomes, Gutierrez & Ribeiro [22] extends this model by considering the randomness on the supply
side and [23] deals with a price formation of commodities with stochastic production. In the realm of financial economics,
Evangelista, Saporito & Thamsten [11] develops a mean field game theoretic model of asset pricing with consideration of
liquidity issues. Fujii & Takahashi [19, 20] present a mean field pricing model for securities under stochastic order flows and
[21] provide its extension with a major player. Fujii [16] develops a price formation model in which the market participants
consist of two groups: cooperative and non-cooperative ones. Moreover, Fujii & Sekine [17] studies an mean field equilibrium
pricing model in an incomplete market participated by heterogeneous agents with exponential utility, but without considering
agents’ consumption.

The main contribution of this paper is an extension of the aforementioned work [17]. This paper aims to further explore
the equilibrium pricing model in an incomplete market with heterogeneous agents, taking the agents’ consumption behavior
and habit formation into account. The research of consumption habit formation has been a fundamental and classical subject
in financial economics. The existence of the habit formation relaxes the assumption of time-separable utility functions by
making the utility dependent not only on the current level of consumption but also on the agent’s accumulated stock of
past consumption. Early studies include, for instance, [8, 10, 37, 38]. Our model specifically incorporates heterogeneity
among agents in various aspects, including their initial wealths, initial consumption habits, liabilities and coefficients of risk
aversion. In this paper, we start from the utility maximization problem of a single agent, which draws inspiration from the
work Hu, Imkeller & Miiller [25], and derive the relevant BSDE. After proving its well-posedness, we construct the market
risk premium process endogenously under the market clearing condition by introducing the mean field BSDE. As we have
done in [17], we prove its well-posedness using the method proposed by Tevzadze [40] with additional assumptions on the size
of the parameters. We then verify that the risk premium process, expressed by its solution, indeed clears the market in the
large population limit. Another contribution of this paper is to offer an exponential quadratic Gaussian (EQG) formulation
of the model, in which a solution to the mean field BSDE can be characterized by a system of ordinary differential equations.
Since the EQG model provides a semi-analytic solution, it would allow detailed numerical studies in the future works.

This paper consists of five sections and an appendix. In Section 1, after providing the introduction, we give the notations



for frequently used sets and spaces. In Section 2, we offer a mathematical formulation of the financial market and solve the
optimal consumption-investment problem for a single agent. In Section 3, we derive a mean field BSDE whose driver has
a quadratic growth in both stochastic integrand and its conditional expectation and prove that it has a bounded solution
under additional assumptions. We also verify that its solution does characterize the financial market in equilibrium in the
large population limit. Furthermore, in Section 4, we introduce the EQG framework and prove each result corresponding to

Section 3. We conclude the paper with a brief summary and a suggestion for possible extensions in Section 5.

1.2 Notations

In this paper, we shall work on a finite time interval [0, 7] for some T > 0. For a given filtered probability space with usual
conditions (Q, F,P,F (:= (Ft)eco,r7)) and a vector space I over R, we use the following notations to describe frequently

used sets and function spaces.

(1) T(F) is a set of all F-stopping times with values in [0, 7.

(2) L%(F, E) is a set of E-valued F-measurable random variables.

(3) L*(P, F, E) is a set of E-valued F-measurable random variables ¢ satisfying ||£]|2:= IE]PH&\Q}% < 0.

(4) L*°(P, F, E) is a set of E-valued F-measurable random variables £ satisfying ||{||cc:= essessglp|§(w)|< 0.
(5) LO(F, E) is a set of E-valued F-progressively measurable stochastic processes.

6) H?(P,F, F) is a set of E-valued F-progressively measurable stochastic processes X satisfying
Y
v :
1 X ||g2:= EF [/ \Xt|2dt] < 0.
0
(7) L>°(P, T, E) is a set of E-valued F-progressively measurable stochastic processes X satisfying

[ X|jLee:=esssup |Xi(w)| < oo.
(t,w)€[0,TIXQ

(8) Hanmo (P,F, ) is a set of E-valued F-progressively measurable stochastic processes X satisfying

T 1
X|lgz = sup HEP[/ X 2dt]:T]2H < 00,
Xl o= sup 7] [ a7 ]

where ||-||cc denotes the P-essential supremum as in (4).

(9) S*(P,F, E) is a set of E-valued F-progressively measurable continuous stochastic processes X satisfying

1
| X |ls2:= EP[ sup |Xt|2] < 0.
te[0,T]

(10) S*°(P,F, E) is a set of E-valued F-progressively measurable continuous stochastic processes X satisfying

[ X||seo:=esssup |Xi(w)] < oo.
(t,w)€[0,T]xQ2

(11) C([0,T), E) is a set of continuous functions f : [0,7] — E.



(12) C*([0,T), E) is a set of once continuously differentiable functions f : [0,T] — E.

(13) We set R%} := {z € R";z > 0} and R}, := {& € R";z > 0} for n € N. Also, M, is a set of real symmetric matrices of
size n X n.

For (1) to (12), we may omit the arguments such as (P, F,F, E) if obvious. Throughout the paper, the symbol C
represents a general nonnegative constant which may change line by line. Also, the argument w € € is usually omitted when

there is no risk of misinterpretation.

2 Optimal consumption-investment problem for a single agent

In this section, we investigate the optimal consumption-investment problem for a single agent (whom we shall call “agent-1”
hereafter). We basically follow the same line of arguments as in Fujii & Sekine [17] and adopt the technique developed by
Hu, Imkeller & Miiller [25]. In this work, however, we take an agent’s consumption and habit formation into consideration.

As we shall see, this extension requires a clever choice of supermartingale processes that are needed to verify the optimality.

2.1 The market and the utility function

To formulate the optimization problem for agent-1, let us first introduce the relevant probability spaces.

(1) We denote by (Q°, F°,P°) a complete probability space with complete and right-continuous filtration F° := (Fto)te[oj]
generated by a do-dimensional standard Brownian motion W©° := (Wto)te[O’T] with F° := F2. (Q°, F° PY) is used to describe
the randomness of the financial market. Moreover, we denote by (Q', F*,P!) a complete probability space with complete
and right-continuous filtration F* := (]—"tl)te[()ﬂ generated by a d-dimensional standard Brownian motion W' := (th)te[O,T]
and a o-algebra o(¢',v*, 8, X3, Fy), where the completion of the latter gives F3. We set F* := Fa. Here, ¢!, X§ and Fy
are R-valued, bounded random variables and ' and 8* are R -valued bounded random variables. (Q', 7', P') is used to

describe the idiosyncratic environment for agent-1.

(2) We denote by (Q%*, %! P%!) a complete probability space over Q*! := Q° x Q'. Here, (F>!,P%!) is the completion of
(F°o FL, P’ @ P') and F*' := (Ff’l)te[oyﬂ denotes the complete and right continuous augmentation of (Fy ® ]:tl)te[O,T]-

We set T2 := T(F*!) and 7° := T(F°) for notational simplicity. The market dynamics and the idiosyncratic envi-
ronment of agent-1 are modelled on the filtered probability space (Qo‘l,]-'o’l,PO‘l,]Fo‘l). Whenever we introduce random
variables on a marginal probability space, we identify them with their natural extension to the product space. For example,
we use the same symbol X for a random variable X (w®) defined on (Q°, F°,P°) and its natural extension X (w®, w') := X (w®)
defined on (Q%*, 7! P%1). In this section, we write E[-] instead of EF [-] unless otherwise stated.

We now introduce the market dynamics and its properties in the following assumption.

Assumption 2.1.1.
(i) The risk-free interest rate is zero.

(ii) There are n € N non-dividend paying risky stocks whose price dynamics, represented by an n-dimensional vector, is given

by

t
S = So +/ diag(S,)(urdr + o, dWP), € [0, T, (2.1.1)
0



where So € Ry, = (ue)iep,r) € Himo (P, FO,R™) and o := (04)ieo,r) € L= (P°,FO,R"*%). Sy is an n-dimensional

vector representing the initial stock prices. Moreover, we assume that the process o is of full rank and satisfies
M, < (o10f ) < A, dt@P -ae.

for some positive constants 0 < A < X and an identity matriz of size n, denoted by I,. We set n < do so that the financial

market is incomplete in general.

Under this assumption, the process (0.0 )ic(o,7] is regular and the risk premium process 6 := (60;)c(o,7 is defined by
0, = o (0r0¢ )" e € Hano(P?,FO,R%). Note that 6; € Range(o, ) = Ker(o;)*. It is worth mentioning that by having

6 € H3no, we can change the probability measure P? to the risk-neutral measure Q, which is defined by

dQ _of [ pT 1170
e ft_e( /095 dWS)t, te0,T). (2.1.2)

This ensures the well-posedness of the stock price process (2.1.1), even though p is unbounded (See Kazamaki [30]).

Definition 2.1.2. For each s € [0,T], let us denote by Ls := {UTO'S;U € R"} the linear subspace of RY¥9 spanned by the n

row vectors of os. Furthermore, we define a map II, : R**% — L as an orthogonal projection onto Ls.
By its construction, we have 8, € L for every s € [0, 7).
Remark 2.1.3. For notational convenience, we shall write
zl =12, Z&:=2,-1,Z), secl0,T]

for an RY*% _yalued progressively measurable process Z. Note that the process (ZL‘)SE[O,T] is also progressively measurable by

Karatzas & Shreve [29] [Lemma 4.4].
Now, we shall model the idiosyncratic environment of agent-1 through a 5-tuple (¢%,~%, 8%, X¢, F1).

Assumption 2.1.4.

(i) &' is an R-valued, bounded, and Fg-measurable random variable representing the initial wealth of agent-1.

(ii) v 4s an R-valued, bounded, and Fg-measurable random variable satisfying 7 < ~b < F with some positive constants
0<y<7. v is the coefficient of absolute risk aversion of agent-1 with respect to his/her net wealth.

(iii) B is an R-valued, bounded, and F§-measurable random variable satisfying B < B < B with some positive constants
0<p< B. B* is the coefficient of absolute risk aversion of agent-1 with respect to his/her consumption level.

(iv) Xg is an R-valued, bounded, and F3-measurable random variable representing agent-1’s initial stock of habits.

(v) F' = (Ftl)te[o,T] is an R-valued, bounded, and F*'-progressively measurable process. For each t € [0,T], F\ represents
the amount of liability at time t of agent-1.

(vi) p := (pt)tep,r) is an R-valued, bounded, and FO-progressively measurable process. The process p represents the habit
trend influenced by the market shocks.

(vil) Agent-1 is a price taker; agent-1 must accept the prevailing prices as he/she lacks the market share to impact the market

price.

The trading and consumption strategies of agent-1 are denoted by (m,c), where 7 := (m¢)ie[o, 7] is an R™-valued, F*'-
progressively measurable process representing the amount of money invested in n stocks and ¢ := (ct)¢e[o,r] is an R-valued,

FO%1-progressively measurable process representing agent-1’s consumption' process. The wealth process of agent-1 with

1'We do not forbid the process ¢ having negative values in order to make the analysis simple. The negative ¢ may be interpreted as,

for example, “net consumption”, i.e. consumption minus labour income.



strategy (m,c) is then given by

n t ) t t t
W™ :§1+Z/ %dsg —/ csds:51+/ (Wza_ges—cs)ds—k/ 7 o dWP.
j=1 0 s 0 0 0

We now formulate the utility maximization problem of agent-1 as follows: agent-1 solves
sup U'(m,c)
(m,c)eAl

subject to

t t
W) — gty / (] 765 — ca)ds + / T odW?, te0,T),
0 0

where A! is a set of admissible strategies for agent-1, whose definition is to be given and U' : A — R is the utility function

defined by

T
U'(m,c) = IE[— exp(—éT — ’yl(leJ(w’c) — F%)) — a/ exp(—§t — o — F) =B (c: — th’c))dt]
0

for some constants a,d > 0 representing the weight of the running utility with respect to the terminal utility and the discount

rate, respectively. Here, X represents the agent-1’s consumption habits defined by a mean-reverting process
t
X=X —|—/ {—r(X2C = ps) +b(cs — ps)}yds, t€0,T]
0
for some constants b, k > 0. By a simple calculation, we can write it in an explicit form as

¢
X =e "X, +/ e " fbeg + (k— b)pstds, te[0,T).
0

Remark 2.1.5. The economic interpretation of the habit process X ¢ and the utility function U is as follows.

