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Abstract

This paper considers a multi-agent optimal investment problem with conserva-
tive, aggressive, or neutral sentiments in an incomplete market by a BSDE approach.
Particularly, we formulate the conservative, aggressive, or neutral sentiments of the
agents by a sup-inf/inf-sup, sup-sup, or sup problem where we take infimum or
supremum on a choice of a probability measure depending on the view types and
supremum on trading strategies. To the best of our knowledge, this is the first
attempt to investigate a multi-agent equilibrium model in an incomplete setting
with heterogeneous views on Brownian motions. Moreover, we show a square-root
case where a group of agents has either conservative, aggressive, or neutral senti-
ments on the fundamental risks and a general case where the Sharpe ratio process
of the risky asset and the optimal trading strategies in equilibrium are explicitly
solved by a BSDE approach. Finally, we present numerical examples of the trad-
ing strategies and the expected return process in equilibrium under heterogeneous
sentiments, which explain how the conservative, aggressive, or neutral sentiments
affect the Sharpe ratio process of the risky asset and the trading strategies of the
agents in equilibrium.

1 Introduction

This paper investigates a multi-agent optimal investment problem under an incomplete
market setting with heterogeneous views on fundamental risks represented by Brownian
motions. Specifically, we consider an exponential utility case, where the degrees of risk
aversion and the view types on the fundamental risks differ among the agents. Particularly,
we obtain the Sharpe ratio process of the risky asset and the optimal trading strategies of
the agents in equilibrium. To the best of our knowledge, this is the first attempt to solve
for a general equilibrium in a multi-agent model under an incomplete market setting with
heterogeneous views of the agents.

Sentiments of the market participants affect asset prices in financial markets, such
as bond prices and stock prices, which has been particularly observed after the global
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financial crisis (e.g., Nakatani et al. [21] and Nishimura et al. [20]). In the financial
market, the number of fundamental risks driving the market is generally considered to
exceed the number of risky assets as in stochastic volatility models. Thus, considering
heterogeneous views of market participants in an incomplete market setting has theoretical
importance.

Moreover, this study is useful since the way the expected return on the risky asset
changes when the sentiment of the market participants varies is essential in constructing
a profitable trading strategy. For instance, when the major market participants in the
stock market have different views and when their views change, it affects the stock prices
through the trading of the market participants. If the sentiment changes are expected,
we can construct a trading strategy by predicting how the expected return on the risky
asset shifts. Furthermore, policymakers, such as central banks, can estimate the effect
of their announcement on the stock market through the change in the bandwidth of the
sentiments of market participants in the model.

In this study, we observe how the heterogeneous sentiments affect the Sharpe ratio
process, or equivalently the expected return process when the volatility process is given,
and investment strategies in an incomplete market setting, where the number of Brownian
motions is greater than the number of risky assets and the state-price density process that
defines the risk-neutral probability measure used for securities pricing is not uniquely
determined.

For related literature, Petersen et al. [26] introduce relative entropy constraints to a
stochastic system where the worst case is considered as a choice of a probability measure.
Hansen and Sargent [9] apply the robust control theory to finance. They deal with a
single agent’s utility maximization problem with a choice of a probability measure on the
conservative side. Also, as a problem of a choice of a probability measure, Chen and
Epstein [5] investigate an optimal consumption problem in finance with ambiguity on
risks.

As for optimal portfolio problems with ambiguity and general equilibrium under uncer-
tainty, Beissner et al. [2] investigate the alpha max-min expected utility with ambiguity
on risks of a single agent, which indicates a view lying between the most aggressive and the
most conservative side. Beissner and Riedel [3] also examine equilibrium under economy
with Knightian uncertainty. Beissner [4] investigates equilibrium with Knightian uncer-
tainty in a complete market. Kizaki et al. [14] consider a multi-agent optimal portfolio
problem with conservative and aggressive sentiments in a complete market setting.

Moreover, Choi and Larsen [6] derive incomplete market equilibrium under exponential
utility without a choice of a probability measure. Kizaki et al. [15] investigate equilibrium
under an incomplete market setting where agents have different income or payout profiles
and risk aversion parameters and apply the results to life-cycle investment and reinsurance
pricing.

Our work is different in that we incorporate heterogeneous views on the fundamental
risks of multiple agents to obtain the expected return process in equilibrium in an in-
complete market setting. Although in the complete market setting in Kizaki et al. [14],
utilizing the fact that the state-price density process exists uniquely and the optimal
portfolios of agents are expressed with the state-price density process, the process in equi-
librium is obtained imposing a market clearing condition, and as a result, the interest rate
process and the market price of risk are obtained. On the other hand, in the incomplete
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market setting, the state-price density process is not uniquely determined, and the same
technique cannot be applied. Instead, we need to solve a system of BSDEs, which is the
difference.

Also, for sentiments in the markets, Nishimura et al. [20] and Nakatani et al. [21] esti-
mate sentiment factors in the interest rate models by using a text mining approach for the
Japanese government bond markets. Saito and Takahashi [29] investigate a sup-inf prob-
lem on aggressive and conservative sentiments for a given state variable process. Saito and
Takahashi [30] solve a sup-sup-inf problem for a single agent, where the agent works on an
optimal investment problem under aggressive and conservative sentiments by a Malliavin
calculus approach. Our work investigates a multi-agent model with sup-inf/inf-sup, sup-
sup, or sup problems for individual optimization problems in an incomplete setting, where
we solve for an equilibrium expected return process of the risky asset and the subjective
probability measure of the agents, useful in pricing assets with heterogeneous views on
fundamental risks.

Specifically, for optimal portfolio problems on multi-agent systems, Yang et al. [35]
investigate principal-agent problems for a contract design with multiple agents, where a
principal solves a utility maximization problem. Leung et al. [19] consider a decentralized
robust portfolio optimization problem with a cooperative-competitive multi-agent system.
(For other studies on multi-agent systems, see e.g., Kumar & Bhattacharya[16], Lee et
al.[18], Park et al.[25], Pinto et al.[28], Gharesifard et al. [8] and Yang et al. [36],[37].

For applications of stochastic control to optimal portfolio problems in financial risk
management, see, e.g., Cui et al. [7], Kasbekar et al.[13], He et al.[10], Ni et al.[22],[23],
[24], Ye and Zhou [38], Lamperski and Cowan [17], Sen [32], Jiang and Fu [11], Wu et
al.[34], Aybat et al. [1]). Our study differs in that we investigate market clearing on
assets among the agents, who have different views on Brownian motions and risk-aversion
parameters, to obtain the expected return process in equilibrium.

The contributions of this study are as follows. To the best of our knowledge, this
study is the first attempt to investigate the multi-agent equilibrium under an incomplete
market setting where the agents have heterogeneous views on fundamental risks. Kizaki
et al. [14] obtained the market equilibrium where the agents have heterogeneous views on
fundamental risks but in a complete market setting. This study extends the case to an
incomplete market setting, where the number of Brownian motions that drive the market
exceeds the number of risky tradable assets. Specifically, with a square-root case, where
the standard results for the existence and uniqueness of a solution for the BSDE with
stochastic Lipschitz driver do not apply since the terminal condition is unbounded, we
first solve the sup-inf/inf-sup, sup-sup, or sup problem for the portfolio (the sup part) and
the conservative or aggressive view (the inf or sup part) Then, we provide a general case
in Section 5 and a Gaussian case in Appendix B, in which the existence and uniqueness
of a solution and the comparison principle for standard BSDEs hold, is also included.

The organization of this paper is as follows. After Section 2 introduces the equilibrium
multi-agent model in an incomplete market, Section 3 shows a square-root case, where
the excess return process and the optimal strategies in equilibrium are explicitly solved.
Section 4 presents numerical examples. Section 5 provides a theorem for a general case
that also includes a Gaussian case in Appendix B. Finally, Section 6 concludes. Appendix
A provides the proof of the theorem for the general case in Section 5. Appendix B presents
a Gaussian state process case, an example of the general case in Section 5 where the system
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of BSDEs is reduced to separate BSDEs.

2 Setting

In this section, we explain the multi-agent model with heterogeneous views on fundamental
risks in an incomplete market to obtain the Sharpe ratio process and the optimal trading
strategies in equilibrium. Firstly, we describe the setting of the financial market and then
introduce the individual optimization problem of each agent. We consider the following
financial market where there are Ī agents, where Ī ≥ 2, trading one risky asset and a
money market account and Ī agents consists of three types of agents, that is, I agents
with conservative views on fundamental risks, I ′ agents with aggressive views, and I ′′

agents with neutral views, where I, I ′, I ′′ ≥ 0, and Ī = I + I ′ + I ′′.
Let (Ω,F , P ) be a probability space. Also, we let (WY ,WS) be a two-dimensional

Brownian motion defined on the probability space, whereWY represents the Brownian mo-
tion driving the common factor process Y and WS the one inherent to a risky asset price.
{Ft}0≤t≤T be the augmented filtration generated by the two-dimensional Brownian motion
(WY ,WS), and µ, µY , σ, σY , ρS, ρ̂S :=

√
1− ρ2S beR-valued {Ft}-progressively measurable

processes defined on [0, T ], where µ, µY represent the expected return of the risky asset
price and the factor process, σ, σY the volatility, and ρS the correlation between the Brow-
nian motions of the risky asset process and the factor process. Particularly, we assume
σt > 0, |ρS,t| ≤ 1, 0 ≤ t ≤ T , and hence |ρ̂S,t| ≤ 1. Let λ = (λY , λS)

⊤ be aR2-valued {Ft}-
progressively measurable process, which represents the views on the fundamental risks,
lying in some intervals. Namely, let Λi = {λ = (λY , λS)

⊤||λY,t| ≤ λ̄Y,i,t, |λS,t| ≤ λ̄S,i,t} with
exogenously given λ̄Y,i,t, λ̄S,i,t > 0 be the set of views on the fundamental risks of agent i,
where λ̄Y,i, λ̄S,i, i = 1, . . . , I + I ′, are R-valued {Ft}-progressively measurable processes.

Let S0, S1 be the price process of the money market account and the risky asset
satisfying SDEs

dS0,t = rS0,tdt, S0,0 = 1,

dS1,t = µtS1,tdt+ σtS1,t(ρS,tdWY,t + ρ̂S,tdWS,t),

S1,0 = p > 0, (1)

where the initial value of the risky asset price p is exogenously given. Specifically, we as-
sume r ≡ 0 throughout this study and obtain the expected return process µ in equilibrium,
which satisfies market clearing conditions.

Suppose that there exist Ī = I + I ′ + I ′′ agents in the market who trade the money
market account and the risky asset aiming to maximize their expected utility on the
sum of the wealth and the wealth shock represented by the state process at the terminal
time T in the following. Let πi be the portfolio process satisfying

∫ T

0
|πi,sµs|ds < ∞,∫ T

0
π2
i,sσ

2
sds < ∞, P −a.s., which describes the allocation of the agent i’s portfolio on the

risky asset on value basis. Then Xπi , the wealth process of agent i, satisfies an SDE

dXπi
t = πi,t

dS1,t

S1,t

= πi,tθtσtdt+ πi,tσt(ρS,tdWY,t + ρ̂S,tdWS,t),

Xπi
0 = xi,0, (2)
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where θt =
µt

σt
and xi,0 ∈ R, i = 1, . . . , Ī.

Let Ai be a set of admissible strategies which will be specified depending on the
respective cases in Section 3 and Appendix B so that arbitrage opportunities, where the
agent makes a profit with a positive probability without losing money, are excluded for
agent i.

Next, let Y be an endowment process which satisfies an SDE

dYt = µY,tdt+ σY,tdWY,t, Y0 = y0, (3)

where y0 ∈ R. This state process Y is a source of incompleteness, which cannot be traded
in the market and could affect µ, σ, ρS, ρ̂S of the risky asset price process S1 in (1).
We assume that there is a one-time wealth shock YT at the terminal T , which may be
understood as the economic state at the terminal, and the wealth shock is common among
the Ī agents.

Agent i, i = 1, . . . , Ī has an exponential utility function ui on the sum of the terminal
wealth Xπi

T and the one-time wealth shock YT , where ui(x) = − exp(−γix), γi > 0.

Remark 1 We remark that although we assume the one-time wealth shock is YT for all
i = 1, . . . , Ī, which is common among the agents, for simplicity, we can also handle the
case where the wealth shock at the terminal T for agent i is a linear functional of YT such
as αiYT + βi, where αi, βi ∈ R are constants, in the same way. This model corresponds
to the case where αi = 1 and βi = 0, which indicates a positive wealth shock if YT > 0.
When αi < 0 with YT > 0, this implies a negative wealth shock.

2.1 Individual optimization problems of three Types of agents

Also, agent i has either conservative, aggressive, or neutral views on the fundamental risks
related to the risky asset price and the state process. The agent aims to maximize its
expected utility by choosing the trading strategy πi while minimizing when the agent is
conservative or maximizing when the agent is aggressive with respect to the views λY,i and
λS,i on the fundamental risks WY and WS, respectively. Thus, we consider the following
sup-inf/inf-sup, sup-sup, or sup problem as the individual optimization problem.

(i) When agent i is conservative (i = 1, . . . , I),

sup
πi∈Ai

inf
λi∈Λi

EPλi [− exp(−γi(X
πi
T + YT ))], (4)

inf
λi∈Λi

sup
πi∈Ai

EPλi [− exp(−γi(X
πi
T + YT ))], (5)

(ii) when agent i is aggressive (i = I + 1, . . . , I + I ′),

sup
λi∈Λi

sup
πi∈Ai(λi)

EPλi [− exp(−γi(X
πi
T + YT ))], (6)

where Ai(λi) is defined appropriately in the following specific settings to exclude arbitrage
opportunities are excluded for each fixed λi, and

(iii) when agent i is neutral (i = I + I ′ + 1, . . . , Ī),

sup
πi∈Ai

EP [− exp(−γi(X
πi
T + YT ))], (7)
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where P λi in (i) and (ii) is defined as

dP λi

dP
= exp

(
− 1

2

∫ T

0

(λ2
S,i,t + λ2

Y,i,t)dt+

∫ T

0

λS,i,tdWS,t +

∫ T

0

λY,i,tdWY,t

)
.

As in Section 3 and Appendix B, when the weak version of Novikov’s condition (e.g.,
Corollary 3.5.14 in Karatzas and Shreve [12]) holds, by Girsanov’s theorem, dWS,t =
dW λi

S,t + λS,i,tdt, dWY,t = dW λi
Y,t + λY,i,tdt, where (W λi

Y ,W λi
S ) is a Brownian motion under

P λi . Thus, the terms λS,i,tdt and λY,i,tdt with the views λS,i,t and λY,i,t indicate the bias
of agent i on the instantaneous increment of the fundamental risks dWS,t and dWY,t.

2.2 Market equilibrium

Then, given the optimal trading strategies π∗
i , i = 1, . . . , Ī obtained by the individual

optimization problems (4) and (5), (6), or (7), we call that the market is in equilibrium
if the following market-clearing conditions are satisfied.

