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Abstract

The realized stochastic volatility model of Takahashi, Omori, and Watanabe (2009),

which incorporates the asymmetric stochastic volatility model with the realized volatil-

ity, is extended with more general form of bias correction in realized volatility and

wider class distribution, the generalized hyperbolic skew Student’s t-distribution, for

financial returns. The extensions make it possible to adjust the bias due to the market

microstructure noise and non-trading hours, which possibly depends on the level of the

volatility, and to consider the heavy tail and skewness in financial returns. With the

Bayesian estimation scheme via Markov chain Monte Carlo method, the model enables

us to estimate the parameters in the return distribution and in the model jointly. It

also makes it possible to forecast volatility and return quantiles by sampling from their

posterior distributions jointly. The model is applied to quantile forecasts of financial

returns such as value-at-risk and expected shortfall as well as volatility forecasts and

those forecasts are evaluated by several backtesting procedures. Empirical results with

SPDR, the S&P 500 exchange-traded fund, show that the heavy tail and skewness of

daily returns are important for the model fit and the quantile forecasts but not for

the volatility forecasts, and that the additional bias correction improves the quantile

forecasts but does not substantially improve the model fit nor the volatility forecasts.
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1 Introduction

Quantile forecasts of financial returns, as well as volatility forecasts, are important to as-

sess the financial risk. For example, the value-at-risk (VaR) and expected shortfall (ES),

computed from the quantile forecasts, have been widely known as measures of the financial

tail risk. There are two important aspects for the quantile forecasts: the distribution of

financial returns and the volatility. That is, it is essential for the quantile forecasts to model

the distribution of financial return and the volatility jointly.

The volatility is unobservable and thus needed to be estimated from the available data.

The volatility estimators are divided into two categories: model-based and model-free

volatility estimators. The model-based estimator assumes a certain model or process on

the dynamics of the latent volatility while the model-free estimator does not require any

specific model on the volatility dynamics.

A number of volatility models have been studied for decades. One of the most widely

used is the autoregressive conditional heteroskedasticity (ARCH) family including ARCH

model of Engle (1982), generalized ARCH (GARCH) model by Bollerslev (1986), and their

extensions (see, for example, Andersen, Bollerslev, Christoffersen, and Diebold (2013)).

Another well-known family is the stochastic volatility (SV) models, developed by Taylor

(1986). Shephard (1996) provides a comprehensive explanation of the SV models. Empirical

studies with the volatility models have shown that the distribution of financial returns

are well described by the fat tail and negative skewness. Aas and Haff (2006) introduce

the general distribution class, called generalized hyperbolic distribution, which can take a

flexible form to fit the return characteristics.

The model-free volatility estimator utilizes the recent availability of the high frequency

data which contains the price and other asset characteristics sampled at a time horizon

shorter than one day. Andersen and Bollerslev (1998) propose the so-called realized volatil-

ity (RV) as an accurate volatility measure computed from 5-minute returns. Under some

assumptions, the RV is a consistent estimator of the true volatility. More detail properties

of the RV can be found in Andersen, Bollerslev, and Diebold (2010) and references therein.

The realized volatility, however, has two practical problems in the real market, which

results in a bias in the RV estimator. First, there are non-trading hours when we cannot

obtain high frequency returns. For example, In New York Stock Exchange, assets are

usually traded from 9 a.m. through 4 p.m. Therefore, computing the RV from only the

available intraday returns results in the downward bias. Second, the RV is influenced by the
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market microstructure noise (MMN) such as bid-ask bounce1, which also causes a bias in

the estimator. In general, the MMN effect becomes larger for the higher sampling frequency

while the information loss becomes larger for the lower frequency. Hansen and Lunde (2006)

and Ubukata and Oya (2008) study the effects of the market microstructure noise on the

RV estimator.

There are various methods available to mitigate the bias in the RV estimator. For ex-

ample, Hansen and Lunde (2005) suggest simple scaling methods to adjust the bias due

to the non-trading hours. Additionally, Bandi and Russell (2006, 2008) propose an op-

timal sampling frequency which balance the trade off between the MMN effect and the

information loss. Moreover, to alleviate the MMN effect, Zhang, Mykland, and Aı̈t-Sahalia

(2005) suggest a multi-scale approach which combines several RVs calculated from returns

with different frequencies whereas Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)

propose the kernel based estimator called the realized kernel (RK).

Instead of correcting the bias preemptively, contemporaneous modeling of financial re-

turns and the RV measures, which can adjust the bias within the models, have been pro-

posed. Takahashi, Omori, and Watanabe (2009) propose to model daily returns and the

RV estimator simultaneously under the framework of the SV model. Dobrev and Szer-

szen (2010) and Koopman and Scharth (2013) propose the models in a similar manner. In

line with Koopman and Scharth (2013), we call the contemporaneous model with the RV

measure as the realized SV (RSV) model. Additionally, Hansen, Huang, and Shek (2011)

propose to extend GARCH models incorporating them with the realized volatility, which

is called the realized GARCH model. The contemporaneous models can adjust the RV

bias within the models and make it possible to estimate parameters in return and volatility

equations jointly.

The RV models have been applied to quantile forecasts. Giot and Laurent (2004) and

Clements, Galvão, and Kim (2008) investigate the quantile forecast performance of GARCH

models with the RV estimator although they are not fully contemporaneous models. Re-

cently, Watanabe (2012) applies the realized GARCH model to quantile forecasts and show

that the RV estimator improves the forecast performance and that the realized GARCH

model can adjust the bias of the RV caused by the MMN. The RSV model, however, has

not been fully applied to quantile forecasts2.

1O’Hara (1995) and Hasbrouck (2007) provide a comprehensive description of the market microstructure

theory and its applications
2Dobrev and Szerszen (2010) apply their model to the VaR forecasts but do not examine its performance
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In this paper, we extend the RSV model of Takahashi, Omori, and Watanabe (2009)

with a nonlinear bias correction in the RV measure and the generalized hyperbolic (GH)

skew Student’s t-distribution, which includes normal and Student’s t-distributions as special

cases, and apply the model to volatility and quantile forecasts. Bayesian estimation scheme

via Markov chain Monte Carlo (MCMC) technique enables us to estimate the parameters

in the distribution of financial returns and in the model jointly, which also makes it possible

to adjust the bias of the RV estimator simultaneously. The MCMC technique samples the

future volatility and return jointly from their posterior distributions. Using the samples of

the future volatility and return, we can easily compute the volatility and quantile forecasts

such as the VaR and ES.

We apply the model to daily returns and RKs of SPDR, the S&P 500 exchange-traded

fund. The estimation results show that the RSV model with the GH skew Student’s t-

distribution fits the data well, provided that appropriate priors are used, but the additional

bias correction does not improve the model fit. The prediction results show that the RSV

models with the skew Student’s t-distribution and the additional bias correction perform

well for the ES forecasts but not for the volatility nor the VaR forecasts. Overall, the heavy

tail and skewness of daily returns as well as the additional bias correction are important for

the quantile forecasts, especially for the ES, but not for the volatility forecasts.

The paper is organized as follows. Section 2 describes the extended RSV model and

explains the procedures to estimate the parameters, volatility and quantile forecasts jointly

via the MCMC technique. Section 3 introduces the evaluation methods for the volatility and

quantile forecasts followed by empirical studies in Section 4. Finally, Section 5 concludes

the paper.

