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Abstract

Abstract: I evaluate the performance of four static sealed-bid package auctions

in an experimental setting with complementarities. The valuation model comprises

two items, and three bidders: two ‘local bidders demand one item only, while the

third (global) bidder only wants both. The rules I compare include the Vickrey and

first-price auctions, Vickrey Nearest Rule and the Reference Rule. Auction-level

tests find the first-price auction revenue dominant overall, while the Vickrey auction

performs worst; the other two rules rank intermediate. Bidder-level tests of the

experimental data reject the competitive equilibrium bidding functions: overbidding

is widespread in all four auctions, and bidders are averse to submitting boundary

bids. I also observe behaviour consistent with collusive bidding in the Vickrey

auction. Contrary to theoretical predictions, the Vickrey auction performs worst on

efficiency, primarily for this reason.
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The growth in popularity of auctions has seen them applied to an ever wider range

of markets, including markets with multiple packages and complementarities. A stylized

example of such a situation is an auctioneer selling a jacket and a pair of trousers. Some

buyers may only want the jacket, others may only need the trousers, but some customers

may want a complete suit, and thus prefer to buy both. The fact that the two garments

match creates additional value for the buyer who wants both - this is the complementarity.

More complex demand patterns of a similar kind are present in the auctions for mobile

telephony spectrum, contracts for serving bus routes or airport take-off and landing slots.1

To deal with this increased complexity, a new class of mechanisms, called core-selecting

auctions, have been developed and implemented, though our understanding of their in-

centive properties is still incomplete. I conduct a bidding experiment to evaluate the

performance of two static core-selecting auctions (the Vickrey Nearest and the Reference

Rule) against two older alternatives (the Vickrey and first-price auctions).

The motivation for picking the Vickrey and first-price auctions is that they cover

two extremes in terms of bidder incentives. In the Vickrey auction truthful bidding is a

dominant strategy, while the first-price auction gives strong incentives for bidding below

value. Both auctions also embody well-known theoretical weaknesses, which have limited

their use in practice: the Vickrey auction may generate low revenue, and the first-price

auction can be inefficient. A key motivation behind the use of core-selecting rules is

that they should generate outcomes which are the “best of both worlds,” with efficiency

better than in first-price, and revenue higher than in Vickrey auctions.2 To achieve this

aim, the core-selecting rules partially de-couple bidders’ payments from their own bids

(to encourage close to truthful bidding), while requiring that the payments lie in the core

(thereby reducing the likelihood of low-revenue outcomes).

My main finding is the strong performance of the simplest of the four rules, the

first-price auction: it is revenue-dominant without losing efficiency. I cannot reject rev-

1On mobile spectrum, see Danish Business Authority (2012), ComReg (2012) and Ofcom (2012). The
auction of London bus routes is discussed in Cantillon and Pesendorfer (2006). An auction solution to
allocating landing slots is discussed in Federal Aviation Administration (2008).

2Sun and Yang (2006, 2009) have also proved that in the setting of my paper, there exists a dynamic
incentive-compatible mechanism which finds the competitive equilibrium. In the present experiment, I
only consider one-shot sealed-bid auctions, and thus do not include this mechanism in my comparison.
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enue equivalence between the remaining three auctions. The Vickrey auction is least

efficient, and no significant efficiency difference emerges between the first-price and the

core-selecting rules.

At the bidder level, I test the experimental data against the Bayesian Nash equilibrium

bidding functions for all four rules, as derived by Ausubel and Baranov (2010). The theory

is not supported by my experiment, and overbidding is frequent in each auction. In the

core-selecting auctions, when bidders’ behaviour diverges from equilibrium, they do not

revert to a truth-telling rule-of-thumb. Instead they attempt to game the rule to their

advantage, albeit unsuccessfully. I also find evidence of attempted collusion in the Vickrey

auction, which can explain the low revenue and efficiency of this auction. In the first-price

auction when bidders deviate from theoretical equilibrium, they do so in predictable ways

that do not undermine efficiency or revenue.

The simplest auction is thus most robust in my experiment, and the attractive prop-

erties of the core-selecting rules are not fully borne out when bidders’ behaviour deviates

from expectation. Recently, many real-world package auctions have used complex core-

selecting designs, without giving much attention to first-price rules. Against this back-

drop, my results invite a re-consideration of the merits of the humble first-price package

auction as a viable and easy to understand alternative, which warrants further research.

Recent experimental auction literature has focused on dynamic auctions, such as the

combinatorial-clock, and simultaneous ascending auctions.3 This strand of research has

been primarily concerned about efficiency properties of those auctions, and how bidders

select packages in settings with complex valuation patterns. However, many practical

implementations of such dynamic designs feature a one-shot static auction as their final

phase: for example, the Danish, Irish and UK spectrum auctions in 2012, all used a

Vickrey-Nearest type rule to determine the final prices and allocations of licences, after a

dynamic auction had been used to determine the relevant packages.4 My work is naturally

seen as investigating how these static rules perform, given that a selection of packages has

already been set. At the time of writing, there had been no prior experimental work in

3Kagel, Lien and Milgrom (2010 and 2014), and Kazumori (2010) are good examples of this.
4See ComReg (2012), Danish Business Authority (2012), and Ofcom (2012).
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this area.

The rest of the paper is structured as follows. The auction rules and valuation model

are introduced in Section 1, and the precise formulation of the hypotheses which I test

are discussed in Section 2. The experimental setup is presented in Section 3, and Section

4 performs a quality check of the data. Auction level results and hypothesis tests are

presented in Section 5, while bidder-level analysis is conducted in Section 6. Section 7

discusses the interpretation of the results, and Section 8 concludes.

1 Auction Setup and Rule Descriptions

My model consists of three bidders and two items, sold simultaneously. I label the items

as ‘1’ and ‘2’, and assume that two of the bidders have a positive valuation on one item

only. These are the ‘local’ bidders, and I label them as L1 and L2, corresponding to which

item they value positively. The third bidder, G - the ‘global’ bidder - has a positive value

only on the bundle of 1 and 2 together, and zero value on 1 and 2 individually. Each

bidder is only permitted to bid on the bundle they value positively, so the auctioneer

always receives three bids.

To model complementarity, I assume that the local bidders’ values are drawn from a

uniform distribution on [0,100], while the global bidder’s value is drawn from a uniform

distribution on [0,200]. I will use bL1 to denote the bid of bidder L1, bL2 for the bid of

bidder L2, and bG for the bid of global bidder G. The auction rule itself is described by

P (bL1, bL2, bG), a payment vector conditional on the bid-triplet (bL1, bL2, bG). Individual

payments assigned by an auction mechanism to the three bidder types are labelled as pL1,

pL2 and pG, such that P (bL1, bL2, bG) = (pL1, pL2, pG) .

Prior to calculating the bidders’ payments, the auctioneer solves a winner-determination

problem: he picks a feasible bid-maximising allocation such that each item gets assigned

to at most one bidder. In the present setting there are only two sensible allocations.5 If

the sum of local bids is higher, the L-types win one item each; otherwise the G-type wins

5More allocations are feasible, but not really ‘sensible’: for example, only selling one item is feasible,
but not sensible. Aggregate revenue could be increased by offering the unsold item at a price ε > 0. If a
bidder’s value on this item is positive, we have a Pareto improvement.
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both.6 The winner-determination procedure is common to all the rules I analyse.

1.1 The Vickrey Auction

The multi-unit Vickrey Auction, an extension of the standard Vickrey-Clark-Groves mech-

anism to the auction context, has the main aim of inducing truthful value revelation

amongst the bidders. This, in turn, enables the implementation of an efficient value-

maximising allocation. Irrespective of bidder type, in the Vickrey auction the price paid

by each winning bidder is determined solely by the bids of the other two bidders. This

price is calculated such that each bidder receives a payoff equal to the incremental surplus

they bring to the auction.

For a numerical example, let (bL1, bL2, bG) = (48, 40, 60) . Bidders L1 and L2 win an

item each, as the sum of their bids exceeds J’s bid. The surplus that bidder L1 brings

to the system is 28: without L1’s bid, the auctioneer only faces the bids of bj = 60 and

bi2 = 40, whereby G would win both items, and the surplus - evaluated at the bidders’

bids - would be 60. With L1’s bid of 48, L1 and L2 win instead, and the total surplus is

88 - an increase of 28. To give L1 a surplus of 28, the payment must solve the equation

bL1−pL1 = 28 =⇒ pL1 = 48−28 = 20. By similar calculations, L2’s payment is pL2 = 12.

To generalise the above reasoning, and after imposing a non-negativity constraint on

prices, the Vickrey auction payments can be written as:

P V A (bL1, bL2, bG) =

 (V PL1, V PL2, 0) if bL1 + bL2 ≥ bG

(0, 0, bL1 + bL2) if bL1 + bL2 < bG

(1)

where :
V PL1 = max[(bG − bL2), 0)]

V PL2 = max[(bG − bL1), 0)]

There are two well-known problems with the Vickrey auction, which limit its practical

usefulness: the possibility of low revenue, and susceptibility to collusion. From equation

(1) we see that in the case when bL1 + bL2 > bG with 0 < bL1 < bG and 0 < bL2 < bG,
7

6Ties are broken randomly.
7This case corresponds to the situation where L1 and L2 together out-bid G, but neither of the local

bids, on their own, would be sufficient to out-bid the global bidder.
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the Vickrey auction ‘leaves money on the table’, in that pL1 + pL2 < bG: the seller has a

seen a bid that exceeds the sum of payments he receives from the winning bidders. This

is equivalent to saying that the Vickrey auction outcomes frequently lie outside the core.

The core is defined as a set of allocations for which there exists no blocking coalition,

such that no group of members of the system can jointly deviate to a different alloca-

tion which gives all those members a higher surplus. In the present example, the group

consisting of bidder G and the auctioneer constitutes a blocking coalition: G could offer

the auctioneer a payment of p̃G = pL1 + pL2 + ε < bG, with ε > 0. This increases the

auctioneer’s revenue, and gives G a non-zero profit - so the allocation that assigns the

items to L1 and L2 is not a core allocation, and the price-triplet (pL1, pL2, 0) does not lie

in the core.8

When bL1 + bL2 > bG, the set of core payments can be defined as:

(pL1, pL2) ∈ {(x, y) |x+ y ≥ bG, x ∈ [0, bL1], y ∈ [0, bL2]} .