(i) The consumption habit X° is determined by the accumulation of past private consumption (¢s)sepo,y) and the given
consumption trend (ps)sefo i the market. In particular, a higher level of past consumption increases the agent’s current
habit by having b > 0. The size of the parameter k > 0 determines the rate at which the consumption habit decays.

(ii) The term c — X1 in the running utility means that the agent evaluates the current consumption level relative to his/her
habit. Importantly, the agent’s preference is mo longer time-separable as the past consumption level has an effect on the
current consumption choice.

(iii) The amount of net asset Wh(me) _ Bl enters both in the agent-1’s running and terminal preferences. Note that the low

portfolio performance WfL(?T,c)

— F} < 0 is heavily punished whereas the high performance W,l’("’c>

— F}! > 0 is only weakly
valued in this type of utility function.

The admissible strategy for agent-1 is defined as follows.

Definition 2.1.6. (Admissible space for agent-1)
The admissible space A" is the set of trading and consumption strategies (m,c) € H2(P%!, FO1 R™) x H2(P*!, F®! R) such
that a family
{exp(—r'WH 4 B, [+ KX )7 € T
is uniformly integrable for some K' > ' (A1 + /A2 + B1)™' v 3! where
1 ~t b
A= §(K_b+ E), By = —.
Moreover, we define A* := {(p,c) = (7" o,¢); (m,c) € A'}.



By writing ps := 7, 0, for each s € [0, T], the utility maximization problem can be equivalently written as

sup U'(p,c)
(prc)E AL

subject to ¢ t
thﬁ(p7c) — 51 +/ (pses — Cs)dS +/ pdeSO»
o 0

where U' : A" — R is defined by
~ T
U'(p,c) == IE[— exp(—5T — ’yl(W%’(p’c) — F%)) — a/ exp(—5t — 'yl(th’(p’C) —FN —B8Y(er — th’c))dt] .
0
Note further that for each s € [0,7] and (p,c) € A", we have ps € L.
Remark 2.1.7. If (p,c) € A', we have ﬁl(p, ¢) > —oo. Indeed, for any (p,c) € A", the uniform integrability implies

sup E[exp(f'ythl’(p’c) — B (e — thc))] < oo.
t€[0,T]

We can also see that the family
{/ exp(f'yIW;’(p’c) - ﬂl(cS - X;*C))ds;T IS 7'01}
0

is uniformly integrable.

2.2 Optimization

Based on Hu, Imkeller & Miiller [25], we derive a BSDE which characterizes the optimality. To begin with, we consider a

family of stochastic processes satisfying the following conditions.

Definition 2.2.1. (Condition-R)
A family of stochastic processes {Rl’(p’c) = (Rtl’(p’@)te[()’q«]; (p,c) € Al} C LO(F%1,R) is said to satisfy the condition-R if
the following properties are met.

(i) For all (p,c) € A, R¥P9) satisfies
T
RlT’(p’c) = - eXp(—(ST — ’yl(W;’(p’c) - F%)) - ll/ exp(—ét - ”Yl(WtL(p’c) - Ftl) - ﬁl(ct - th’c))dtv P™ -as.
0

(ii) There exists some }'g’l—measumble random variable Ry such that the equality Ré’(p’c) = R} holds P*-almost surely for
all (p,c) € A .
(iii) R©®9 is an (FO!,P%Y)-supermartingale for all (p,c) € A and there exists some (p*,c*) € A' such that R“®"¢7) js

an (F>', P%Y)-martingale.
Once such a family is identified, we have, for all (p,c) € A",
U'(p,¢) = B[Ry ") < E[RS) = B[Rz ")) = U' (0", "),

which indicates that (p*,c*) is an optimal strategy for agent-1. To find an appropriate family of processes {R1’<p’c)}, we

suppose that each RY(®° has the following form: for t € [0,T],
t
RP) = —exp( =6t — 4" WP = = (1 x})) — / exp(=ds — 7 (WE) — F) = B (e, = X)) ds. (2:2.1)
0

Here, ¢! is an Fg-measurable and continuously differentiable process with ¢+ = 0 satisfying an ordinary differential equation

(ODE) specified later. Y is a solution to the following BSDE whose driver f' is to be determined:

T T T
\4 :F%-i—/ fl(s,Ysl,Zsl’O,ZSI)ds—/ Z;’Odwf—/ Zyawy, te[0,T).
t t

t



For notational simplicity, we may suppress the superscript “1” when obvious. By Ito formula,
(mﬁd:—mq—&—wwﬁ@—n—gxnﬂ—wpwawﬁd—nyﬁgawmﬂ—nrwmxmt
F9CdX + aexp( (Y = Fi+ GX) = Blee - X7))dt |
= —exp (=8t — AV <, CXD)){ -6 — b -+ F(0. 5 20, 200) + L — 20 H1Z2)

+ (G = RG)XE +Geber +Gpe( = b) + aexp(=1(Ye = Fi + G X7) = Bler — X7)) }t

+yexp( =t =y WP = Yi = X)) (b = 20)aW — Z}awy),
where ; 1= %Q. In order to make R a supermartingale for all (p,c) € A, we need

Ft.Ye, 22, Z)
g b 02 12 : c a c c
< T (pe0r — ) + 5 (Ipe = Zi [ HZ: ) + (Ce = KG) Xy + Geber + Gepe (e —b) + S P (Ve = Fy + GX¢) — Bler — Xi) ).
Moreover, R is a true martingale for some (p*,c*) only if
Ft.Ye, 22, )
o 0 * * Y * 02 1,2 : c* * a c* * c*
= *; — (PO —ci) + §(|pt = Ze "+ Ze|7) + (G — KG)Xi 4 Cebey + Gepe(k — b) + ;exp —(Ye — Fe + GXi ) — Bler — X))
Combining these observations, we deduce that
F.Y:, 27, 2;)
0 ; c
=73 + (G = KG) XY + Gepe(k — b) (2.2.2)
: _ Yl 702 1,2 . a _ _ ey vy
+ inf {pfet S0 = ZIPHZIP) } 4 inf {1+ Gb)e+ T exp (Vi = Fi+ GXE) = Ble = X7)) .

Assuming 1+ b¢; > 0 for all ¢ € [0, T] temporarily, the candidate for the optimal strategy reads: for ¢t € [0, 7],

bt = Zt + V)
17 5 (2.2.3)
* C* - a’i _ _ C*
= Xi"+ glloe(Sriagy) 10— A ax),
whose admissibility, namely (p*,c*) € A', needs to be verified later. Now we obtain
0 1 _ ol 10* v o2 a2y O _ 1+th{1 af ) _
v 28,20 = =200~ GE 4 Tz Pz = 2 (e oo P 1 og( % ) - o)

c 1 -
FXE{ G4 BC)B = 9C) + (G- me) .
In order to make R satisfy (ii) of the condition-R, we need

%(1 FBC)(B —4G) + (¢ — wG) = 0

for every t € [0,T] so that the process Y is independent of c. To be specific, it is necessary to solve the following ordinary
differential equation of Riccati type:

= (k—b+ 2 ez T
G=(r=b+ )+ -1 teT) oo

¢r =0.



This is actually explicitly solvable (See, for example, Carmona & Delarue [5] [Equation (2.50)]) as

BT —867)(T—1) _ 4

Ct = 5+ — 6_e<5+_§7)(T_t)7 te [07T]7

where
F= A+ A1 B, A= (n—b—i—%), B::%b.

N =

Note that ¢ satisfies

1 _ 1
0<<t_ +(5 é)T/\m

and in particular, 1 + b(; > 0 for all t € [0,T].
Consequently, we have derived a BSDE for the optimality:

T T T
\ =F%+/ f1<s,igl,Z§’0,Z§)ds—/ Z;’OdWS—/ ZydWy, tel0,T) (2.2.5)
t t t
with
, , 105> | 7" 1oL YL+ 0¢5)
s, Yz 2y = — 20, — 2—71 + 5 (122 P HZ)) ~ TY; +98
where

1. i 1 1+b<sl 07/31 1001

2.3 Well-posedness and verification

We now study the well-posedness of (2.2.5). Let us begin with the a priori estimation.

Lemma 2.3.1. Let Assumptions 2.1.1 and 2.1.4 be in force. If the BSDE (2.2.5) has a bounded solution (Y,Z*°,Z") €
SOO(IP)O,I’FO,I’R)XHQ(P()J’FO,I’Rlxdg)XHQ(P()J’FO,I’RIXd)} then (Zl’O,Zl) c H]QSI\AO(PO,ly]F(),l,Rlxdo)XHQBMO(PO,I’FO,I’RIXd)

and such a solution is unique.

proof

In the proof, we may omit the superscript “1” when obvious for notational simplicity. First of all, we have

(1 +6¢)

A
6 Y0 20,20 = — 7%, — 108 |
1 ) 3 :

+ (128 Pz - Yo+ g € TUZLPHZLP) + OUY lls +lglle)-
Then, by Ito formula,
de*™ = 29”7 (@Y; +4d(Y)e) = 296> { (< (4 Ve, 28, 20) + A ZLP A4 2L PVt + Z2aW + 2w |

Hence,

_

2T — ¥ = 2y / e 1 ( sYS,Z;’,Zi)+v|ZS|2+w|Z§|2)ds+ZSdW£+Z:dw:}

T

T T
> 2y [ @ T0ZPHZ) = COW fotlallm) +21Z80 4120 fas 2y [ e {20aw? + Zlaw )
t
2vY, 7 02 1,2 T 2vYs 0 0 1 1
=2 [ e {2UZ2P+Z2P) = CUIY e +lgllie) fds +2v [ ™ {Z0aw? + zlaw?}.
t

Thus, for any ¢ € [0, T

T —
B[ [ (272} 7)ds| 0] < O (14 Y o +gl) < oo
t



Clearly, (Z°,Z") € Himo X Himo-
Next, suppose that there exists two solutions (Y, Z°, Z') and (Y, 20, Zl) both of which are in S*° x H3yo X Hiyo. Let
us write AY =Y —Y, AZ'=2'—Z7" (i=0,1). Then we have

F(6\ Yo, 2220 = 5.V, 22, 21) = 82800, + AZR (204 + 2097 + Jazizt+ 227 - W ay,

1+b¢s)

— _AZ%, + %AZS(ZEL + 2997+ %Azg(zg . §oAY

Now, we define a new probability measure IF’(N P%!) by

dP
dPo.1

:5(/ {_QZJFZ(ZSLﬂLZ'SL)}deJr/ 1(Z§+Z'§)dW§) te[0,7).
0 2 0 2

Fol s
By Kazamaki [30] and Kazamaki [31] [Remark 3.1], the right hand side is a martingale of class D and hence the new

probability measure P is well-defined. Then, the Girsanov’s theorem implies that the processes

— t , — t -
Wy = w! +/ {0, — %(ZSL + 720 ds, W} =W} — / %(Z; +2Z5Tds, tel0,T)
0 0

are the standard (F0’17@)—Br0wnian motions. Now we have:

T T T
AY, = / {fAZSGS + gAZS(Z;“ 12007 4 gAZ;(Z; +ZHT - %AYS}@ - / AZCaw? — / AZLdw}
- A+ b . N . N k ¢ (2.3.1)
:_/ VTSAYSCZS—/ AZSdW;’—/ AZYaW}, te0,T).
t t

¢

Then, it follows that AY =0,AZ° =0 and AZ* =0 for P (and thus P%!)-almost surely since they obviously satisfy (2.3.1)

and the solution of (2.3.1) is unique due to the standard result for Lipschitz BSDEs (See, e.g. Zhang [41] [Chapter 4]). O
For the risk neutral measure Q(~ P%') defined by (2.1.2), the Girsanov’s theorem implies that the processes

wr .= wF 4 /t Osds, WHe =W} tel0,T]
0
form the standard (F°, Q) and (F*, Q)-Brownian motions, respectively. Under this measure, the BSDE (2.2.5) becomes
A /T{f% + %lqz;’(’ﬂngﬁ) - WIOTWYJ T 9! }ds - /T ZH0qwoe _ /T ZLawie  (2.3.2)
t t t
for ¢t € [0,T]. Moreover, by Kazamaki [31] [Theorem 3.3], we have § € Hjyo(Q,F°). Since @ is unbounded in general,

the standard technique cannot be applied directly to prove the well-posedness of the equation (2.3.2). We adopt the same

regularization used in Fujii & Sekine [17].