2 Realized Stochastic Volatility Model

We extend the RSV model proposed by Takahashi, Omori, and Watanabe (2009) with the

GH skew Student’s t-distribution as follows:

rt =
β(zt − µz) +

√
ztϵt√

β2σ2z + µz
exp(ht/2), t = 1, . . . , n, (1)

xt = ξ + ψht + ut, t = 1, . . . , n, (2)

ht+1 = µ+ ϕ(ht − µ) + ηt, t = 0, . . . , n− 1, (3)

formally.
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where rt is an asset return, xt is a logarithm of RVmeasure, ht is an unobserved log-volatility,

and

zt ∼ IG
(ν
2
,
ν

2

)
, µz = E[zt] =

ν

ν − 2
, σ2z = V ar[zt] =

2ν2

(ν − 2)2(ν − 4)
, (4)

ϵt

ut

ηt

 ∼ N(0,Σ), Σ =


1 0 ρση

0 σ2u 0

ρση 0 σ2η

 ., (5)

where IG(·, ·) denotes the inverse gamma distribution. We assume that |ϕ| < 1 for a

stationarity of the log-volatility process,

h0 = µ, η0 ∼ N(0, σ2η/(1− ϕ2)), (6)

and ν > 4 for the existence of the variance of zt. The term
√
β2σ2z + µz standardizes the

return so that the variance of the return is exp(ht).

The parameter ξ in (2) corrects the bias due to the MMN and non-trading hours. If ξ

is positive, the RV estimator has an upward bias, which implies that the effect of the MMN

dominates that of non-trading hours, and vice versa. Following Hansen, Huang, and Shek

(2011), the parameter ψ, which is assumed to be one in Takahashi, Omori, and Watanabe

(2009), is added to allow more general bias correction depending on the level of the volatility.

With the bias correction parameters, the expectation of the RV measure conditional on ht

becomes

E[exp(xt)|ht] = exp

(
ξ + ψht +

1

2
σ2u

)
= exp

(
ξ +

1

2
σ2u

)
σ2ψt , (7)

where σ2t = exp(ht). That is, ξ and ψ correspond to the linear and non-linear bias correction

terms, respectively.

The parameter ρ in (5) captures the correlation between rt and ht+1. A negative value

of ρ implies a negative correlation between today’s return and tomorrow’s volatility, which

is the well known phenomenon in stock markets and referred to as the volatility asymmetry.

The return distribution is important in its quantile forecasts. Following Nakajima and

Omori (2012), we employ the subclass of the GH distribution, which includes the Student’s

t distribution as a special case of β = 0 as well as the normal distribution with β = 0 and

ν → ∞ (i.e., zt = 1 for all t). The GH distribution has a wider class of distribution but

the parameters of the GH distribution are difficult to estimate as pointed out by Prause

(1999) and Aas and Haff (2006). Nakajima and Omori (2012) also show that a wider class

5



of the GH distribution could lead to either the inefficient MCMC sampling or the over-

parametrization. Thus, we focus on the GH skew Student’s t-distribution throughout the

paper. Following Nakajima and Omori (2012), we refer to the RSV model with the GH skew

Student’s t-distribution as the RSVskt model, hereafter. Similarly, the RSV models with

the Student’s t and normal distributions are referred to as the RSVt and RSVn models,

respectively.

2.1 Estimation

To estimate the RSVskt model, we combine the MCMC algorithms for Bayesian estimation

scheme of the SVskt model proposed by Nakajima and Omori (2012) and the RSV model by

Takahashi, Omori, and Watanabe (2009). Let θ = (ϕ, ση, ρ, µ, β, ν, ξ, ψ, σu), y = {rt, xt}nt=1,

h = {ht}nt=1, and z = {zt}nt=1. Then, we draw random samples from the posterior distribu-

tions of (θ, h, z) given y for the RSVskt model using the MCMC method as follows:

0. Initialize θ, h, and z.

1. Generate ϕ|ση, ρ, µ, β, ν, ξ, ψ, σu, h, z, y.

2. Generate (ση, ρ)|ϕ, µ, β, ν, ξ, ψ, σu, h, z, y.

3. Generate µ|ϕ, ση, ρ, β, ν, ξ, ψ, σu, h, z, y.

4. Generate β|ϕ, ση, ρ, µ, ν, ξ, ψ, σu, h, z, y.

5. Generate ν|ϕ, ση, ρ, µ, β, ξ, ψ, σu, h, z, y.

6. Generate ξ|ϕ, ση, ρ, µ, β, ν, ψ, σu, h, z, y.

7. Generate ψ|ϕ, ση, ρ, µ, β, ν, ξ, σu, h, z, y.

8. Generate σu|ϕ, ση, ρ, µ, β, ν, ξ, ψ, h, z, y.

9. Generate z|θ, h, y.

10. Generate h|θ, z, y.

11. Go to 1.

Since ut is independently and identically distributed, we can implement the same sampling

scheme proposed by Nakajima and Omori (2012) for steps 1-5 and 9. We can also easily

modify the sampling scheme by Takahashi, Omori, and Watanabe (2009) for steps 6-8 and

10. The detail procedures are given in Appendix.
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2.2 Volatility and Quantile Forecasts

To obtain the one-day-ahead log-volatility, daily return, and log-RV measure, we add the

following sampling scheme after the step 10 of the MCMC algorithm described above.

i. Generate hn+1|θ, h, z, y ∼ N(µn+1, σ
2
n+1), where

µn+1 = µ+ ϕ(hn − µ) + ρση

√
β2σ2z + µzrn − βz̄n exp(hn/2)√

zn exp(hn/2)
, (8)

σ2n+1 = (1− ρ2)σ2η. (9)

ii. Generate zn+1 ∼ IG(ν/2, ν/2).

iii. Generate rn+1|θ, hn+1, zn+1 ∼ N(µ̂n+1, σ̂
2
n+1), where

µ̂n+1 =
β(zn+1 − µz) exp(hn+1/2)√

β2σ2z + µz
, (10)

σ̂2n+1 =
zn+1 exp(hn+1)

β2σ2z + µz
. (11)

iv. Generate xn+1|θ, hn+1 ∼ N(ξ + ψhn+1, σ
2
η).

The quantile forecasts, VaR and ES, can easily be computed from the predictive distri-

butions of financial returns obtained above. Let VaRt(α) be the one-day-ahead forecast for

the VaR of the daily return rt with probability α. Then, assuming the long position, the

VaR forecast satisfies

Pr[rt < VaRt(α)|It−1] = α, (12)

where It−1 is the available information up to t− 1.

Although the VaR has been widely used to evaluate the quantile forecast of financial re-

turns, it only measures a quantile of the distribution and ignores the important information

of the tail beyond the quantile. To evaluate the quantile forecast with tail information, we

compute the ES, which is defined as the conditional expectation of the return given that it

violates the VaR. The one-day-ahead forecast of the ES with probability α, ESt(α), satisfies

ESt(α) = E[rt|rt < VaRt(α), It−1]. (13)

Let n and T be the number of samples for the estimation and prediction, respec-

tively. Then, the one-day-ahead forecasts of the VaR (VaRn+1, . . . ,VaRn+T ) and the ES

(ESn+1(α), . . . ,ESn+T (α)) are computed repeatedly in the following way.
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1. Set i = 1.