This is the set of payments such that neither L1 or L2 pays more than their bid, but

the sum of their payments weakly exceeds the bid of G. This set, along with the bids

and Vickrey payments are shown in Figure 1; the core is shaded in gray. The dotted

diagonal line denotes the ‘minimum revenue line’, which contains all the points where

the payments of L1 and L2 equal the payment of G exactly. The bold segment of this

diagonal line depicts the ‘minimum revenue core’ (MRC),9 which contains the points that

are simultaneously in the core, and on the minimum-revenue line. The MRC depicts

the combination of the lowest amounts that each of the L-types can bid, subject to them

jointly out-bidding the G-type. From the seller’s viewpoint, this is analogous to a ‘second-

price’ in a single-unit auction: this is the highest observed bid after the actual winning

bids have been removed..

8In the case when G wins the Vickrey payment is in the core, as then bj > bi1 + bi2.
9For a further detailed discussion of the MRC, see Day and Milgrom (2008).
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Figure 1: Vickrey prices, first-price

payments and the MRC

Figure 2: Vickrey Nearest, and Reference

Rule with α = 0.5 and α = 0.75

The second weakness of the Vickrey auction is its susceptibility to collusion. We see

from equation (1) that when L1 and L2 win, the payment of one is decreasing in the bid of

the other. 10 If L1 and L2 behave cooperatively, they can both bid aggressively, which will

reduce their joint payments. To collude perfectly L1 and L2 can both bid bi1 = bi2 = 200

- the highest possible value that G can have. Such bids makes sure that L1 and L2 always

win, and both pay a price of 0. In less extreme cases, if both bidders overbid, they can

still induce payments that are lower than their Vickrey prices under truthful bidding.

1.2 The First-Price Auction

The first-price auction, usually used for the sale of a single item, can be naturally extended

to cover the case of package bidding. After the winner-determination problem has been

solved, each winning bidder pays their bid in full. The payments in the first-price auction

are:

P FP (bL1, bL2, bG) =

 (bL1, bL2, 0) if bL1 + bL2 ≥ bG

(0, 0, bG) if bL1 + bL2 < bG

.

Unlike the payments in the Vickrey auction, in the first-price auction the winners’

payments are always in the core, as shown in Figure 1. In the case when L1 and L2 win,

the first-price payments will also always lie (weakly) above the minimum-revenue line.

10Consequently the Vickrey auction revenue is not always monotonic in bids: it is possible that an
auciton with higher (individual) bids can lead to lower revenue.
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Despite its simplicity, the first-price auction with package bidding has been successfully

used in practice, including the auctioning of bus routes in London (see Cantillon and

Pesendorfer, 2006) and mobile telephony spectrum in Norway in 2013. 11

1.3 The Vickrey Nearest Rule

The Vickrey Nearest Rule (VNR) is currently the most widely used of the core-selecting

auction rules. One motivation behind these payment rules is to increase the revenue from

Vickrey-type auctions while retaining most of their efficiency and truth-telling properties.

Such a trade-off is achieved by making the winners’ payments less dependent on their own

bids, but still requiring that the payment vector lies in the core.12 The VNR auction, as

introduced by Day and Cramton (2012), first uses the submitted bids to calculate Vickrey

prices, and then picks a price vector that minimises the Euclidian distance to the Vickrey

payments subject to the prices being in the core.

In the case when bidder G wins, the Vickrey payment is in the core already, and VNR

implements that payment. If L1 and L2 win, the VNR will select the point on the MRC

which is closest to the Vickrey payment vector, as shown in Figure 2.

Mathematically, finding the point on the MRC that is closest to the Vickrey payments

involves taking an orthogonal projection of the bid vector onto the MRC. I label the

outcome of such a projection as the ‘preliminary shares’ of bidders L1 and L2, and denote

them as sL1 and sL2. The VNR payments then are:

11Information taken from the Norwegian Post and Telecommunications Authority document “800, 900
and 1800 MHz auction - Auction Rules” (2013).

12The intuiton is that if incentives to deviate from truth-telling are small, bidders will bid in a near-
truthful way, which would mitigate efficiency losses due to misallocation.
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P V NR (bL1, bL2, bG) =



(sL1, sL2, 0) if
bL1 + bL2 ≥ bG, and

si1, si2 > 0

(bG, 0, 0) if bL1 ≥ bG + bL2

(0, bG, 0) if bL2 ≥ bG + bL1,

(0, 0, bL1 + bL2) if bL1 + bL2 < bG

(2)

where :
sL1 = 1

2
(bL1 + bG − bL2)

sL2 = 1
2

(bL2 + bG − bL1)
(3)

The payments of local bidders in the VNR are broken down into three cases, depending

on the asymmetry of the bids. If, say, bL1 > bG + bL2, so that L1 on his own out-bids G by

a large margin, then sL2 < 0, which implies a negative price for L2. By the non-negativity

constraint on prices, we then truncate pL2 = 0, and pL1 = bG to remain on the MRC. The

converse case applies if bL2 > bG + bL1. When the asymmetry moderate and sL1, sL2 > 0,

both bidders pay their preliminary share. 13

1.4 The Reference Rule Auction

The Reference Rule, introduced by Erdil and Klemperer (2010), is another payment rule

for core-selecting package auctions. The motivation behind the rule is to make it more

robust to small local deviation incentives than the VNR by further de-coupling local

bidders’ payments from bids. In the VNR, local bidders can influence their payment share

by influencing the Vickrey prices, which depend on their own bid, as shown in equation

(3). The innovation behind the Reference Rule is to define the bidders’ payment shares

in a way that further reduces the dependence on their own bids, while maintaining the

core-selecting property. This is achieved defining a ‘reference point’ which is independent

13My interpretation of the VNR rule is slightly different from that of Ausubel and Baranov (2010).
Under my reading, the Vickrey prices towards which VNR projects are not bounded by zero from below;
in their interpretation this zero-bound is imposed, prior to calculating the projection. In Ausubel and
Baranov’s terminology, my reading of the VNR makes it equivalent to what they call a “nearest bid”
rule (because the un-bounded Vicrkey prices are symmetric about the MRC, relative to submitted bids).
When Vickrey prices are positive, both interpretations pick the same point.
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of the L-types’ bids, and then selecting the final payments that are closest in Euclidian

distance to that point.

I define each local bidder’s reference price based on the bid of the global bidder G and

a sharing parameter α; the corresponding Reference Rule is RR(α). The reference price

of bidder L1 is rL1 = α · bG, and the reference price for bidder L2 is rL2 = (1− α) · bG,

with α ∈ [0, 1]. By varying α the reference point can be moved smoothly along the

minimum-revenue line, with higher α setting the reference point closer L1’s axis. The

bidder payments in the Reference Rule then are:

PRR(α) (bL1, bL2, bG) =



(rL1, rL2, 0) if
bL1 + bL2 ≥ bG, and

rL1 < bL1, rL2 < bL2

(bG − bL2, bL2, 0) if
bL1 + bL2 ≥ bG, and

rL1 < bL1, rL2 > bL2

(bL1, bG − bL1, 0) if
bL1 + bL2 ≥ bG, and

rL1 > bL1, rL2 < bL2

(0, 0, bL1 + bL2) if bL1 + bL2 < bG

(4)

where :
rL1 = α · bG

rL2 = (1− α) · bG

Since reference prices are only required to lie on the minimum-revenue line, and not

on the MRC, it is possible that the reference point will lie outside the core. Then the

point on the MRC that is closest to the reference point is a payment vector where one

local bidder (say, L1) pays his bid in full, while the other local bidder’s payment makes

up the difference (between G’s and L1’s bid).

In the VNR, each local bidder’s payment share always depends in part on his own

bid. In the Reference Rule, so long as the realised reference point is on the MRC, the

payment for each local bidder is completely insensitive to their own bid. The only case

in which a local bidder’s payment depends on his bid is in the situation when the realised

reference point is outside the MRC and he is the bidder that has to pay his bid in full.
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This sensitivity occurs only under certain realisation of bids, and hence has limited impact

on average. 14

In general, as Figure 2 shows, the Reference Rule with α = 0.50 generates payments

different from VNR.15 However, with α = 0.50, the reference payments are the same as

they would be in the Proxy Rule auction of Ausubel and Milgrom (2002). Hence to make

the Reference Rule look significantly different from the VNR and Proxy Rule auctions, I

use α = 0.75 in the main experiment. Supplementary data for the Reference Rule with

α = 0.50 was obtained from an additional experiment, which is described in the Appendix.

1.5 Comparison of the four Auction Rules

To give a concrete comparison of the four auction rules, Figure 3 summarizes the outcome

from applying each rule to the bid-triplet (bL1, bL2, bG) = (48, 40, 60). The L-types win,

and the G-type pays zero in every auction. To show the influence of varying α on the

behaviour of the Reference Rule, I calculate the payments for three values of α. For

RR(0.25) the reference prices will be rL1 = 15 and rL2 = 45, which is outside the core, so

the Reference Rule payments will be truncated to lie on the boundary of the MRC. This

is not the case for RR (0.75) , and the payments in that case are not in the corner of the

core.

pL1 pL2 Revenue

First-price 48 40 88
Vickrey 20 12 32
VNR 34 26 60

RR(0.75) 45 15 60
RR(0.50) 30 30 60
RR(0.25) 20 40 60

Figure 3: A numerical example of the four rules, with (bL1, bL2, bG) = (48, 40, 60)

14Erdil and Klemperer (2010) show that under plausible conditions the Reference Rule has a lower sum
of ‘local deviation incentives’ than VNR, while the sum of ‘maximum deviation incentives’ is unchanged.
The proof proceeds by trading off the cases where bidders have zero incentives with those where incentives
are maximal, and comparing these with the VNR, which has moderate incentives everywhere.

15The Reference Rule with α = 0.50 generates reference payments on the mid-point of the minimum-
revenue line, while the VNR selects payment shares at the mid-point of the MRC. Unless bL1 = bL2,
these two points will differ.
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1.6 Bidding Restrictions and Collusion

None of the auctions I analyse require bidding above value in a competitive equilibrium,

so in theory a restriction prohibiting such bids should have little bite. Investigating

the impact of such restrictions is nonetheless worthwhile for two reasons. Firstly, even

in simpler single-item auction contexts many experimental papers, such as Kagel and

Levin (1995), find that overbidding is a frequent phenomenon. Bidders bid more than

theory would predict, sometimes even above their value.16 It is useful to gauge how such

overbidding influences the performance of the rules examined here, and whether it is the

driving force behind any revenue or efficiency findings.