Ī∑
i=1

π∗
i,t = πs

t , ∀t ∈ [0, T ], (8)

and

Ī∑
i=1

(X
π∗
i

t − π∗
i,t) = 0, ∀t ∈ [0, T ], (9)

where πs is a R-valued {Ft}-progressively measurable process, which represents the net
supply of the risky asset in value basis.

Here, we also assume

πs
0 =

Ī∑
i=1

xi,0, (10)

which indicates that the initial net supply is equal to the total initial wealth.
(8) is the market clearing condition for the risky asset position where the total demand

of the risky asset is equal to the net supply of the risky asset πs, and (9) is the market
clearing condition for the money market account, where we assume that the net position
of the money market is zero. In the following specific settings, we consider the zero-net
supply πs = 0 as a base case, and in addition to this, we investigate a positive supply
case πs > 0.

Under this setting, in the following sections, we aim to find the Sharpe ratio process θ
of S1, or equivalently the expected return process µ when the volatility process σ is given,
in (1) in equilibrium, which is obtained by the following procedures.

Concretely, first presupposing the form of the views on the fundamental risks λ∗
i =

(λ∗
Y,i, λ

∗
S,i)

⊤, i = 1, . . . , Ī, we solve the individual optimization problems (4) and (5), (6), or
(7). Then, imposing the market clearing conditions (8) and (9), we obtain the candidate
of the Sharpe ratio process in equilibrium.

Then, in theorems, given the candidate of the Sharpe ratio process θ and the volatility
process σ, we solve the individual optimization problems (4) and (5), (6), or (7) and
confirm that the market is in equilibrium.
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3 Conservative, aggressive, and neutral sentiments

in a square-root model

In this section, we present a square-root case where the equilibrium is concretely obtained
by solving individual optimization problems for the three types of agents and imposing the
market clearing conditions. As we will observe in the general case in Section 5, obtaining
an equilibrium reduces to solve a system of BSDEs in general. In this square-root case,
the BSDEs reduce to a system of Riccati ODEs, which can be solved numerically.

For clarity, we restate the setting as follows. Let S0, S1 be the price process of the
money market account and the risky asset satisfying SDEs

dS0,t = rS0,tdt, S0,0 = 1,

dS1,t = µtS1,tdt+ σtS1,t(ρS,tdWY,t + ρ̂S,tdWS,t);S1,0 = p > 0, (11)

and the following square-root process for Y instead of (3)

dYt = (µY,1,tYt + µY,2,t)dt+ σY,t

√
YtdWY,t;Y0 = y0 > 0, (12)

where µY,1, µY,2, σY are nonrandom processes with µY,1,t ≤ 0, µY,2,t ≥ 0, σY,t > 0, 0 ≤ t ≤
T , the initial value of the risky asset price p is exogenously given. We also assume that
Λi, the set of the views on the fundamental risks λ, has the following square-root form
Λi = {λi = (lY,i,t

√
Yt, lS,i,t

√
Yt)

⊤| − λ⋆
Y,i,t ≤ lY,i,t ≤ λ⋆

Y,i,t,−λ⋆
S,i,t ≤ lS,i,t ≤ λ⋆

S,i,t}, where λ⋆
Y,i

and λ⋆
S,i are nonnegative random processes. Then, we consider the individual optimization

problems for the conservative, the aggressive, and the neutral agents as follows.
First, we note that Xπi , the wealth process of agent i, satisfies an SDE below. That

is, dXπi
t =

πi,t

S1,t
dS1,t + rt

X
πi
t −πi,t

S0,t
dS0,t with rt = 0 and a given xi,0 such that

∑Ī
i=1 xi,0 = πs

0:

dXπi
t = πi,tσtθtdt+ πi,tσt(ρS,tdWY,t + ρ̂S,tdWS,t); Xπi

0 = xi,0, (13)

where θt =
µt

σt
.

[Individual Optimization for the three types of agents]

• (Conservative agents)

First, we consider the sup-inf/inf-sup problem of the conservative agents i, i =
1, . . . , I,

sup
πi∈Ai

inf
λi∈Λi

EPλi [− exp(−γi(X
πi
T + YT ))],

inf
λi∈Λi

sup
πi∈Ai

EPλi [− exp(−γi(X
πi
T + YT ))]. (14)

We consider the set of admissible strategiesAi asAi = {πi|Xπi is a Q
λ∗
i

i -supermartingale}
so that arbitrage opportunities are excluded. In detail, if πi ∈ Ai, πi is not an arbi-
trage strategy for the following reason. Suppose that πi is an arbitrage opportunity,

i.e., Xπi
0 = xi,0, X

πi
T ≥ xi,0, P (Xπi

T > xi,0) > 0, then Q
λ∗
i

i (Xπi
T > xi,0) > 0 and since

Xπi is a supermartingale, EQ
λ∗i
i [Xπi

T ] ≤ Xπi
0 = xi,0, which is a contradiction.
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Here, Q
λ∗
i

i , which represents agent i’s risk-neutral probability measure, is defined as

dQ
λ∗
i

i

dP
=

u′
i(X

π∗
i

T + YT )

EPλ∗
i [u′

i(X
π∗
i

T + YT )]

dP λ∗
i

dP
, (15)

where we set λ∗
i,t = (+λ†

Y,i,t

√
Yt,+λ†

S,i,t

√
Yt)

⊤ with λ†
Y,i,t := −λ⋆

Y,i,t, λ
†
S,i,t := −λ⋆

S,i,t

for i = 1, . . . , I (conservative agents), λ†
Y,i,t := +λ⋆

Y,i,t, λ
†
S,i,t := +λ⋆

S,i,t for i = I +

1, . . . , I + I ′ (aggressive agents), λ†
Y,i,t = λ†

S,i,t = 0 for i = I + I ′ + 1, . . . , Ī (neutral
agents),

π∗
i,t =

1

γiσt

(θt + ρS,tλ
†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt − γiρS,tσY,ta

∗
i,t

√
Yt), (16)

and

θt =
Ī∑

j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t

√
Yt − ρ̂S,tλ

†
S,j,t

√
Yt + γjρS,ta

∗
j,tσY,t

√
Yt). (17)

Here, Γ = 1∑I
k=1

1
γk

and (a∗1, . . . , a
∗
I) is a unique solution of Riccati equations (27)

defined in Theorem 1 in the following.

• (Aggressive agents)

In addition to the agents with conservative sentiments, one group of agents has
aggressive views on the fundamental risks, and there is another group of agents who
do not have any views on the risks. Specifically, suppose that in addition to the I
agents who have pessimistic sentiments, there are I ′ agents, agents I +1, . . . , I + I ′,
(I ≥ 0) who have aggressive sentiments on the risks, and I ′′ agents (I ′′ ≥ 0) without
views on the risks. That is, instead of the individual optimization problem in (14),
the problem for agent i, i = I + 1, . . . , I + I ′, is described as

sup
λi∈Λi

sup
πi∈Ai(λi)

EPλi [− exp(−γi(X
πi
T + YT ))]. (18)

Let πi be a {Ft}-progressively measurable process with
∫ T

0
π2
i,sσ

2
sds < ∞, P − a.s.

For agents i, i = I+1, . . . , I+ I ′, we consider the set of admissible strategies Ai(λi)
so that arbitrage opportunities are excluded for each view λi as follows. In detail,
Ai(λi) = {πi|Xπi is a Qλ

i -supermartingale}, where Qλ
i is defined as

dQλ
i

dP
=

u′
i(X

πl,∗
i

T + YT )

EPλ [u′
i(X

πl,∗
i

T + YT )]

dP λi

dP
,

where

πl,∗
i,t =

1

γiσt

(θt + ρS,tlY,i,t
√

Yt + ρ̂S,tlS,i,t
√
Yt − γiρS,tσY,ta

l
i,t

√
Yt), (19)
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θt =
Ī∑

j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t

√
Yt − ρ̂S,tλ

†
S,j,t

√
Yt + γjρS,ta

∗
j,tσY,t

√
Yt). (20)

Here, Γ = 1∑Ī
k=1

1
γk

, and (a∗1, . . . , a
∗
Ī
) and (alI+1, . . . , a

l
I+I′) are a unique solution of

Riccati equations (27) and (30) defined in Theorem 1 in the following.

• (Neutral agents)

Moreover, there is a group of I ′′ agents, agents i, i = I + I ′ + 1, . . . , Ī, who are
neutral about the views on the risks with individual optimization problems

sup
πi∈Ai

EP [− exp(−γi(X
πi
T + YT ))]. (21)

Also, for the neutral agents i, i = I + I ′ + 1, . . . , Ī, we set the set of admissible
strategies as Ai, which is the same as the one for the conservative agents i, i =
1, . . . , I except for λ∗

i = (0, 0)⊤.

3.1 Market clearing conditions for zero-net supply case

Next, we define the riskless asset’s and the risky asset’s market clearing condition as

Ī∑
i=1

(X
π∗
i

t − π∗
i,t) = 0, (22)

Ī∑
i=1

π∗
i,t = 0, ∀t ∈ [0, T ], (23)

where we set the supply of the riskless and the risky asset to be zero.
Specifically, assuming r ≡ 0, we obtain the Sharpe ratio process θ and the volatility

process σ in equilibrium, which satisfy the market clearing conditions as follows.

Theorem 1 Suppose that for the systems of Riccati equations (i) and (ii) in the following,
each system has a unique global solution in [0, T ].

Then, the Sharpe ratio process θ in equilibrium is given by

θt =
√
YtΓ

[
−

Ī∑
i=1

1

γi
(ρS,tλ

†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,tσY,ta

∗
i,t)

]
. (24)

As a result, we obtain the optimal portfolio and the sentiment (π∗
i , λ

∗
i ) that attains the

individual optimization problems, the sup-inf/inf-sup, the sup-sup, and the sup problem
(14),(18),(21), and satisfy the market clearing condition as

π∗
i,t =

1

γiσt

(θt + ρS,tλ
†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt − γiρS,ta

∗
i,tσY,t

√
Yt). (25)

9



Moreover, the expected return process is given as

µt = σt

√
YtΓ

[
−

Ī∑
i=1

1

γi
(ρS,tλ

†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,tσY,ta

∗
i,t)

]
. (26)

Here, (i) the system of Riccati equations for i = 1, . . . , Ī (conservative, aggressive, and
neutral agents) is given as

−ȧ∗i,t

=
1

2γi

( Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t) + ρS,tλ

†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,ta

∗
i,tσY,t

)2

+a∗i,t(µY,1,t + λ†
Y,i,tσY,t)−

1

2
γi(a

∗
i,t)

2σ2
Y,t,

a∗i,T = 1; Γ =
1∑Ī

k=1
1
γk

, (27)

subject to for i = 1, . . . I + I ′ (conservative and aggressive agents),

ρS,t
γi

( Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,tσY,ta

∗
j,t)− ρS,tλ

⋆
Y,i,t − ρ̂S,tλ

⋆
S,i,t − γiρS,tσY,ta

∗
i,t

)
+σY,ta

∗
i,t ≥ 0, (28)

ρ̂S,t
γi

( Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,tσY,ta

∗
j,t)− ρS,tλ

⋆
Y,i,t − ρ̂S,tλ

⋆
S,i,t − γiρS,tσY,ta

∗
i,t

)
≥ 0,

(29)

and (ii) for arbitrary −λ⋆
Y,i,t ≤ lY,i,t < λ⋆

Y,i,t,−λ⋆
S,i,t ≤ lS,i,t < λ⋆

S,i,t, i = I + 1, . . . , I + I ′

(aggressive agents), the system of Riccati equations is given as

−ȧli,t

=
1

2γi
(

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t) + ρS,tlY,i,t + ρ̂S,tlS,i,t − γiρS,ta

l
i,tσY,t)

2

+ali,t(µY,1,t + lY,i,tσY,t)−
1

2
γi(a

l
i,t)

2σ2
Y,t,

ali,T = 1, i = I + 1, . . . , I + I ′. (30)

Remark 2 Regarding the solutions of the systems of Riccati equations (27) to obtain
θ, π∗

i for all types of agents, and (30) to provide πl,∗
i used in the proof for the individual

optimization problem in the aggressive case in Section 3.1.2, by Picard-Lindelöf theorem
of ODEs (e.g., Theorems 2.2 and 2.1.3 in Teschle[33]), each system of Riccati equations
has a unique solution up to some blow-up time Tblow−up with respect to time to maturity
τ = T − t, i.e., the unique solution exists for τ ∈ [0, Tblow−up), since the coefficients are
locally Lipschitz continuous. Thus, in the Theorem 1, we suppose that T < Tblow−up. In
the numerical example in Section 4, we will show a case where the Riccati equations are
numerically solved, and the solutions satisfy the conditions (28) and (29).
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Remark 3 Since

dS1,t = µtS1,tdt+ σtS1,t(ρS,tdWY,t + ρ̂S,tdWS,t)

= (µt + σt(ρS,tλ
†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt))S1,tdt+ σtS1,t(ρS,tdW

λ∗
i

Y,t + ρ̂S,tdW
λ∗
i

S,t), (31)

λ†
S,i,t = −λ⋆

S,i,t and λ†
Y,i,t = −λ⋆

Y,i,t indicate that agent i sees less expected return on the

risky asset process under the subjective probability measure P λ∗
i than the return under the

physical probability measure P assuming that σt, ρS,t, ρ̂S,t > 0. As in the proof below,
the conditions (28) and (29) make the individual optimization for a conservative agent
attained at the low ends for the views (λ†

S,i,t = −λ⋆
S,i,t, λ

†
Y,i,t = −λ⋆

Y,i,t), and the problem

for an aggressive agent attained at the high ends (λ†
S,i,t = +λ⋆

S,i,t, λ
†
Y,i,t = +λ⋆

Y,i,t). We
also note that conditions (28) and (29) imply the following with the expression of π∗

i,t as

π∗
i,t

σtρS,t√
Yt

+ σY,ta
∗
i,t

≥ ρS,t
γi

( Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,tσY,ta

∗
j,t)− ρS,tλ

⋆
Y,i,t − ρ̂S,tλ

⋆
S,i,t − γiρS,tσY,ta

∗
i,t

)
+σY,ta

∗
i,t ≥ 0, (32)

and

π∗
i,t

σtρ̂S,t√
Yt

≥ ρ̂S,t
γi

( Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,tσY,ta

∗
j,t)− ρS,tλ

⋆
Y,i,t − ρ̂S,tλ

⋆
S,i,t − γiρS,tσY,ta

∗
i,t

)
≥ 0, (33)

respectively. Particularly, (33) indicates the agent takes a long position under the current
parameter settings σt, ρ̂S,t > 0. In addition, (32) automatically follows when (33) is
satisfied under the assumption that σY,t, σt, ρS,t, ρ̂S,t > 0, a∗i,T = 1 implying that a∗i,t is
most likely to be nonnegative. Moreover, we may consider the opposite case where some
agents are short on the risky asset, which indicates that the agents see a higher expected
return on the short risky asset positions under P λ∗

i than the drift under P and gives the
opposite results, i.e., the views are attained at the high ends for the conservative agents
and the low ends for the aggressive agents. For instance, while the conservative agents
take long positions, we may consider the case without neutral agents, where the aggressive
agents take short positions by replacing inequalities (28) and (29) with the following: For
i = I + 1, . . . , I + I ′,

π∗
i,t

σtρS,t√
Yt

+ σY,ta
∗
i,t =

ρS,t
γi

( Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,tσY,ta

∗
j,t) + ρS,tλ

⋆
Y,i,t + ρ̂S,tλ

⋆
S,i,t − γiρS,tσY,ta

∗
i,t

)
+σY,ta

∗
i,t ≤ 0, (34)
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and

π∗
i,t

σtρ̂S,t√
Yt

=

ρ̂S,t
γi

( Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,tσY,ta

∗
j,t) + ρS,tλ

⋆
Y,i,t + ρ̂S,tλ

⋆
S,i,t − γiρS,tσY,ta

∗
i,t

)
≤ 0. (35)

Proof of Theorem 1 The following shows that the individual optimization problem
is attained with (π∗

i , λ
∗
i ) in the conservative agents’ case in Section 3.1.1. We provide the

proof for agents with aggressive or neutral views in Section 3.1.2. Then, we prove that
the market is in equilibrium, i.e., the market clearing conditions are satisfied.