2. Generate the MCMC sample of the model parameters and one-day-ahead return rn+i

using the sample of (y1, . . . , yn+i−1).

3. Compute VaRn+i(α) as the α-percentile of the MCMC sample of rn+i.

4. Compute ESn+i(α) as a sample average of rn+i conditional on rn+i < VaRn+i(α).

5. Set i = i+ 1 and return to 1 while i < T .

3 Evaluation of Volatility and Quantile Forecasts

3.1 Backtesting Value-at-Risk

This section introduces several backtesting methods for the VaR forecasts obtained by the

algorithm in Section 2.2. Let T be the number of VaR forecasts and T1 be the number of

times when the VaR is violated, i.e., rt < VaRt(α). Then the empirical failure rate is defined

as π̂1 = T1/T . Kupiec (1995) proposes the likelihood ratio (LR) test for the null hypothesis

of π1 = α, where π1 is the true failure rate. Since this is a test that on average the coverage

is correct, Christoffersen (1998) refers to this as the correct unconditional coverage test.

Let L(p) be the likelihood function for an i.i.d. Bernoulli with probability p, that is,

L(p) = pT1(1− p)T−T1 . (14)

The LR statistic of the unconditional coverage test is then

LRuc = 2{lnL(π̂1)− lnL(α)}, (15)

which is asymptotically distributed as a χ2(1) under the null hypothesis of π1 = α. Note

that this test implicitly assumes that the violations are independent.

To test the independence hypothesis explicitly, Christoffersen (1998) considers the al-

ternative of the first-order Markov process with the switching probability matrix

Π =

 1− π01 π01

1− π11 π11

 , (16)

where πij is the probability of an i ∈ {0, 1} on day t − 1 being followed by a j ∈ {0, 1} on

day t (1 represents a violation and 0 not). The likelihood under the alternative hypothesis

is

L(π01, π11) = (1− π01)
T0−T01πT0101 (1− π11)

T1−T11πT1111 , (17)
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where T0 = T −T1 and Tij denotes the number of observations with a j following an i. The

maximum likelihood estimates of πi1 are f̂i1 = Ti1/Ti for all i. The LR statistic for the null

hypothesis of independence, π01 = π11, is then

LRind = 2{lnL(π̂01, π̂11)− lnL(π̂1)}, (18)

which is again asymptotically distributed as a χ2(1) under the null hypothesis3.

The two tests for the unconditional coverage and independence can be combined in one

test with the null hypothesis of π01 = π11 = α. Christoffersen (1998) refers to this test as

the test of conditional coverage. The LR statistic of the conditional coverage is

LRcc = LRuc + LRind = 2{lnL(π̂01, π̂11)− lnL(α)}, (19)

which is asymptotically distributed as a χ2(2) under the null hypothesis of π01 = π11 = α.

Although the above test considers the clustered violations, which is an important signal of

risk model misspecification, the first-order Markov alternative represents a limited form of

clustering.

Christoffersen and Pelletier (2004) propose more general tests for the clustering based

on the duration of days between the violations of the VaR. Define the duration of time (the

number of days) between two VaR violations as

Di = ti − ti−1, (20)

where ti denotes the day of i-th violation. Under the null hypothesis of independent VaR

violations, the duration has no memory and its mean of 1/α days. The exponential distri-

bution is the only continuous distribution with these properties. Under the null hypothesis,

the likelihood of the durations is then

fexp(D;α) = α exp(−αD). (21)

As a simple alternative of dependent durations, we consider the Weibull distribution

which includes the null of exponential distribution as a special case. Under the Weibull

alternative, the distribution of the duration is

fW (D; a, b) = abbDb−1 exp{−(aD)b}, (22)

3If the sample has T11 = 0, which may happen in small samples with small α, the likelihood is computed

as L((π01, π11) = (1− π01)
T0−T01πT01

01 .
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which becomes the exponential one with probability parameter a when b = 1. The null

hypothesis is then b = 1 in this case. This test can capture the higher-order dependence in

the VaR violations by testing the unconditional distribution of the durations.

To test the conditional dependence of the VaR violations, we consider the exponential

autoregressive conditional duration (EACD) framework of Engle and Russell (1998). The

simple EACD(0,1) model characterizes the conditional expected duration, ψi, as

ψi = E[Di] = c+ dDi−1, (23)

where d ∈ [0, 1). Assuming the exponential distribution with mean one for the error term,

Di − ψi, the conditional distribution of the duration is

fEACD(Di|ψi) =
1

ψi
exp

(
−Di

ψi

)
. (24)

The null hypothesis of the independent durations is then d = 0 against the alternative of

the conditional durations.

To implement the (un)conditional duration tests, we need to compute the likelihood of

the durations with a different treatment for the first and last durations. Let Ci indicate if

a duration is censored (Ci = 1) or not (Ci = 0). For the first observation, if the violation

does not occur, then D1 is the number of days until the first violation occurs and C1 = 1

because the observed duration is left-censored. If instead the violation occurs at the first

day, then D1 is the number of days until the second violation and C1 = 0. The similar

procedure is applied to the last duration, DN(T ). If the violation does not occur for the last

observation, thenDN(T ) is the number of days after the last violation and CN(T ) = 1 because

the observed duration is right-censored. If instead the violation occurs at the last day, then

DN(T ) = tN(T ) − tN(T )−1 and CN(t) = 0. For the rest of observations, Di is the number of

days between each violation and Ci = 0. The log-likelihood under the distribution, f , is

then

lnL(D; Θ) = C1 lnS(D1) + (1− C1) ln f(D1) +

N(T )−1∑
i=2

ln f(Di)

+ CN(T ) lnS(DN(T )) + (1− CN(T )) ln f(DN(T )), (25)

where we use the survival function S(Di) = 1 − F (Di) for a censored observation since it

is unknown whether the process lasts at least Di days. The parameters of the likelihood

under the alternative specifications (a and b of the Weibull distribution and c and d of

the EACD(0,1) model) need to be estimated numerically since the maximum likelihood

10



estimates has no closed form solutions. Since the sample size is not large and EACD(0,1)

model has a potential difficulty to obtain the asymptotic distribution, we take the Monte

Carlo testing technique of Dufour (2006) and follow the specific testing procedure of the

LR tests by Christoffersen and Pelletier (2004).

3.2 Backtesting Expected Shortfall

To backtest the ES forecasts with probability α, we use the measure proposed by Embrechts,

Kaufmann, and Patie (2005). Define δt(α) = rt − ESt(α) and κ(α) as a set of time points

for which a violation of the VaR occurs. Further, define τ(α) as a set of time points for

which δt(α) < q(α) occurs, where q(α) is the empirical α-quantile of δt(α). The measure is

then defined as

V (α) =
|V1(α)|+ |V2(α)|

2
, (26)

where

V1(α) =
1

T1

∑
t∈κ(α)

δt(α), V2(α) =
1

T2

∑
t∈τ(α)

δt(α), (27)

and T1 and T2 are the numbers of time points in κ(α) and τ(α), respectively. V1(α) evaluates

excess of the VaR estimates and provides the standard backtesting measure of the ES

estimates. Since only the values with the violations are considered, this measure strongly

depends on the VaR estimates without adequately reflecting the correctness of these values.