The second reason for investigating bidding restrictions is that it allows me to look for

collusion in the Vickrey auction. Here both individual profits as well as auction revenue

are very sensitive to the presence of overbidding. For the other three auctions no collusive

strategies have been found.17 Running a set of sessions with the same instructions, with

and without bidding restrictions, allows for a clean assessment of collusion.

2 Hypotheses

Testing competitive equilibrium bidding theory is the most direct application of auc-

tion experiments - thus I survey the relevant theory in Section 2.1. Yet even in simpler

settings and when complementarities are absent, the experimental auction literature fre-

quently rejects theoretical predictions.18 In addition, the standard models do not consider

collusion, an effect with potentially significant implications for practical auction perfor-

mance. Hence I propose some additional intuitively plausible hypotheses in Section 2.2,

which can also be tested on my data.

16For a good summary of this literature and further references, see Section 1.4 of Kagel & Levin (2008),
and Section I.b2 in Kagel (1995).

17As of yet, there is no clear analysis as to the collusion incentives in VNR and the Reference Rule.
The presumption is that being core-selecting auction rules, they should be robust to attempted collusion.

18Kagel (1996 and 2008) are a good overview of this literature.
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2.1 Related Theory and Experimental Literature

Optimal bidding functions for the auctions I analyse, under an analogous valuation model,

have been derived by Ausubel and Baranov (2010), Goeree and Lien (2009) and Sano

(2010). I will refer to these bidding functions as the Bayesian-Nash equilibrium (BNE)

biding functions. To obtain optimal bidding functions for the case of the first-price auc-

tion, Baranov (2010)uses numerical methods, since a solution cannot be found analyti-

cally; I do the same for the case of RR(0.75). Figure 4 shows that for local bidders, BNE

bidding requires shading - bidding below value - in all auctions except Vickrey.

Figure 4: BNE Bidding Functions for local and global bidders. In all cases when the
bidder’s payment is above the Vickrey price, bidding below values occurs in equilibrium.

In both the first-price auction, and the both Reference Rules, local bidders with low

values pool to bid precisely zero. In all these rules there is always a strictly positive

marginal effect of the bid on the price, conditional on winning, when values are near

zero. Thus a low-value local bidder has an incentive to free-ride on his co-bidder, and bid

strictly zero. In VNR there is no such incentive for bidders with near-zero values because

if a local bidder submits a very low bid, it is possible that his price conditional on winning

is zero nonetheless.19

19This true in my interpretation of VNR, but not on the Ausubel and Baranov (2010) reading. Under

13



For the global bidder, the payment rule for all auctions except first-price is the same,

and is equivalent to paying his Vickrey-price. Therefore, in the Vickrey auction, VNR and

reference truthful bidding is a dominant strategy for the global bidder. In the first-price

auction, the global bidder shades his bid below value considerably, as seen on Figure 4.

At the auction level, Ausubel and Baranov (2010) find that the Vickrey auction gives

highest revenue, followed by the first-price auction, with VNR and Proxy Rule giving

almost identical revenue, below the other two auctions. The efficiency ranking follows the

same pattern as revenue.

Combining the findings of Ausubel and Baranov (2010) with the well-known predic-

tion of truthful bidding in the Vickrey auction, I test the following set of theory-based

hypotheses:

• Hypothesis HT: Bidders follow the competitive BNE bidding strategies.

• Hypothesis HR: The revenue ranking has Vickrey auction first, followed by first-

price, with VNR and the RR(0.50) joint last.

• Hypothesis HE: The ranking for efficiency is the same as in HR.

The most relevant experimental work on package auctions, for my paper, are Kazumori

(2010, 2014) and Kagel, Lien and Milgrom (2010, 2014). Kazumori (2010) investigates

generalized Vickrey auctions, in addition to clock-proxy and simultaneous-ascending auc-

tions. He finds that clock-proxy auctions out-perform the generalized Vickrey auction,

and also outperform the simultaneous-ascending auction when the value structure mir-

rored exposure. Kagel et al. compare the performance of a combinatorial clock-auction

with that of a simultaneous ascending auction for a variety of value and complementarity

settings. Their interest is assessing how well the auctions perform when bidders bid only

on a subset of profitable packages in each round, rather than bidding on all packages.

They find that straightforward bidding - submitting bids a few most profitable packages

only - leads to efficient outcomes (Kagel et al. 2010), though bidders sometimes diverge

their interpretation, the rule always projects towards (weakly) positive Vickrey prices, so there is always
a positive marginal effect of bid on price; this re-establishes the pooling at zero result for low-value local
bidders.
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from such bidding patterns to push up prices for their competitors (Kagel et al. 2014).

All these papers, however, have looked at dynamic auctions, with complicated value and

complementarity structures, and their focus has been on efficiency and package-selection.

My work, in contrast, looks at static one-shot auctions, with a fixed package structure,

and allows me to check whether in a simpler context the bidding will diverge from pre-

dictions once the package-selection aspect is removed.20 In practice, in many high-value

package auctions a hybrid design is used, where a clock phase is followed by a single

supplementary bidding round which determines final prices and package allocation.21 My

research is thus a complement to, rather than a substitute for, the dynamic experimental

auction literature.

2.2 Intuition-based Hypotheses

Even if bidders do not follow BNE strategies, they may still respond to auction incentives

to some extent. It is thus worthwhile to assess the broader intuitions that could influence

behaviour under the different rules.

In the Vickrey auction, every bidder’s price conditional on winning is independent of

their bid, while there is a partial dependence in the core-selecting rules. We should hence

expect to see more aggressive bidding in the Vickrey than in the core-selecting auctions.

In the first-price auction, conditional on winning the price equals the bid exactly, which

we should expect to invite more cautious bidding. This ranking of incentives does not

apply to the G-type bidders, who face the same payment rule under all auctions except

first-price. Testing whether such bidders bid truthfully is contained in the hypothesis

HT, but even if that hypothesis fails, it is possible that the G-types follow a similar

non-truthful bidding pattern. I propose the following intuition-based hypotheses:

• Hypothesis HB: Local bidder types bid highest in the Vickrey auction, and submit

lowest bids in the first-price auction. The Reference Rule and VNR rank interme-

20Kazumori (2014) has also conducted an experiment on one-shot package auctions, in a setting similar
to mine, but his analysis only compares the Vickrey and Ausubel-Milgrom (2002) proxy auctions. He
finds that proxy auctions revenue-superior, which is congruent with the results of this paper.

21The dynamic phase thus determines which packages are relevant, but does not necessarily fix the
final allocation of packages to bidders.
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diate.

• Hypothesis HG: Bidder G bids similarly in all auctions other than first-price.

In the discussions of Day and Cramton (2012) and Erdil and Klemperer (2010), part of the

motivation for core-selecting auctions is that bidders may in fact not use full equilibrium

strategies, but rather follow a rule-of-thumb. The VNR and the Reference Rule were

developed to minimise incentives for deviation from truthful bidding. The intuition is

that because payments are ‘close to independent of own bids’ then bidders could find it

‘close to optimal’ to bid truthfully. This intuition naturally generates another hypothesis:

• Hypothesis HA: Local bidders bid truthfully in the VNR and Reference Rule.

The final set of hypotheses I test relate to collusion in the Vickrey auction. Collusion can

be defined as behaviour that deviates from an individually optimal competitive strategy

towards one that aims to maximise joint profits of the colluding parties.22 The general

tendency in the collusion literature is to provide bidders in rich bidding contexts with

many opportunities to collude, and look for periods of play when collusion is successfully

sustained. Examples of this approach include Goswami, Noe and Rebello (1996) and

Sade, Schnitzlein and Zender (2005), who look at collusion in discriminatory and uniform-

price auctions with communication. Kwasnica and Sherstyuk (2007) similarly investigate

Simultaneous Ascending Auctions with repeated play (within the same bidder group),

but no communication. The survey of Kagel and Levin (2008) finds that repeated play

with the same opponents, and communication, tend to facilitate collusion, though their

survey does not cover any experiments on multi-unit Vickrey auctions.

In light of the above papers, the setup of my experiment is not inherently conducive to

collusion: the matching is random across periods, and communication is prohibited. My

experiment was the first auction study ever run at the laboratory I used, hence few of the

participants are likely to have prior auction experience.23 The valuation setup, however,

is very simple and the Vickrey auction rules are straightforward, so the collusive strategies

22Playing a collusive strategy in itself is not necessarily non-equilibrium behaviour - in games where
multiple equilibria exist, a ‘collusive’ outcome can be one of such equilibria.

23I cannot exclude the possibility that they would have participated in auction experiments elsewhere.
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are easy to deduce: under perfect collusion, the L-types should bid exactly 200. Even if

bidders do not notice this corner solution, it is possible that the L-types realise that they

can mutually benefit by bidding significantly above value. None of the other auctions

in the experiment give obvious incentives for bidding in excess of value, so I would not

expect bidding behaviour to change much irrespective of whether a bidding restriction is

in place or not. If we observe significant change of bidding patterns in the Vickrey auction

across the two treatments, together with numerous bids in excess of value, these findings

would be consistent with attempted collusion. I thus test the following hypotheses:

• Hypothesis HS: In auctions other than the Vickrey auction, the presence of bidding

restrictions does not significantly affect bidding.

• Hypothesis HC: Removal of bidding restrictions in the Vickrey auction influences

bidding behaviour. Without bidding restrictions the L-types bid more aggressively,

and in excess of their value.

3 Experimental Design

The experiment was run over four sessions, and the participants were recruited from the

population of Oxford graduate and undergraduate students via the mailing list at the

Centre for Experimental Social Sciences (CESS) laboratory at the University of Oxford.

Only students from science and social science subjects were included in the recruitment

mailshot, and no participant was allowed to play in more than one session. The experiment

itself was programmed using the zTree software of Fischbacher (2007), and run at the

CESS laboratory. Sessions lasted up to two and a half hours, with average earnings of

around £35 (≈ $55).24

During each session, the same group of participants played in each of the four auc-

tions. The attendance was between 18 to 30 participants per session. After receiving the

instructions for a given auction type, the participants were allowed to ask clarifying ques-

tions, and then were presented with an understanding test. Upon passing the test they

24A sample of the instructions is available in the Online Appendix.