We confirm that the market is in equilibrium as follows.
Since

π∗
i,t =

1

γiσt

(θt + ρS,tλ
†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt − γiρS,ta

∗
i,tσY,t

√
Yt), (36)

we have

σt

Ī∑
i=1

π∗
i,t

=
Ī∑

i=1

1

γi
(θt + ρS,tλ

†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt − γiρS,ta

∗
i,tσY,t

√
Yt)

= (
Ī∑

i=1

1

γi
)θt −

Ī∑
i=1

1

γi
(−ρS,tλ

†
Y,i,t

√
Yt − ρ̂S,tλ

†
S,i,t

√
Yt + γiρS,ta

∗
i,tσY,t

√
Yt)

= 0.

Thus,
∑Ī

i=1 π
∗
i,t = 0, which indicates (23).

Also, (22) follows from (13) and (23). ■

3.1.1 Proof for (π∗
i , λ

∗
i ) attaining the individual optimization in the conserva-

tive case

First, we show that (π∗
i , λ

∗
i ) attains the individual optimization problem for the agents

with conservative sentiments.
Let

Ji(πi, λi) = EPλi [− exp(−γi(X
πi
T + YT ))].

First, an inequality supπi∈Ai
infλi∈Λi

Ji(λi, πi) ≤ infλi∈Λi
supπi∈Ai

Ji(λi, πi) naturally holds
since the admissible set Ai is independent of λi, where Ai is a set of strategies πi such

that Xπi is a supermartingale under Q
λ∗
i

i , where Q
λ∗
i

i is defined by (15).
The opposite side of the inequality supπi∈Ai

infλi∈Λi
Ji(λi, πi) ≥ infλi∈Λi

supπi∈Ai
Ji(λi, πi)

also holds, which can be proved by showing (λ∗
i , π

∗
i ) is the saddle point, i.e.,

Ji(λ
∗
i , πi) ≤ Ji(λ

∗
i , π

∗
i ) ≤ Ji(λi, π

∗
i ), ∀λi ∈ Λi, πi ∈ Ai. (37)
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Thus, in this square-root case, the inf-sup and the sup-inf case are solved and proved
to coincide.

In the following, we will show that the first part of (37)

Ji(λ
∗
i , πi) ≤ Ji(λ

∗
i , π

∗
i ), (38)

follows from the convex duality argument and the second part of (37)

Ji(λ
∗
i , π

∗
i ) ≤ Ji(λi, π

∗
i ), (39)

follows from the martingale representation of Ri under P λ∗
i , where we define Ri,t =

− exp(−γi(X
π∗
i

t + Vi,t)) with Vi satisfying following BSDE.

For λ∗
i,t = (+λ†

Y,i,t

√
Yt,+λ†

S,i,t

√
Yt)

⊤, we consider a BSDE under P λ∗
i{

dVi,t = −fi(Zi,t)dt+ Zi,tdW
λ∗
i

Y,t,

Vi,T = YT ,
(40)

with

fi(Zi,t) =
1

2γi
(θ

λ∗
i

t − γiρS,tZi,t)
2 − 1

2
γiZ

2
i,t, (41)

θ
λ∗
i

t = θt + ρS,tλ
†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt,

θt =
Ī∑

j=1

Γ
1

γj
(−ρS,tλ

†
Y,j,t

√
Yt − ρ̂S,tλ

†
S,j,t

√
Yt + γjρS,ta

∗
j,tσY,t

√
Yt),

YT = y0 +

∫ T

0

((µY,1,t + λ†
Y,i,tσY,t)Yt + µY,2,t)dt+

∫ T

0

σY,t

√
YtdW

λ∗
i

Y,t,

which can be solved as follows.
We show that Vi expressed as

Vi,t = a∗i,tYt + b∗i,t, a∗i,T = 1, b∗i,T = 0,

satisfies the BSDE (40), where a∗i,t, b
∗
i,t are nonrandom processes differentiable with respect

to t satisfying Riccati equations (27) and −ḃ∗i,t = a∗i,tµY,2,t.
Calculating dVi,t and comparing it with BSDE (40),

dVi,t = a∗i,tdYt + Ytȧ
∗
i,tdt+ ḃ∗i,tdt

= {(a∗i,t(µY,1,t + λ†
Y,i,tσY,t) + ȧ∗i,t)Yt + a∗i,tµY,2,t + ḃ∗i,t}dt+ a∗i,tσY,t

√
YtdW

λ∗
i

Y,t,

we have

Zi,t = a∗i,tσY,t

√
Yt. (42)

Since fi in (41) becomes

1

2γi
(

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t

√
Yt − ρ̂S,tλ

†
S,j,t

√
Yt + γjρS,ta

∗
j,tσY,t

√
Yt)

+ρS,tλ
†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt − γiρS,tZi,t)

2 − 1

2
γiZ

2
i,t,
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substituting the expression of Zi in (42), we have(
1

2γi
(

Ī∑
j=1

Γ

γj
(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t) + ρS,tλ

†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,ta

∗
i,tσY,t)

2

−γi
2
(a∗i,t)

2σ2
Y,t

)
Yt,

which is equivalent to

−{(a∗i,t(µY,t + λ†
Y,i,tσY,t) + ȧ∗i,t)Yt + a∗i,tµY,2,t + ḃ∗i,t}.

Hence, we obtain the system of Riccati equations in (27),

−ḃ∗i,t = a∗i,tµY,2,t,

−ȧ∗i,t =(
1

2γi
(

Ī∑
j=1

Γ

γj
(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t)

+ρS,tλ
†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,ta

∗
i,tσY,t)

2 − γi
2
(a∗i,t)

2σ2
Y,t

)
+ a∗i,t(µY,t + λ†

Y,i,tσY,t). (43)

By the assumption, the system of Riccati equations has a unique solution (a∗1, . . . , a
∗
I)

in [0, T ] that satisfies the conditions (28) and (29), and thus (Vi, Zi) is a solution of BSDE
(40).

Step 1. First, for λ∗
i,t = (+λ†

Y,i,t

√
Yt,+λ†

S,i,t

√
Yt)

⊤, we show that π∗
i where π∗

i,t =
1

γiσt
(θt + ρS,tλ

†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt − γiρS,ta

∗
i,tσY,t

√
Yt) attains the sup. That is, (38)

holds.
Concretely, we consider

sup
πi∈Ai

EPλ∗i [− exp(−γi(X
πi
T + YT ))],

where

dYt = [(µY,1,t + σY,tλ
†
Y,i,t)Yt + µY,2,t]dt+ σY,t

√
YtdW

λ∗
i

Y,t,

dXπi
t = πi,tσt(θt + ρS,tλ

†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt)dt

+πi,tσt(ρS,tdW
λ∗
i

Y,t + ρ̂S,tdW
λ∗
i

S,t),

dW
λ∗
i

Y,t = dWY,t − λ†
Y,i,t

√
Ytdt,

dW
λ∗
i

S,t = dWS,t − λ†
S,i,t

√
Ytdt.

First, we note the following martingale property for Ri, where Ri,t = − exp(−γi(X
π∗
i

t +

Vi,t)), and express the risk-neutral probability measure of agent i, Q
λ∗
i

i in (15), by Ri.

Lemma 1 For Ri defined as Ri,t = − exp(−γi(X
π∗
i

t + Vi,t)), Ri is a P λ∗
i -martingale.
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Proof.

dRi,t = −γiRi,td(X
π∗
i

t + Vi,t) +
1

2
γ2
i Ri,td⟨Xπ∗

i + Vi⟩t

= −γiRi,t

(
(π∗

i,tσtθ
λ∗
i

t − 1

2
γi((π

∗
i,tσtρS,t + Zi,t)

2 + (π∗
i,tσtρ̂S,t)

2)− fi(Zi,t))dt

+(π∗
i,tσtρS,t + Zi,t)dW

λ∗
i

Y,t + π∗
i,tσtρ̂S,tdW

λ∗
i

S,t

)
= −γiRi,t

(
(π∗

i,tσtρS,t + Zi,t)dW
λ∗
i

Y,t + π∗
i,tσtρ̂S,tdW

λ∗
i

S,t

)
, (44)

where the drift part is calculated as

(π∗
i,tσtθ

λ∗

t − 1

2
γi((π

∗
i,tσtρS,t + Zi,t)

2 + (π∗
i,tσtρ̂S,t)

2)− fi(Zi,t))

= −1

2
γiσ

2
t (π

∗
i,t −

1

γiσt

(θ
λ∗
i

t − γiρS,tZi,t))
2 = 0,

where Zi,t = a∗i,tσY,t

√
Yt, and by Theorem 3.2 in Shirakawa [31], the weak version of

Novikov condition holds and Ri is a P λ∗
i -martingale. ■

Next, Q
λ∗
i

i in (15), the risk-neutral probability measure of agent i, is expressed as

dQ
λ∗
i

i

dP λ∗
i
=

u′
i(X

π∗
i

T + YT )

EPλ∗
i [u′

i(X
π∗
i

T + YT )]
=

Ri,T

EPλ∗
i [Ri,T ]

, (45)

where

u′
i(x) = γi exp(−γix).

Since

u′
i(X

π∗
i

t + Vi,t) = γi exp(−γi(X
π∗
i

t + Vi,t))

= −γiRi,t,

and by (44)

d(−γiRi,t) = −γiRi,t(−γi(π
∗
i,tσtρS,t + Zi,t)dW

λ∗
i

Y,t − γiπ
∗
i,tσtρ̂S,tdW

λ∗
i

S,t).

By Girsanov’s theorem, (W
Q

λ∗i
i

S ,W
Q

λ∗i
i

Y ) defined by

dW
Q

λ∗i
i

Y,t = dW
λ∗
i

Y,t + γi(π
∗
i,tσtρS,t + Zi,t)dt,

dW
Q

λ∗i
i

S,t = dW
λ∗
i

S,t + γiπ
∗
i,tσtρ̂S,tdt,

is a Q
λ∗
i

i -Brownian motion.
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Then, by π∗
i,t =

1
γiσt

(θt + ρS,tλ
†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt − γiρS,ta

∗
i,tσY,t

√
Yt) =

1
γiσt

(θ
λ∗
i

t −
γiρS,ta

∗
i,tσY,t

√
Yt),

ρS,tdW
λ∗
i

Y,t + ρ̂S,tdW
λ∗
i

S,t = ρS,tdW
Q

λ∗i
i

Y,t + ρ̂S,tdW
Q

λ∗i
i

S,t − θ
λ∗
i

t dt,

and thus by

dXπi
t = πi,tσt(θt + ρS,tλ

†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt)dt+ πi,tσt(ρS,tdW

λ∗
i

Y,t + ρ̂S,tdW
λ∗
i

S,t)

= πi,tσt(θ
λ∗
i

t dt+ ρS,tdW
λ∗
i

Y,t + ρ̂S,tdW
λ∗
i

S,t), (46)

we have

dXπi
t = πi,tσt(ρS,tdW

Q
λ∗i
i

Y,t + ρ̂S,tdW
Q

λ∗i
i

S,t ).

By the assumption, for πi ∈ Ai, Xπi is a Q
λ∗
i

i -supermartingale. Also, Xπ∗
i is a Q

λ∗
i

i -

martingale since EQ
λ∗i
i [

∫ T

0
(π∗

i,t)
2σ2

t dt] < ∞, where π∗
i,tσt =

1
γi
(θt+ρS,tλ

†
Y,i,t

√
Yt+ρ̂S,tλ

†
S,i,t

√
Yt−

γiρS,tσY,ta
∗
i,t

√
Yt), θt =

∑Ī
j=1

1
γj
Γ(−ρS,tλ

†
Y,j,t

√
Yt − ρ̂S,tλ

†
S,j,t

√
Yt + γjρS,ta

∗
j,tσY,t

√
Yt), which

is due to the integrability of Y and the fact that a∗j , j = 1, . . . , I are continuous functions
bounded on [0, T ].

Moreover, we remark that

dS1,t = µtS1,tdt+ σtS1,t(ρS,tdWY,t + ρ̂S,tdWS,t)

= (θt + (ρS,tλ
†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt))σtS1,tdt+ σtS1,t(ρS,tdW

λ∗
i

Y,t + ρ̂S,tdW
λ∗
i

S,t)

= σtS1,t(ρS,tdW
Q

λ∗i
i

Y,t + ρ̂S,tdW
Q

λ∗i
i

S,t ), (47)

which indicates that S1 is also a Q
λ∗
i

i -local martingale.
Then, by using the convex duality argument, we show that π∗

i attains the supremum.
Specifically, we show

EPλ∗i [− exp(−γi(X
πi
T + YT ))]

≤ EPλ∗i [− exp(−γi(X
π∗
i

T + YT ))],∀πi ∈ Ai,

by a convex duality argument.
We note that the following properties on the convex duality hold.
Let

ũi(y) = sup
x∈R

(ui(x)− xy),

for all y > 0, where ui(x) = − exp(−γix).
Then, for all x ∈ R, y > 0,

ui(x) ≤ ũi(y) + yx, (48)

ũi(u
′
i(x)) + u′

i(x)x = ui(x). (49)
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By (48),

ui(X
πi
T + YT ) ≤ ũi(E

Pλ∗i [u′
i(X

π∗
i

T + YT )]
dQ

λ∗
i

i

dP λ∗
i
) + EPλ∗i [u′

i(X
π∗
i

T + YT )]
dQ

λ∗
i

i

dP λ∗
i
(Xπi

T + YT ),

where we set

x = Xπi
T + YT ,

y = EPλ∗i [u′
i(X

π∗
i

T + YT )]
dQ

λ∗
i

i

dP λ∗
i
.