Theorem 2.3.2. Let Assumptions 2.1.1 and 2.1.4 be in force. Then, the BSDE (2.2.5) has a unique solution (Y, Z*°, Z*) €
Soo (]P)O,l’ FO,I’ R) % H%MO(PO’ly ]F(),l7 Rl Xdo) X H%MO(]P)O,I, ]FO,I’ Rlxd)'

proof

Obviously, WO WQ are adapted to FO!, but they do not necessarily generate F*. However, due to the equivalence of Q
and P*!, Jeanblanc, Yor & Chesney [28] [Proposition 1.7.7.1] shows that every (F*'', Q)-local martingale has a representation
through a stochastic integral with respect to (WO’@7 Wl’Q). This fact allows us to use the standard approach for BSDEs to
deal with the equation (2.3.2). In addition, if there exists a bounded solution (Y, Z°, Z') € $*°(Q,F*") x Hno(Q, F™') x
Hivo (Q, FO1) to the equation (2.3.2), it obviously solves the BSDE (2.2.5) under the original measure P*'. The uniqueness
follows from Lemma 2.3.1. Thus, it suffices to find a bounded solution of the BSDE (2.3.2).

For the remainder of the proof, we may omit the superscript “1” if obvious. We consider the next truncated BSDE:

T 2 T T
99 n n 1 b S n n n
Y!”:FT+/ {—'é%%(lzs 0Lz )—%Ys +gs}ds—/ Zs"dWB’@—/ ZB Wi (2.3.3)
t t t

10



for ¢ € [0,T]. By the standard result of Kobylanski [32], we deduce that the truncated BSDE (2.3.3) has a unique solution
(Y™, z™0, Z™1) € S x Himo X Hamo for all n € N. In addition, the comparison principle presented in the same work
shows that Y™ < Y™ holds for all n € N. In particular, this principle gives an estimate sup,,en||Y " ||se < oo by considering
the following two BSDEs. For ¢ € [0, T],

T  — — T T

- 0L 14 blI¢llL>) - .

Yt:\|F||]Loo—|—/ {1(|Z‘jﬂ2+\z§|2)+7( +ﬂ”<“l )|Ys|+||g||w}ds—/ ZSdWSO’Q—/ Z,dw?,
= t t

2 T T
= t t

Then, Y, <Y;" <Y,, Q-as. for all t € [0, T] by the comparison principle, and it is also easy to see 7’ —=0and Z' = 0. The

backward Gronwall’s inequality (See, for example, Pardoux & Riscanu [36] [Corollary 6.61]) yields Y < C(||F||lLee+||g]lLee)
for all ¢t € [0,T]. For Y, it is obvious that ¥ < 0 Q-a.s. and thus |Y,|= —Y,. Then, it is straightforward to see

L:ﬂgwmn)"FHw—E[/fexp(Ww (B o

—C(IFllee+llglloe +101152,, -

BMO
Therefore, (Y")pen C S is a bounded and monotonically decreasing sequence.
We then define a bounded process Y by Yi(w) := lim,— 00 Y3 (w) for almost all (¢,w) € [0,7] x Q. (for (t,w) in dt ® Q-

negligible sets, we may put Y:(w) = 0.) In addition, by following the same argument as in Lemma 2.3.1, we deduce that

sulDII(Z"0 Z" NIz, < O+ Il +16] 22

BMO

HlgllLoe) exp(CI Flles +16]Izz, , +lgll=)) < oo,

BMO

which means (Z™°, Z™'),.en is weakly relatively compact in H2. Choosing a subsequence if necessary, there exists (Z°, Z') €
H? x H? such that
zm° =z  z™ = Z' (n— o)
in the sense of weak convergence in H?. Finally, we shall prove that (Y, Z°, Z') € S x Hiyo X Hiyo and that it actually
solves the BSDE (2.2.5). Since the remaining arguments are basically the same as Fujii & Sekine [17], they are given in
Appendix A. O
We now verify the admissibility of (2.2.3) and the condition-R.

Theorem 2.3.3. (Verification)
Let Assumptions 2.1.1 and 2.1.4 be in force. Moreover, let (Y,Z"°,Z') € S®°(P"! F>! R) x Hiyo (P*!, FOL R *d0) x
H o (PO FOL R be the solution to the BSDE (2.2.5). Then, the process (p“*,c"*) defined by (2.2.3), that is,

0t

p =2 T e 0T,

14 1l 1 { ( ap’ )
=X — 1 _ ) —
N A S (R

is a unique optimal strategy for agent-1.

P - F X)) e o]

proof
As usual, we omit the superscript “1” if there is no risk of confusion. We first show (p*, ¢*) is admissible. It is straightforward

to see that ¢* is bounded by using the Gronwall’s inequality:
t
iz zore [ alds
0
and thus sup,¢(o 7lci|< co. This also implies X €S, Thus, it suffices to show the uniform integrability of the family

foo - )or 7o)
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Let us introduce a process ¥ by
Py = exp(—5t — AWy, — gxf*)), t e [0,7).

By the definition of the process R, we have

t
R =~ —a [ exp(a(Ye - F) =16 XE = e - X2 )wuds,
0

then it holds that

dipy = —dRip*’c*) - aexp(—’y(Yt - ) —1GX{ - B(ch - Xtc*))1/’tdt-
Recalling how we have chosen (p*, c*), we have
AR = yexp(—dt =V~ Yy = 6 XT)) (07 — Z0)aw? — zLawy)
- wt{ (93 - yzf’l)dwf - fthlthl}.
From these observations, we obtain
dip = —aexp(—1(Yi = F) =16 X{ = B(ei = X)) edt — vo{ (07 =720 ) aw = zlaw! },
and thus

Py = eXP(—’Y(ﬁ — Yo — o Xo) — a/o exp(—y(Ys — Fs) — ’YCSXS* - 5(‘7: - XS))ds)

x 5(— / (95 - 'ng’J‘)dVVSO + / fyzidW;)t.
0 0
Since 6, Z°, Z' € Hiyo and £,Y,(, F, X< and ¢* are all bounded, we deduce that {¢.;7 € T%'} is uniformly integrable.
Therefore, given the boundedness of Y and X< so is the family {exp(—’yWﬁp*’c*)) ;T € 7‘01} Hence (p*,c*) € A'.

Now we check that the family {R®);(p,c) € A'} defined by (2.2.1) satisfies the condition-R. The first condition is
obviously satisfied. Also, for all (p,¢) € A", we have R{"® = —exp(—(¢ — Yo — (0X0)), which is Fo''-measurable and
clearly independent of (p,c). Thus, condition (ii) is fulfilled. Now we move on to (iii). For any (p,c) € A', the family
{R";7 € T} is uniformly integrable due to the definition of the set A, the boundedness of Y and |v(;|< K. Recalling
how we have chosen the driver f, the process R has a nonpositive drift for all (p,c) € A'. Indeed, from (2.2.2) the drift
term of R® reads, for all (p,c) € A?,

—exp(—0t =AW = Vi = 6X0)) { =0 = 1pebs — e+ [ (1,70, 20, Z)) + %qpt - Z0P+1ZT7)
+9(G = KGXE + yGeber + Gl = b) + aexp(—A(Yi = Fi + GX{) — Bler ))}

= —’yexp(—ét - 'y(Wt(p’c) -Y: - (tXtc)) [{_ptet + %(|pt Z012 424 } { —pi b + (Ips — Z?|2+|Zt1|2)}
{0 Gber + T exp (A (¥ = Bt G XE) — e X)) |

—{ Gy + Zexp (e~ Pt GXT) = Ble — XE) o (G - RGO (XF - X))

< —yexp(=dt =y W™ =¥, — oX9)) [inf { (1 + Gb)o + %exp(fvm ~ P+ GX{) - Blo— X)) |
—{ab)er + T exp (e~ Pk GXT) = Ble = XE) o (G- mC(XF - X))

= —yexp (=8t =10V =¥, = GXD) {51+ GH)(B = 76) + (G = k) (X7 = X7)

=0.
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Here, we have used the equalities

int {(1+b)o+ & exp (=1 (¥ = Fot 6X0) = Blo = X0) } = =52 {(8 2007 + 1 +10a (-7 P ) +(F =¥},
(14 Gb)ei + S exp( (Y = P+ X7 ) = Blei = X0)) = =2 (8= 10)0XE + 1+ 10w o) +(F -V},

and the ODE (2.2.4) in the last equality. Together with the uniform integrability, the supermartingale property is now clear.

In addition, since the process R®"¢7) s uniformly integrable and follows
dR” ) = yexp(=ot =AW =i = 6 XE)) (07 — 20)awy - Zlaw!),

it is a true martingale. Finally, the strict convexity of p — —p0t+%(|p—Zt0\2+\Ztl |?) and ¢ — (l—l—Ctb)c—l—%eiV(Yi*FﬁLQXf)*B(C*Xi)
shows that such (p*,c*) is unique. Consequently, R®€) is a true martingale if and only if (p,c) = (p*,c”) thereby satisfying
(iif). O

3 Mean field equilibrium model under the market clearing condition

Based on the results of the previous section, we construct a financial market with multiple agents. With the help of the mean
field game theory, we are going to determine the risk premium process 6 endogenously so that the resultant stock prices
satisfy the market-clearing condition, i.e. buy and sell orders among the agents are always balanced for the period [0, 7).
This section first provides a heuristic derivation of a mean field BSDE which characterizes the financial market in a state
of equilibrium and then proves its well-posedness under certain conditions. Finally, we verify that the solution of the mean

field BSDE does indeed provide the risk premium process in the large population limit.

3.1 Multi-agent problem and the relevant BSDE

Suppose there are N € N agents in the common financial market. In order to study the equilibrium state, let us first introduce

the relevant probability spaces as in Section 2.