17



participated in two payoff-irrelevant practice rounds, followed by the ten payoff-relevant

rounds of the same auction rule. This design yielded 140 auction-round observations for

each rule from the sessions without bidding restrictions and 160 auction-rounds with bid-

ding restrictions present. The matching of participants to groups and bidder types was

random each round, and communication was not permitted. Once the paying rounds of a

given auction type were complete, the instruction sheets for that auction were collected,

and the instructions for the next auction were distributed.25

A sample of the understanding test that the participants were required to complete is

provided in the Online Appendix. The test was administered on paper, and there were

few failures.26

To allow for an analysis of the importance of overbidding and possible collusion in the

Vickrey auction, two of the four sessions were run with the bidding restrictions in place,

prohibiting the bidders from bidding above value. In the other sessions the bidding re-

strictions were removed, and all three bidders were allowed to bid any number in [0, 200].27

The participants were paid for each auction rule based on their profits in two randomly

selected rounds (out of the ten played); if the sum from these two rounds was negative,

the payoff for that auction was truncated to zero. Final payments were calculated as the

sum of payoffs from all four auction types, plus a show-up fee.

4 Verifying Data Quality

Since the experimental design is within subjects, I need to verify that bids are independent

across auctions. To assess this degree of dependence, I ran a set of pairwise estimations

of Kendall’s τ correlation parameter and tested its significance.28 None of the tests for L-

type bidders reject a no-correlation null, with all p-values ¿ 0.15. The tests on the G-type

25The ordering of the auction rules was: [VCG,VNR,RR,FPS] in one set of sessions, and [VCG,
FPS,RR,VNR] in another. These orderings were generated randomly, but for consistency the same
pair of orderings was used in both restricted and unrestricted bidding sessions.

26On average, between one or two out of every thirty subjects failed the test.
27Bidders were made aware that under unrestricted bidding, though they would never pay more than

their bid, they could end up with a negative payoff if they overbid and win at a price above their valuation.
28The purpose of this test is to check that the assumptions of the statistical test I use later are satisfied.

While values are independent by design, I must check that the bidding process itself did not induce a
strong pattern of dependece.
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bidders also fail to reject the no-correlation null at the 95% level. These results suggest

that there is little correlation between bidding pattern across auction types, and that the

assumption of independence between treatments for testing purposes is acceptable.

In addition to the four sessions where bidders bid in all four auction rules, I also ran

another set of experiments in an analogous setting, but focusing only on the effects of α

in the Reference Rule; the details of these experiments are outlined in the Appendix.29

Due to time-constraints (and participant fatigue), it was not feasible to run both α = 0.75

and α = 0.50 treatments in the main sessions. Since the data for RR(0.50) is available,

I have included it in the comparisons for the present paper, though with the caveat that

it is possible that participants’ behaviour in RR(0.50) would be somehow influenced by

their not playing in the other three auctions.

The supplementary experiment also contained a control treatment, where α = 0.75. I

can therefore compare the bidding patterns in the two experiments as a consistency check.

Standard tests for differences between samples, however, do not reject a ‘no difference’

null, even at the 90% level.30 These results suggest that the behaviour for the α = 0.75

case is similar in both the main experiment as in the supplementary sessions, so the effects

of presenting the Reference Rule in the two different settings are likely to be minor.

5 Auction-level Results

Revenue, surplus and efficiency are the three main parameters of interest for evaluating

auction performance. Revenue is often of foremost importance to sellers, while bidders

are primarily interested in their own surplus. From a welfare or policy point of view

efficiency is also relevant, so that the items are allocated to the highest-value buyers.31

One immediately visible characteristic of Table 1 is how distinct the first-price auction

looks from the others under these criteria: the revenue is higher, surplus is lower, and

29The data collected in the supplementary experiment consisted of 140 auction-rounds for each rule -
the same number as in the unrestricted bidding sample of the main experiment.

30The tests I used include the Mann-Whitney and Kolmogorov-Smirnov tests on the raw bid data, as
well as direct tests of means and medians.

31Efficiecny here is calculated as: 100%· sum of winning bidders’ values
sum of values under value-maximising allocation
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both variables have lower variance than in the other auctions.32 Efficiency is high in all

auctions except Vickrey, which is the only one with efficiency below 90%.

Table 1: Revenue, Efficiency and Surplus Summary. The first-price auction is revenue
dominant, while the Vickrey auction is least efficient.

Vickrey First Price VNR RR(0.50) RR(0.75)

revenue 67.6
(56.9)

91.5
(37.1)

68.2
(41.2)

77.0
(42.3)

71.1
(46.3)

surplus 44.1
(67.6)

29.8
(28.1)

57.9
(39.1)

48.9
(49.3)

46.7
(49.6)

efficiency (%) 88.9
(22.2)

97.5
(8.4)

97.7
(9.1)

94.9
(13.8)

95.1
(12.8)

Means reported, standard deviation below. Revenue and surplus reported

as points. The calculations are based on all 140 experimental auction rounds.

Results from the Vickrey auction, in Table 1 also show higher variability than corre-

sponding figures for other auctions. This pattern is consistent with above-truthful bidding

in the Vickrey auction: in this case, the local bidders may win, despite the global bidder

having a higher value. Due to the Vickrey pricing formula (equation 1), if local bidders

then win, prices and revenue will be low, and surplus high. If the local bidders over-

bid, but lose nonetheless, the price paid by the global bidder will be higher than in the

truthful-bidding equilibrium, and surplus correspondingly lower. Though average surplus

is not much lower in the Vickrey auction on average it is more variable, relative to other

auctions.

The first-price auction revenue-dominates all other rules in pairwise median tests, as

shown in Table 2. Pairwise comparisons between the Vickrey, VNR and Reference Rule

cannot reject revenue equivalence. Though revenue in the Vickrey auction is lower than

under VNR and Reference Rule, this difference is not statistically significant. I also

cannot reject equivalence between the two kinds of Reference Rules with different values

of α. This revenue ranking runs contrary to hypothesis HR, which I reject. The first-price

auction performs better than predicted, and the Vickrey auction underperforms.33

32A parallel analysis for the restricted-bidding sample is conducted in the Online Appendix.
33Since values for each bidder and auction are drawn randomly, there is some variation in the average

values across treatments. This variation is not the driving factor behind my results - in fact, the realised
bidder values are on average lowest in the first-price auction (and highest in RR(0.50)). In pairwise
median-difference tests, only this one pair rejects the no-difference null for values, at 95%. No other
pairings reject in the median-difference test, even at the 90% level.
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Table 2: Pairwise Auction Revenue and Surplus Comparisons. The first-price auction
gives significantly higher revenue, and lower surplus, compared to every other rule. No
other pairwise comparisons are statistically significant.

Revenue Vickrey VNR RR(0.50) RR(0.75)

FirstPrice 29.0??? 24.0??? 15.0?? 23.0???

Vickrey −3.0 −13.0 −7.0
VNR −9.0 −1.0

RR(0.50) 8.0

Surplus Vickrey VNR RR(0.50) RR(0.75)

FirstPrice −16.0?? −24.0??? −17.0??? −17.0???

Vickrey −10.0 −2.0 −1.0
VNR 8.8 8.0

RR(0.50) 0.0

Reported values are for median-difference of (row - column), as points.

Rejections of zero-difference null at 90%/95%/99% level

indicated by ?/??/???; Bonferroni-Holm corrections applied.

Calculations based on all 140 experimental auction rounds.

Mirroring the results from the revenue figures above, the first-price auction generates

less bidder surplus than any of the other three rules: all pairwise tests reject in this

direction at a confidence level of 95% or stricter (see Table 2). All other pairings fail

to reject the zero-difference null. Pairwise testing confirms the intuitive conclusion from

Table 1: the first-price auction is different from the others, giving higher revenue and

lower surplus.34

Assessing efficiency using a direct median-comparison test is unhelpful, because in all

the treatments the median efficiency is 100%. A Kruskal-Wallis test nonetheless rejects

with p-value ¡ 0.005, suggesting that efficiency is not homogenous across auctions. Hence

I run a series of Mann-Whitney tests, pairwise for each combination of auctions; this

allows me to check the distribution of efficiency in each pairing. All but one pairwise

comparisons against the Vickrey auction reject at the 95% level or stricter, with Vickrey

auction giving lower efficiency.35 No other strict ranking pattern emerges. These findings

provide evidence to reject hypothesis HE, according to which the Vickrey auction should

34The revenue and surplus conclusions of this section are precisely mirrored in the results from the
restricted-bidding sample, and are included in the Online Appendix.

35The single auction that does not reject pairwise efficiency equivalence with the Vickrey auction is
RR(0.50).
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be most efficient.

All the statistical tests in this section have been median, or rank-based. As a ro-

bustness check, I have run a parallel analysis using standard cross-sectional econometric

methods, and the results are reported in Appendix B. The analysis in Appendix B con-

firms the findings reported in this section - the first-price auction is still revenue superior,

and the Virckrey auction least efficient.

6 Bidder-level Results

6.1 Bidding Constraints and Bidder Behaviour

I check the impact of bidding constraints by comparing the raw bid patterns across the two

treatments, as summarised in Table 3.36 Removing bidding constraints only significantly

changes behaviour in the Vickrey auction. The bids are higher when restrictions are

lifted, with a median difference of 30 for bidder L1, and 20 for L2. To put these numbers

in perspective, recall that L-type values are uniform on [0,100] implying a median value

of 50; the median increase in bids is at least 40% of this. The median-difference test

accordingly rejects for all bidder types under the Vickrey auction at the 99% confidence

level;37 none of the other auctions register any rejections.

On this evidence, I cannot reject hypothesis HS: bidding constraints have no impact

on first-price, VNR and Reference Rule auctions. In subsequent portions of the paper, I

will conduct the analysis using data from the sessions with unrestricted bidding; a parallel

analysis for the restricted-bidding sessions is available in the Online Appendix. The large

difference registered in the Vickrey auction is consistent with hypothesis HC on collusion,

and this finding will be further analysed in Section 6.5.

36The RR(0.50) auction is not included in this comparison, since none of the supplementary sessions
were run with bidding restrictions.

37These are calculated using the Hodges-Lehmann method, implemented through the SomersD package
in Stata (Newson, 2006).
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Table 3: The influence of bidding restrictions on bids. Only the Vickrey auction shows a
significant change in bidding across the two treatments.

Case Vickrey First-Price VNR RefRule(0.75)

Bidder L1 Medians 84.0 — 50.0 35.0 — 34.5 45.0 — 40.0 45.0 — 39.5

Median Difference 30.0??? −2.0 3.0 5.0

Bidder L2 Medians 75.0 — 56.5 30.0 — 30.0 50.0 — 39.5 45.5 — 44.0

Median Difference 20.0??? −2.0 5.0 4.0

Bidder G Medians 136.0 — 90.0 65.0 — 79.5 100.0 — 90.0 106.5 — 91.0

Median Difference 27.0??? −8.0 7.0 11.0

Medians reported as: Unrestricted — Restricted. Median difference tested via the Hodges-Lehmann method,

using all 140 auction rounds. Rejections of zero-difference null at 90%/95%/99% level indicated by ?/??/???.