To correct this weakness, a penalty term V2(α), which evaluates the values which should

happen once every 1/α days, is combined with V1(α). Better ES estimates provide lower

values of both |V1(α)| and |V2(α)| and so for V (α).

3.3 Loss Functions for Volatility Forecasts

To evaluate the volatility forecasts of different models, we use two loss functions, mean

squared error (MSE) and quasi-likelihood (QLIKE) up to additive and multiplicative con-

stants. Let σ̂2t and ht be a volatility proxy and volatility forecast, respectively. Then, the

two loss functions are given as

MSE =
1

T

T∑
t=1

(σ̂2t − ht)
2

2
, QLIKE =

1

T

T∑
t=1

(
σ̂2t
ht

− log
σ̂2t
ht

− 1

)
. (28)
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Since the true volatility is unobservable, the loss functions are computed using an imperfect

volatility proxy, σ̂2t . However, Patton (2011) shows that some class of loss functions includ-

ing the above two provides a ranking consistent with the one using the true volatility as long

as the volatility proxy is a conditionally unbiased estimator of volatility, i.e., Et−1[σ̂
2
t ] = σ2t .

4 Empirical Studies

4.1 Data

We use the daily return and RK of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)

for SPDR, the S&P 500 ETF, obtained from Oxford-Man Institute4. The sample contains

1905 trading days from February 1, 2001 through August 29, 2008. We use the first 1121

samples to evaluate the in-sample performance of the extended RSV models and the re-

maining 784 samples for prediction. Table 1 shows the descriptive statistics of the daily

return and RK for the two periods. The skewness of the daily return is significantly negative

for the prediction period but not for the estimation period.

The variation of the data characteristics enables us to investigate the effectiveness and

robustness of the extended RSV model. In Section 4.2, we show the estimation results of

the RSV models. In Section 4.3, we show the results of the volatility and quantile forecasts

for the prediction period. From the descriptive statistics, we expect that the GH skew

Student’s t distribution fits well for the prediction period and provides better forecasts

than the normal distribution.

4.2 Estimation Results

Table 2 shows the MCMC estimation results of the RSV models with normal, Student’s t,

and skew t distributions obtained by 20000 samples recorded after discarding 5000 samples

from MCMC iterations5. For ease of explanation, we label the RSV models with the re-

stricted bias correction ψ = 1 as RSV models and the ones with the general bias correction

ψ ∈ R as RSVC models. We estimate the RSV and RSVC models with the priors for the

4Noureldin, Shephard, and Sheppard (2012) provide the detailed explanation of the data.
5All calculations in this paper are done by using Ox of Doornik (2009).
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parameters as follows:

µ ∼ N(0, 10), β ∼ N(0, 1), ν ∼ Gamma(a, b)I(ν > 4), (29)

ξ ∼ N(0, 1), ψ ∼ N(1, 1), σ−2
u ∼ Gamma(2.5, 0.1), (30)

ϕ+ 1

2
∼ Beta(20, 1.5), σ−2

η ∼ Gamma(2.5, 0.025),
ρ+ 1

2
∼ Beta(1, 2). (31)

We check the sensitivity to the priors for ν by picking (a, b) = (5, 0.5), (1, 0.1), (0.1, 0.01),

which implies the mean of 10 for all cases and standard deviations of 4.47, 10, and 31.62,

respectively.

In Table 2, the parameters specifying the stochastic volatility dynamics are consistent

with the stylized features in the volatility literature. The posterior mean of ϕ is close to one

for all models, which indicates the high persistence of volatility. Additionally, the posterior

mean of ρ is negative and the 95% credible interval does not contain zero for all models,

which confirms the volatility asymmetry. The posterior mean of µ are similar among models.

These results hold irrespective of the prior for ν.

The parameters specifying the return distribution reflect the data characteristics in the

estimation period in Table 1. The posterior mean of β is positive but the 95% credible

interval contains zero for all models, which is consistent with that the skewness of daily

returns is not significant for the estimation period. The posterior mean of ν increases from

25 to more than 100 as its prior becomes dispersed, which implies that the fat tail is not

significant for the period.

The parameters specifying the realized volatility are qualitatively similar among models

irrespective of the prior for ν. The posterior means of ξ are negative and the credible

intervals do not contain zero for all models, showing the downward bias of the RK mainly

due to the non-trading hours. Additionally, the posterior means of ψ are less than one

and the credible intervals do not contain one, which indicates the statistically significant

nonlinear bias of the RK.

For model comparisons, the marginal likelihood is computed by the method of Chib and

Greenberg (1995). The likelihood is estimated using the auxiliary particle filter of Pitt and

Shephard (1999) with 10000 particles. The likelihood estimate and its standard error are

obtained as the sample mean and standard deviation of the likelihoods from 10 iterations.

The posterior probability density and its numerical standard error are evaluated by the

method of Chib and Greenberg (1995) and Chib and Jeliazkov (2001) with 50000 reduced

MCMC samples.
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Table 3 shows the marginal likelihood estimates. Irrespective of the prior for ν, the

RSV models give higher marginal likelihoods than the RSVC models, which implies that

the nonlinear bias correction does not improve the model fit. The RSVn model as well

as the RSVt and RSVskt models with the most dispersed prior for ν provide the highest

marginal likelihood whereas the RSVt and RSVskt models with less dispersed priors give

significantly lower values. This result confirms that the fat tail and skewness does not

improve the model fit for the estimation period.

The GH skew t-distribution, however, performs as good as the normal distribution and

is expected to perform better than the normal when the returns are more volatile and

skewed. Figure 1 shows the posterior mean and the 95% credible interval of the parameter

β for the RSVskt and RSVCskt models obtained from the rolling estimation using 1121

samples each time. The first posterior mean and 95% interval are obtained from the MCMC

estimation using 1121 samples from February 1, 2001 through July 20, 2005. The second

ones correspond to the one using one day ahead 1121 samples from February 2, 2001 through

July 21, 2005. We continue the rolling estimation until the 1121 samples from March 18,

2004 through August 28, 2008. As the rolling estimation proceeds, the posterior means and

the 95% intervals become below zero. Thus, the RSVskt and RSVCskt models are expected

to perform well in the prediction. We examine this conjecture in the following subsection.

4.3 Prediction Results

We implement the rolling estimation described above and obtain 784 samples of the one-

day-ahead forecasts of the latent volatility and quantiles of daily returns from July 21, 2005

through August 29, 2008. We use the prior ν ∼ Gamma(5, 0.5)I(ν > 4)6 and compute the

VaR and ES forecasts for the probabilities of α = 0.005, 0.01, 0.05, and 0.1.

Table 4 shows the MSE and QLIKE of the volatility forecasts with the RK as a proxy of

the latent volatility7. The RSV models outperform the RSVC models, which indicates that

the additional bias correction with ψ is not effective for the volatility forecasts. Moreover,

the RSVn model performs better than the RSVt and RSVskt models, which implies that

the heavy-tail and the skewness do not improve the volatility forecasts.