(1) We denote by (Q°, F°,P°) a complete probability space with complete and right-continuous filtration F® := (F? )telo, 7]
generated by a do-dimensional standard Brownian motion W° := (Wto)te[O,T] with F° := F2. The space (Q°, F°,P°) is used to
describe the randomness of the financial market and the market-wide information common to all agents. Moreover, we denote
by (', F",P) (i = 1,...,N) a complete probability space with complete and right-continuous filtration F* := (ff)te[o,;p],
generated by a d-dimensional standard Brownian motion W¢ := (WZ)tE[O’T] and a o-algebra o(&%,~, 8%, X¢, i), where the
completion of the latter gives Fi. We set F' := Fi. Here, (¢¢, X{, F§) are R-valued bounded random variables and (v, 8)
are R4 4-valued bounded random variables. Each space (Qi,]:i,]P’i) is used to describe the idiosyncratic environment of

agent-i.
(2) We denote by (Q%% F% P%) (; = 1,...,N) a complete probability space over Q%% := Q° x Q*. Here, (F**, P"?) is
the completion of (F° @ F*,P° @ P!) and F** := (F; ’i)tE[O,T] denotes the complete and right-continuous augmentation of

(Ff @ F{)iejo,r]- Moreover, we set T := T(F*") for notational simplicity.

(3) Let (2, F, P) be an enlarged complete probability space defined on Q := HZN:O Q. (F,P)is the completion of (®1N:o F ®£V:0 Pi)

and the filtration F = (F);cjo,1 is the complete and right-continuous augmentation of (®i]\;0 ff)te[o,ﬂ.

In this section, we make the following assumptions on heterogeneity of agents.

13



Assumption 3.1.1.

(i) For each i € {1,...,N}, all statements of Assumption 2.1.4 hold with “1” replaced by “i”.

(i1) ({i,'yi,ﬂi,Xé)ie{lw,N} have the same distribution, i.e. they are independently and identically distributed on (Q,F,P).
(iif) The lLiability processes (F};t € [0,T))ieq1,...,n}y are F°-conditionally independent and identically distributed on (S0, F,P).

The multi-agent problem is formulated on the filtered probability space (22, F,P,F) in the following way. Each agent-i
solves an optimal consumption-investment problem:
sup U'(m,c)
(m,c)EAT

subject to

_ ) t t
WZ’(”’C) =¢ +/ (7720393 —¢s)ds +/ o dW?, te [0,77,
0 0

where A is an admissible space for agent-i, whose definition is to be given later. U’ : A® — R is a utility function of agent-i

defined similarly to Section 2 by
U'(m,c) == E[— exp(—5T — ’yi(W;(ﬁ’c) — F})) — a/T exp(—ét — A WP _ FY — B (e — Xti’c))dt].
0
Here, X %€ is agent-i’s consumption habits defined by
X=X+ /t{—f@Xi’c +bes + (K —b)pstds, t€[0,T].
0

In this model, the parameters §,a, k,b > 0 and the habit trend p € L™ (IP’O,FO,R) are common to all agents.? In the same

manner as Section 2, we define the admissible space (A");—1, . x as follows.

Definition 3.1.2. (Admissible space: a multi-agent version)
For each i =1,...,N, the admissible space A is the set of strategies (m,c) € H?(P®", F* R"™) x H?(P**,F**, R) such that a
family
{exp(—'ini’(ﬁ’c) + ﬁi|cT|+Ki|Xi‘C|);T € 'TOZ}
is uniformly integrable for some K* > v'(A; + \/mrl V B¢ where

k3

A; ::1(m7b+ %), B; = Z;b

Moreover, we define A' := {(p,c) = (7" o,¢); (m,c) € A'}.
In the same way as in Section 2, we restate the problem by writing p; := 7, oy for ¢t € [0,T].

sup U'(p,c)
(pre)edi

subject to

. . t . . t .
WZ’(”’C) =¢ +/ (psbs — ct)ds —|—/ pldw?, te [0, 77,
0 0

where the objective function U': A" - R is defined by

T

U'(p,c) = E[f exp(f(ST - 'yi(W;(p’C) - F})) — a/ exp(fét - 'yi(Wti’(p‘c) —F}) =B (et — Xf’c))dt].
0
We also introduce an F¢-measurable continuously differentiable process ¢ for i € {1,...,N} by

. =6 (Tt _ N
= — , 05 i=—A;£4/A2+B;, te€]0,T].
6F — 6T ot '
3 2

21t would be possible to make the variables (4, a, &, b, p) different for each agent as we have done so for ({i,'yi,,Bi,Xé,Fi). For

simplicity, we assume that they are common across the agents in this work.
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As before, ¢* satisfies

1 RCAE s 1
0< A
Q<5 671

By the same argument as in Section 2, the unique optimal strategy for each agent-i is

[

i i i 0,
py = (my )Tat = Zt’oll + #7 t €0, 77,

oo yietr 1 af’ iyt i i yri,ct*
¢ = X +ﬂi{1og(77i(1+bg)) NV (Y~ Ff 4 X )}, teo,1],

where the triple (Y?, 2%, Z%) € S*° x Himo x Hamo solves the BSDE (2.2.5) with the superscript “1” replaced by “”. To

derive the relevant mean field BSDE, let us define the market-clearing condition.

Definition 3.1.3. (Market clearing condition)

The financial market satisfies the market-clearing condition if the equality

1 o
oM =0 (3.1.1)
=1

holds dt ® P-almost everywhere. Here, Wﬁ’* denotes the optimal trading strategy of the agent-i.

As in Fujii & Sekine [17] [Section 4], this condition motivates us to study the following mean field BSDE defined on
Q%% FOi pY¢ FO) for each i € {1,...,N}:

W:ﬁ+/€ﬂmidﬂzm—/zﬁm@§féwm te[0,T] (3.1.2)
t t t
with
£ ¥, 280, 2) =32 BZ NPT - Rz Gz ) - T g,
where

1+ <s

aﬁi i i
{1 +108 () + 'R
We shall see later that this BSDE has a bounded solution (Y’7 740 71 € S x Hiyo X Himo under some conditions and
the process 6™% € HE o (F, RY) defined by *

) 5 )
9;1:—*-4-5—6(:;5
pw; ( )Cap.

Gznfg _ _;Y]E[Ztlvo\\l]_'o]—r, te [O,T] (3.1.3)

with 4 :=FE [%] in fact clears the financial market in the large population limit.

3.2 Well-posedness of the mean field BSDE

We are now going to investigate the well-posedness of the equation (3.1.2).

Lemma 3.2.1. Let Assumptions 2.1.1 and 3.1.1 be in force. If the BSDE (3.1.2) has a bounded solution (Y*, Z*° Z%) €
Soo(]P)O,i7FO,i7R)XHQ(POJ’]FO,i7Rlxdo)XHQ(PO,i’FO,i’RIXd) then (Zz ,0 ZZ) c HBMO(]P)O i ]FO i Rlxdo)XHBMO(PO,i’]FO,i’Rlxd)‘

3The market clearing condition requires the risk premium process 6 to satisfy

Ez’o”+( Z )9,?_0.

By the mutual independence of (J—'f)i21 and symmetry among agents, it is anticipated that 6™f& is the market-clearing risk premium

process in the large population limit. See Fujii & Sekine [17] [Section 4] for details.
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proof
Without loss of generality, we choose the agent-1 as a representative agent and suppress the superscript “1” when obvious.
We have, by Young’s inequality,

y(1 +0¢s)

Ys + gs
B

22
P5:Ye, 25, 23) = 42 BIZNFT = L EIZN P+ 123420 -

< LNZPHZEP) + CUY lls+lgle)-

[\V]

Then, by Ito formula,
de*"t = 2ve®"Yt (dY; + vd(Y)) = 27" {(—f(t, Yi, 20, Z0) + AN 20+ 28 ) dt + Z9dw + Ztlthl}.
This yields:

2vYr _ 2'th

T
e =2y | (= (5,5, 20, 20) + A 2241 2L P )ds + 22w + ZLaw!

/T
)

T T
> 27/ e { (120123 - (\|y\|§oo+||g\|w)}ds+27/ e { 20w + ZLaw! }.
t t

T
=22 HZIP) = CUY lls=+lgllume) + 1128 P+4|22 1 fds + 29 / L 20aw? + ztaw!
t

Thus, for all ¢ € [0, 7], we get

T —
B[ [ (20722 7)ds| 0] < O (14 Y o +gle) < oo,

t
and clearly, (Z°,Z") € Hiyo X Hino- O
To show the well-posedness, we need to make an additional assumption on the size of the terminal liability Fi and the

process g'.

Assumption 3.2.2. Assume that, for eachi € {1,..., N}, the random variable Fy and the process (gi)te[o,T] satisfy

1
Fi|2 4“/ ild H o 3.2.1
\/I ] [ o] < oo A e (3:2.)
where
— A2 22 =
Ty — A Ty
cw.72vl, C, 7+(2Vv )

Remark 3.2.3.
For each s € [0,T], we have |gt|— 0 when, for instance, § — 0, ||p||lLe— 0 and §° — oco. This observation allows us to find

appropriate parameters that fulfils the condition (3.2.1) if Fi is sufficiently small.
Here is our first main result of this section. The method is inspired by the work Tevzadze [40].

Theorem 3.2.4. Let Assumptions 2.1.1, 8.1.1 and 3.2.2 be in force. Then, the mean field BSDE (3.1.2) has a bounded
solution (Y*, Z"°, Z%) € S (P%*, F®* R) x H3yio (P8 FOF R 0) 5 HE o (PO, FOS RIXD),

proof
Again, we choose the agent-1 as a representative agent and omit the superscript “1” for simplicity.
(Step I)

By completing the square, we have

20 B2 )T ”|E[Z°”|f1|+ (128 PHZ = =| =Bz ) - YLz + Dz P+ J0 22 4123

:_‘ E[z2F°) — :/[Z

+ 12 +Z).
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It then follows that
SZIRIZNFT — T RIZ I 02 P < L0

and

V2

~2
= B2 2 P 122

A2 2 2
FZIBZNFT — B (2 P2 ) 2 - | Rz ) - %Z?” + 5122

Y]

A%

22
v ol =072 V| ~0,2
——|E[Z ——|Z|".
L ez PP F122)
Putting these together, we obtain
5 gl 2 gl
3ZE[Z| F)T - Q*IE[ZSH|f°]|2+§(|23l\2+|251|2) < *IE[ZQ"|f0}|2+§(|Z3\2+\Z§|2)
Y Y

< &y (B[22 FO) P +1 20 P+ 2217)
for

Cy =

o2
1= [

This yields

Yof(s,Ys, 29, Z8) <

R 52 1+ b¢s
SZBLZNF)T — R FP (122 H 2| - Ebe)

Y2+ Y |gs
5 [V "4V |lgs|

< o [V ([BIZNFO) P+ 22 P +1Z21%) + | Yallgs-
Let us now consider a BSDE

T T T
Yt:FT—k/ f(s,xg,zg’,z;)ds—/ ngWsO—/ Zdwl, te[0,T)
t t t

for an arbitrary (2%, 2') € Himo X Himo as an input. From the standard result for Lipschitz BSDES, there exists a unique
solution (Y, Z°,Z%) € S* x Himo X Himo for every given (2°,2') € Hivo X Hamo

. In this manner, we define a map
Tr: H%Mo(PO’l,F(JJ,RleO % Rlxd) N HQBMo(PO’l,FO’l,R1XdO % Rle) by F(ZO,Zl)

=(Z° Z"). By Ito formula,

T
B[ [ (128022 sl
t
T
:E[\FT|2+2/ st(s,Ys,zg,zsl)dﬂf?’l]
t
2 r o 2 1,2 0,1 r 0,1
< IPrlr2e B[ [ ViIGRE 414 sl | + 28] [ 1Y lguldsi 7o
t t
< | Pr||2+2¢, Y |ls< E E[2|F° a5l 70 4+ 2 ¥ lomE[ [ 1gslds| O
< 1P %426, | [lo <| [ FONP 2074122 ) sl F | + 20 Y N[ [ g dsl Ff
t
2 0 _1y;12 T 0,1
< IPrles Y o 12, 1) g+ 20 o B[ [ lonkasl 2]