6.2 Testing Bidder-level Intuitions

With the exception of the Reference Rule with α = 0.75, all other auction settings analysed

in this paper offer symmetric incentives for both L-type bidders, and the data from these

two sub-cases can be pooled for analysis. This intuition is confirmed by the data: in the

symmetric auctions, Mann-Whitney tests for the zero-difference null fail to reject on both

the bid and shading variables (all p-values ¿ 0.15). For the purpose of further analysis

in this section, the data for L1 and L2 types will thus be pooled in all auctions except

RR(0.75), where I will consider both types separately.

To give an overview of local bidder’s behaviour and assess hypothesis HB, Table 4

shows a set of pairwise median-difference tests across auctions for the bid variable. L-

types bid the most in the Vickrey auction, and the least in first-price. The core-selecting

auctions rank as intermediate, and show no significant difference from each other. The

intuition of hypothesis HB cannot be rejected - the data shows that indeed Vickrey auction

induces aggressive bidding, while first-price discourages it.

When assessing the validity of Hypothesis HG - that the G-type bidders bid similarly

in all auctions except first-price - the Kruskal-Wallis tests for equality of populations

rejects (p-value=0.005), suggesting that there are differences in bidding behaviour across

auction types. On this evidence, I reject hypothesis HG.
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Table 4: Pairwise comparison of L-types’ bidding behaviour. Bidders bid most conserva-
tively in the first-price auction, and most aggressively in the Vickrey auction.

Bids Vickrey VNR RR(0.50) RR(0.75)[L1] RR(0.75)[L2]

FirstPrice −44.0??? −14.0??? −16.0??? −13.0??? −13.5???

Vickrey 30.0??? 26.0??? 30.0??? 27.0???

VNR −2.0 0.0 0.0
RR(0.50) 3.0 1.0

Reported values are for median-difference of (“row” - “column”), calculated as points from

the raw bids, using all 140 auction rounds. Rejections of zero-difference null at the

90%/95%/99% level indicated by ?/??/???; Bonferroni-Holm corrections applied.

6.3 Bidder-level Tests of the Theory

The theory results being tested in this section base on the equilibrium bidding functions

derived for the first-price, VNR, and RR(0.50) auctions by Ausubel and Baranov (2010).

As no analytical results are available for RR(0.75) due to the asymmetry between L1

and L2, I obtained the equilibrium bidding functions numerically.38 In first-price, and

both Reference Rules, equilibrium bidding requires the L-types to bid exactly zero when

their values are sufficiently low, and attempt to free-ride on the other L-type out-bidding

the G-type on their own. In VNR, though such pooling at zero does not occur, theory

still suggests bidding very cautiously in equilibrium. Table 5 shows that experimental

results diverge significantly from theory.39 Figure 4 provides an illustration of how exper-

imental bidding functions for L-types compare to their theoretical counterparts; I have

also included a set of “empirical best-response” curves, which are numerically calculated

best-responses to bids actually submitted in the experiment.40 Though the actual best

response bids don’t precisely coincide with Bayesian-Nash results from Ausubel and Bara-

nov (2010), the two look more similar to each other than to the bidding functions observed

in the experiment.

For L-types, the bidding variable rejects in all sub-cases, with the exception of the

38The method I use is similar to that of Baranov (2010).
39In Table 5, I use a permutation test for surplus. The surplus is calculated conditional on winning,

which introduces a complex dependence pattern across the two samples: there are situations where an
actual bid won in the experiment, but the corresponding theory-based bid would not have won (and vice
versa). The samples are neither independent, nor matched-pairs. Thus I cannot use bootstrapping, and
use permutation-based tests instead. For further discussion of permutation tests, see Good (1994).

40Analogous graphs for the G-types are provided in the Online Appendix.
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Table 5: Bidder-level Tests of the Theory, calculated from all 140 auction-groups. In 9 of 11 bidder-

type/auction pairings theory is rejected due to overbidding, at the 95% level. Surplus is lower than

predicted by theory in 7 of the 11 cases, at the 95% level.

L-types Vickrey First-Price VNR RR(0.50) RR(0.75), L1 RR(0.75), L2

Bid 80.0(48.0)??? 31.5(18.3)??? 48.5(30.8)??? 45.0(2.9)??? 50.0(32.7)??? 45.5(48.5)

Win% 67.1(52.1)??? 47.1(45.0) 47.9(35.0)??? 39.3(32.9)?? 52.9(35.7)??? 52.9(35.7)???

Surplus 31.0(39.0)? 14.3(35.1)??? 26.5(33.4)?? 21.0(32.6)?? 14.9(41.4)??? 25.8(29.9)

G-type

Bid 136.0(92.0)??? 65.0(47.3)??? 100.0(98.5) 122.5(112.0)?? 106.5(94.5)??

Win% 32.9(47.9)??? 52.9(55.0) 52.1(65.0)??? 60.7(67.1) 47.1(64.3)???

Surplus 31.0(48.0)? 25.0(70.2)??? 55.0(77.2)?? 45.0(63.7)??? 47.0(62.3)

For bid and surplus, experimental medians reported; theory-based medians in parentheses. Calculations done

using all 140 auction rounds. Sign-test used for testing bid and win% variables, median-based permutation

test used for surplus. Rejections of zero-difference null at 90%/95%/99% level indicated by ?/??/???.

L2-bidder in the RR(0.75) auction; the general pattern indicates that L-type bidders bid

more than predicted by theory. Furthermore, the L-types bid exactly zero much too rarely:

theory predicts a total of 100 bids at zero in my data, whereas only 38 are observed.41

Beyond the misunderstanding of bidding incentives, it is likely that ‘boundary effects’ -

the aversion to bid exactly at the boundary of the bidding support - may contribute to

this finding.42

The G-types also overbid relative to theory in all auctions except VNR. However,

in the core-selecting auctions and the Vickrey auction, the overbidding of the L-types

dominates, which results in them winning more often than expected. Consequently the

L-types also receive lower surplus, conditional on winning, in all cases except the L2-

bidder in RR(0.75). The variable for winning probability does not reject in the first-price

auction, suggesting that though both L- and G-types overbid considerably, this does not

affect their relative winning chances. Conditional on winning, both types make less profit

in the first-price auction than theory predicts.

The broad conclusions from Table 5 and Figure 5 suggest that in all auctions the

41Of the actually submitted zero-bids, only three occur when when BNE predicts they should; in the
other 35 cases, BNE predicts strictly bids.

42A good analysis of this effect is Palfrey and Prisbrey (1997) in the context of public-goods contri-
butions. In the present experiment, there is no way to test for this effect directly.
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L-types overbid significantly relative to theory, therefore winning too often, but making

lower profits than predicted. Correspondingly, in all auctions except first-price, the G-

type wins too rarely, and when he does win he makes little profit. Jointly, these findings

lead me to reject hypothesis HT - competitive BNE bidding theory is not supported by

my data.

Figure 5: Spline fits for experimental local bidder’s observed bids, theory-based best
response functions, and numerically calculated best response functions to actual bidding
in the experiment. With the exception of L2 in RR(0.75), the observed bidding functions
diverge significantly from the best-response functions.

Hypothesis HA, on truthful bidding in core-selecting auctions, similarly finds no sup-

port in my experiment. A sign-test for the truthful-bidding null rejects for each bidder
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type at confidence level of 95%, or stricter. When deviating from theory, the bidders do

not use a truth-telling rule-of-thumb. The intuition that core-selecting auctions induce a

reversion to truthful bidding proves incorrect.

6.4 Evaluating Bidder Sophistication

The standard theoretical benchmark assumes that all bidders follow their Bayesian-Nash

equilibrium strategies. But this benchmark may be inappropriate for experiments: per-

haps bidders in the experiment expect that their opponents deviate from BNE-bidding.

According to a ‘sophisticated behaviour’ hypothesis of Costa-Gomes, Crawford and Broseta

(2001), the bidders may be trying to best-respond to the actual play of their opponents,

rather than to theoretical predictions. If this is the case, then the fact that BNE-bidding

is rejected should be unsurprising: such a strategy may not be a best response to actual

play.

To assess whether sophisticated bidding could explain the divergence from theory,

I calculate profits and winning probabilities for all bidder types under the additional

scenario where each of the three bidder types unilaterally plays the BNE strategy, while

the other two bidders play as they did in the experiment. If profits from actual bidding

are higher than they would be if that bidder type unilaterally engaged in equilibrium

play, then the observed bids may indeed be a best response to actual behaviour of the

opponents. The results from this comparison are shown in Table 6, which finds little

support for the sophistication hypothesis.

For local bidders, the winning probability and conditional profit variables reject the

zero-difference null in all cases except for the L2-type in the RR(0.75) auction. In all

these cases, the unilateral deviation towards BNE-bidding would lead to a (slightly, but

significantly) lower winning probability, but a much higher surplus conditional on win-

ning.43 Since in Table 5 the L2-type’s bidding in RR(0.75) was not significantly different

from theory, it is unsurprising that a unilateral deviation towards theory does not lead

43If instead of ‘surplus conditional on winning’ I used ‘unconditional surplus’ instead, a sign-test on
this variable rejects even more strongly. It would also reject in the additional case of the I2 bidder in
RR(0.75).
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Table 6: Testing for sophisticated bidding: surplus from actual bids vs. unilateral devia-
tion to Bayesian Nash bidding. In 6 of 11 cases, a unilateral deviation gives a significantly
higher surplus, at the 90% level.

L-types Vickrey FirstPrice VNR RR(0.50) RR(0.75)-L1 RR(0.75)-L2

Win% 67.1(55.7)??? 47.1(38.2)??? 47.9(43.2)??? 39.3(34.3)??? 52.9(35.7)??? 52.9(49.3)

Surplus 31.0(40.5)? 14.3(31.7)??? 26.5(35.9)??? 21.0(31.2)?? 14.9(40.4)??? 25.8(29.0)

G-type

Win% 32.9(26.4)?? 52.9(27.9)??? 52.1(50.7) 60.7(55.7) 47.1(42.9)

Surplus 31.0(39.0) 25.0(73.3)??? 55.0(58.0) 45.0(48.5) 47.0(57.5)

For surplus, experimental medians reported; ‘unilateral deviation’ medians in parentheses.