Table 5 shows the backtesting measures of the ES forecasts proposed by Embrechts,

6We also implement the rolling estimation with the prior ν ∼ Gamma(0.1, 0.01)I(ν > 4) and obtain the

similar results.
7Following Hansen and Lunde (2005), we adjust the effect of the non-trading hours by multiplying the

RKs by the ratio of the sum of squared daily returns to the sum of RKs.
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Kaufmann, and Patie (2005). The RSVCskt model shows the best performance for the

cases of 0.5% and 1% whereas the RSVskt model does for 5$ and 10%. This indicates the

effectiveness of the additional bias correction for the ES forecasts and the importance of the

fat tail and skewness in the return distribution. That is, the general specifications of both

the bias correction and return distribution are important for the ES forecasts.

Tables 6 and 7 show the empirical failure rates (both conditional and unconditional) and

the finite sample p-values of the Markov, Weibull, and EACD tests for the VaR forecasts,

respectively. The empirical failure rates are higher than the null probabilities in most cases

due to the VaR violations in a volatile period from 2007 through 2008 as depicted in Figure

2. Moreover, the failure rates are similar in most cases and consequently we obtain the

mixed results for the p-values.

5 Conclusion

The RSV model of Takahashi, Omori, and Watanabe (2009), which incorporates the asym-

metric SV model with the RV estimator, is extended with the more general bias correction

in the RV and the GH skew Student’s t-distribution, for financial returns. The extensions

make it possible to adjust the bias due to the MMN and non-trading hours, which possibly

depends on the level of the volatility, and to consider the heavy tail and skewness in financial

returns. With the Bayesian estimation scheme via Markov chain Monte Carlo method, the

model enables us to estimate the parameters in the return distribution and in the model

simultaneously. It also makes it possible to forecast the volatility and return quantiles by

sampling from their posterior distributions jointly.

We apply the model to daily returns and RKs of SPDR, the S&P 500 exchange-traded

fund. The estimation results show that the RSVskt model with the most dispersed prior

for ν performs well whereas the additional bias correction does not improve the model fit.

The prediction results show that the RSVtskt and RSVCskt models perform well for the

ES forecasts but not for the volatility nor the VaR forecasts. Overall, the heavy tail and

skewness of daily returns as well as the additional bias correction are important for the

quantile forecasts, especially for the ES, but not for the volatility forecasts.

The RSV model has been extended in several directions. Recently, Trojan (2013) pro-

poses a regime switching RSVCskt model and confirms several regimes in the S&P 500 index

data. Additionally, extending the univariate RSV model to the multivariate model enables

the portfolio risk management and optimal portfolio selection. Moreover, the RSV model
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can be extended to utilize multiple realized measures. For example, modeling multiple

realized measures with different frequencies and/or different computational methods may

improve the volatility and quantile prediction as well as the model fit. In fact, Hansen and

Huang (2012) introduce the realized exponential GARCH model which can utilize multiple

RV measures and show that the model with multiple measures dominates the one with a

single measure. We leave these extensions for future research.

Appendices

A MCMC Sampling Procedure

Let θ = (ϕ, ση, ρ, µ, β, ν, ξ, ψ, σu), y = {rt, xt}nt=1, h = {ht}nt=1, z = {zt}nt=1, and Θ =

(θ, h, z). We denote a prior distribution of an arbitrary variable w as f(w) and its (condi-

tional) posterior as f(w|·). Given y, the full posterior density is

f(Θ|y) ∝ f(r|Θ)× f(x|θ, h)× f(h|z, θ)× f(z|θ)× f(θ) (32)

=
n−1∏
t=1

f(rt|θ, ht, ht+1, zt)f(rn|θ, hn)×
n∏
t=1

f(xt|θ, ht) (33)

× f(h1|θ)
n−1∏
t=1

f(ht+1|θ, ht)×
n∏
t=1

f(zt|θ)× f(θ) (34)

=
n−1∏
t=1

f(ht+1|θ, ht, zt, rt)× f(h1|θ)×
n∏
t=1

f(rt|θ, ht, zt)×
n∏
t=1

f(xt|θ, ht) (35)

×
n∏
t=1

f(zt|θ)× f(θ) (36)

∝ (1− ρ2)−(n−1)/2σ−(n−1)
η

n−1∏
t=1

exp

{
−(h̄t+1 − ϕh̄t − r̄t)

2

2(1− ρ2)σ2η

}
(37)

× (1− ϕ2)1/2σ−1
η exp

{
−(1− ϕ2)h̄21

2σ2η

}
(38)

× (β2σ2z + µz)
n/2

n∏
t=1

z
−1/2
t exp

(
−ht

2
− r̃2t

2

)
(39)

× σ−nu

n∏
t=1

exp

{
−(xt − ξ − ψht)

2

2σ2u

}
(40)

×
(ν
2

)nν/2
Γ
(ν
2

)−n n∏
t+1

z
−ν/2+1
t exp

(
− ν

2zt

)
× f(θ), (41)
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where

r̃t =

√
β2σ2z + µzrt exp(−ht/2)− βz̄t√

zt
, h̄t = ht − µ, r̄t = ρση r̃t, z̄t = zt − µz (42)

We can sample w ∈ Θ from the posterior density given other parameters and variables Θ−w.

Let θ1 = (ϕ, ση, ρ, µ), θ2 = (β, ν), and θ3 = (ξ, ψ, σu). The following sections describe how

to sample θ1, θ2, θ3, z, and h, respectively.

A.1 Generation of θ1

Given θ2, h, and z, the full conditional density of θ1 is

f(θ1|θ2, h, y) ∝ (1− ρ2)−(n−1)/2σ−(n−1)
η

n−1∏
t=1

exp

{
−(h̄t+1 − ϕh̄t − r̄t)

2

2(1− ρ2)σ2η

}
(43)

× (1− ϕ2)1/2σ−1
η exp

{
−(1− ϕ2)h̄21

2σ2η

}
× f(θ1), (44)

which is similar to the one for the SVskt model of Nakajima and Omori (2012). Thus, we

follow the same sampling procedure described in Nakajima and Omori (2012) with different

specifications of r̄t defined in equation (42).

A.2 Generation of θ2

Given θ1, h, and z, the full conditional density of θ2 is

f(θ2|θ1, h, z, y) ∝
n−1∏
t=1

exp

{
−(h̄t+1 − ϕh̄t − r̄t)

2

2(1− ρ2)σ2η

}
× (β2σ2z + µz)

n/2
n∏
t=1

exp

(
− r̄

2
t

2

)
(45)

×
(ν
2

)nν/2
Γ
(ν
2

)−n n∏
t+1

z
−ν/2+1
t exp

(
− ν

2zt

)
× f(θ2). (46)

Since it is not easy to sample from this density, we apply the Metropolis-Hastings (MH)

algorithm based on a normal approximation of the density around the mode. We implement

the MH sampling for β and ν separately.