EPλ∗i [− exp(−γi(X
πi
T + YT ))] = EPλ∗i [ui(X

πi
T + YT )]

≤ EPλ∗i [ũi(E
Pλ∗i [u′

i(X
π∗
i

T + YT )]
dQ

λ∗
i

i

dP λ∗
i
)] + EPλ∗i [u′

i(X
π∗
i

T + YT )]E
Pλ∗i [

dQ
λ∗
i

i

dP λ∗
i
(Xπi

T + YT )]

= EPλ∗i [ũi(u
′
i(X

π∗
i

T + YT ))] + EPλ∗i [u′
i(X

π∗
i

T + YT )]E
Q

λ∗i
i [(Xπi

T + YT )] (50)

≤ EPλ∗i [ũi(u
′
i(X

π∗
i

T + YT ))] + EPλ∗i [u′
i(X

π∗
i

T + YT )]E
Q

λ∗i
i [(X

π∗
i

T + YT )] (51)

= EPλ∗i [ũi(u
′
i(X

π∗
i

T + YT ))] + EPλ∗i [u′
i(X

π∗
i

T + YT )(X
π∗
i

T + YT )] (52)

= EPλ∗i [− exp(−γi(X
π∗
i

T + YT ))]. (53)

(51) follows since Xπi is a Q
λ∗
i

i -supermartingale and Xπ∗
i is a Q

λ∗
i

i -martingale, (50) and

(52) from the definition of Q
λ∗
i

i in (45), and (53) from (49).

Step 2. Next, we show that λ∗
i,t = (+λ†

Y,i,t

√
Yt,+λ†

S,i,t

√
Yt)

⊤ attains infλi∈Λi
EPλi [− exp(−γi(X

π∗
i

T +
YT ))]. That is, (39) holds.

Note that by Lemma 1, Ri,t = − exp(−γi(X
π∗
i

t + Vi,t)) is a martingale under P λ∗
i

satisfying an SDE

dRi,t = ZS,i,tdW
λ∗
i

S,t + ZY,i,tdW
λ∗
i

Y,t, (54)

where

ZS,i,t = −γiRi,t(π
∗
i,tσtρS,t + a∗i,tσY,t

√
Yt),

ZY,i,t = −γiRi,t(π
∗
i,tσtρ̂S,t).

Then,

EPλ∗i [− exp(−γi(X
π∗
i

T + YT ))] = EPλ∗i [Ri,T ] = Ri,0. (55)

By the localization argument in the following, the inequality (39) holds.
First, for Zi = (ZY,i,ZS,i)

⊤ we define a sequence of stopping times

τj := j ∧ inf{t ≥ 0|
∫ t

0

|Zi,s|2ds ≥ j}, j = 1, 2, . . . , (56)
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that satisfies

τ1 ≤ τ2 ≤ . . . , and lim
j→∞

τj = ∞, (57)

in particular limj→∞Ri,t∧τj = Ri,t.
Since

dRi,t = ZY,i,tdW
λ∗
i

Y,t + ZS,i,tdW
λ∗
i

S,t, (58)

where

ZY,i,t = −γiRi,t(π
∗
i,tσtρ̂S,t),

ZS,i,t = −γiRi,t(π
∗
i,tσtρS,t + a∗i,tσY,t

√
Yt), (59)

we have

Ri,t = Ri,0 +

∫ t

0

ZY,i,sdW
λ∗
i

Y,s +

∫ t

0

ZS,i,sdW
λ∗
i

S,s

= Ri,0 +

∫ t

0

(−(λ∗
i,s − λi,s)

⊤(ZY,i,s,ZS,i,s)
⊤)ds+

∫ t

0

ZY,i,sdW
λi
Y,s +

∫ t

0

ZS,i,sdW
λi
S,s. (60)

Taking the expectation under P λi for the stopped process

Ri,T∧τj = Ri,0 +

∫ T∧τj

0

(−(λ∗
i,s − λi,s)

⊤(ZY,i,s,ZS,i,s)
⊤)ds+

∫ T∧τj

0

ZY,i,sdW
λi
Y,s +

∫ T∧τj

0

ZS,i,sdW
λi
S,s,

(61)

we obtain

EPλi [Ri,T∧τj ]

= Ri,0 + EPλi [

∫ T∧τj

0

(−(λ∗
i,s − λi,s)

⊤(ZY,i,s,ZS,i,s)
⊤)ds] ≥ Ri,0. (62)

Here we used the fact that −(λ∗
i,s−λi,s) ≥ 0 and ZY,i,s,ZS,i,s ≥ 0, 0 ≤ ∀s ≤ T . We remark

that ZY,i,s,ZS,i,s ≥ 0, 0 ≤ ∀s ≤ T follows from conditions (28) and (29) by substituting
the expressions of π∗

i and θ into (59).
By the reverse Fatou’s lemma, we have

EPλi [Ri,T ] = EPλi [ lim
j→∞

Ri,T∧τj ] ≥ lim
j→∞

EPλi [Ri,T∧τj ]

≥ Ri,0 = EPλ∗i [Ri,T ]. (63)

Therefore, infλi∈Λi
Ji(λi, π

∗
i ) is attained at λi = λ∗

i .

3.1.2 Proof for (π∗
i , λ

∗
i ) attaining the individual optimization problem for the

aggressive and the neutral case

The fact that (π∗
i , λ

∗
i ) attains the individual optimization problem for the aggressive case

is also proved in the following way. For the neutral case, we only consider the sup part for
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the strategy. Thus, it is proved in the same way as in Step 1 of the aggressive case below.

In the following, for fixed λi, we first obtain πl,∗
i that makes Rl

i,t = − exp(γi(X
πl,∗
i

t + V l
i,t))

a P λi-martingale as in Step 1 of the conservative case in Section 3.1.1, and confirm that
πl,∗
i is optimal for λi in Step 1 below. Then, we consider supremum with respect to λi in

Step 2 by utilizing a comparison theorem for ODEs.
First, by applying Girsanov’s theorem to (12) with λi = (lY,i,t

√
Yt, lS,i,t

√
Yt)

⊤, we have

YT = y0 +

∫ T

0

((µY,1,t + lY,i,tσY,t)Yt + µY,2,t)dt+

∫ T

0

σY,t

√
YtdW

λi
Y,t.

In the same way, as in the conservative case in Section 3.1.1, we consider a BSDE{
dV l

i,t = −f l
i (Zi,t)dt+ Zi,tdW

λ
Y,t,

V l
i,T = YT ,

(64)

with

f l
i (Zi,t) =

1

2γi
(θλi

t − γiρS,tZi,t)
2 − 1

2
γiZ

2
i,t, (65)

θλi
t = θt + ρS,tlY,i,t

√
Yt + ρ̂S,tlS,i,t

√
Yt,

θt =
Ī∑

j=1

Γ
1

γj
(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t)

√
Yt, (66)

which is solved as

V l
i,t = ali,tYt + bli,t, ali,T = 1, bli,T = 0,

Zi,t = ali,tσY,t

√
Yt, (67)

where ali,t, b
l
i,t are nonrandom processes differentiable with respect to t satisfying Riccati

equations

−ḃli,t = ali,tµY,2,t,

−ȧli,t

=

(
1

2γi
(

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t) + ρS,tlY,i,t + ρ̂S,tlS,i,t − γiρS,ta

l
i,tσY,t)

2

−1

2
γi(a

l
i,t)

2σ2
Y,t

)
+ ali,t(µY,t + lY,i,tσY,t). (68)

Step 1. First, for λi,t = (lY,i,t
√
Yt, lS,i,t

√
Yt)

⊤, we show that πl,∗
i where πl,∗

i,t =
1

γiσt
(θt +

ρS,tlY,i,t
√
Yt + ρ̂S,tlS,i,t

√
Yt − γiρS,ta

l
i,tσY,t

√
Yt) attains the sup.

We consider

sup
πi∈Ai(λi)

EPλi [− exp(−γi(X
πi
T + YT ))],
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where

dYt = (µY,1,t + σY,tlY,i,t)Yt + µY,2,tdt+ σY,t

√
YtdW

λi
Y,t,

dXπi
t = πi,tσt(θt + ρS,tlY,i,t

√
Yt + ρ̂S,tlS,i,t

√
Yt)dt+ πi,tσt(ρS,tdW

λi
Y,t + ρ̂S,tdW

λi
S,t),

dW λi
Y,t = dWY,t − lY,i,t

√
Ytdt,

dW λi
S,t = dWS,t − lS,i,t

√
Ytdt.

Then, by showing that − exp(−γi(X
πl,∗
i

t + V l
i,t)) is a P λ-martingale, using the convex

duality argument in the same way as in Section 3.1.1, we show that πl,∗
i attains the sup.

Step 2. Next, we show that λ∗
i,t = (+λ⋆

Y,i,t

√
Yt,+λ⋆

S,i,t

√
Yt)

⊤ attains supλi∈Λi
EPλi [− exp(−γi(X

πl,∗
i

T +
YT ))] for i = I + 1, . . . , I + I ′.

Note that πl,∗
i and f l

i are chosen so that Rl
i,t = − exp(−γi(X

πl,∗
i

t +V l
i,t)) is a martingale

under P λi satisfying an SDE

dRl
i,t = ZS,i,tdW

λi
S,i,t + ZY,i,tdW

λi
Y,i,t, (69)

where

ZS,i,t = −γiR
l
i,t(π

l,∗
i,tσtρS,t + ali,tσY,t

√
Yt),

ZY,i,t = −γiR
l
i,t(π

l,∗
i,tσtρ̂S,t).

Then,

EPλi [− exp(−γi(X
πl,∗
i

T + YT ))] = EPλi [Rl
i,T ] = Rl

i,0

= − exp(−γi(xi,0 + V l
i,0))

= − exp(−γi(xi,0 + ali,0y0 + bli,0)). (70)

By applying a comparison theorem for ODEs (e.g., Theorem 1.3 in Teschl [33]) to two
Riccati ODEs, the second equation of (68) and the one we obtain by plugging lY,i =

λ†
Y,i, lS,i = λ†

S,i in the second equation of (68), we observe that

a∗i,0 ≥ ali,0,

b∗i,0 ≥ bli,0, (71)

which implies that (70) is maximized at λ∗.
In detail, for two systems of Riccati ODEs,

−ȧli,t

=
1

2γi
(

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t) + ρS,tlY,i,t + ρ̂S,tlS,i,t − γiρS,ta

l
i,tσY,t)

2

−1

2
γi(a

l
i,t)

2σ2
Y,t + ali,t(µY,t + lY,i,tσY,t)

= gl(t, a
l
i,t), (72)
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and

−ȧ∗i,t

=
1

2γi
(

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t) + ρS,tλ

†
Y,j,t + ρ̂S,tλ

†
S,i,t − γiρS,ta

∗
i,tσY,t)

2

−1

2
γi(a

∗
i,t)

2σ2
Y,t + a∗i,t(µY,t + λ†

Y,i,tσY,t)

= g∗(t, a
∗
i,t), (73)

where

g∗(t, v)

=
1

2γi
(

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t) + ρS,tλ

†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,tvσY,t)

2

−1

2
γiv

2σ2
Y,t + v(µY,1,t + λ†

Y,i,tσY,t),

gl(t, v)

=
1

2γi
(

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t) + ρS,tlY,i,t + ρ̂S,tlS,i,t − γiρS,tvσY,t)

2

−1

2
γiv

2σ2
Y,t + v(µY,1,t + lY,i,tσY,t),

(71) holds since

g∗(t, a
∗
i,t) ≥ gl(t, a

∗
i,t), 0 ≤ t ≤ T, (74)

Here, (74) follows since ∂
∂lY

gl(t, a
∗
i,t),

∂
∂lS

gl(t, a
∗
i,t) ≥ 0, for all−λ⋆

Y,i,t ≤ lY,i,t ≤ +λ⋆
Y,i,t, −λ⋆

S,i,t ≤
lS,i,t ≤ +λ⋆

S,i,t, which is satisfied under the conditions ρS,t, ρ̂S,t ≥ 0, (28), and (29).

3.2 An example of the positive supply case

This section provides an example of the positive supply case in the square-root model in
Section 3.

To introduce a positive supply πs > 0 of the risky asset with keeping a system of
Riccati equations similar to Eq.(27)-(30) in Theorem 1, we particularly need an equilib-
rium Sharpe ratio θt to be the form of θt = ct

√
Yt with a positive nonrandom process c.

Concretely, we proceed as follows: First, given a πs > 0, let us define the volatility of the

risky asset price S as σ = α
√
Y

πs , where α is a given positive nonrandom process.
Also, by using the individual optimal demand (25) for the risky asset, we have the

optimal demand for all agents as follows:

Ī∑
i=1

π∗
i,t =

Ī∑
i=1

1

γiσt

(θt +
√

Yt(ρS,tλ
†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,ta

∗
i,tσY,t)). (75)
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Then, plugging σt = αt
√
Yt

πs
t

and the market clearing condition for the risky asset, i.e.,∑Ī
i=1 π

∗
i,t = πs

t into (75), we obtain the equilibrium Sharpe ratio θt as

θt = αtΓ
√

Yt +
Ī∑

j=1

Γ
1

γj
(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t)

√
Yt,

where a∗j,t are the solutions of the system of Riccati equations (83)-(86) below.
In addition, the zero-net supply of the riskless asset implies that the optimal aggregate

wealth πd
t is equal to the all agents’ optimal demand for the risky asset and hence, to the

total supply of the risky asset:

πd
t =

Ī∑
i=1

X
π∗
i

t =
Ī∑

i=1

(X
π∗
i

t − π∗
i,t) +

Ī∑
i=1

π∗
i,t =

Ī∑
i=1

π∗
i,t = πs

t . (76)

Moreover, using the dynamics of πd, namely, with (2) (the dynamics of X
π∗
i

t ),

dπd
t = d

Ī∑
i=1

X
π∗
i

t

=
Ī∑

i=1

π∗
i,tσtθtdt+

Ī∑
i=1

π∗
i,tσt(ρS,tdWY,t + ρ̂S,tdWS,t)

= πd
t σt{θtdt+ (ρS,tdWY,t + ρ̂S,tdWS,t)},

πd
0 =

Ī∑
i=1

X
π∗
i

0 =
Ī∑

i=1

xi,0,

and πdσ = πsσ = α
√
Y , the supply of the risky asset πs should be generated as

dπs
t =

YtαtΓ

[
αt −

Ī∑
i=1

1

γi
(ρS,tλ

†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,tσY,ta

∗
i,t)

]
dt+ αt

√
Yt(ρS,tdWY,t + ρ̂S,tdWS,t);

πs
0 =

Ī∑
i=1

xi,0,

where we suppose πs
t > 0 for all t ∈ [0, T ].