Sign-test used for testing the win% variable, median-based permutation test used for surplus.

Rejections of zero-difference null at 90%/95%/99% level indicated by ?/??/???.

to higher conditional profit for this bidder. The results suggest, however, that the vast

majority of L-type bidders are not engaging in sophisticated bidding.

The results for the G-type are more varied. In the first-price auction a unilateral devi-

ation is profitable for the G-type for the same reason as it is for the L-types: the payment

conditional on winning is then much lower. A similar deviation does not significantly

improve profits in any of the other auctions, nor does it much affect winning probabilities

in VNR and Reference Rule. In these auctions, the L-types’ bids influence their payments

in addition to the winning probability, but since G’s payment depends only on L-types’

bids, the foremost effect of equilibrium bidding is to reduce the probability of winning.

The only way in which such a change in strategy would increase the profit, conditional

on winning, is by excluding some of the cases where G-type wins after overbidding (and

makes a negative profit). Table 6 shows that this effect is present, since benefits from

deviation towards theory are positive, but not sufficiently to be significant.

Since the sophistication hypothesis is rejected in six of eleven sub-cases, it does not

offer a plausible explanation for bidders’ deviation from the theory. Following the BNE-

bidding functions would leave each bidder type no worse off, even if their opponents did

not follow suit.

The conclusions on the sophistication hypothesis don’t change significantly if bidders

were to unilaterally deviate towards the numerically-calculated best-response functions,
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instead of BNE.44 The hypothesis still gets rejected in the same six out of eleven cases,

though the expected profits from unilateral deviation are higher than in the present (BNE)

case. This conclusion is unsurprising: the BNE-bidding functions assume that each player

is best-responding the BNE-bidding by others, whereas the numerically calculated best-

response functions take into account actual bidding in the experiment, and thus we should

expect them to give higher expected profits.

6.5 Collusion in the Vickrey Auction

The most direct method for checking whether collusion is present is to look for instances

of perfect collusion, where both L1 and L2 bid 200. This criterion is very stringent and

of limited use if mis-coordination is frequent. Perfect collusion occurs in only 5 out of

140 rounds of play. In these 5 instances, the joint profit of the L-types is 110 - over twice

average for the whole sample, which is 54. If successful, collusion is highly profitable.

To move beyond checking for perfect collusion, we need another plausible benchmark.

Looking for overbidding in excess of value alone is insufficient because such bidding is

frequently found even in single-item auctions where no collusive motive is present.45 Fur-

thermore, overbidding is sometimes attributed to a ‘desire to win’ effect: if bidders enjoy

the phenomenon of winning in itself, they will bid more aggressively, even if this reduces

their profit.46 The significance of this effect is higher in rules where the influence of the

bidder’s own bid on their price is lower: the increased likelihood of winning looks evident,

while the payoff-consequences are less obvious.

The experimental setup allows me to construct a benchmark that approximates the

‘desire to win’ effect, and use that to deflate the data from the Vickrey auction. The

L-types’ payments in VNR and RR(0.75) auctions are designed so as to mitigate the

effect of own bids on the payment. While this isolation is not perfect, it does nonetheless

provide the bidders with an opportunity to bid more aggressively without expecting large

payoff-consequences. Looking at the differences in bids in these two auctions with, and

44Numerical results of this comparison are in the Online Appendix, Section 10.3.
45In second-price auctions, overbidding is found by Kagel and Levin (1995) and more recently Cooper

and Fang (2008).
46For an overview, see Kagel and Levin (1995).
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without, bidding restrictions allows me to construct a proxy for the ‘desire to win’ effect.

I use this measure as my non-collusive benchmark.

To gauge the extent of the collusion attempts, I use the amount of overbidding (in

excess of the benchmark) and the frequency with which such bids are submitted. If a

significant portion of the data feature overbidding by a considerable amount, it is un-

likely that such behaviour is purely accidental. Conversely, only moderate and occasional

overbidding, makes collusion less plausible: such deviations could be attributed to mis-

calculation.

Table 7: Median Increase in Bids, after Removal of Bidding Restrictions

Auction Vickrey VNR RefRule(0.75), L1 RefRule(0.75), L2

Median Decrease 13??? 0 2?? 1???

Median difference tested via the Hodges-Lehmann method.

Rejections of zero-difference null at 90%/95%/99% level indicated by ?/??/???.

From Table 7, the largest median difference between restricted and unrestricted bid-

ding treatments occurs in the Reference Rule for the L1-type. As expected, when bidding

restrictions are lifted, this bidder type bids more aggressively, but only by 2 points.47 A

sign-test to check whether the shading by L-types in the Vickrey auction exceeds the ‘de-

sire to win’ benchmark rejects with a one-sided p-value ≈ 0.008, and triggers suspicions

of collusion.

Table 8: Numbers of Overbidding L-types, and conditional profit as points. Overbidding
is most prevalent, and most profitable, in the Vickrey auction.

Overbid by more than: Vickrey First-price VNR RR(0.75)

0 166 (15.8) 7 (-6.4) 67 (12.5) 77 (4.3)
5 151 (13.7) 5 (-8.8) 52 (7.8) 59 (2.3)
10 136 (12.5) 4 (-11) 34 (2.3) 42 (-1.1)
20 116 (9.8) 1 (-26) 19 (-6.1) 23 (-8.5)
30 101 (6.7) 0 (NA) 12 (-15.0) 16 (-21.5)
50 79 (3.7) 0 (NA) 5 (-32.4) 6 (-53.7)
75 55 (-0.1) 0 (NA) 3 (-61.3) 5 (-67.2)

Mean surplus in brackets. Total number of L-type bids is 280 under all rules.

47This is the median increase in bids, and though the median amount of shading is still positive, 25%
of the bids of this bidder type involve overbidding above value.
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To further illustrate how the consequences of overbidding differ by auction, Table

8 shows the numbers of overbidding L-types, and their mean surplus. The number of

overbidding L-types is highest in the Vickrey auction at all overbidding levels. As the

ex-ante expected value of an L-type bidder is 50, overbidding by 30 is already 60% above

the expected value, and over 40% of bids are in this group. Furthermore, almost 20% of

all submitted bids are 75 points or more above value; this magnitude of overbidding is

unlikely to be accidental, especially given how rarely similar deviations occur in the other

auctions.

Bidders in the Vickrey auction still make more profit than they would by behaving

similarly in any of the other auctions. By overbidding as much as 50 points, the L-types

in the Vickrey auction still make a positive surplus (with a mean of 3.7), whereas in

other auction types by this point the surplus is negative. Since overbidding is both most

prevalent and most profitable in the Vickrey auction, it is likely that this pattern can be

attributed to attempted collusion.48

Despite its prevalence, overbidding is not overall profitable for the bidders involved.

The rejection of the ‘sophisticated bidding’ hypothesis showed that L-types in the Vick-

rey auction would do better by unilaterally deviating towards truthful bidding. The

data describes a pattern where L-type bidders attempt to collude, despite frequent mis-

coordination. As a result, the Vickrey auction underperforms doubly: even though in

Section 5 it gave low revenue to the seller, at the bidder level this has not translated into

higher surplus. Both the seller and the bidders end up significantly worse off than theory

predicts.

7 Discussion

Table 9 summarizes the outcomes of the hypotheses tested in this paper. At the auc-

tion level, the theory-based hypothesis HR, on revenue, is rejected due to the superior

performance of the first-price auction, and the equally poor outcomes form the Vickrey

48The findings of Table 8 would not significantly change if I looked at the amount of ‘bidding in excess
of equilibrium prediction’ rather than looking at overbidding relative to true values.
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auction. The data do not support the hypothesis of full efficiency in the Vickrey auction

either: instead, it ranks as least efficient. No significant differences among the other rules

emerge, so overall hypothesis HE is also rejected.

Table 9: Outcome of the hypothesis tests

Hypothesis Outcome
HR: The revenue ranking is Vickrey>First-price> VNR≈RR(0.50) Rejected
HE: The efficiency ranking is the same as in HR Rejected
HB: Bidding is most aggressive in the Vickrey auction, least in first-price Accepted
HT: Bidders follow competitive equilibriums strategies Rejected
HA: L-types bid truthfully in VNR and Reference Rule Rejected
‘Sophistication hypothesis’ Rejected
HG: G-types bid similarly in all auctions except first-price Rejected
HS: Bidding constraints have no effect in first-price, VNR and RR Accepted
HC: Bidding behaviour in Vickrey Auction is consistent with collusion Accepted

The acceptance of hypothesis HB shows that bidders were broadly responding to

auction incentives in the ways we would intuitively expect. However, the data rejects

more precise hypotheses on bidding behaviour. For the first-price auction, this finding is

similar to results on overbidding in single-unit experiments. In the core-selecting auctions,

the VNR and Reference Rule, the picture is more complex. Participants with low values

do not submit zero bids often enough, and all types bid more than predicted. This leads

to the rejection of hypothesis HT. Furthermore, the participants do not bid truthfully in

any of the core-selecting auctions, whereby I reject hypothesis HA. Neither theory, nor

rule-of-thumb behaviour offer a satisfactory explanation of the experimental results.

The rejection of the ‘sophistication hypothesis’ showed that unilateral deviations to-

wards equilibrium bidding would be profitable for L-type bidders in five out of six cases,

which suggests that participants were also not best-responding to each other’s actual

bidding behaviour. The current experimental design cannot explain the cause of such

a pattern. Future work in this area will look at the influence of expectations to eval-

uate whether the divergence from theory is due to incorrect expectation formation, or

sub-optimal bidding in response to correct expectations.

The behaviour of L-type bidders in the Vickrey auction is consistent with attempted

collusion, even if full collusion rarely manifests. In all other auctions the presence of
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bidding constraints has no impact, as shown by the acceptance of hypothesis HS. In the

Vickrey auction extensive overbidding is observed when constraints are removed. The

extent of the overbidding was above what I could attribute to a ‘desire to win’ effect, and

the number of extremely high bids is higher than in all other auctions.

A natural interpretation of finding collusion in the setting of my paper is to relate

it to practical one-shot auctions, in contrast to the collusion literature which looks at

repeated play. An example of this would be a one-off sale of government assets with a

pure efficiency objective, and no concern for revenue. My results suggest that even if

revenue in itself is unimportant, the potential for collusive bidding in a Vickrey auction

is high, and that is sufficient to undermine its efficiency properties. A policy with a pure

efficiency objective could be counterproductive.