A.3 Generation of θ3

Given θ1, θ2, h, and z, the full conditional density of θ3 is

f(θ3|θ1, θ2, h, z, y) ∝ σ−nu

n∏
t=1

exp

{
−(xt − ξ − ψht)

2

2σ2u

}
× f(θ3). (47)
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Let the prior distributions of parameters in θ3 be

ξ ∼ N(mξ, s
2
ξ), ψ ∼ N(mψ, s

2
ψ), σ−2

u ∼ Gamma(nu, Su). (48)

Then, we can sample the parameters in θ3 from the following posterior distributions:

ξ|ψ, σu, h, y ∼ N(m̃ξ, s̃
2
ξ), (49)

ψ|ξ, σu, h, y ∼ N(m̃ψ, s̃
2
ψ), (50)

σ2u|ξ, ψ, h, y ∼ Gamma(ñu, S̃u), (51)

where

m̃ξ =
s2ξ

∑n
t=1(xt − ψht) + σ2umξ

ns2ξ + σ2u
, s̃2ξ =

σ2us
2
ξ

ns2ξ + σ2u
, (52)

m̃ψ =
s2ψ

∑n
t=1(xt − ξ)ht + σ2umψ

s2ψ
∑n

t=1 h
2
t + σ2u

, s̃2ψ =
σ2us

2
ψ

s2ψ
∑n

t=1 h
2
t + σ2u

, (53)

ñu =
n

2
+ nu, S̃u =

1

2

n∑
t=1

(xt − ξ − ψht)
2 + Su. (54)

A.4 Generation of z

Given θ1, θ2, θ3, and h, the full conditional density of zt is

f(zt|θ1, θ2, θ3, h, y) ∝ g(zt)× z
− ν+1

2
+1

t exp

(
− ν

2zt

)
, (55)

where

g(zt) = exp

{
− r̃

2
t

2
− (h̄t+1 − ϕh̄t − r̄t)

2

2(1− ρ2)σ2η
I(t < n)

}
, (56)

and I(·) is an indicator function. Following Nakajima and Omori (2012), we use the MH

algorithm. Specifically, we generate a candidate z∗t ∼ IG((ν+1)/2, ν/2) and accept it with

probability min{g(z∗t )/g(zt), 1}.

A.5 Generation of h

We first rewrite the RSVCskt model in (1)-(3) as

rt = {β(zt − µz) +
√
ztϵt} exp(αt/2)γ, t = 1, . . . , n (57)

xt = c+ ψαt + ut, t = 1, . . . , n (58)

αt+1 = ϕαt + ηt, t = 0, . . . , n− 1 (59)
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where αt = ht − µ, γ = exp(µ/2)/
√
β2σ2z + µz, and c = ξ + ψµ.

To sample the latent variable (α1, . . . , αn) efficiently, we use the block sampler by Shep-

hard and Pitt (1997) and Omori and Watanabe (2008). First, we divide (α1, . . . , αn)

into K + 1 blocks (αkj−1+1, . . . , αkj ) for j = 1, . . . ,K + 1 with k0 = 0 and kK+1 = n,

where kj − kj−1 ≥ 2. We select K knots (k1, . . . , kK) randomly and sample the error term

(ηkj−1
, . . . , ηkj−1

), instead of (αkj−1+1, . . . , αkj ), simultaneously from their full conditional

distribution.

Suppose that kj−1 = s and kj = s + m for the jth block and let yt = (rt, xt). Then

(ηs, . . . , ηs+m−1) are sampled simultaneously from the following full conditional distribution:

f(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m) ∝
s+m∏
t=s

f(yt|αt, αt+1)
s+m−1∏
t=s

f(ηt), (60)

for s+m < n, and

f(ηs, . . . , ηs+m−1|αs, ys, . . . , ys+m) ∝
s+m−1∏
t=s

f(yt|αt, αt+1)f(yn|αn)
s+m−1∏
t=s

f(ηt), (61)

for s + m = n. The logarithm of f(yt|αt, αt+1) or f(yn|αn) in (60) and (61) (excluding

constant term) is given by

lt = −αt
2

− (rt − µt)
2

2σ2t
− (xt − c− αt)

2

2σ2u
, (62)

where

µt =

 {βz̄t +
√
ztρσ

−1
η (αt+1 − ϕαt)} exp(αt/2)γ, t < n,

βz̄n exp(αn/2)γ, t = n,
(63)

and

σ2t =

 (1− ρ2)zt exp(αt)γ
2, t < n,

zn exp(αn)γ
2, t = n.

(64)

Then the logarithm of the conditional density in (60) and (61) is given by (excluding a

constant term)

s+m−1∑
t=s

log f(ηt) + L, (65)

where

L =


∑s+m

t=s lt −
(αs+m+1 − ϕαs+m)

2

2σ2η
, s+m < n,∑s+m

t=s lt, s+m = n.

(66)
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Further, for s ≥ 0, we define

α = (αs+1, . . . , αs+m)
′, (67)

d = (ds+1, . . . , ds+m)
′, dt =

∂L

∂αt
, t = s+ 1, . . . , s+m, (68)

Q = −E
[
∂2L

∂α∂α′

]
=



As+1 Bs+2 0 · · · 0

Bs+2 As+2 Bs+3 · · · 0

0 Bs+3 As+3
. . .

...
...

. . .
. . .

. . . Bs+m

0 · · · 0 Bs+m As+m


, (69)

At = −E
[
∂2L

∂α2
t

]
, t = s+ 1, . . . , s+m, (70)

Bt = −E
[

∂2L

∂αt∂αt−1

]
, t = s+ 2, . . . , s+m, Bs+1 = 0. (71)

The first derivative of L with respect to αt is given by

dt = −1

2
+

(rt − µt)
2

2σ2t
+
rt − µt
σ2t

∂µt
∂αt

+
rt−1 − µt−1

σ2t−1

∂µt−1

∂αt
+
ψ(xt − c− ψαt)

σ2u
+ κ(αt), (72)

where

∂µt
∂αt

=


{
βz̄t
2

+
√
ztρσ

−1
η

(
−ϕ+

αt+1 − ϕαt
2

)}
exp(αt/2)γ, t < n,

βz̄n exp(αn/2)γ

2
, t = n,

(73)

∂µt−1

∂αt
=

 0, t = 1,
√
zt−1ρσ

−1
η exp(αt−1/2)γ, t = 2, . . . , T.

(74)

κ(αt) =


ϕ(αt+1 − ϕαt)

σ2η
, t = s+m < n

0, otherwise.

(75)

Taking expectations of second derivatives multiplied by −1 with respect to yt’s, we obtain

the At’s and Bt’s as follows:

At =
1

2
+ σ−2

t

(
∂µt
∂αt

)2

+ σ−2
t−1

(
∂µt−1

∂αt

)2

+
ψ2

σ2u
+ κ′(αt), (76)

Bt = σ−2
t−1

∂µt−1

∂αt−1

∂µt−1

∂αt
, (77)

where

κ′(αt) =


ϕ2

σ2η
, t = s+m < n

0, otherwise.

(78)
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Applying the second order Taylor expansion to the conditional density (60) will produce

the approximating normal density f∗(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m) as follows

(see Omori and Watanabe (2008) for details):

log f(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m) (79)

≈ const− 1

2

s+m−1∑
t=s

η2t + L̂+
∂L

∂η

∣∣∣∣
η=η̂

(η − η̂) +
1

2
(η − η̂)′ E

[
∂2L

∂η∂η′

]∣∣∣∣
η=η̂

(η − η̂) (80)

= const− 1

2

s+m−1∑
t=s

η2t + L̂+ d̂′(α− α̂)− 1

2
(α− α̂)′Q̂(α− α̂) (81)

= const + log f∗(ηs, . . . , ηs+m−1|αs, αs+m+1, ys, . . . , ys+m), (82)

where η = (ηs, . . . , ηs+m−1)
′, and d̂, L̂, and Q̂ denote d, L, and Q evaluated at α = α̂

(or, equivalently, at η = η̂), respectively. The expectations are taken with respect to yt’s

conditional on αt’s. Similarly, we can obtain the normal density which approximates the

conditional density (61).