Motivated by this observation, we define the supply process πs as above to obtain
the next theorem, in which the excess return and volatility of the risky asset with each
agent’s optimal trading strategy in market equilibrium are obtained for three types of
agents. The proof is omitted since it is done in the same way as in Theorem 1. For
numerical examples, see Section 4.2.

Theorem 2 Suppose that for the systems of Riccati equations (i) and (ii) in the following,
each system has a unique global solution in [0, T ].
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Suppose also that the supply of the risky asset πs is given as follows:

dπs
t =

YtαtΓ

[
αt −

Ī∑
i=1

1

γi
(ρS,tλ

†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,tσY,ta

∗
i,t)

]
dt+ αt

√
Yt(ρS,tdWY,t + ρ̂S,tdWS,t);

πs
0 =

Ī∑
i=1

xi,0 > 0, (77)

where we suppose πs
t > 0 for all t ∈ [0, T ] and a∗i,t, i = 1, . . . , Ī are a unique solution of

the system of Riccati equations (i) below.
Then, for the volatility process σ and the expected return process µ in (11) given by

σt =
αt

√
Yt

πs
t

, (78)

µt =
αt

πs
t

YtΓ

[
αt −

Ī∑
i=1

1

γi
(ρS,tλ

†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,tσY,ta

∗
i,t)

]
, (79)

the process (π∗
i , λ

∗
i ) defined by

π∗
i,t =

1

γiσt

(θt + ρS,tλ
†
Y,i,t

√
Yt + ρ̂S,tλ

†
S,i,t

√
Yt − γiρS,ta

∗
i,tσY,t

√
Yt), (80)

with

θt =
µt

σt

, (81)

and

λ∗
i,t = (+λ†

Y,i,t

√
Yt,+λ†

S,i,t

√
Yt)

⊤, (82)

attains the sup-inf/inf-sup, the sup-sup, and the sup problem (14),(18),(21), and the mar-
ket is in equilibrium.

Here, (i) for i = 1, . . . , Ī (conservative, aggressive, and neutral agents)

−ȧ∗i,t =
1

2γi
×

(
Γαt +

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,ta

∗
j,tσY,t)

+ρS,tλ
†
Y,i,t + ρ̂S,tλ

†
S,i,t − γiρS,ta

∗
i,tσY,t

)2

+ a∗i,t(µY,1,t + λ†
Y,i,tσY,t)−

1

2
γi(a

∗
i,t)

2σ2
Y,t,

a∗i,T = 1, i = 1, . . . , Ī; Γ =
1∑Ī

k=1
1
γk

, (83)

subject to for i = 1, . . . , I + I ′(conservative and aggressive agents)

ρS,t
γi

(
Γαt +

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,tσY,ta

∗
j,t)− ρS,tλ

⋆
Y,i,t − ρ̂S,tλ

⋆
S,i,t − γiρS,tσY,ta

∗
i,t

)
+σY,ta

∗
i,t ≥ 0, (84)
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ρ̂S,t
γi

(
Γαt +

Ī∑
j=1

1

γj
Γ(−ρS,tλ

†
Y,j,t − ρ̂S,tλ

†
S,j,t + γjρS,tσY,ta

∗
j,t)− ρS,tλ

⋆
Y,i,t − ρ̂S,tλ

⋆
S,i,t − γiρS,tσY,ta

∗
i,t

)
≥ 0,

i = 1, . . . I + I ′, (85)

and (ii) for arbitrary −λ⋆
Y,i,t ≤ lY,i,t < λ⋆

Y,i,t,−λ⋆
S,i,t ≤ lS,i,t < λ⋆

S,i,t, for i = I+1, . . . , I+
I ′ (aggressive agents),

−ȧli,t

=
1

2γi

( Ī∑
j=1

1

γj
Γ(ρS,tλ

⋆
Y,j,t + ρ̂S,tλ

⋆
S,j,t + γjρS,ta

∗
j,tσY,t) + ρS,tlY,i,t + ρ̂S,tlS,i,t − γiρS,ta

l
i,tσY,t)

2

+ali,t(µY,1,t + lY,i,tσY,t

)
− 1

2
γi(a

l
i,t)

2σ2
Y,t,

ali,T = 1. (86)

4 Numerical example

This section presents numerical examples of the equilibrium trading strategies and the
expected return process in the square-root case in Section 3. As described in Section 3,
there are two cases concretely solved: One is the zero-net supply case in Sec.3.1, and
the other is the positive supply case in Sec.3.2. In the following, we show the results
of the zero-net supply and the positive supply cases in Sec.4.1 and Sec.4.2, respectively.
Particularly, we show how heterogeneous views of the agents affect the expected return
and their trading strategies in equilibrium, numerically solving the system of Riccati
ODEs (83)-(85) in Sec.3.2, and provide explanation on the effect of the heterogeneous
views.

First, we describe the common setting and numerical procedure: We consider the
square-root case with two agents called agent 1 and agent 2 (I + I ′ + I ′′ = 2), and the
following optimization problems as described in Section 3.

Then, we summarize our numerical procedures as follows.

1. We set exogenous parameters : y0, µY,1, µY,2, σY , ρS(ρ̂S), T , α, and agent i’s γi,

λ†
Y,i, λ

†
S,i (i = 1, 2). In numerical examples, we suppose that µY,1, µY,2, σY , ρS(ρ̂S),

and λ†
Y,i, λ

†
S,i (i = 1, 2) are constants.

2. We solve the following system of ODE numerically :

−ȧ∗i,t

=
1

2γi

(
Γα +

2∑
j=1

1

γj
Γ(−ρSλ

†
Y,j − ρ̂Sλ

†
S,j + γjρSa

∗
j,tσY ) + ρSλ

†
Y,i + ρ̂Sλ

†
S,i − γiρSa

∗
i,tσY

)2

+a∗i,t(µY,1 + λ†
Y,iσY )−

1

2
γia

∗2
i,tσ

2
Y , a∗i,T = 1, i = 1, 2. (87)
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If agent i has some views λ†
Y,i, λ

†
S,i ̸= 0, we need to confirm that the solution (a∗1, a

∗
2)

satisfies the following conditions in t ∈ [0, T ] : when we set λ⋆
Y,i = |λ†

Y,i|, λ⋆
S,i = |λ†

S,i|,

ρS
γi

(
Γα +

2∑
j=1

1

γj
Γ(−ρSλ

†
Y,j − ρ̂Sλ

†
S,j + γjρSσY a

∗
j,t)− ρSλ

⋆
Y,i − ρ̂Sλ

⋆
S,i − γiρSσY a

∗
i,t

)
+σY a

∗
i,t ≥ 0, (88)

and

ρ̂S
γi

(
Γα +

2∑
j=1

1

γj
Γ(−ρSλ

†
Y,j − ρ̂Sλ

†
S,j + γjρSσY a

∗
j,t)− ρSλ

⋆
Y,i − ρ̂Sλ

⋆
S,i − γiρSσY a

∗
i,t

)
≥ 0.

(89)

We note that (87)-(89) are obtained from Theorem 2 in Sec.3.2, where those with
α = 0 become the corresponding equations in the equations of Theorem 1 in Sec.3.1.
In our examples, we discretize [0, T ] with one time step of 1/250.

3. We obtain an equilibrium Sharpe ratio process θ is given by

θt =
√

YtΓ

[
α−

2∑
i=1

1

γi
(ρSλ

†
Y,i + ρ̂Sλ

†
S,i − γiρSσY a

∗
i,t)

]
, (90)

where we simulate 100,000 paths of Y according to Eq.(12) with a discretization of
one-time step 1/250.

Then, we calculate the expected return process of the risky asset in equilibrium:

µt = σtθt, (91)

where σt is given as (93) or (94) below.

4. To see agents’ individual strategies, we calculate the optimal portfolio :

π∗
i,t =

1

γiσt

(θt + ρSλ
†
Y,i

√
Yt + ρ̂Sλ

†
S,i

√
Yt − γiρSa

∗
i,tσY

√
Yt), (92)

where we set σt as follows:

• Zero-net supply case : for a given positive constant σ̄ > 0,

σt = σ̄
√

Yt. (93)

• Positive supply case : for a given positive constant α > 0 with (78) in Theorem
2,

σt =
α
√
Yt

πs
t

, (94)
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where the risky asset supply πs
t is given as in (77) in Theorem 2: For a given initial

value πs
0 > 0,

dπs
t =

YtαΓ

[
α−

2∑
i=1

1

γi
(ρSλ

†
Y,i + ρ̂Sλ

†
S,i − γiρSσY a

∗
i,t)

]
dt+ α

√
Yt(ρSdWY,t + ρ̂SdWS,t).

(95)

Then, for all simulation grids and paths, we confirm πs
t > 0, which also implies that

the volatility process of the risky asset σt = α
√
Yt/π

s
t is positive.

4.1 Zero-net supply case

Firstly, we present the numerical example of a zero-net supply case. We suppose that
agent 1 has conservative views on the fundamental risks, i.e., λ†

Y,1 = −0.2, λ†
S,1 = −0.2,

while agent 2 has neutral views, i.e., λ†
Y,2, λ

†
S,2 ≡ 0. In the following, we investigate

the effect of conservative views of an agent on the expected return of the risky asset and
trading strategies by comparing them with the case where both agents have neutral views.

In Section 4.1, we set the parameters as follows. µY,1 = −1, µY,2 = 1, σY = 0.2, ρS =

0.5, ρ̂S =
√
1− ρ2S = 0.866, σ̄ = 1, γ1 = 1, γ2 = 10, y0 = 0.5, T = 1.

Moreover, we compare the result to the case of both agents with neutral views, namely
λ†
Y,i = λ†

S,i = 0, i = 1, 2. Thus, we set parameters about agents’ views and ARAs in Table
1.

Table 1: Settings of parameters about different views.
λ†
Y,1 λ†

S,1 λ†
Y,2 λ†

S,2 γ1 γ2
agent 1: conservative, agent 2: neutral -0.2 -0.2 0 0 1 10

both agents: neutral 0 0 0 0 1 10

Figure 1 describes the numerical solutions of the Riccati ODEs in (87) and the optimal
portfolio processes of agents 1 and 2, which compares the two cases where agent 1 has
conservative or neutral views. From the left panel, as is easily observed with the com-
parison principle for the solution of the Riccati ODEs, a∗1,t with the conservative views is
smaller than a∗1,t with the neutral views. Here, the conditions in (88) and (89) are satisfied
in both cases where agent 1 has the conservative views and the neutral views.

For the optimal portfolio processes, we note that as the net position of agents 1 and 2 is
zero because of the clearing condition (23), one of π∗

i is positive, and the other is negative.
Thus, we observe that the optimal portfolio of agent 1 is a long position (π∗

1 > 0), while
and that of agent 2 is a short position (π∗

2 < 0) in the right panel of Figure 1.
Next, let us rewrite both agents’ optimal portfolios as

π∗
1,t =

1

γ1σ̄
√
Yt

(θt + ρSλ
†
Y,1

√
Yt + ρ̂Sλ

†
S,1

√
Yt)− ρS

σY

σ̄
a∗1,t, (96)

π∗
2,t =

1

γ2σ̄
√
Yt

θt − ρS
σY

σ̄
a∗2,t.
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Then, the first term of π∗
i,t (i = 1, 2) stands for the mean-variance portfolio adjusted by

the risk aversion parameter γi for both agents and also by the conservative views for agent
1, i.e., (ρSλ

†
Y,1

√
Yt + ρ̂Sλ

†
S,1

√
Yt); the second term does the so-called hedging portfolio to

mitigate the terminal wealth shock.
Under the current parameter setting, the first term is dominant for agent 1, which

induces the long position, while due to the larger risk aversion parameter γ2, the sec-
ond term −ρS

σY

σ̄
a∗2,t is dominant for agent 2, which leads to the short position given

ρS, σY , σ̄, a
∗
2,t > 0.

We remark that in equilibrium, the Sharpe ratio θt, equivalently, the expected return
µt = σtθt with σt > 0 must be positive, since if it is negative, the positions of both agents
are short and the market clearing condition (23) is not satisfied.
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Figure 1: Zero-net supply case. Left panel: solutions of the ODE in (87). Right panel:
optimal portfolio processes π∗

1 and π∗
2. Solid lines: agent 1 is conservative (C) and agent

2 is neutral (N). Dashed lines: both agents are neutral.

Secondly, we observe that the long amount of agent 1, π∗
1, is less when agent 1 has

conservative views, which is explained as follows. The conservative sentiments make the
long position of agent 1 π∗

1 less due to the presence of λ†
Y,1, λ

†
S,1 in the mean-variance term

in (96), which also makes the less short position π∗
2 for agent 2 because of the clearing

condition.
Finally, Figure 2 exhibits the sample average µ̄ of the expected return process µ in

both cases with and without conservative views for agent 1. The expected return is higher
when the agent has conservative views due to the presence of λ†

Y,1 < 0 and λ†
S,1 < 0 in the

expression of µ in the following:

µt = σtθt = −σ̄Γ
2∑

j=1

1

γj
(ρSλ

†
Y,j + ρ̂Sλ

†
S,j + γjρSa

∗
j,tσY )Yt,

which can also be interpreted that agent 1 requires a higher expected return µ when agent
1 has a conservative view on the risky asset price to take a long position.
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Figure 2: Sample average µ̄ of the expected returns in equilibrium when agent 1 has
conservative views or neutral views.

4.2 Positive supply case

In this section, we present numerical examples in the positive supply case, where α > 0.
Firstly, unless otherwise noted, we set baseline parameters as follows : µY,1 = −1, µY,2 =

1.5, σY = 0.2, ρS = 0.5, ρ̂S =
√

1− ρ2S = 0.866, γ1 = 1, γ2 = 1, y0 = 1, α = 1, πs
0 =

5, T = 1. Then, we note Γ = 1/( 1
γ1

+ 1
γ2
) = 0.5.

In the following, we study the positive supply case in terms of agents’ different views
and the effect of the parameter α. Particularly, we investigate how the differences in views
affect the expected return of the risky asset and the agents’ trading positions in Section
4.2.1 and how the expected return and their positions shift when the total supply of the
risky asset changes in Section 4.2.2.

4.2.1 Comparative study within different views’ settings

We consider two cases in Table 2 with different agents’ views. In Case 1, agent 1 has
conservative views, while agent 2 has neutral views, i.e., λ†

Y,2, λ
†
S,2 ≡ 0 as in the zero-net

supply case. In Case 2, agent 1 has conservative views, while agent 2 has aggressive views.

Table 2: Settings of parameters about different views.
λ†
Y,1 λ†

S,1 λ†
Y,2 λ†

S,2

Case 1 -0.2 -0.2 0 0
Case 1 (both agents: neutral) 0 0 0 0

Case 2 -0.2 -0.2 0.2 0.2
Case 2 (agent 1: neutral, agent 2: aggressive) 0 0 0.2 0.2

First, Figure 3 shows the solutions of the ODE in (87) and agents’ optimal strategies
in Case 1. Here, we illustrate agent i’s holding ratio against the total supply of risky
assets, π∗

i /πs, which is nonrandom :

π∗
i,t

πs
t

=
Γ

γi
+

1

α

(
1

γi
(ρSλ

†
Y,i + ρ̂Sλ

†
S,i − γiρSσY a

∗
i,t)− Γ

1

γi

2∑
j=1

1

γj
(ρSλ

†
Y,j + ρ̂Sλ

†
S,j − γjρSσY a

∗
j,t)

)
.