1 T 2
< N2+ I I3 +1660 G 2 g, 4] [ laelas]|
0

Here, we have used the fact that

sup
T€T0:1

r 0|l =012 0,1
B[ [ a7 sl

which is shown in Fujii & Sekine [17] [Lemma 4.2]. Taking the essential supremum on both sides, we get:

T
cos sup (iP5 [ (2804122 P)asi ] ) < P JIY I 41621 2 o +4) ot
(t,w)€[0,T]xQ2 t

| <1

BMO
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Using the fact that

T
(1Y e +1(2°, 2D, ) < maac{[1Y e, (2" 2By, b < esssup (PHE[ [ (22122 P)asl7] ).
t

1
2 BMO (t,0)€[0,T] X2

we obtain

T 2
2%, 2) g, < 20PrIess] [ lgelds]|” + 32200 2l
BMO 0 oo

BI\/IO

Since we have assumed that

el [ lolds] < 56
R

there exists R > 0 such that the inequality
T 2
2HFT|\§O+8H/ lgelds|| + 326 R* < B2
0 oo

holds true. We can choose, for instance,

—2\/||FT||2 +4| / jgolds” < (3.22)
80.,

(Step II)
From the results of (Step I), we have I'(Br) C Br, where

BR — {(20721) c H%Mo(Fo’l,RIXdO % Rlxd); ||(ZO7Z1)||H]23MO< R}

Our objective is now to prove that T'|s,: Br — Br is a strict contraction. For (z°,2'),(£°, ') € Bg, we set (2°,2') :=
[(z°,z') and (Z°,Z%) := ['(£°, £'). Also, let Y and Y be corresponding solutions and set AY :=Y —Y and AZ" := Z° — 7.
Notice that

AY'S{f(S7YT57Zg7Z;) - f(say/saégaéi)}
2
< IAYsI{‘Y(IE[ MFU+T DA +EAZ|F) + 7(\IE[Z?”IJ”OHJrI]E[Z'?“IfO]DIE[AZ‘s)”IJTO]I

(1 + b¢s)
B

+ |AY;|?
<av{((v+ )2 L LS 43120 [Bla2! )

T R 1z HAD (88" 1+1AZD | -

+(7+ 2)EENF DI+ 2+H 2 DA +HAZ }.
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Applying Ito formula to |AY;|? , we have

T
AvPE[ [ (aZ2P+ a7 sl ]
t
T ’
—28[ [ AV (s, Yau 202 = s, Vo, 20,2 sl
t
T 22
<2lavie=e[[ ((3+] )m:[ [ o vy (DT EANN [ N P EEFa
¢ 2y
+2(5+ )HAY\IsmE[/ (B[22 22 1+ ) (A2 + Az ds o]
0 :)/2 0 0 0 2 0,1 % T 0 012 0,1 %
szuayusmE[/ ((5+1 )um P BN 180) dsl 0] B[ [ Bl sl
t 21 t

1 T 1
+2(5+ D) Iavle=B[ [ (B P elaE et sl ) <[ (|A22\+|Az;\>2ds|f£’1]2
t

1 1
2

T AN ol o2, A g0l 2012 ol 01 2 oll 0,1
< 2V31aYe=E[ [ (34 5;) B BN dsl 7 | |E[Azs ) ds| 7
t L
— 1 1
+2\/1o(@+1)\|ay\|SwE[/ (B[ FOY 220 24|20 2+ 2L P+ 2L )ds|]—'t°’1}2 [/ (18227 +| Az ) ds| 7| *
t
<2vB(5+ 2 )HAY\ISWRII(AZ Ay o +2V30(3 + D YIAY [l RIA", A llsg

< 2(V6 + V30)Cy[|AY [|s= R (A", A2 |z

BMO

< f||AY||§oo +2(V6 + V30’ CIR?(I(A°, A2Y) |
< f||AY||§oo—|—12SC2R2||(Az Az' )HH%MO
where

~2 _
N T,
C'Y_fy_'_(le 2)~

Taking the essential supremum, we get

T
1
ess sup (|AYt|2+]E[/ (\AZS|2+|AZ§|2)ds\.FtO’1D < S AY |2 +128C7R7[(AZ°, AZY)| 2
(t,w)€[0,TTx 2 t 2 BMO

Using the fact that

(IIAYIISMLH(AZ0 AZYz ) < max{[|AY |3, [(AZ°, AZ)|Z2 , }

BMO

T
< esssup (JAVP4E[ [ (AZPHAZ s,
(t,w)€[0,T]x2 t

we obtain
0 112 2 52 0 1y(12
I(AZ°. AZY By < 256C2R7|(A2%, A3

Under (3.2.1), I'|s,, becomes a strict contraction. Indeed, having chosen R by (3.2.2), we clearly have 256C2R® < 1. This
yields that there exists a unique fixed point of I'|5,, which represents a bounded solution of the BSDE (3.1.2). O

Remark 3.2.5. Due to the uniqueness of the fized point, the mean field BSDE (3.1.2) has a unique solution if we restrict

the domain to S™ X Br.

3.3 Asymptotic equilibrium in the large population limit

We now prove that the optimal trading strategy in the market with risk premium process 6™ defined by (3.1.3) satisfies

the market clearing condition (3.1.1) in the large population limit. To deal with the large population limit, we need to
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enlarge our probability space in the following way. Let (€2, F,P) be an complete probability space defined on Q := [z, ©
Here, (F,P) is the completion of (®20 FLR%, IP”) and the filtration F := (F¢)¢e[o,7) is the complete and right-continuous
augmentation of (®:°, F7)iefo,7]- In the remainder of this section, E[-] denotes the expectation with respect to P.

Let us arbitrarily choose one bounded solution (yl, 2021 € S x Himo x Himo of the mean field BSDE

7 (1 +b¢5)

T
Vi—Fhy / {320E(22| 7T - 1 |[z°”|f°1|+ (PP 5
¢ oy

T T
—/ szWSO—/ Zrawl, telo,T],
t t

Vi +gi}ds

where
1+sz {1+log(%) +71FS1}7 se 0.7,

and fix it. Theorem 3.2.4 provides one such example under the appropriate conditions. Using this solution, we define the

process 0™ € Hayo (F°, R%) by 678 .= —4E[Z)V|FO]T for t € [0,T] as in (3.1.3).*

é
gs = T + (k= b)Cips +

Recalling Section 2.2 and 3.1, if the market risk premium process is ™%, the optimal trading strategy for agent-i is given
by
T,% T,% 7 emfg T i )
Pt = (i) o = 700 4 B ol %E[ZS‘HFOL t€[0,7).

Here, Z*° is a solution of the following non-mean field BSDE:

X . T . mfg|2 i . . T T .
Yi = Fi +/ {fzg*o”eg‘fg _ 0 gty zipy - MY’ Yy }ds 7/ 70w f/ ZHdW?
t 27t 2 B t t
i T ~ 7t ¥ ‘ 1 ) ¢ 1 b ; i i
= rp+ [ {azeB(E AT - D G 2 Pz - T v g s (331)
t
T T )
7/ Z;’Odef/ ZLdW?, t€[0,T)
t t
with )
i g i sz a’ i i
= —— +(k—b)(ps + {—i—o(%)—&- FS}, s €0,T].
g - (k= b)Cep e\Caroey) T [0, 7]

This equation has a unique bounded solution (Y, Z”O, Z%) € S*° x Hamo X Hinmo by Theorem 2.3.2. With the above setup,

we have the main result of this section.

Theorem 3.3.1. (Asymptotic equilibrium)

Let Assumptions 2.1.1 and 3.1.1 be in force. Suppose that the mean field BSDE (3.1.2) has a bounded solution, and that we ar-
bitrarily choose and fiz one such solution (Y, 2%, 2') € S® (P>, FO R) x Hiyo (PO, FOH R 0) 5 HE o (PO, FOL RYX9),
Then, the process 0™, defined by 0™ := —ﬁE[Z,?”U—'O}T fort € [0,T), clears the financial market in the large population

T q N
Jim B [ \N; :

where (ﬂ':’*;t € [0,T])ien are the agents’ optimal trading strategies.

limit in the sense that

=0,

proof

(Step I)

As mentioned above, the BSDE (3.3.1) with ¢ = 1 has a unique solution (Y*, Z'° Z') € S*° x Hipo x Himo by Theorem
2.3.2. Since (W', 2% Z') obviously solves the same equation, the uniqueness implies (Y*', Z*% Z') = (V',2°, 2. In
particular, we have 0% = —3E[Z} 1| FO]T for t € [0, T).

4Notice that the process 6™ is consistent with Assumption 2.1.1 as a risk premium process.
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Moreover, the (strong) uniqueness implies that, for each ¢ € N, there exists a measurable function ® such that

(Yti7 ZZ’O7 ZZ)tE[O,T] = q’(WO7 Wiyé-ia’yiy ﬂiaXéa Fiy emfg)v Po’l_a'sw

by Yamada-Watanabe’s theorem (See, for example, Carmona & Delarue [6] [Theorem 1.33]). It then follows that {(Y{, ZM 7t e

[0, T]}ien are FP-conditionally independently and identically distributed.

(Step II)
Since 7" = (o0 ) rou(pi*) T for t € [0,T] and |(ovo, )" o¢|< C uniformly in ¢t by Assumption 2.1.1, we have

T q N T 1 N
B[ 5 om 1w 2o
1=1 =
for all N € N. Moreover, it is clear that

1 al i% a 10“ 10\\ o ol 0 1,0H 0
N S ) 21 e

Then, we have the following estimate:

2
*1" dt. (3.3.2)

E/OT‘;[Z- / ‘ Z200 _ [Ztl,olfo])’2dt+2E/0T’]biZN;<1— %)E[Ztl’olwfo]fdt
_QE/ ’ 7000 _ [Zl,ou‘fo])’?dtJrQEHi S (1_ 1)‘ ] /T‘E[Zl’o”lfo}rdt
t NSy o o I
§N2 ZE/ ’ZZOH E[Zlo”IJ‘—O‘ dt+ ZE 71 } / 2000 2y

I /\

(1 Tz,

—0 (N — ).

Here, we used the fact that (7%);en are i.i.d. random variables and that (Z}?);en are F°-conditionally i.i.d. Together with

(3.3.2), we get the desired result. O

4 Special solution for the exponential quadratic Gaussian model

In this section, we reformulate the equilibrium model via the exponential quadratic Gaussian (EQG) framework. In the
previous section, we made several strong assumptions to prove the existence of bounded solutions to the mean field BSDE
(3.1.2). The EQG framework, on the other hand, provides a good example where unbounded solutions can be obtained under
certain conditions. Since this framework allows us to have a semi-explicit representation of the solutions, it will help us to

carry out detailed numerical analysis in the future works.

4.1 Reformulation of the equilibrium model

Suppose there are infinitely many agents in the common financial market. In this section, we assume that the coefficients
of absolute risk aversion (7*,8%)iey are common to all agents and we hereafter denote their common values by (v, ) €

Ri4+ x Riy. Since they are no longer random variables, we need a slight modification of the definition of the relevant

probability spaces.
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(1) We denote by (Q°, F°,P°) a complete probability space with complete and right-continuous filtration F® := (F¢ )telo, 7]
generated by a do-dimensional standard Brownian motion W° := (Wto)te[O,T] with F° := F2. Also, we denote by (QF, F*, P*)
(i € N) a complete probability space with complete and right-continuous filtration Fé .= (ff)te[o,T], generated by a d-
dimensional standard Brownian motion W' := (WZ)te[O’T] and a o-algebra 0(§i, X¢, IB), where the completion of the latter

gives F¢. We set F' := Fi. Here, (§i, Xé) are R-valued random variables and z is an R%-valued random variable.