To make the linear Gaussian state-space model corresponding to the approximating

density, we first compute the following Dt, Kt, Jt, and bt for t = s+2, . . . , s+m recursively,

Dt = Ât −D−1
t−1B̂

2
t , Ds+1 = Âs+1, (83)

Kt =
√
Dt, (84)

Jt = B̂tK
−1
t−1, Js+1 = 0, Js+m+1 = 0, (85)

bt = d̂t − JtK
−1
t−1bt−1, bs+1 = d̂s+1. (86)

Second, we define auxiliary variables ŷt = γ̂t +D−1
t bt where

γ̂t = α̂t +K−1
t Jt+1α̂t+1, t = s+ 1, . . . , s+m. (87)

Then the approximating density corresponds to the density of the linear Gaussian state-

space model given by

ŷt = Ztαt +Gtζt, t = s+ 1, . . . , s+m, (88)

αt+1 = ϕαt +Htζt, t = s, s+ 1, . . . , s+m, ζt ∼ N(0, I), (89)

where

Zt = 1 +K−1
t Jt+1ϕ, Gt = K−1

t (1, Jt+1ση), Ht = (0, ση). (90)

We can sample (ηs, . . . , ηs+m−1) from the full posterior distribution in (60) and (61)

by applying the simulation smoother (see, e.g., de Jong and Shephard (1995) and Durbin
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and Koopman (2002)) to this state-space model and using Acceptance-Rejection (AR) MH

algorithm proposed by Tierney (1994). See Omori and Watanabe (2008) and Takahashi,

Omori, and Watanabe (2009) for the detail of the ARMH algorithm.
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Tables and Figures

Table 1: Descriptive statistics of the daily return (r), realized kernel (RK) for the estimation

and prediction samples. The data is obtained from Oxford-Man Institute. JB is the p-

value of the Jaque-Bera statistic to test the null hypothesis of normality. Standard errors

of skewness and kurtosis are 0.0731 and 0.1460 for the estimation samples, respectively,

whereas they are 0.0873 and 0.1744 for the prediction samples. LB is the p-value of the

Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the null

hypothesis of no autocorrelation up to 10 lags.

Estimation period: February 1, 2001 – July 20, 2005 (1121 samples)

Variable Mean SE SD Skew Kurt Min Max JB LB

r -0.000 0.035 1.185 0.132 5.106 -5.099 5.677 0.00 0.77

r2 1.403 0.085 2.844 4.888 35.956 0.000 32.231 0.00 0.00

RK 0.991 0.036 1.208 4.731 37.018 0.049 13.145 0.00 0.00

ln r2 -1.288 0.073 2.433 -1.542 8.467 -17.941 3.473 0.00 0.00

lnRK -0.408 0.025 0.848 0.360 3.191 -3.023 2.576 0.00 0.00

Prediction period: July 21, 2005 – August 29, 2008 (784 samples)

Variable Mean SE SD Skew Kurt Min Max JB LB

r 0.014 0.033 0.931 -0.182 4.979 -3.637 4.041 0.00 0.04

r2 0.868 0.062 1.729 4.020 24.009 0.000 16.334 0.00 0.00

RK 0.629 0.027 0.756 3.903 26.045 0.049 7.396 0.00 0.00

ln r2 -1.927 0.091 2.547 -1.202 5.386 -13.649 2.793 0.00 0.00

lnRK -0.888 0.031 0.871 0.486 2.868 -3.011 2.001 0.00 0.00
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Table 2: MCMC estimation results of RSV models with normal, student’s t, and skewed

t distributions obtained by 20000 samples recorded after discarding 5000 samples from

MCMC iterations (all calculations in this paper are done by using Ox of Doornik (2009)).

95%L and 95%U are the lower and upper quantiles of 95% credible interval, respectively.

The last two columns are the p-value of the convergence diagnostic test by Geweke (1992)

and the inefficiency factor. Priors are set as µ ∼ N(0, 10), (ϕ + 1)/2 ∼ Beta(20, 1.5),

σ−2
η ∼ Gamma(2.5, 0.025), (ρ+ 1)/2 ∼ Beta(1, 2), β ∼ N(0, 1), ν ∼ Gamma(a, b)I(ν > 4),

ξ ∼ N(0, 1), ψ ∼ N(1, 1), σ−2
u ∼ Gamma(2.5, 0.1).

Model Mean Stdev. 95%L Median 95%U CD Inef.

RSVn ϕ 0.9701 0.0068 0.9564 0.9702 0.9833 0.513 3.07

ση 0.1789 0.0092 0.1616 0.1786 0.1976 0.013 14.92

ρ -0.3864 0.0488 -0.4794 -0.3871 -0.2883 0.008 15.85

µ -0.1937 0.1789 -0.5442 -0.1938 0.1664 0.280 2.27

ξ -0.2065 0.0414 -0.2891 -0.2060 -0.1281 0.889 21.55

σu 0.3589 0.0100 0.3402 0.3586 0.3790 0.001 6.14

RSVCn ϕ 0.9724 0.0066 0.9591 0.9725 0.9850 0.574 3.72

ση 0.1990 0.0123 0.1763 0.1985 0.2238 0.197 34.56

ρ -0.4110 0.0501 -0.5043 -0.4126 -0.3077 0.367 18.66

µ -0.1690 0.2149 -0.5947 -0.1711 0.2674 0.375 1.45

ξ -0.2541 0.0427 -0.3390 -0.2539 -0.1723 0.625 26.74

ψ 0.8485 0.0460 0.7629 0.8480 0.9420 0.240 32.77

σu 0.3638 0.0102 0.3444 0.3636 0.3845 0.930 4.69
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Table 2: MCMC estimation results of RSV models – Continued

Prior: ν ∼ Gamma(5, 0.5)I(ν > 4)

Model Mean Stdev. 95%L Median 95%U CD Inef.

RSVt ϕ 0.9698 0.0069 0.9561 0.9699 0.9829 0.094 5.95

ση 0.1791 0.0090 0.1624 0.1787 0.1978 0.474 22.08

ρ -0.3904 0.0496 -0.4832 -0.3913 -0.2905 0.357 14.45

µ -0.1867 0.1772 -0.5346 -0.1874 0.1674 0.109 2.17

ν 24.7185 5.4374 15.9969 24.0579 37.4976 0.712 65.55

ξ -0.2135 0.0435 -0.3006 -0.2123 -0.1307 0.343 29.67

σu 0.3590 0.0100 0.3403 0.3588 0.3792 0.865 6.96

RSVskt ϕ 0.9697 0.0068 0.9561 0.9698 0.9828 0.238 4.60

ση 0.1791 0.0090 0.1621 0.1789 0.1973 0.005 22.10

ρ -0.3910 0.0510 -0.4880 -0.3920 -0.2875 0.208 23.55

µ -0.1851 0.1786 -0.5344 -0.1872 0.1712 0.771 1.88

β 0.1158 0.2687 -0.4163 0.1119 0.6571 0.082 25.72

ν 25.3806 5.6189 15.9358 24.8142 38.1524 0.522 83.53

ξ -0.2176 0.0430 -0.3015 -0.2172 -0.1338 0.083 24.69

σu 0.3590 0.0100 0.3401 0.3587 0.3793 0.003 9.07
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Table 2: MCMC estimation results of RSV models – Continued

Prior: ν ∼ Gamma(5, 0.5)I(ν > 4)

Model Mean Stdev. 95%L Median 95%U CD Inef.