(97)
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In the right panel of Figure 3, conservative agent 1’s ratio π∗
1/πs in the solid line shows

a decrease from the dashed line where both agents are neutral. Conversely, to satisfy
market equilibrium, the ratio of agent 2, π∗

2/πs, is increased. Compared with the zero-net
supply case, we note that both agents take long positions in this positive supply case.
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Figure 3: Case 1. Left panel: solutions of the ODE in (87). Right panel: holding ratios
in (97). Solid lines: agent 1 is conservative (C) and agent 2 is neutral (N). Dashed lines:
both agents are neutral and have the same ARAs, which shows overlapping of dashed
lines.

Next, Figure 4 presents the results for Case 2. In Case 2, agent 1 is more conservative
than in Case 1 due to agent 2’s aggressive views. Consequently, agent 1’s (2’s) holding
ratios in the right panel show a further decline (increase) compared to Case 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a∗i,t

a∗1,t(agent 1: C, agent 2: A)

a∗2,t(agent 1: C, agent 2: A)

a∗1,t (agent 1: N, agent 2: A)

a∗2,t (agent 1: N, agent 2: A)

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8
π∗i,t/π

s
t

π∗1,t/π
s
t (agent 1: C, agent 2: A)

π∗2,t/π
s
t (agent 1: C, agent 2: A)

π∗1,t/π
s
t (agent 1: N, agent 2: A)

π∗2,t/π
s
t (agent 1: N, agent 2: A)

Figure 4: Case 2. Left panel: solutions of the ODE in (87). Right panel: holding ratios in
(97). Solid lines: agent 1 is conservative (C), and agent 2 is aggressive (A). Dashed lines:
agent 1 is neutral (N) and agent 2 is aggressive. The dashed lines are almost the same as
the solid lines in Figure 3 for Case 1 since agent 1 is more conservative than agent 2 in
both cases.

Finally, Figure 5 illustrates the sample average of simulated expected returns µt of Case
1 and Case 2. Case 1 shows a higher expected return than the case where both agents are
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neutral, which is explained as follows. In Case 1, agent 1 alone has conservative views,
and its demand for the risky asset decreases. Thus, a higher expected return is needed
to increase agent 2’s demand so that the market is cleared. On the other hand, in Case
2, the expected return is almost the same as the dashed line. This is because agents
have opposite views of the same size. Thus, the market equilibrium is satisfied without a
change in expected returns.
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Figure 5: Sample average µ̄ of simulated expected returns. Solid lines: Case 1, Case 2.
Dashed line: the case where both agents are neutral.

4.2.2 Comparative study about α

In this section, we set Case 3 in Table 3 to investigate the effect of the parameter α. The
settings of agents’ views in Case 3 are the same as in Case 1. Thus, agent 1 is conservative,
and agent 2 is neutral. Figure 6 and Figure 7 study Case 3 where we increase α = 1.3
from α = 1 in Case 1.

Table 3: Settings of parameters about different views.
λ†
Y,1 λ†

S,1 λ†
Y,2 λ†

S,2 α

Case 3 -0.2 -0.2 0 0 1.3
Case 3 (both agents: neutral) 0 0 0 0 1.3

Case 1 -0.2 -0.2 0 0 1.0

Firstly, the right panel of Figure 6 shows that agent 1’s (2’s) holding ratio in solid line
becomes larger (smaller) than in Case 1 (see the solid lines in the right panel of Figure 3).
This is because 1/α in the second term of (97) suggests that an increase in α diminishes
the impact of views.
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Figure 6: Case 3. Left panel: solutions of the ODE in (87). Right panel: holding ratios
in (97). Solid lines: agent 1 is conservative (C), and agent 2 is neutral (N). Dashed lines:
both agents are neutral and have the same ARAs. α = 1.3 increased from α = 1 in Case
1.

Secondly, Figure 7 indicates that the expected return in Case 3 is higher than in Case
1, which is explained as follows. With the increased total supply of risky assets πs in (95)
as α rises, the risky asset needs to become more attractive to clear the market, which
results in a higher expected return. In fact, the rise in α is expected to enhance the
Sharpe Ratio process θ in (90), which makes the risky asset more attractive. We remark
that compared to a∗i,t in Figure 3, the increases in the solutions a∗i,t in the left panel of
Figure 6 contribute to the rise in the Sharpe Ratio process θ in (90) to a certain extent.
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Figure 7: Sample average µ̄ of simulated expected returns. Solid line: Case 3 (α = 1.3
increased from α = 1 in Case 1), Dashed line: Case 1 (agent 1 is conservative, agent 2 is
neutral, α = 1).
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5 The general procedure to confirm that the market

is in equilibrium

In this section, we provide the excess return process in equilibrium in a general case where
the state process is given by

dYt = µY,tdt+ σY,tdWY,t, Y0 = y0, (98)

and the sup-inf/inf-sup, sup-sup, and sup individual optimization problems are solved.
This includes the square-root state process case in Section 3, where the existence and
uniqueness result and the comparison principle for the BSDE with a stochastic Lipschitz
driver do not apply since the terminal condition is unbounded. Moreover, the general case
includes a Gaussian state process case in Appendix B, where the existence and uniqueness
result and the comparison principle for BSDEs with a standard Lipschitz driver apply.

5.1 Zero-net supply case

For exogenously given σ, endogenously determined θ or equivalently µ is confirmed to be
in equilibrium under some conditions in the following theorem.

The individual optimization problem in an incomplete market setting in an expo-
nential utility case generally reduces to solving a quadratic BSDE (qBSDE). Particularly,
obtaining an equilibrium Sharpe ratio process requires solving a system of qBSDEs, which
generally requires restrictive settings for the system to be solved, such as a bounded ter-
minal condition.

Since our case with an unbounded terminal condition is not within the scope of the
general theory of qBSDEs, and our setting includes the inf part on the random sentiments,
the problem needs to be solved differently from the general theory for qBSDEs. As we have
observed, in the square-root case, solving for an equilibrium reduces to solving a system
of Riccati ODEs, which can be done numerically, and the existence and uniqueness of the
solution are guaranteed up to a certain explosion time by the Picard Lindelöf theorem for
ODEs. Thus, we summarize the outline of the procedure to solve for an equilibrium in
a general framework. The following theorem concretely describes the procedure. For the
proof, see Appendix A showing that (π∗

i , λ
∗
i ) attains the individual optimization problem

in the conservative agent case.

Theorem 3 Let Γ = 1∑Ī
k=1

1
γk

,

λ̄‡
Y,i,t =


−λ̄Y,i,t (i = 1, . . . , I)

+λ̄Y,i,t (i = I + 1, . . . , I + I ′)

0 (i = I + I ′ + 1, . . . , Ī)

, (99)

and

λ̄‡
S,i,t =


−λ̄S,i,t (i = 1, . . . , I)

+λ̄S,i,t (i = I + 1, . . . , I + I ′)

0 (i = I + I ′ + 1, . . . , Ī)

. (100)
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We assume the conditions (i)-(iv) listed below.
Then, with the Sharpe ratio process θ in (102) below and (π∗

i , λ
∗
i ) in the following, the

market is in equilibrium. That is, (π∗
i , λ

∗
i ) given by

π∗
i,t =

1

γiσt

(θt + ρS,tλ̄
‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tZi,t), (101)

and λ∗
i,t = (λ̄‡

Y,i,t, λ̄
‡
S,i,t)

⊤ attains the sup-inf/inf-sup problem (4), (5) (i = 1, . . . , I), the

sup-sup problem (6) (i = I +1, . . . , I + I ′), and the sup problem (7) (i = I + I ′+1, . . . , Ī)
for admissible strategies π ∈ Ai, where the set of the admissible strategies is given by Ai =
{π|Xπis a Qi-supermartingale} and Qi is defined by (iii) (a) below. For the aggressive
agents where i = I + 1, . . . , I + I ′, the set of admissible strategies is instead given as
Ai(λ) = {π|Xπis a Qλ

i -supermartingale} where Qλ
i is defined by (iii) (b).

(Conditions)
(i) (Solutions of BSDEs to define optimal portfolios and the Sharpe ratio process exist)
(a) Suppose that there exist (Vi, Zi) i = 1, . . . , Ī, that satisfy E[sup0≤s≤T |Vi,s|2] < ∞,

E[
∫ T

0
Z2

i,sds] < ∞ and BSDEs

dVi,t = −(fi(Z1,t, . . . , ZĪ,t) + λ̄‡
Y,i,tZi,t)dt+ Zi,tdWY,t,

Vi,T = YT ,

where

fi(Z1,t, . . . , ZĪ,t)

=
1

2γi
(θt + ρS,tλ̄

‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tZi,t)

2 − 1

2
γiZ

2
i,t,

and

θt =
Ī∑

i=1

1

γi
Γ(−ρS,tλ̄

‡
Y,i,t − ρ̂S,tλ̄

‡
S,i,t + γjρS,tZi,t). (102)

(b) Also, suppose that there exist (V λ
i , Z

λ
i ) i = I+1, . . . , I+I ′, that satisfy E[sup0≤s≤T |V λ

i,s|2] <
∞, E[

∫ T

0
(Zλ

i,s)
2ds] < ∞ and BSDEs

dV λ
i,t = −(f̄i(Z

λ
i,t) + λY,i,tZ

λ
i,t)dt+ Zλ

i,tdWY,t,

Vi,T = YT ,

where

f̄i(Z
λ
i,t)

=
1

2γi
(θt + ρS,tλY,i,t + ρ̂S,tλS,i,t − γiρS,tZ

λ
i,t)

2 − 1

2
γi(Z

λ
i,t)

2.

(ii) (The risky neutral probability measure Qi is well-defined)
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(a) We assume that{
exp

(
− 1

2

∫ t

0

γ2
i (π

∗
i,sσsρS,s + Zi,s)

2 + (γiπ
∗
i,sσsρ̂S,s)

2ds+

∫ t

0

γi(π
∗
i,sσsρS,s + Zi,s)dW

λ∗
i

Y,s

+

∫ t

0

γiπ
∗
i,sσsρ̂S,sdW

λ∗
i

S,s

)}
0≤t≤T

, (103)

is a P λ∗
i -martingale, where λ∗

i,t = (+λ̄‡
Y,i,t,+λ̄‡

S,i,t)
⊤, π∗

i = 1
γiσt

(θt + ρS,tλ̄
‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t −

γiρS,tZi,t).
(b) In addition, in the aggressive case i = I + 1, . . . , I + I ′, we assume that{
exp

(
− 1

2

∫ t

0

γ2
i (π

λ,∗
i,s σsρS,s + Zλ

i,s)
2 + (γiπ

λ,∗
i,s σsρ̂S,s)

2ds+

∫ t

0

γi(π
λ,∗
i,s σsρS,s + Zλ

i,s)dW
λi
Y,s

+

∫ t

0

γiπ
λ,∗
i,s σsρ̂S,sdW

λi
S,s

)}
0≤t≤T

, (104)

is a P λi-martingale, where λi,t = (λY,i,t, λS,i,t)
⊤, πλ,∗

i = 1
γiσt

(θt + ρS,tλY,i,t + ρ̂S,tλS,i,t −
γiρS,tZ

λ
i,t).

(iii) (Xπ∗
i is a martingale under Qi)

(a) Also, for a probability measure Qi defined as

dQi

dP λ∗
i
=

u′
i(X

π∗
i

T + YT )

EPλ∗
i [u′

i(X
π∗
i

T + YT )]
,

where

u′
i(x) = γi exp(−γix),

we assume that

EQi

[∫ T

0

(π∗
i,t)

2σ2
t dt

]
< ∞. (105)

(b) In addition, in the aggressive case where i = I + 1, . . . , I + I ′, for a probability
measure Qλ

i defined as

dQλ
i

dP λi
=

u′
i(X

πλ,∗
i

T + YT )

EPλi [u′
i(X

πλ,∗
i

T + YT )]
,

where we assume that

EQλ
i

[∫ T

0

(πλ,∗
i,t )

2σ2
t dt

]
< ∞. (106)

(iv) (Optimality of λ∗ when the optimal portfolio is given)
(a) Moreover, in the conservative case i = 1, . . . , I, we suppose that for all λ ∈ Λi, a

BSDE

dVλ
t = −(λS,tZλ

S,t + λY,tZλ
Y,t)dt+ Zλ

S,tdWS,t + Zλ
Y,tdWY,t,

Vλ
T = exp(−γi(X

π∗
i

T + YT )), (107)
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has a unique solution (Vλ,Zλ) satisfying E[
∫ T

0
((Zλ

S,t)
2+(Zλ

Y,t)
2)dt] < ∞ and E[sup0≤t≤T |Vλ

t |2] <
∞, and the inf is attained at λ∗

i . That is, Vλ∗
t ≤ Vλ

t , ∀λ ∈ Λi.
(b) Also, in the aggressive case i = I + 1, . . . , I + I ′, we suppose that for all λ ∈ Λi, a

BSDE

dV̄λ
t = −(λS,tZ̄λ

S,t + λY,tZ̄λ
Y,t)dt+ Z̄λ

S,tdWS,t + Z̄λ
Y,tdWY,t,

V̄λ
T = exp(−γi(X

πλ,∗
i

T + YT )), (108)

has a unique solution (V̄λ, Z̄λ) satisfying E[
∫ T

0
((Z̄λ

S,t)
2+(Z̄λ

Y,t)
2)dt] < ∞ and E[sup0≤t≤T |V̄λ

t |2] <
∞, and the sup is attained at λ∗

i . That is, V̄λ
t ≤ V̄λ∗

t ∀λ ∈ Λi.

5.2 Positive supply case

In a positive supply case, instead of assuming the volatility process exogenously, we assume
the volatility of the supply in absolute terms, i.e., the standard deviation of the supply in a
unit of time, and obtain the expected return µ and the volatility process σ, or equivalently,
the stock price process S in equilibrium. Let Ps be the volatility in absolute terms of the
supply for the risky asset. Then, given the supply volatility in absolute terms, the agents’
utility, and their views on fundamental risks, we obtain the expected return process, the
volatility process, or equivalently, the stock price process in equilibrium as in the following
theorem. In this section, we define the clearing condition of the risky asset as

πs
t =

Ī∑
i=1

π∗
i,t, 0 ≤ t ≤ T, (109)

instead of (23). In the following, for exogenously given λ̄Y,i, λ̄S,i, the parameters for Y ,
i.e., y0, µY , σY , and the volatility of net supply of the risky asset in absolute term Ps, we
obtain the expected return µ and the volatility σ in equilibrium. The proof is omitted
since it is done in the same way as in Theorem 3.