(2) We denote by (Q%% F%* P%) (i € N) a complete probability space with Q%% := Q° x Q" and with (F%* P>, the
completion of (F° ® F*,P’ ® P'). We denote by F*' := (F;"*);c(o,7] the complete and right-continuous augmentation of
(-7:? ®-7:ti)te[o,T]-

(3) Let (22, F,P) be a complete probability space defined by Q := [ Q" and (F,P), the completion of (®;‘>Zo FLR2, Pi).

The filtration F := (F;)¢cpo,7) is the complete and right-continuous augmentation of (Q:-,, Ff)te[o,T]-

Let us first give a new assumption on the market as follows.

Assumption 4.1.1.
(i) The risk-free interest rate is zero.
(ii) There are n € N non-dividend paying risky stocks whose price dynamics, represented by an n-dimensional vector, are

given by
t
S; = So +/ diag(S,) (urdr + o.dWy), te[0,T],
0

for So € RY 1, pi= (ue)eeo,r) € H(P°,FO,R™) and o := (01)seqo,r) € L™ (P, FO,R"*%). We also assume n < do.
(iii) The process (o¢)icjo,1) is of the form o, = (6¢,6¢) for each t € [0,T], where (&¢)icpo,1) € Lo (P, FO,R™™"™) is a process

such that &, is invertible for all t € [0,T) and (&¢)icpo,1) € Lo (P, FO, R™*(do=")) " Moreover, (0¢)teo,m) satisfies
M, < (O’tO'tT) < M,., dt @ P’-ae.

for some positive constants 0 < X\ < X and I, an identity matriz of size n.
(iv) The risk premium process 8 € L°(F°,R%), defined by 0; = o, (010, ) *us for t € [0,T], is a process such that the
Doléans-Dade exponential {5(—/ H;I—dWSO) ;te|o, T}} is a martingale of class D.

o t

Remark 4.1.2.

(i) Under Assumption 4.1.1 (ii1), the linear subspace Ly defined in Definition 2.1.2 are spanned by first n-standard bases of
RY¥90 for all t € [0,T]. We use the symbol L instead of Li in this section. In addition, we denote by II the orthogonal
projection of RY*% onto L.

(ii) Unlike Assumption 2.1.1, the process p is no longer in Hiyo and thus so is 0. Despite this, the well-posedness of the
stock price process (St)icpo,r) can still be shown by changing the original measure PY to Q, the risk neutral measure defined

by (2.1.2), which is possible thanks to Assumption 4.1.1 (iv).

Assumption 4.1.3.

(i) For eachi € N, £ and X{ are R-valued, Fi-measurable, and normally-distributed random variables representing agent-i’s
initial wealth and initial consumption habit, respectively. x} is an R*-valued, Fi-measurable, and normally-distributed random
variable.

(ii) The random variables &8 XE and ©b) are mutually independent for eachi € N and (fi, Xé, xé)ieN have the same distribution,

i.e. they are independently and identically distributed on (2, F,P).
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(iii) (v,8) € R4y x Ry are the coefficients of absolute risk aversion for agents’ net wealth and consumption, respectively.
In particular, they are common to all agents.

(iv) The habit trend p : [0,T] — R is a continuous function of time.

(v) For each i € N, the liability process (Fti;t € 10,T))ien is R-valued and F%¢-progressively measurable, which is given by a

quadratic form®

F} = %(Ago(t)m?,m?)+%<Aﬂ(t)xi,xi)—&—(Afo(t)x,?,xi)+<B§(t),x8>+<Bf(t),xi)+CF(t), tel0,T], (4.1.1)

for (Afo, ATy, Alo, By, B, C) € C([0,T]; Ma,) x C([0,T]; Ma) x C([0, T); R**%) x ([0, T]; R™) x C([0, T|; R) x C([0, T}; R)
and the Gaussian factor processes (z°, ') € LO(F0, R%) x LO(F*, R?) defined by

20 =) — / Ko(x) —mo)ds + oWy, xi =z — / K(zs —m)ds + W, te€]0,T]
0 0

with® zd € R™, (Ko, K) € Ryy X Ryy, (mo,m) € R%® x RY, and (2o, %) € R¥Pxdo 5 Réxd,
(vi) Fach agent is a price taker; agent-i must accept the prevailing prices as he/she lacks the market share to impact the

market price.

Remark 4.1.4. In this model, the agents are heterogeneous in the idiosyncratic noises (W*)ien, initial wealths (€");en,

initial habits (X{)ien, and initial conditions (x})ien for the factor processes which affect the liabilities (F*')ien.

The agents’ problems are modelled on the probability space (2, F,P,F). For each ¢ € N, agent-i solves the following

utility maximization problem:

sup  U'(m,c)
(mC)eAgQG

subject to

) _ t t
WZ’(”’C) =¢ +/ (7’[’:0'595 —cs)ds +/ 7l o dW?2, te [0, 77,
0 0

where AiEQG is the admissible set for agent-i, whose definition is to be given. The utility function U* : AiEQG — R is defined
by
U'(m,c) = E[f exp(féT — (W) F})) - a/ exp(fét — W) By — Bler — XZ’C))dt] ,
0

with some common parameters a,d > 0. The process X* represents the agent-i’s consumption habits and is defined by
t
X=X, —|—/ {—K(X2° — ps) +b(cs — ps)}ds, t€0,T] (4.1.2)
0
for some constants «,b > 0, which are also common to all agents. As usual, by setting (pt):ejo,r) := (7 0¢)te[o, 7], the utility
maximization problem can be equivalently written as

sup  U'(p,c)
(p.0)€ALGa

subject to . ,
Wti’(p’C) = 51 +/ (ps0s — cs)ds +/ pdesO7 te [O,T],
0 0
where the set AEQG is defined by AEQG = {(p,c) = (n"o,¢); (m,c) € AEQG} and the objective function U AEQG — Ris

defined by

U'(p,c) = ]E[— exp(—(ST - V(W%(p’c) - F%)) - a/OT exp(—&t — (WP — FY — B(e, — XZ’C))dt]. (4.1.3)

5The symbol (-, -) denotes the Euclidean inner product, i.e. (z,y) :=x "y for z,y € R™.
6This method is still available with time-dependent deterministic and continuous coefficients (mo(t), m(t), Ko(t), K (t), Zo(t), £(t)).

For simplicity, however, we only consider the constant case in this paper.
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Under these assumptions, we define the process R*"®) in analogy with Section 2.2 in the following way: for each i € N,

we set
Ry®) = —exp( =6t — (W ") — yi = (. X7)) — a / exp(=bs =y W) — Fl) = Ble. — X)) ds, t€[0,T],
0
where the process (yé)te[o’T] is a solution to the BSDE 7:

T 2
i i i 05
yr = Fr +/ {_ZS,OHQS _10F + 1(
¢

) ) 1 $) ) T . T . )
5 T3 Iz;’“|2+|22|2)—My;Jrg;}ds—/ zi’Ode—/ AW (4.1.4)
t t

B

with

i =2 (k=0 + 2 1 og (P )+t

and
st—s7)(T—t) _ 1

+._ N Y ¥ b
5t = —A+ /A2 1 B, A._Q(H b+ﬁ>, Bi=1

for t € [0,T]. Moreover, we say that the process R""¢) satisfies the condition-R if all conditions in Definition 2.2.1 with “1”

el
Ct = — T _s— N
0t — =6t —=67)(T-1)

replaced by “i” and (7%, 8%) replaced by (v, 8) hold. In order to work within this framework, we further need to modify the

notion of admissibility.

Definition 4.1.5. (Admissible space for an EQG model)
For each i € N, the admissible space AEQG is the set of FO'-progressively measurable strategies (m,c) € H*(P*¢ F%¢ R") x
H2 (P F%¢ R) which make the utility function finite (namely U'(m,c¢) > —oo) and the set {Ri’(p’c);T € 7%} uniformly

integrable.

We shall write the admissible space by AEQG(H) when we want to emphasize its dependence on the risk-premium process
0. In a similar way as in Section 3, the market clearing condition motivates us to study the following mean field BSDE
defined on the filtered probability space (%%, F%! P%* F%%) for each i € N:

T T T
Yi = Fi+ / (s, Y2, 200, Z0)ds / Z10aw? — / Ziawi, teo,T), (4.1.5)
t t t

where (note that we have 4 = v by Assumption 4.1.3 (iii))

, o . . . , . , 140G s
Fi(s, Y8, 220, 2) =y ZE VB (ZENFO)T - JEIZNFO P42 (1200 P 2L - %Y + gt
By completing the square, the driver f* can be written as
i i 0 i i ik i i 14+0Cs) i, 4
£, ¥4, 220,20 = = L[z - 220+ Dz oz - Ry g

4.2 Mean field BSDE and the system of ODEs

We now derive a system of ordinary differential equations (ODEs) which provides a solution of the mean field BSDE through
the EQG modelling. Our approach basically follows Fujii & Takahashi [18] [Section 5], which proposes the method of
associating the solution of the quadratic growth BSDE with the Riccati matrix equation. As a heuristic argument, if Y is a
quadratic form of (xo, z*), its drift term is expected to be a quadratic form of (xo, z"), and its diffusion terms are expected

to be affine in (z°, %) by applying Ito formula. On the other hand, as the driver f° of the BSDE (4.1.5) is quadratic in

"The solution is denoted by lower case letters in order to avoid confusion with the solution of the mean field BSDE (4.1.5), which is

denoted by (Y, 240, Z%).
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(Z%°, Z%) and is linear in Y, it is anticipated that f* is a quadratic form of (z°,z*) as well. These observations imply that

such an ansatz for Y seems to be consistent and we thus search for a solution of the form:

<A00( )$t7$?> + 1< lil(t)ffiyﬁﬁ <A10( )$t7$t> <Bo( )s x > <Bl( )s 959 +Ci(t)’ t€[0,T] (4.2.1)

Y,
2

l\D\b—‘

for some processes (Afg, A%y, Aby, Bg, B, C") : [0, T]xQ — Mg, x My x R¥*do xR0 x R% xR, all of which are to be determined.
At this moment, let us temporarily assume that (Ady, A%y, Aly, BS, Bi,C*) are once continuously time-differentiable and
independent of (&%, X¢,zh, WO, W), i.e. they are deterministic functions of time common to all agents. After deriving
the relevant ODEs, we shall verify this property. Since we search for functions common to all agents, we simply write
(Aoo, A11, Ato, Bo, B, C) instead of (Ajg, A%y, Aly, BE, Bi,C*) from now on.

As usual, we choose agent-1 as a representative agent and omit the superscript “1” when there is no confusion. By

applying Ito formula to (4.2.1), we have

Y, = {<(%Aoo(t) — KoAoo(t))af, af ) + <(%A11(t) — KAn(®)et,ot) + ( (Awot) = (Ko + K) Ao () )af, o)
+ (Bo(t) — KoBo(t) + KoAoo(t)mo + K Aio(t) "'m, zl) + (Bi(t) — KB (t) + K A1 (t)m + Ko Awo(t)mo, 1) (122)
+ C(t) + (KoBol(t), mo) + (K By(t), m) + %tr[Ago(t)EgES—} + Qtr[All(t)EET}}dt
+ (S0 (Aoo(t)zf + A1o(t) " zi + Bo(1)),dW?) + (X (Aro(t)a? + A1 (t)xi + Bi(t)), dW}).