8 Conclusions

My main finding is the surprisingly good performance of the first-price auction: it gener-

ates most revenue, without any corresponding efficiency loss. Conversely, the performance

of the Vickrey auction is unexpectedly poor: contrary to the expectation of full efficiency,

it ranks last on this criterion. Given that efficiency concerns are frequently used to argue

against the use of first-price mechanisms in high value auctions, my experimental results

provide evidence to allay such worries. The core-selecting auctions tie with the first-price

auction on efficiency, and are revenue-equivalent with the Vickrey auction; they are not

“the best of both worlds”, but also never rank last, contrary to theoretical predictions.

At the individual level, I find that bidding diverges significantly from Bayesian Nash

equilibrium predictions. Bidders frequently bid in excess of the theoretical benchmark,

and occasionally even above their valuation. Overbidding can not be attributed to so-

phistication, as the observed bids never resulted in higher profits compared to a unilateral

deviation towards Nash equilibrium bidding. In the core-selecting auctions, bidders also

do not use a truth-telling rule-of-thumb: I find no evidence to support the intuition

that payments close-to-independent of own bids induce close-to-truthful bidding. The be-

haviour I observe in the Vickrey auction is consistent with attempts at playing collusively,
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even though such attempts are rarely successful. The Vickrey auction generates neither

high revenue, nor high bidder surplus. My results suggest that even with complementar-

ities, simple first-price rules are unlikely to fail as badly as feared, and opportunity-cost

based pricing rules may not realise the benefits that we intuitively expect.

9 Appendix A: The Variable-α Experiment

In the proofs that Erdil and Klemperer (2010) use to analyse the incentive properties of

the Reference Rule, the reference point itself does not change the deviation incentives on

aggregate. However, it affects the relative amount that each bidder pays, conditional on

winning, and this may have non-trivial behavioural implications. Numerical calculations

have shown that as α changes, so do the optimal bids, resulting in extremely disparate

optimal bidding functions for the two types as α tends to either 0 or 1.49 This additional

experiment set out to examine whether such variation would also emerge in the laboratory.

Let K denote the upper end of the support of the value distribution of the L1-type.

Then asymmetries in the valuations of the two L-types can be modelled as follows: set

vL1 ∼ U [0, K] and vL2 ∼ U [0, 200−K] . This keeps the sum of supports (and hence the

expected total value) of the two L-type bidders the same as that of the G-type bidder,

but when K 6= 100 the L-types are no longer symmetric. The nature of asymmetry in my

experiment can then be summarised by two parameters: α and K. I consider four cases:

• Setting 1: α = 0.50 and K=100 (i.e. vL1, vL2 ∼ U [0, 100])

• Setting 2: α = 0.75 and K=150 (i.e. vL1,∼ U [0, 150] , vL2 ∼ U [0, 50])

• Setting 3: α = 0.75 and K=100 (i.e. vL1, vL2 ∼ U [0, 100])

• Setting 4: α = 0.50 and K=150 (i.e. vL1,∼ U [0, 150] , vL2 ∼ U [0, 50])

This particular combination of α and K allows me to investigate two main questions.

Firstly, I can check whether it is the asymmetry of the α parameter itself that influences

49In the limit, as α → 0 or α → 1 an analytical solution is possible. The solution entails the L-type
bidder with the infinitesimal ‘reference share’ bidding truthfully, while the other L-type shades by a large
amount.
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behaviour; for this comparison, I look at the cases where the support of the two bidders’

valuations stays constant, and α varies. Secondly, I can assess whether it is the magnitude

of α relative to the ‘expected valuation’ of the bidders that matters; here I compare the

cases where the ratio of E(vL1)
E(vL2)

= α
1−α , to those where it is not.

The experimental setup of these session was analogous to the main experiment in

this paper, with the exception that here only one set of instructions was given out at

the beginning of the experiment. These instructions outlined how variations in the α

parameter influenced reference payments in the Reference Rule.50 The participants were

allowed to ask questions whereafter they proceeded to complete an understanding test.51

Upon successful completion of the test, the participants were informed which α parameter

and which valuation model would apply in the given section of the experiment. They

subsequently played two practice rounds, followed by ten payment-relevant rounds in

each setting.52 The duration of the sessions in the Alpha-experiments was two hours on

average, generating mean earnings of £27 (∼$43).

9.1 Results of the Variable-α Experiment

Comparing bidder-level results in the asymmetry experiment poses complications that are

not present in the main experiment. Direct tests of bidding variables cannot be conducted

across settings where K varies, because these tests will reject by default due to the bidding

support being different across the compared cases.

This problem does not arise, however, when performing tests while holding K fixed.

When I test for the effects of varying α only, holding K fixed, none of the four test-pairing

for the L-type bidders reject a zero-difference null even at the 90% level. Hence α on its

own does not significantly influence individual bidding.

An alternative to using direct bid data is to look at bid ratios,53 but this approach

will artificially inflate differences in the cases where K 6= 100. Here the two L-types have

50The instructions are available from the author on request.
51The rate of failures was three out of 45 participants in this phase of the experiment.
52The order of the Cases in the experimental sessions was from 1 to 4 in the first session. The ordering

was reversed for the other session.
53These are calculated as the ratios of bid relative to the value of the bidder.
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a different value support, and the L2-bidder with a narrower support is more likely to

exhibit large variation in the bid ratios. The tests are hence likely to over-reject a zero-

difference null, though using non-parametric tests reduces the likelihood of this mistake.

However, when I run a battery of median-difference tests for both L-types on their bid

ratios, only one statistically significant difference emerges. The L2-type’s bid-ratios in

Setting 4 (α = 0.50, K = 150) test as significantly lower than in all other cases. This is

an intuitive finding, as in this case the L2-type can be seen to be in a particularly weak

position: they have a bidding support of only [0,50], but their ‘preliminary share’ of the

payments is a disproportionately higher 50%. As a result, in this setting the L2 type bids

more cautiously. No other ranking emerges from the pairwise tests.

A final hypothesis that I test on the individual bidder data is to check whether setting

the α proportionately to the ratio of expected values of the two L-types affects bidding.

It is, for example, possible that bidders would have a preference for equality or some

notion of fairness, as found by Battalio, Van Huyck and Gillette (1992) in the context of

two-person coordination games. To test for this effect, I pool the data from settings 1

and 2, where α is set ‘proportionately’, and test it against the pooled data from settings

3 and 4. Median-difference tests for both L1’s and L2’s bidding ratios fail to reject the

zero-difference null (p-values ¿0.22 in both cases). Thus I cannot find any influence of

proportionality on bidding at the individual level.

From the G-types’ perspective, all four settings are identical, so we should expect them

to bid similarly in all four cases. A Kruskal-Wallis test for this hypothesis marginally

rejects with a p-value=0.046, indicating that the G-types do not bid the same way across

the four settings. In pairwise tests for bidding and shading, various individual pairings

reject, but no coherent pattern emerges. It appears that the G-type bidders are trying

to best respond differently to the G-types’ actual bidding across the different settings,

ignoring the prediction that truthful bidding should be optimal every time.

At the auction level, the main variables of interest are again revenue, surplus and

efficiency. A summary of these parameters across the four settings is shown in Table 10.

Setting 1 immediately stands out: revenue is almost 10 points higher than in the other
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three settings, while surplus is lower by a similar amount. Efficiency is high in all four

settings, and the differences are small.

Table 10: Revenue, Surplus and Efficiency Summary from alpha experiment

K=100—α=0.50 K=150—α=0.75 K=100—α=0.75 K=150—α=0.50

revenue 77.0
(42.3)

65.5
(41.0)

62.6
(38.4)

64.2
(40.9)

surplus 48.9
(49.3)

61.1
(51.4)

58.2
(44.1)

63.8
(49.1)

efficiency 94.9
(13.8)

95.3
(15.0)

96.9
(12.0)

96.0
(15.1)

Means reported, standard deviations below.

A series of pairwise median-difference tests for revenue is summarised in Table 11. The

results hence confirm that the symmetric setting with K=100 and α = 0.50 is revenue-

superior to the other three cases, with the tests rejecting the zero-difference null with

90% confidence or stricter. No significant revenue differences emerge amongst the other

pairings. Correspondingly, Setting 1 also yields significantly lower surplus than Setting 4

(p-value=0.009). Finally, a Mann-Whitney test for differences in efficiency fails to reject

between Settings 1 and 2, but it does reject the zero-difference null between Setting 1 and

Settings 3 and 4 with p-value=0.015 and p-value=0.002; after applying the Bonferroni-

Holm corrections, these rejections remain significant at the 90% and 95% levels, respec-

tively. This implies that Setting 1 is less efficient, but no other pairings yield a rejection

of the zero-difference null. Using the RR(0.50), or the Proxy Rule, in a symmetric setting

yields superior revenue, but lower efficiency.

Table 11: Pairwise Revenue-difference Tests for variable-α experiment

K=150—α=0.75 K=100—α=0.75 K=150—α=50

K=100—α=0.50 12.5? 14.0?? 13.0?

K=150—α=0.75 2.0 0.0
K=100—α=0.75 −1.0

Reported values are for median-difference of (row - column).

Rejections of zero-difference null at 90%/95%/99% level

indicated by ?/??/???; Bonferroni-Holm corrections applied.

The final test of interest at the auction level checks whether revenue and efficiency
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are sensitive to setting the α proportionately to the bidders’ expected values. If the pro-

portional cases where E(vL1)
E(vL2)

= α
1−α perform significantly better, this would be supporting

evidence in favour of the flexibility inherent in the Reference Rule. A median-difference

test for revenue rejects with a p-value=0.037; the median-difference is 7 points in favour

of the proportional settings. A corresponding Mann-Whitney test for efficiency rejects

with a p-value ¡ 0.001. In practice the differences in efficiency are low - on average around

1.3 points - so the statistical significance here has limited economic importance. This pair

of findings gives some support to the view that selecting a reference point appropriately

in relation to the relative values of the assets for sale may yield superior revenue results.

Overall, the findings of the sessions on asymmetries do not offer conclusive answers

as to the influence of α. Though I find some significant auction-level results in favour of

setting α appropriately, the bidder-level data show little sensitivity to α.
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10 APPENDIX C - ONLINE APPENDIX

10.1 Bidding Functions for G-type bidders

Figure A1 shows the G-types’ bidding curves under the five auction rules tested in my

experiment. In all cases except first-price, the theory predicts that truthful bidding should

be optimal. In Table 5, I showed that tests for equilibrium bidding for the G-types were

rejected in all auctions except VNR. Looking at Figure A1, that conclusion is consistent

with the graphs: in VNR the bidding function is closest to the truthful-bidding prediction.