Theorem 4 Let Γ = 1∑Ī
k=1

1
γk

,

λ̄‡
Y,i,t =


−λ̄Y,i,t (i = 1, . . . , I)

+λ̄Y,i,t (i = I + 1, . . . , I + I ′)

0 (i = I + I ′ + 1, . . . , Ī)

, (110)

and

λ̄‡
S,i,t =


−λ̄S,i,t (i = 1, . . . , I)

+λ̄S,i,t (i = I + 1, . . . , I + I ′)

0 (i = I + I ′ + 1, . . . , Ī)

. (111)

Given {Ft}-progressively measurable process Ps, we assume the conditions (i)-(iv)
listed below.
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If πs defined as

πs
t =

Ī∑
i=1

xi,0 +

∫ t

0

Ps
s (θsds+ (ρS,sdWY,s + ρ̂S,sdWS,s)), (112)

is positive for P -almost surely, where xi,0 ≥ 0, i = 1, . . . , Ī are the initial wealth of agent
i, and

θt = Γ(Ps
t −

Ī∑
i=1

(
1

γi
(+ρS,tλ̄

‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tZi,t))), (113)

then, the Sharpe ratio process θ in (113) and the volatility process σ defined as

σt =
Ps

t

πs
t

, 0 ≤ t ≤ T, (114)

are in equilibrium. That is, (π∗
i , λ

∗
i ) given by

π∗
i,t =

1

γiσt

(θt + ρS,tλ̄
‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tZi,t), (115)

and

λ∗
i,t = (λ̄‡

Y,i,t, λ̄
‡
S,i,t)

⊤, (116)

attain the sup-inf/inf-sup problem (4), (5) (i = 1, . . . , I), the sup-sup problem (6) (i =
I +1, . . . , I + I ′), and the sup problem (7) (i = I + I ′ +1, . . . , Ī) for admissible strategies
π ∈ Ai and the clearing conditions (9) and (109) are satisfied.

Here, the set of the admissible strategies is given by Ai = {π|Xπis a Qi-supermartingale}
and Qi is defined by (iii) (a) below. For the aggressive case where i = I + 1, . . . I + I ′,
the admissible strategies is instead Ai(λ) = {π|Xπis a Qλ

i -supermartingale} where Qλ
i is

defined by (iii) (b).
(Conditions)
(i) (Solutions of BSDEs to define optimal portfolios and the Sharpe ratio process exist)
(a) Suppose that there exist (Vi, Zi) i = 1, . . . , Ī, that satisfy E[sup0≤s≤T |Vi,s|2] < ∞,

E[
∫ T

0
Z2

i,sds] < ∞ and BSDEs

dVi,t = −(fi(Z1,t, . . . , ZĪ,t) + λ̄‡
Y,i,tZi,t)dt+ Zi,tdWY,t,

Vi,T = YT ,

where

fi(Z1,t, . . . , ZĪ,t)

=
1

2γi
(θt + ρS,tλ̄

‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tZi,t)

2 − 1

2
γiZ

2
i,t,

and

θt = Γ(Ps
t −

Ī∑
i=1

1

γi
(+ρS,tλ̄

‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tZi,t)).
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(b) Also, suppose that there exist (V λ
i , Z

λ
i ) i = I+1, . . . , I+I ′, that satisfy E[sup0≤s≤T |V λ

i,s|2] <
∞, E[

∫ T

0
(Zλ

i,s)
2ds] < ∞ and BSDEs

dV λ
i,t = −(f̄i(Z

λ
i,t) + λY,i,tZ

λ
i,t)dt+ Zλ

i,tdWY,t,

Vi,T = YT ,

where

f̄i(Z
λ
i,t)

=
1

2γi
(θt + ρS,tλY,i,t + ρ̂S,tλS,i,t − γiρS,tZ

λ
i,t)

2 − 1

2
γi(Z

λ
i,t)

2.

(ii) (The risky neutral probability measure Qi is well-defined)
(a) We assume that{
exp

(
− 1

2

∫ t

0

γ2
i (π

∗
i,sσsρS,s + Zi,s)

2 + (γiπ
∗
i,sσsρ̂S,s)

2ds+

∫ t

0

γi(π
∗
i,sσsρS,s + Zi,s)dW

λ∗
i

Y,s

+

∫ t

0

γiπ
∗
i,sσsρ̂S,sdW

λ∗
i

S,s

)}
0≤t≤T

, (117)

is a P λ∗
i -martingale, where λ∗

i,t = (+λ̄‡
Y,i,t,+λ̄‡

S,i,t)
⊤, π∗

i = 1
γiσt

(θt + ρS,tλ̄
‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t −

γiρS,tZi,t).
(b) In addition, in the aggressive case i = I + 1, . . . , I + I ′, we assume that{
exp(−1

2

∫ t

0

γ2
i (π

λ,∗
i,s σsρS,s + Zλ

i,s)
2 + (γiπ

λ,∗
i,s σsρ̂S,s)

2ds+

∫ t

0

γi(π
λ,∗
i,s σsρS,s + Zλ

i,s)dW
λ∗
i

Y,s

+

∫ t

0

γiπ
λ,∗
i,s σsρ̂S,sdW

λ∗
i

S,s)

}
0≤t≤T

, (118)

is a P λi-martingale, where λi,t = (λY,i,t, λS,i,t)
⊤, πλ,∗

i = 1
γiσt

(θt + ρS,tλY,i,t + ρ̂S,tλS,i,t −
γiρS,tZ

λ
i,t).

(iii) (Xπ∗
i is a martingale under Qi)

(a) Also, for a probability measure Qi defined as

dQi

dP λ∗
i
=

u′
i(X

π∗
i

T + YT )

EPλ∗
i [u′

i(X
π∗
i

T + YT )]
,

where

u′
i(x) = γi exp(−γix),

we assume that

EQi

[∫ T

0

(π∗
i,t)

2σ2
t dt

]
< ∞. (119)
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(b) In addition, in the aggressive case where i = I + 1, . . . , I + I ′, for a probability
measure Qλ

i defined as

dQλ
i

dP λi
=

u′
i(X

πλ,∗
i

T + YT )

EPλi [u′
i(X

πλ,∗
i

T + YT )]
,

where we assume that

EQλ
i

[∫ T

0

(πλ,∗
i,t )

2σ2
t dt

]
< ∞. (120)

(iv) (Comparison results hold)
(a) Moreover, for the conservative agents i, i = 1, . . . , I, we suppose that for all λ ∈ Λi,

a BSDE

dVλ
t

= −(λS,tZλ
S,t + λY,tZλ

Y,t)dt+ Zλ
S,tdWS,t + Zλ

Y,tdWY,t,

Vλ
T = exp(−γi(X

π∗
i

T + YT )), (121)

has a unique solution (V ,Zλ) satisfying E[
∫ T

0
((Zλ

S,t)
2+(Zλ

Y,t)
2)dt] < ∞ and E[sup0≤t≤T |Vλ

t |2] <
∞, and a comparison result holds. That is, Vλ

t ≤ Vλ∗
t ∀λ ∈ Λi.

(b) For the aggressive agents i, i = I + 1, . . . , I + I ′, for all λ ∈ Λi, a BSDE

dV̄λ
t

= −(λS,tZ̄λ
S,t + λY,tZ̄λ

Y,t)dt+ Z̄λ
S,tdWS,t + Z̄λ

Y,tdWY,t,

V̄λ
T = exp(−γi(X

πλ,∗
i

T + YT )), (122)

has a unique solution (V̄ , Z̄λ) satisfying E[
∫ T

0
((Z̄λ

S,t)
2+(Z̄λ

Y,t)
2)dt] < ∞ and E[sup0≤t≤T |V̄λ

t |2] <
∞, and a comparison result holds. That is, V̄λ

t ≤ V̄λ∗
t ∀λ ∈ Λi.

Remark 4 The zero-net supply corresponds to the case where πs = Ps = 0. In this case,
instead of obtaining σ by (114) in the positive supply case, we exogenously specify σ and
obtain the expected return µ in equilibrium.

6 Conclusion

In this study, we have investigated a multi-agent equilibrium model with heterogeneous
views on fundamental risks in an incomplete market setting. We have obtained the ex-
pressions of the expected return process in equilibrium in the cases of the square-root
state case with the random bound for the views on Brownian motions and a general state
process, where the sup-inf/inf-sup, sup-sup, or sup type individual optimization problems
are solved. We have also presented numerical examples.

The implications of this study are as follows. Firstly, by utilizing the expected return
process in equilibrium, traders can predict how the expected return on the risky asset
changes when the sentiments of the market participants shift and construct a profitable

38



trading strategy for investment. Also, policymakers such as central banks can control
market sentiments as a result of their announcement of monetary policies so that it affects
the risky asset price process they target by influencing the bandwidth of the sentiments
of the market participants. Secondly, as a theoretical implication, the result shows that
the market equilibrium can be obtained in the incomplete market setting with multiple
agents with heterogeneous views on fundamental risks.

For limitations and future research, we have shown that the individual optimization
problems are solved in the cases of the square-root state process and a general state
process, assuming the one-time wealth shock depending on the state process, which is
common among the agents and can be taken as a linear functional of the state process,
and supposing the interest rate as zero. Extending the state process to a multi-dimensional
one, investigating the case where the one-time wealth shock is a nonlinear functional of
the state process, and solving for the equilibrium interest rate along with the excess return
process are the next future research topics. Also, applying the model to security pricing
under heterogeneous views on fundamental risks in an incomplete market is another future
research topic.
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A Proof for the individual optimization problem of

the conservative agents in Theorem 3 for the gen-

eral procedure in the zero-net supply case in Sec-

tion 5

In the following, we prove that the individual optimization problem of the conservative
agents is attained with (π∗

i , λ
∗
i ). The aggressive case and the neutral agent case, as well

as the fact that the market clearing conditions are satisfied, are proved in the same way
as Theorem 1 in Section 3.

Let

Ji(πi, λ) = EPλ

[− exp(−γi(X
πi
T + YT ))].

If (π∗
i , λ

∗
i ) is a saddle point that satisfies

Ji(πi, λ
∗
i ) ≤ Ji(π

∗
i , λ

∗
i ) ≤ Ji(π

∗
i , λ),

for all πi ∈ Ai and λ ∈ Λi, (π
∗
i , λ

∗
i ) attains the sup-inf (4) and the inf-sup (5).

We show that for given λ∗
i , π = π∗

i attains the sup by the following convex dual
argument.

Proposition 1 Under assumptions of Theorem 3, for given λ∗
i = (λ̄‡

Y,i,t, λ̄
‡
S,i,t)

⊤, π = π∗
i

attains supπ∈Ai
Ji(π, λ

∗
i ).

Proof.
We consider

sup
πi∈Ai

EPλ∗i [− exp(−γi(X
πi
T + YT ))],

where

dYt = (µY,t + σY,tλ̄
‡
Y,i,t)dt+ σY,tdW

λ∗
i

Y,t,

dXπi
t = πi,tσt(θt + ρS,tλ̄

‡
Y,i,t + ρ̂S,tλ̄

‡
S,t)dt+ πi,tσt(ρS,tdW

λ∗
i

Y,t + ρ̂S,tdW
λ∗
i

S,t), (123)

dW
λ∗
i

Y,t = dWY,t − λ̄‡
Y,i,tdt,

dW
λ∗
i

S,t = dWS,t − λ̄‡
S,i,tdt.

We show that π∗
i attains the sup.

First, we let

Ri,t = − exp(−γi(X
π∗
i

t + Vi,t)),

where

π∗
i,t =

1

γiσt

(θ
λ∗
i

t − γiρS,tZi,t), (124)
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(Vi, Zi) i = 1, . . . , I are solutions of BSDEs{
dVi,t = −fi(Z1,t, . . . , ZI,t)dt+ Zi,tdW

λ∗
i

Y,t,

Vi,T = YT ,

with

fi(Z1,t, . . . , ZI,t) =
1

2γi
(θ

λ∗
i

t − γiρS,tZi,t)
2 − 1

2
γiZ

2
i,t,

θ
λ∗
i

t = θt + ρS,tλ̄
‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t.

Then,

dRi,t = −γiRi,td(X
π∗
i

t + Vi,t) +
1

2
γ2
i Ri,td⟨Xπ∗

i + Vi⟩t

= −γiRi,t

(
(π∗

i,tσtθ
λ∗
i

t − 1

2
γi((π

∗
i,tσtρS,t + Zi,t)

2

+(π∗
i,tσtρ̂S,t)

2)− fi(Z1,t, . . . , ZI,t))dt+ (π∗
i,tσtρS,t + Zi,t)dW

λ∗
i

Y,t + π∗
i,tσtρ̂S,tdW

λ∗
i

S,t

)
= −γiRi,t

(
(π∗

i,tσtρS,t + Zi,t)dW
λ∗
i

Y,t + π∗
i,tσtρ̂S,tdW

λ∗
i

S,t

)
, (125)

since the drift part is

(π∗
i,tσtθ

λ∗

t − 1

2
γi((π

∗
i,tσtρS,t + Zi,t)

2 + (π∗
i,tσtρ̂S,t)

2)− fi(Z1,t, . . . , ZI,t))

= −1

2
γiσ

2
t (π

∗
i,t −

1

γiσt

(θ
λ∗
i

t − γiρS,tZi,t))
2 +

1

2γi
(θλ

∗

t − γiρS,tZi,t)
2 − 1

2
γiZ

2
i,t − fi(Z1,t, . . . , ZI,t) = 0.

Next, we define a probability measure Qi by

dQi

dP λ∗
i
=

u′
i(X

π∗
i

T + YT )

EPλ∗
i [u′

i(X
π∗
i

T + YT )]
, (126)

where

u′
i(x) = γi exp(−γix).

We remark that Qi is well defined since u′
i(x) > 0 and EPλ∗i [ dQi

dPλ∗
i
] = 1. Since

u′
i(X

π∗
i

t + Vt) = γi exp(−γi(X
π∗
i

t + Vt))

= −γiRi,t,

and by (125)

d(−γiRi,t) = −γiRi,t(−γi(π
∗
i,tσtρS,t + Zi,t)dW

λ∗
i

Y,t − γiπ
∗
i,tσtρ̂S,tdW

λ∗
i

S,t),
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we can apply Girsanov’s theorem becauseRi is a P
λ∗
i -martingale by (103), and (WQi

Y ,WQi

S )
defined by

dWQi

Y,t = dW
λ∗
i

Y,t + γi(π
∗
i,tσtρS,t + Zi,t)dt,

dWQi

S,t = dW
λ∗
i

S,t + γiπ
∗
i,tσtρ̂S,tdt,

is a Qi-Brownian motion.
Then, by (124)

ρS,tdW
λ∗
i

Y,t + ρ̂S,tdW
λ∗
i

S,t

= ρS,tdW
Qi

Y,t + ρ̂S,tdW
Qi

S,t − θ
λ∗
i

t dt,

and thus by (123)

dXπi
t = πi,tσt(ρS,tdW

Qi

Y,t + ρ̂S,tdW
Qi

S,t ).