In order for Y given in (4.2.1) to be the solution to the mean field BSDE (4.1.5), we must have
7 = {E()T(Aoo(t)x? + Awo(t) @ + Bo(t))}T, Z = {ET(Alo(t)w? +An (e + Bl(t))}Tv t€ [0, 7.
To deal with the process ZOH, let us write Yo = f]g + 20, where i]o, i]o € R%*40 gare of the forms:
So= (25 0), So=(0 £,
for 35 € R%*™ and 390~ ¢ R%0* (40— 56 that we have TI(u' Xo) = u' 3o for any u € R%. In addition, it is easy to see

Kt

Elad|F) = a?, b= E[elF] = Elal] = Eleble ®* +m(1— ™), te[0,7).

Then we obtain:
o T 0 T.1 T ol | =0 T 0 T 1 T
2 = {55 (An(®)a? + An(®) Twt + Bo(t)} . EIZ)NF] = {55 (Aol + Aw®) i + Bo@®) ), te 0TI
Plugging these results into the driver f, we have: for t € [0, 7],

(.Y, 20, Z})

-z - 20 4 Jozipz - W v - Ry 4

<{ (Ao() E()EO Aoo( ) + Alo(t)TEETAm(t)) — ﬂl%[_;)@(Aoo(t) — Ago(t))}x?,x?>

+ <{% (A1o(t 2020 Aro(t ) + All(t)EETAll(t)) - V(I%bgt) An(®) - Aﬁ(t))}a:;,x%> (4.2.3)
2.3

+ ({10005 Aun(®) + An 0= Aw0(®) - 2 (1000 - alo0) Jab ot

+ (A0 Boft) + Ann() 2" Ba(0) - XK (1) - B (0),07)

+ <V(A10(t)53053§A10(t)Tm1 + A10(t)ZoXg Bo(t) + A1 ()DL Bi(t)) — W(Bl(t) - Bf(t))7fc%>

= A (®S08T Aro(t) sk} + 2057 Bol), 57 Bo) + 37T B 0,57 Br) - L5 00 - € (0) +
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where ¢ is a deterministic and continuous function defined by:

~ YA 4+bG) ., 6 1+ b¢: afB

By matching (4.2.3) and the drift term of (4.2.2) with respect to the quadratic or linear coefficients of (x°,z") as well as

the remaining constant terms, we obtain: for ¢ € [0, T7,

Aoo(t) = —Avo(t)Z03 Avo(t) — vA10(t) ST Avo(t) + (2Ko + M)Aoo(t) _ 0 H8G) qr gy,

5 E
An(t) = —yAn (TS An () = yAn()SoS] A(®) " + (2K + W)A”w - wﬁl "
Ao(t) = —7A10(H)Z0%5 Aso(t) — 7Au ()SET Aro(t) + ((Ko + K) + W)Am(t) - wﬁom’
Bo(t) = (—7Ao0s (1) Z0%5 + w + KO)Bo(t) — 74w () ZRBi(t) - w&f@ - Kodltmo = KA .
B1(0) = (—rAn®57 + 20 4 k) By (0) — 5 (1005057 A1) 1 + Ano(0203] Bo())
_ WB{G) — KAun(t)ym — KoAw(t)mo,
ct) = L2 o) ~ X0 0) = 3] Bo). 27 Bo) = (=T Bu(0) 27 Bu(0) = (o Bolt). mo) — (KB (0).m)

A 1 1 .
+ %(Aw(t)EoEJAw(t)Tutl, [e) — §tr[Aoo(t)EoEOT] - §tr[A11(t)ZET] - gt

Aoo(T) = Ago(T), A1 (T) = A1\(T), Aw(T) = Alo(T), Bo(T)=B; (T), Bi(T)=Bi(T), C(T)=C"(T).
(4.2.4)

Here, the terminal conditions for (Ago, A11, A10, Bo, B1,C) are set to satisfy Yr = Fr.

Remark 4.2.1.

(i) The equations for (Ago, A11,A10) are of Riccati type. In this paper, however, we do not delve into the general well-
posedness result due to its complexity.

(i) Since the coefficients appeared in (4.2.4) are all deterministic and in particular, independent of (£%, X&, b, WO, W), we
deduce that (Aoo, A11, Ao, Bo, B1,C) are deterministic function of time and common to all agents if they exists.

(iii) By the local Lipschitz condition, the equation (4.2.4) has a locally unique solution. Furthermore, by making |Xo| and |X|
sufficiently small, we expect to have also a global solution since the Riccati equation for (Aoo, A11, A10) becomes approzimately
linear.

(iv) We may possibly allow heterogeneity among the coefficients of risk aversion (v*, 8%)ien as in Section 3. However, in this

case, the system of equations (4.2.4) becomes mean field type and checking its well-posedness would be much harder.

These observations result in the following theorem.

Theorem 4.2.2. Let Assumption 4.1.1 and 4.1.8 be in force. In addition, assume that the equation (4.2.4) has a global
solution (Aoo, A11, A1o, Bo, B1,C) € C*([0,T];Ma,) x C*([0,T];My) x C([0, T]; R**%) x ([0, T];RY) x C*([0,T]; R?) x
C'([0,T);R). Then, for each i € N, the process (Y, Z*°, Z%) € S*(P™",F** R) x S*(P™, FO¢ R *d0) x §2(P%¢ FO¢ R *?),
defined by

Y = o (Ano(t)al, af) + %(Au(t)mi, @1) + (Aso ()2}, 1) + (Bo(t), @) + (Bi(t), 1) + C(t),

N[~

- . (4.2.5)
2 = {27 (Aw (el + Aw(®) i+ Bo(®)} . Zi = {27 (w0l + An(ai + Bi(1)}

for t € [0,T] solves the mean field BSDE (4.1.5). The solution is unique among those with the quadratic Gaussian form.
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4.3 Optimality, verification and asymptotic equilibrium

Let (Y, Z°, Z;t € [0,T])ien be processes defined by (4.2.5) and suppose that they are well-defined. Then the process ¥,
defined by®

9e = —E[Z,|F)T, e o, 1], (4.3.1)

is expected to be the market-clearing risk premium process in the large population limit in analogy with Section 3. However,
we have
t
Y = —’YEOT (Aoo(t)l’? + Alo(t)Tutl + Bo(t)) = —’YZ(T (Aoo(t)E[ﬂU?} + Alo(t)TM% + Bo(t)> - ’YE(TAoo(t)EJO/ G_KO(t_S)dWS
0
for t € [0,T], which implies that 1 is a Gaussian process and thus ¥ ¢ Hayo. Furthermore, since Y* and F* are given by
quadratic forms of z° and z!, they are unbounded processes. Therefore, this EQG model does not fulfil the assumptions of
Section 3. Despite this, if [Var(z})|, |Zo| and || are small enough, we shall see that we can still obtain the well-posedness.
Here, Var(z}) is a covariance matrix of xf, defined by Var(z)) := E[(z} — E[z}])(x) — E[z8])T]. The following result is well

known.

Lemma 4.3.1. Let (Q, F,P,F (:= (Ft)iejo,1)) be a filtered probability space with usual conditions and W := (Wi)ico,1) be

a standard k-dimensional (F,P)-Brownian motion. Also, let Z~ be an m-dimensional F-adapted process defined by
t t
Z: = Zo +/ B(ﬁfs)ds—&—/ =2(ZL)dWs, te]0,T],
0 0

where B : R™ — R™ and E : R™ — R™** are Lipschitz continuous functions and 2o € L2(P, Fo,R™). Moreover, let
h:R™ — R* be a Borel-measurable function satisfying |h(z)|*< C(1 +|z|?) for all x € R™ and some constant C' > 0. Then,
the Doléans-Dade exponential {5(/ h(.%”s)TdWS) HAS [O,T]} is a martingale of class D.

0 t

proof
See Bain & Crisan [2] [Exercise 3.11]. O

Proposition 4.3.2. Let Assumption 4.1.1 and 4.1.3 be in force. In addition, assume that the equation (4.2.4) has a global
solution (Aoo, A11, A1o, Bo, B1,C) € C*([0,T); Ma,) x C*([0,T];My) x C([0, T]; R**%) x ([0, T];RY) x C*([0,T]; R?) x
C'([0,T);R). Then, the Doléans-Dade exponential {5(— / ﬂZdWL?)t;t € [O,T]} s a martingale of class D, where the
process 9 € LY (F°, R%) is defined by (4.3.1). ’

proof
This is a direct result of Lemma 4.3.1. [J
This proposition particularly shows that the process ¥ is consistent with Assumption 4.1.1 as a risk premium process.

With these preparations, we can recover the corresponding result of Section 2.

Theorem 4.3.3. (Optimality and verification)

Let Assumption 4.1.1 and 4.1.3 be in force. Assume further that the equation (4.2.4) has a global solution (Aoo, A11, A10, Bo, B1,C) €
CH([0, T]; Mg, ) x C*([0, T); Myg) x CH([0, T]; RE*40) x €1 ([0, T]; RY) x C*([0, T); RY) x C*([0, T]; R). Then, there exists a constant

s > 0 such that, as long as |Zo|>V|S|?V|Var(z3)|< <, the process (p™*, c"*), defined by

% Tk T ,0]| 19;
py = (my7) o= Zy +77 te 0,17,

1 (4.3.2)

B

8Since (Zti’o;t € [0,T])sen have the same distribution, we can, without loss of generality, choose Z1:0 to define 9.

ik yriyct L . i i i,c*
e =X+ gllos( ey ) 0 - B axi ) teloT)
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belongs to AEQG(ﬁ) and is an optimal strategy for agent-i for each i € N. Here, the process X" represents the agent’s
consumption habit (4.1.2), the process (Y, Z"°, Z%) € S*(P**, F** R) x S?(P% FO¢ R *%0) x S2(P% FO¢ R**4) is given by
(4.2.5) and the market risk premium process ¥ is defined by (4.3.1).

Remark 4.3.4. Note that the strategy (pi’*,ci’*) given above may not be the unique optimal strategy for agent-i under the

risk premium process 9. This is because the BSDE (4.1.4) may have a solution outside of the quadratic Gaussian form.

proof
In this proof, we denote the general nonnegative constant by C to avoid confusion with the function C, which is a part of
the solution to the ODE (4.2.4). By the definition of the process R»®°) and the argument in the proof of Theorem 2.3.3,
the process R*(""") is a local martingale and thus the optimality follows once (p"*,c¢"*) € Abqa (V) is achieved. It then
suffices to show that the function U*(p”*,c"*) defined in (4.1.3) has a finite value and that the process R*® ") is of class
D.

Let us write

(;5,? ::/ e_KO(t_S)dVVSO7 oy ::/ e_K(t_s)dV[/',f7 t€[0,T].
0 0

Then we have
o = age O 4 mo(1— e ) + X007, ai =zpe M +m(l—e ")+ 3¢, tel0,T],

and in particular, |z9)2+|z!|>< C(14 |z} 2 4|S0 |67 |>+|%[2[¢i[?) for all t € [0, T]. We shall show that there exists a constant
n > 0 such that

sup B [exp(—(1+ W@ 4 (1) M{|F1+YE |+

te[0,T) +|Xti’c*|})] < 00, (4.3.3)

where M is a constant satisfying M > max{~, 8,sup,c(o 71[7¢:|}. If this is the case, we clearly have ﬁi(pi’*,ci’*) > —00.