Figure 6: Empirical bidding functions (solid) and Nash-Equilibrium (dashed) bidding
functions for G-type bidders, when bidding is unrestricted. With the exception of VNR,
actual bid functions considerably diverge from theoretical predictions.
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10.2 Analysis of the Restricted-bidding Sessions

Analogously to Section 5, here I conduct a bidder- and auction-level evaluation of the

four auction rules using the restricted bidding data. As Table 12 indicates, the evidence

does not conform to theory.

Table 12: Comparison of actual v.s. theoretical bidding under bidding restrictions

L-types Vickrey FirstPrice VNR RR(0.75)-L1 RR(0.75)-L2

Bid 50.4(52.6)??? 35.1(20.9)??? 42.7(31.8)??? 40.5(16.8)??? 43.1(46.5)???

Win% 51.9(51.2) 48.1(48.1) 46.3(31.3)??? 43.8(35.0)??? 43.8(35.0)???

Surplus 44.8(45.6) 16.6(36.1)??? 30.0(38.5)??? 29.5(43.1)??? 39.2(34.2)

G-type

Bid 95.6(99.1)??? 77.3(45.8)??? 94.7(97.2)??? 93.6(96.7)???

Win% 48.1(48.8) 51.9(51.9) 53.8(68.8)??? 56.3(65.0)???

Surplus 57.6(54.3) 29.4(74.6)??? 60.7(68.5) 63.2(74.5)

For bid and surplus, experimental medians reported; theory-based medians in parentheses.

Sign-test used for testing bid, shading and win% variables, median-based permutation

test used for surplus. Rejections of zero-difference null at 90%/95%/99% level indicated by ?/??/???.

The theoretically predicted bidding functions are rejected at the 99% level, similarly to

the results from the unrestricted bidding sample. There is, however, a statistical compli-

cation in testing the theory in those sub-cases where ‘truthful bidding’ is the equilibrium

strategy and bidding is restricted.54 If we use rank-based robust statistics (as I have

done elsewhere), all the median differences will have the same sign by necessity, since a

bidder can never overbid his value under bidding restrictions. Rank-based statistics will

over-reject in all these cases, and the sign-test that I have used in Table 12 is particularly

affected. This would bias the findings for all bidders in the Vickrey auction, as well as

the G-types in VNR and Reference Rule.

Looking further at Figures 6 and 7, the bidding function in all the affected cases appear

to be very close to the truthful-bidding line. It is likely that the rejection of theory in

these cases is a statistical artifact. To verify this, I re-run the comparisons in these four

cases using a mean-based permutation test, as in Section 6.3. This test did not reject

54This applies to all bidders in the Vickrey auction, and also Bidder J in VNR and the Reference Rule.
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in any of the four cases where truthful bidding was the equilibrium strategy (all four

p-values > 0.33), suggesting that when bidding restrictions are in place, bidders follow

the equilibrium strategy closely.55 The fact that I cannot reject truthful bidding for the

G-types also means that I cannot reject hypothesis HC on the restricted bidding sample.

A Kruskal-Wallis test also fails to reject the null that bids in these four cases come from

the same population (p-value=0.96), whereby I also cannot reject hypothesis HS.

Figure 7: Empirical bidding functions (solid) and Nash-Equilibrium (dashed) bidding
functions for L-type bidders, when bidding is restricted. In the Vickrey auction the
truthful-bidding equilibrium is confirmed by data, but actual bidding diverges from
Bayesian-Nash predictions significantly in the other four cases.

55To check for consistency, I also ran this same test for those cases where truthful bidding was not
the equilibrium strategy; consistently with the sign-test results in Table 12, the permutation test also
rejected the null of bid equivalence. Thus in the cases where the theory benchmark did not include truthful
bidding, the sign-test and permutation test outcomes overlap.
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Figure 8: Empirical bidding functions (solid) and Nash-Equilibrium (dashed) bidding
functions for G-type bidders, when bidding is restricted. Bidding restrictions have pre-
vented overbidding, resulting in near-truthful bidding in auctions other than first-price.
In the first-price auction Bayesian-Nash equilibrium predictions are not confirmed.

There are three likely explanations for the discrepancy between the results here and

those of Section 6.3, where all the truthful-bidding equilibrium bidding hypotheses get

rejected. Firstly, it is possible that bidders simply understood the rules of the auction

better in these two sessions, and understood how to pick an equilibrium strategy. Sec-

ondly, putting a cap on bids could have created a ‘focal-point’ in auctions where bidders

notice their bids don’t strongly affect their payments. The bid-functions in for VNR, as

well as Reference Rule in Figure A2 lend some support to this view: the bid functions

are very close to truthful bidding, more so than in the case when bidding is unrestricted,

even though in both cases the observed behaviour is far from the equilibrium prediction.

Finally, the bid-cap may simply be imposing a bid-ceiling in all those cases where bid-

ders would wish to overbid relative to their value, and making these bids observationally

equivalent to Nash equilibrium behaviour.
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Pairwise comparisons of bidding patterns, in Table 13, show that bids are again lowest

in the first-price auction. Similarly to Section 6, I also find that bidding in the Vickrey

auction is significantly higher than in the other three auctions.

Table 13: Pairwise comparisons of bidding under bidding restrictions

Bids Vickrey VNR RR(0.75)[L1] RR(0.75)[L2]

FirstPrice −16.0??? −7.0??? −5.0 −8.0??

Vickrey 8.0??? 10.0??? 8.0??

VNR 2.0 0.0

Reported values are for median-difference of (row - column).

Rejections of zero-difference null at 90%/95%/99% level indicated by ?/??/???.

Bonferroni-Holm corrections applied.

An auction-level summary of revenue, surplus and efficiency is presented in Table 14.

The revenue results in Section 5 were in part driven by overbidding, and with bidding

restrictions in place the revenue is lower in all four auctions. Bidder surplus has corre-

spondingly increased, and the efficiency of all auctions is very high.

Table 14: Auction-level summary of revenue, surplus and efficiency under bidding restric-
tions

Vickrey
[N=160]

FirstPrice
[N=160]

VNR
[N=160]

RR(0.75)
[N=160]

revenue 56.6
(47.7)

97.9
(31.7)

62.7
(35.3)

59.6
(37.1)

surplus 74.2
(46.1)

31.2
(18.9)

60.3
(40.3)

65.6
(40.4)

efficiency 99.2
(5.3)

98.6
(5.6)

99.5
(3.0)

99.5
(2.9)

Means reported, standard deviation below.
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Pairwise tests of revenue and surplus are shown in Table 15. As in the unrestricted

bidding case, the first-price auction is revenue-dominant over the other three rules at

the 99% level, while no other tests reject revenue equivalence. Surplus in the first-price

auction is accordingly lower than under the other rules. In addition, the pairwise test

between the Vickrey auction and VNR rejects at the 95% level, with surplus being lower

under VNR. A test between the Vickrey auction and the Reference-Rule does not reject

a zero-difference null, hence I cannot obtain a full ranking.

Table 15: Pairwise comparison of revenue and surplus under restricted bidding

Revenue Vickrey VNR RR(0.75)

FirstPrice 47.0??? 37.0??? 41.0???

Vickrey −10.0 −6.0
VNR 4.0

Surplus Vickrey VNR RR(0.75)

FirstPrice −38.0??? −25.0??? −30.0???

Vickrey 13.0?? 8.0
VNR −5.0

Reported values are for median-difference of (row - column).

Rejections of zero-difference null at 90%/95%/99% level

indicated by ?/??/???; Bonferroni-Holm corrections applied.

When bidding is restricted, the efficiency properties of the four rules are very similar.

A Kruskal-Wallis test fails to reject the null that the efficiency draws for all four auction

come from the same population. In Section 5 I found the Vickrey auction to be least

efficient due to prevalent overbidding above value, but here bidding restrictions prevent

such behaviour.

In sum, the auction-level findings from the experiments with restricted bidding are

close to the findings in Section 5. The first-price auction is still revenue-dominant, and no

less efficient than any of the other rules analysed. The Vickrey auction does not perform

as poorly under bidding restrictions as it does under unrestricted bidding: removing the

possibility for overbidding, and with it the opportunity for collusion, eliminates the cases

in which the Vickrey auction underperforms most acutely.

47



10.3 Further results from testing for sophistication

As shown in Table 6, the sophistication hypothesis gets rejected because local bidders

have a profitable unilateral deviation towards BNE-bidding. However, the BNE bidding

functions from Ausubel and Baranov (2010) are not the best best response to actual bids

in the experiment: as seen in Figure 5, the numerically calculated best-responses don’t

exactly overlap with the Bayesian-Nash results. Intuitively, the unilateral deviation to-

wards this calculated best-response bidding function should be even more profitable than

a deviation towards Bayesian-Nash bidding, so the sophistication hypothesis should be

even more soundly rejected. Table ?? shows that the the hypothesis is rejected in exactly

the same cases as when deviating towards Bayesian-Nash bidding, but the expected profit

is now higher. For the global bidder, the only difference emerges in the first-price auction;

in the other auctions the Bayesian-Nash and numerically calculated best responses coin-

cide. The number of cases in which sophisticated bidding thus remains the same, though

the profit difference is now larger.

Table 16: Testing for sophisticated bidding: surplus from actual bids vs. unilateral
deviation to numerically-calculated best response. In 6 of 11 cases, a unilateral deviation
gives a significantly higher surplus, at the 90% level or stricter. This

L-types Vickrey FirstPrice VNR RR(0.50) RR(0.75)-L1 RR(0.75)-L2

Win% 67.1(55.7)??? 47.1(33.9)??? 47.9(37.9)??? 39.3(33.6)??? 52.9(35.7)??? 52.9(47.1)?

Surplus 31.0(40.5)? 14.3(42.0)??? 26.5(40.7)??? 21.0(33.5)?? 14.9(44.3)??? 25.8(32.2)

G-type

Win% 32.9(26.4)?? 52.9(39.3)??? 52.1(50.7) 60.7(55.7) 47.1(42.9)

Surplus 31.0(39.0) 25.0(61.0)??? 55.0(58.0) 45.0(48.5) 47.0(57.5)

For surplus, experimental medians reported; ‘unilateral deviation’ medians in parentheses.

Sign-test used for testing the win% variable, median-based permutation test used for surplus.

Rejections of zero-difference null at 90%/95%/99% level indicated by ?/??/???.

10.4 Sample Instructions for the Experiment
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