By (105), it follows that for π∗
i ∈ Ai, X

π∗
i is a Qi-martingale.

Finally, we show

EPλ∗i [− exp(−γi(X
πi
T + YT ))]

≤ EPλ∗i [− exp(−γi(X
π∗
i

T + YT ))],

by a convex duality argument.
We note that the following properties on the convex duality hold.
Let

ũi(y) = sup
x∈R

(ui(x)− xy),

for all y > 0, where ui(x) = − exp(−γix).
Then, for all x ∈ R, y > 0,

ui(x) ≤ ũi(y) + yx, (127)

ũi(u
′
i(x)) + u′

i(x)x = ui(x). (128)

By (127),

ui(X
πi
T + YT ) ≤ ũi(E

Pλ∗i [u′
i(X

πi
T + YT )]

dQi

dP λ∗
i
) + EPλ∗i [u′

i(X
πi
T + YT )]

dQi

dP λ∗
i
(Xπi

T + YT ),

where we set

x = Xπi
T + YT ,

y = EPλ∗i [u′
i(X

π∗
i

T + YT )]
dQi

dP λ∗
i
.
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Hence

EPλ∗i [− exp(−γi(X
πi
T + YT ))] = EPλ∗i [ui(X

πi
T + YT )]

≤ EPλ∗i [ũi(E
Pλ∗i [u′

i(X
π∗
i

T + Yi,T )]
dQi

dP λ∗
i
)] + EPλ∗i [u′

i(X
π∗
i

T + Yi,T )]E
Pλ∗i [

dQi

dP λ∗
i
(Xπi

T + YT )]

= EPλ∗i [ũi(u
′
i(X

π∗
i

T + YT ))] + EPλ∗i [u′
i(X

π∗
i

T + YT )]E
Qi [(Xπi

T + YT )] (129)

≤ EPλ∗i [ũi(u
′
i(X

π∗
i

T + YT ))] + EPλ∗i [u′
i(X

π∗
i

T + YT )]E
Qi [(X

π∗
i

T + YT )] (130)

= EPλ∗i [ũi(u
′
i(X

π∗
i

T + YT ))] + EPλ∗i [u′
i(X

π∗
i

T + YT )(X
π∗
i

T + YT )] (131)

= EPλ∗i [− exp(−γi(X
π∗
i

T + YT ))]. (132)

(130) follows since Xπi is a Qi-supermartingale and Xπ∗
i is a Qi-martingale. (129) and

(131) are due to the definition of Qi in (126), and (132) is obtained from (128).
For given π∗

i , λ = λ∗
i attains the inf. Thus, the proof is complete. ■

B The Gaussian case where the individual optimiza-

tion problems for the conservative agents are solved

In this section, we solve the individual optimization problem for given expected return
process µ of the risky asset process S1 in (1) when Y in (3) is a Gaussian process, where
λ̄Y,i, λ̄S,i, µY , σY and ρS are deterministic processes and Ī = I, that is, the agents are
conservative. Although we limit the case where the agents are conservative and the zero-
net supply case for simplicity, the result can be extended to include the aggressive and
the neutral agent case, and the positive supply case. In this case, the system of BSDEs
reduces to separate BSDEs since Z in the BSDE can be specified as a volatility process
of Y .

The following theorem holds for the expected return process and the trading strategy
of the individual optimization problem (4) and (5) in equilibrium for the Gaussian case.
We let Γ = 1∑I

k=1
1
γk

, λ̄‡
Y,j,t = −λ̄Y,j,t, and λ̄‡

S,j,t = −λ̄S,j,t in the following.

Theorem 5 Suppose that the following conditions hold.

ρS,t
γi

( I∑
j=1

1

γj
Γ(−ρS,tλ̄

‡
Y,j,t − ρ̂S,tλ̄

‡
S,j,t + γjρS,tσY,t) + ρS,tλ̄

‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tσY,t

)
+ σY,t

= π∗
i,tσtρS,t + σY,t ≥ 0, (133)

ρ̂S,t
γi

( I∑
j=1

1

γj
Γ(−ρS,tλ̄

‡
Y,j,t − ρ̂S,tλ̄

‡
S,j,t + γjρS,tσY,t)

)
= π∗

i,tσtρ̂S,t ≥ 0. (134)

Then, the expected return process µ in equilibrium is given by µt = σtθt where

θt =
I∑

j=1

1

γj
Γ(−ρS,tλ̄

‡
Y,j,t − ρ̂S,tλ̄

‡
S,j,t + γjρS,tσY,t), (135)
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and (π∗
i , λ

∗
i ) in equilibrium is given by π∗

i,t = 1
γiσt

(θt + ρS,tλ̄
‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tσY,t).

That is, λ∗
i,t = (+λ̄‡

Y,i,t,+λ̄‡
S,i,t)

⊤ attains the sup-inf/inf-sup problem (4), (5) for ad-
missible strategies π ∈ Ai, where the set of the admissible strategies is given by Ai =
{π|Xπis a Qi-supermartingale}, where a probability measure Qi is defined as

dQi

dP λ∗
i
=

u′
i(X

π∗
i

T + YT )

EPλ∗
i [u′

i(X
π∗
i

T + YT )]
.

Moreover, the market clearing conditions (22) and (23) hold.

Remark 5 We remark that the following case, where there are two agents and one agent
has neutral views, is an example that satisfies the conditions (133) and (134). Let I = 2,
γ1, γ2 > 0, ρS,t, ρ̂S,t > 0, σY,t > 0. We assume λ̄Y,2, λ̄S,2 ≡ 0. Then, the conditions (133)
and (134) become

ρS,t
γ1

( 2∑
j=1

1
γj∑2

k=1
1
γk

(−ρS,tλ̄
‡
Y,j,t − ρ̂S,tλ̄

‡
S,j,t + γjρS,tσY,t)− (−ρS,tλ̄

‡
Y,1,t − ρ̂S,tλ̄

‡
S,1,t + γ1ρS,tσY,t)

)
+ σY,t

= π∗
1,tσtρS,t + σY,t ≥ 0,

and

ρ̂S,t
γ1

( 2∑
j=1

1
γj∑2

k=1
1
γk

(−ρS,tλ̄
‡
Y,j,t − ρ̂S,tλ̄

‡
S,j,t + γjρS,tσY,t)− (−ρS,tλ̄

‡
Y,1,t − ρ̂S,tλ̄

‡
S,1,t + γ1ρS,tσY,t)

)
= π∗

1,tσtρ̂S,t ≥ 0.

Proof of Theorem 5.
Let

Ji(πi, λ) = EPλ

[− exp(−γi(X
πi
T + YT ))].

If (π∗
i , λ

∗
i ) is a saddle point that satisfies

Ji(πi, λ
∗
i ) ≤ Ji(π

∗
i , λ

∗
i ) ≤ Ji(π

∗
i , λ),

for all πi ∈ Ai and λ ∈ Λi, (π
∗
i , λ

∗
i ) attains the sup-inf in (4) and the inf-sup in (5).

First, we show that for given λ∗
i , πi = π∗

i attains the sup as follows using a super-
martingale property.

Lemma 2 Under assumptions of Theorem 5, for given λ∗
i = (+λ̄‡

Y,i,t,+λ̄‡
S,i,t)

⊤, πi = π∗
i

attains supπi∈Ai
Ji(πi, λ

∗
i ).

Proof.
We consider

sup
πi∈Ai

EPλ∗i [− exp(−γi(X
πi
T + YT ))],
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where

dYt = (µY,t + σY,tλ̄
‡
Y,i,t)dt+ σY,tdW

λ∗
i

Y,t,

dXπi
t = πi,tσt(θt + ρS,tλ̄

‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t)dt

+πi,tσt(ρS,tdW
λ∗
i

Y,t + ρ̂S,tdW
λ∗
i

S,t), (136)

dW
λ∗
i

Y,t = dWY,t − (+λ̄‡
Y,i,t)dt,

dW
λ∗
i

S,t = dWS,t − (+λ̄‡
S,i,t)dt.

We show that π∗
i attains the sup.

First, we let

Ri,t = − exp(−γi(X
π
t + Vi,t)).

Here, Vi,t, i = 1, . . . , I are given by

Vi,t = YT +

∫ T

t

fi(σY,t)dt−
∫ T

t

σY,tdW
λ∗
i

Y,t, (137)

with

fi(σY,t) =
1

2γi
(θ

λ∗
i

t − γiρS,tσY,t)
2 − 1

2
γiσ

2
Y,t,

θ
λ∗
i

t = θt + ρS,tλ̄
‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t.

dRi,t = −γiRi,td(X
πi
t + Vi,t) +

1

2
γ2
i Ri,td⟨Xπi + Vi⟩t

= −γiRi,t

(
(πi,tσtθ

λ∗
i

t − 1

2
γi((πi,tσtρS,t + σY,t)

2 + (πi,tσtρ̂S,t)
2)− fi(σY,t))dt

+(πi,tσtρS,t + σY,t)dW
λ∗
i

Y,t + πi,tσtρ̂S,tdW
λ∗
i

S,t

)
= −γiRi,t

(
−1

2
γiσ

2
t (πi,t −

1

γiσt

(θ
λ∗
i

t − γiρS,tσY,t))
2dt+ (πi,tσtρS,t + σY,t)dW

λ∗
i

Y,t + πi,tσtρ̂S,tdW
λ∗
i

S,t

)
,

(138)

since the drift part is(
πi,tσtθ

λ∗

t − 1

2
γi((πi,tσtρS,t + σY,t)

2 + (πi,tσtρ̂S,t)
2)− fi(σY,t)

)
= −1

2
γiσ

2
t (πi,t −

1

γiσt

(θ
λ∗
i

t − γiρS,tσY,t))
2 +

1

2γi
(θλ

∗

t − γiρS,tσY,t)
2 − 1

2
γiσ

2
Y,t − fi(σY,t)

= −1

2
γiσ

2
t (πi,t −

1

γiσt

(θ
λ∗
i

t − γiρS,tσY,t))
2,
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which is maximized at

π∗
i =

1

γiσt

(θ
λ∗
i

t − γiρS,tσY,t). (139)

Therefore, Ri is a supermartingale and particularly a martingale when πi = π∗
i . Hence,

EPλ∗i [− exp(−γi(X
πi
T + YT ))]

≤ EPλ∗i [− exp(−γi(X
π∗
i

T + YT ))].

■
Next, for given π∗

i , we show that λ = λ∗
i attains the inf by a BSDE approach.

Lemma 3 Under assumptions of Theorem 5, for given π∗
i,t =

1
γiσt

(θt+ρS,tλ̄
‡
Y,i,t+ρ̂S,tλ̄

‡
S,i,t−

γiρS,tσY,t), λ = λ∗
i = (+λ̄‡

Y,i,t,+λ̄‡
S,i,t)

⊤ attains infλ∈Λi
Ji(π

∗
i , λ).

Proof.
Firstly, for λ ∈ Λi, we consider a BSDE

dVλ
t = Zλ

S,t(dWS,t − λS,tdt) + Zλ
Y,t(dWY,t − λY,tdt)

= −(λS,tZλ
S,t + λY,tZλ

Y,t)dt+ Zλ
S,tdWS,t + Zλ

Y,tdWY,t,

Vλ
T = Ri,T .

Also, we note that Vλ
0 = EPλ

[Ri,T ] and Vλ
0 is minimized at (λ∗

Y,t, λ
∗
S,t), λ

∗
Y,t = +λ̄‡

Y,i,tsgn(Zλ∗
Y,t),

λ∗
S,t = +λ̄‡

S,i,tsgn(Zλ∗
S,t), which satisfies λ∗

Y,tZλ∗
Y,t = +λ̄‡

Y,i,t|Zλ∗
Y,t|, λ∗

S,tZλ∗
S,t = +λ̄‡

S,i,t|Zλ∗
S,t|, by

the comparison principle for BSDEs (e.g., Theorem 6.2.2 in Pham [27]).
In the following, we first presuppose that λ∗

Y,tZλ∗
Y,t = +λ̄‡

Y,i,t, λ
∗
S,tZλ∗

S,t = +λ̄‡
S,i,t, then

confirm Zλ∗
Y,t,Zλ∗

S,t ≥ 0.

Let Ri,t = − exp(−γi(X
π∗
i

t + Vi,t)), where Vi,t, i = 1, . . . , I are given by Vi,t = YT +∫ T

t
fi(σY,s)ds−

∫ T

t
σY,sdW

λ∗
i

Y,s.

Since Ri,t = − exp(−γi(X
π∗
i

t + Vi,t)) is a martingale under P λ∗
i satisfying an SDE

dRi,t = ZS,i,tdW
λ∗
i

S,i,t + ZY,i,tdW
λ∗
i

Y,i,t,

where

ZS,i,t = −γiRi,t(π
∗
i,tσtρS,t + σY,t),

ZY,i,t = −γiRi,t(π
∗
i,tσtρ̂S,t),

we have only to confirm ZS,i,t,ZY,i,t ≥ 0, namely,

ρS,t
γi

(θ
λ∗
i

t − γiρS,tσY,t) + σY,t ≥ 0,

ρ̂S,t
γi

(θ
λ∗
i

t − γiρS,tσY,t) ≥ 0,

which is satisfied by conditions (133) and (134). ■
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Thus, (π∗
i , λ

∗
i ) is a saddle point and (π∗

i , λ
∗
i ) attains the sup-inf in (4) and the inf-sup

in (5). Finally, we confirm that when the expected return process µ of the risky asset
price process S1 is given by µt = σtθt with θ in (135), the market is in equilibrium, that
is, the market clearing conditions

I∑
i=1

π∗
i,t = 0, (140)

and

I∑
i=1

(X
π∗
i

t − π∗
i,t) = 0, (141)

hold.

Lemma 4 Under assumptions of Theorem 5, for the given expected return process µ,
where µt = σtθt with θ in (135), the market clearing conditions (140) and (141) hold.

Proof. Since

π∗
i,t =

1

γiσt

(θ
λ∗
i

t − γiρS,tσY,t)

=
1

γiσt

(θt + ρS,tλ̄
‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tσY,t),

we have

σt

I∑
i=1

π∗
i,t =

I∑
i=1

1

γi
(θt + ρS,tλ̄

‡
Y,i,t + ρ̂S,tλ̄

‡
S,i,t − γiρS,tσY,t)

= (
I∑

i=1

1

γi
)θt −

I∑
i=1

1

γi
(−ρS,tλ̄

‡
Y,i,t − ρ̂S,tλ̄

‡
S,i,t + γiρS,tσY,t)

= 0.

Thus,
∑I

i=1 π
∗
i,t = 0.

Also, (141) follows from (2) and (140).
Thus, the proof of Theorem 5 is completed. ■
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