Moreover, Jensen’s inequality and Doob’s submartingale inequality yields

Sk ok 1+n Cow ok ~ S ow ok ~ S ow ok
IE[ sup |Rz,(p c )|] < E[ sup |Rz,(p e )|1+n] < CE[|R;¥<” e )|1+n] =C sup EDR?(F e )|1+n] < 0.
t€[0,T] t€[0,T] t€(0,T]

This implies that the process R>®"¢") is dominated by an integrable random variable sup;¢o 1 |Ri’(p *’C*)|. Using Medvegyev

[34] [Corollary 1.145], we deduce that R ¢") is a martingale of class D.
Without loss of generality, we set ¢ = 1 and omit the superscript “1” when obvious. As (Ao, A11, A10, Bo, B1,C) is a

global solution and hence is bounded, we have, from (4.1.1) and (4.2.5),
[0:< COL+|2f]), i< CO A+ | +lai]), Vi< CO+|afP+]2i]?),  [F< CO+ o) [ +]2t]?) (4.3.4)

ot
for all ¢ € [0,T]. Moreover, by Gronwall’s inequality, we have | X; |< |Xo|+C + C’/ |cs|ds. Using this, we get
0

i 1< C+ IXE | +Yal + Fe]) < O+ | Xol+[Yal + Fe]) + CN”/Otlcfskld&
and then |c}|< C(1 + | Xo|+|Y:|+|Fy|), again, by Gronwall’s inequality. Together with (4.3.4), we obtain
e 1< C(1+ [ Xo|+f P+t ),
X< 106+ € [ elas < E(1+ 1ot [ (a2t Pas).

t
0
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for each t € [0,T]. Using these estimates, we have

t t
W) :£+/ (pws—c:>ds+/ pldW?
0 (0]

V

t t t t
> —|£|—/ (Ipll\ﬁsIHCZ\)dS—7(1+77)/ Ip2|2ds+7(1+n)/ IpZ|2d5+/ pidWy
0

Y

- - t
fc<1+|£|+\xo|>fc/<|m°| et P)ds + (1 +n) / 1P| ds+/ pLAW?, ¢ e [0,7).
0
Putting these together, it follows that, for all ¢ € [0, T7,
— WD) 4 M(|F|+|Yal+ e [+ X5 )
~ t
< O(1+ €[ +1Xol) + G120+ 2) +c/ (22 2+t ) ds — 1+n/|ps|ds— /p:dwf
t t
< G(1+ €1 +1Xo]) + OIS 2160 P+ 6L 2+ [2) + § / (IS0 [2 62+ S2|0 P+ad 2)ds — A2(1 + 1) / 1p3[2ds — 4 / prdW?.
0 0 0
Then, for all ¢t € [0,T7,
E —(1 w4 Fy|+1Y; X¢
exp(—(1+ mAWE ) 4+ (1+ ) M(F Y|+ [ +HXE )
. . . T
< CE[exp (C(g+1Xol) + C (o 671+ |} 1+ +/ (IS0l 62+ [SI216} P+ | ) ds)
0
2 2 ¢ 2 t 0]
) [P =) [ praw?)]
(0] 0
1
< CE [exp(C(Igl+1Xol) + C(o 1601+ 1 P +ad ) ) |

<B[exp(C [ (maPlol 2Pl e ds) | B [e (<2a1-4m) [ ptaws)

[N

— 8 exp (Gl +1X0D) | “E [exp (GOS0 16817 + 1210k P +iabf?) )
< Eexp (€ / (IS0 P11+l P+ )ds) | 'E e (<2v(1 4+ 1) | viaw?) |

[N

by using Holder’s inequality.
As € and Xj are independent and normally distributed, we have E[exp(5(|§|+|Xo|))] = E[eélg‘]E[eé‘X‘”] < oo. By
Lemma 4.3.1 and (4.3.4), we deduce

sup E[E(—Qv(l +77)/0‘p:dW£)J < 0.

te[0,T)
Furthermore, since the random variables ¢?, ¢; and xy are mutually independent, we have
E[exp (C{(IZol* 6 +ZP16i P +wdl*) } )| = E[exp (CIo 1601 ) [E|exp (CISP1611? ) |E[exp(Cladl?) |
< CE [exp (6’|20|2v922)} E [exp (5’|E|21)t1 ZQ)}]E [exp (5\Var(xé)|Z2)] ,

where Z ~ N(0,1) and

¢ ¢
0._ —2Ko(t=s)gg _ L (4 _ ~2Kot 1 1._ —2K(t=s)gg — L g _ 2Kty o 1
vy /Oe s 2K0( e )<2K07 vg ; e s 2K( e )<2K

for t € [0,T). Therefore, we have
E [exp (C{ (120 68+ It *+iad ") }) | < o0

if and only if
E(IS0[200 v Sl v [Var(zb)]) <

N | —
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Similarly, we have
- T
[exp(C [ (120l 6%+ 1} -+ b *)ds) ] < oo
0

if and only if

" T T 1

c(|zo|2/ WOt \2|2/ vhdi v Var(zb)|T) < 1

0 0
Above all, if
IS0 2VIS V| Var(z)|[< CTHAAT D)Ko AKA27Y) =6 (4.3.5)

holds, we get (4.3.3), which implies (p*, c*) € Apqg(¥). O

Remark 4.3.5. If the quadratic form of (¢°,¢") in the exponential function of RH(®"e™) happens to be negative semidefinite,

we need no constraints on the diffusion coefficients.

This result also recovers the corresponding asymptotic properties of Theorem 3.3.1. To be specific, the process ¥ satisfies

the market clearing condition in the large population limit.

Theorem 4.3.6. (Asymptotic equilibrium in the EQG model)
Let Assumption 4.1.1 and 4.1.3 be in force. Assume further that the equation (4.2.4) has a global solution (Aoo, A11, A10, Bo, B1,C) €
CH([0,T]; Mg, ) x CH([0,T]; Mg) x C*([0, T]; R 40) x ¢1([0, T]; R4) x C1([0, T]; RY) x C1([0, T]; R) and that

|Z0)?V[ZV|Var(z5)|< <,

where ¢ > 0 is a positive constant specified in (4.3.5). Then, as long as each agent adopts (4.3.2) as his/her optimal strategy,
the process ¥ defined by (4.3.1) clears the financial market in large population limit, i.e. the agents’ optimal trading strategies

("5t €10, T))ien given by (4.3.2) satisfy

2
dt = 0.

T q N
Jim B [ \N;”t

Remark 4.3.7. Since the optimal strategy (under market risk premium process ¥) is not shown to be unique, this statement

is only valid for the specific choice of optimal strategies (4.3.2).

proof
Again, we denote the general constant by C to avoid misinterpretation with the function C. Since 7. = (0,07 ) "oy (pi™) T

for t € [0, 7] and |(o¢0¢ ) ~'0¢|< C uniformly in ¢ by Assumption 4.1.1, we have
T N T N
1 2 ~ 1 .
E ‘7 "t < CE ’7
Jo b o [y

By (4.2.5), the process p”* can be written as

2
dt.

0/

Pi’* — Zti,OH + 7 _ ZZ’O“ _ E[Z,}’OH|}'O] _ (Lti _ /«Ltl)TAlo(t)iO

i

for every i € N and t € [0,T]. It is then easy to see
T
1
Ty — [t
0

T1 N ) 2 _ T1 N ) L 2 5 N
E ’7 "4 < CE ‘7 i )’ <= E/
/ONJ dt_C’/O N;(xt ) dt_m;

where we have used the fact that (zi;¢ € [0,T])ien are mutually independent and that E[zi] = i for every i € N and
tel0,7]. O

2d<5 N
t_N—H) (N — o0),
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5 Conclusion and discussions

In this paper, we have studied a theoretical model of asset pricing among heterogeneous agents with habit formation in
consumption preferences using the mean field game theory. In Section 3, the market clearing condition has motivated us
to study the mean field BSDE (3.1.2), which was shown to have a bounded solution under additional assumptions on the
size of the parameters. Furthermore, we have proved that the solution of this equation does indeed characterize the market
equilibrium in the large population limit. In addition, Section 4 introduced an exponential Gaussian model, in which an
unbounded solution of the mean field BSDE can be obtained in a semi-analytic form, characterized by a system of ODEs,
under appropriate assumptions. Subsequently, we have verified an optimal strategy and the asymptotic market equilibrium
in the large population limit within the EQG framework.

The result of Section 4 helps us to conduct a numerical analysis in future studies. The solutions of (4.2.4) can be
calculated by the standard Euler method. A solution to the mean field BSDE can be then obtained by (4.2.5) with pathwise
simulations. The numerical analysis can provide a visualization of our equilibrium model, allowing us to investigate the
distribution of wealth and the effect of the habit formation. We can also expect an application to the empirical study using
the market data. See also Carmona & Delarue [5] [Section 3.5] for linear quadratic mean field games and [Section 3.6] for
numerical results.

There still remain some possible extensions. We may possibly impose some additional conditions on the habit trend p,
such as p; = E[ctl’*|]:0] for t € [0,T7, so that the model allows us to investigate the consumption behavior under the relative
performance criteria. We may also generalize the information structure or add a jump process into the security price process
for describing the possibility of default, for example. Furthermore, as noted in the previous work Fujii & Sekine [17], the
general solvability of the mean field BSDE (3.1.2) still remains open. As long as working within our framework, such an

equation is likely to appear in possibly more generalized forms.
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Appendix

A Proof of Theorem 2.3.2 (Continued)

We introduce a smooth convex function ¢ : R — R4 satisfying ¢(0) = ¢'(0) = 0, whose concrete form is to be determined.
Let us denote AY™™ := Y™ — Y™ and AZ™™% .= Z™ — Z™1 for i = 0, 1. Notice that AY™™ > 0 when m > n.

Using Ito formula, we have

Eo(AYy ™))+ 5B [ ¢ (@vImY(AZy P AZr ™ ) ds]
0

T 2 2
nm 0s]*An 05| Am n n m m
2 [ o avem{~ LA BLAm L 2 g ez - Tz o a2
0

fon ) 2 gy

B

IN

s [ wavem {20 1gzeop sz Y

T
<59 [ cog Ay {Jon 412 - 201z - 2|20 22 s,
0
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where Cj is a positive constant satisfying Cp > (171 + 27%). Then,

N =

T T
25| / O (AT (AZE P AZE ™ s < B / Cod/ (AYS™){ 10 +122° = Z2P+|20" = ZP+|Z2P+122 ) }ds].
0 0

Now set ¢ as

1

o(y) == ﬁ(e”w —2Coy — 1),
0

then ¢(0) = ¢’(0) = 0 and

(Y 1), ¢ (y) = 2777,

¢'(y) = o

In particular, ¢" (y) = 2Co¢’ (y) + 2. With these relations, we get

2+|AZ:,,m,1

8 [ uoaremy + nazeme ?)as]

T
<E® [/ Cod/ (Y™ 10, +1Z2° = Z2P+|20" = ZLP+|Z2P+122 P Jds].
0
Since /¢ (AY™m) 4 1TAZ™™" (i = 0,1) is weakly convergent to 1/¢'(Y™ —Y) + 1AZ™" in H? as m — oo, we obtain
T
E® [/ (Cod! (V2" = Yo) + 1)(12° = 284122 = Z2[7)ds]
0

T
< lim inf E2 [/ (Cod (AY"™) + 1)(|AZ§”"‘O|2+|AZ§’m’1|2)ds]
0

m—r 00
T
<59 [ oo (v = Y {0 H 20" - 2B 2 - 228 21 ).
0
This implies
T T
E° [/ |20 = 204123 — Z)ds| <EC [/ Cod! (V2" = Y[ 0. +128+121 }ds| » 0 (n— o0)
0 0
by the dominated convergence theorem. Thus,
7" 7%z 7', (n— o)

strongly in H2. Taking a subsequence if necessary, it is now straightforward to see, for Q-a.s.,

t t
sup |Y; —Y;"|— 0, sup ‘/ (22 — 7% dwd?| + sup ‘/ (zr = ZzPYawle| 5o
te[0,T] telo,71'Jo telo,71'Jo

as n — oo. Hence (Y, Z° Z') € S*° x Hamo X Hamo is a bounded solution to the BSDE (2.3.2). O
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