RSVCt ϕ 0.9725 0.0066 0.9592 0.9727 0.9850 0.707 5.86

ση 0.1987 0.0127 0.1750 0.1983 0.2250 0.608 48.13

ρ -0.4153 0.0504 -0.5113 -0.4164 -0.3145 0.860 14.99

µ -0.1642 0.2151 -0.5861 -0.1649 0.2592 0.749 3.26

ν 23.6211 4.7493 15.7562 23.1892 34.1399 0.270 70.21

ξ -0.2583 0.0451 -0.3509 -0.2570 -0.1727 0.499 37.61

ψ 0.8449 0.0475 0.7509 0.8444 0.9410 0.390 35.59

σu 0.3641 0.0103 0.3443 0.3639 0.3852 0.125 5.90

RSVCskt ϕ 0.9723 0.0065 0.9593 0.9724 0.9848 0.457 5.98

ση 0.2012 0.0129 0.1776 0.2007 0.2287 0.591 43.09

ρ -0.4170 0.0513 -0.5125 -0.4183 -0.3145 0.454 26.18

µ -0.1592 0.2153 -0.5767 -0.1599 0.2758 0.001 3.13

β 0.0523 0.2633 -0.4644 0.0506 0.5916 0.156 24.24

ν 25.4040 5.5816 15.6377 24.8553 37.8619 0.811 107.91

ξ -0.2656 0.0448 -0.3565 -0.2645 -0.1804 0.155 29.57

ψ 0.8376 0.0471 0.7410 0.8381 0.9267 0.473 47.12

σu 0.3643 0.0104 0.3446 0.3640 0.3857 0.468 6.46

29



Table 2: MCMC estimation results of RSV models – Continued

Prior: ν ∼ Gamma(1, 0.1)I(ν > 4)

Model Mean Stdev. 95%L Median 95%U CD Inef.

RSVt ϕ 0.9699 0.0068 0.9564 0.9700 0.9830 0.014 3.60

ση 0.1789 0.0089 0.1618 0.1788 0.1965 0.001 18.73

ρ -0.3895 0.0486 -0.4832 -0.3904 -0.2912 0.005 15.18

µ -0.1915 0.1801 -0.5374 -0.1917 0.1624 0.118 2.22

ν 45.3320 17.4236 20.6393 41.9753 87.8133 0.603 155.55

ξ -0.2119 0.0437 -0.2983 -0.2121 -0.1282 0.129 23.59

σu 0.3591 0.0100 0.3402 0.3588 0.3799 0.004 7.21

RSVskt ϕ 0.9697 0.0070 0.9556 0.9698 0.9831 0.905 6.59

ση 0.1793 0.0091 0.1627 0.1789 0.1981 0.795 21.24

ρ -0.3896 0.0501 -0.4849 -0.3905 -0.2874 0.313 23.06

µ -0.1921 0.1794 -0.5474 -0.1912 0.1612 0.118 1.95

β 0.2158 0.4620 -0.7191 0.2157 1.1484 0.538 24.45

ν 49.3075 15.2241 25.5010 47.1330 84.3186 0.556 132.21

ξ -0.2122 0.0426 -0.2986 -0.2110 -0.1296 0.501 28.72

σu 0.3586 0.0100 0.3400 0.3582 0.3790 0.916 4.09
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Table 2: MCMC estimation results of RSV models – Continued

Prior: ν ∼ Gamma(1, 0.1)I(ν > 4)

Model Mean Stdev. 95%L Median 95%U CD Inef.

RSVCt ϕ 0.9724 0.0066 0.9591 0.9726 0.9852 0.358 5.41

ση 0.2011 0.0125 0.1780 0.2005 0.2272 0.863 47.16

ρ -0.4124 0.0505 -0.5080 -0.4131 -0.3119 0.187 27.24

µ -0.1645 0.2179 -0.5866 -0.1672 0.2743 0.271 1.79

ν 43.5052 15.4304 21.3596 40.9325 81.3445 0.002 154.19

ξ -0.2581 0.0424 -0.3418 -0.2578 -0.1765 0.882 23.21

ψ 0.8388 0.0460 0.7489 0.8381 0.9313 0.360 36.79

σu 0.3638 0.0104 0.3444 0.3635 0.3853 0.815 6.77

RSVCskt ϕ 0.9724 0.0067 0.9592 0.9726 0.9852 0.751 5.66

ση 0.2003 0.0126 0.1770 0.1998 0.2263 0.848 44.86

ρ -0.4100 0.0512 -0.5077 -0.4109 -0.3080 0.037 16.41

µ -0.1665 0.2172 -0.5917 -0.1685 0.2641 0.236 2.21

β 0.1167 0.4611 -0.8078 0.1091 1.0583 0.002 40.76

ν 48.4294 16.5012 23.6108 45.5288 88.1198 0.598 122.70

ξ -0.2585 0.0428 -0.3465 -0.2575 -0.1760 0.874 39.76

ψ 0.8412 0.0455 0.7519 0.8403 0.9322 0.821 42.17

σu 0.3637 0.0103 0.3442 0.3634 0.3849 0.231 6.91
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Table 2: MCMC estimation results of RSV models – Continued

Prior: ν ∼ Gamma(0.1, 0.01)I(ν > 4)

Model Mean Stdev. 95%L Median 95%U CD Inef.

RSVt ϕ 0.9699 0.0069 0.9560 0.9701 0.9832 0.922 9.15

ση 0.1793 0.0092 0.1622 0.1790 0.1982 0.949 36.72

ρ -0.3859 0.0491 -0.4805 -0.3869 -0.2863 0.249 22.22

µ -0.1893 0.1790 -0.5376 -0.1892 0.1643 0.449 1.19

ν 167.7671 110.2217 39.6042 140.5874 461.6067 0.521 352.87

ξ -0.2110 0.0427 -0.2962 -0.2108 -0.1287 0.977 25.55

σu 0.3588 0.0099 0.3401 0.3586 0.3785 0.948 9.39

RSVskt ϕ 0.9697 0.0070 0.9559 0.9697 0.9832 0.454 7.37

ση 0.1796 0.0092 0.1622 0.1793 0.1987 0.969 27.67

ρ -0.3870 0.0491 -0.4799 -0.3886 -0.2879 0.009 19.37

µ -0.1923 0.1782 -0.5459 -0.1932 0.1660 0.926 1.77

β 0.2560 0.8128 -1.3915 0.2600 1.8558 0.497 39.57

ν 170.8826 117.3749 42.0413 137.2567 479.2125 0.635 379.54

ξ -0.2103 0.0425 -0.2968 -0.2098 -0.1279 0.821 18.89

σu 0.3585 0.0101 0.3394 0.3582 0.3792 0.034 7.12
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Table 2: MCMC estimation results of RSV models – Continued

Prior: ν ∼ Gamma(0.1, 0.01)I(ν > 4)

Model Mean Stdev. 95%L Median 95%U CD Inef.

RSVCt ϕ 0.9724 0.0065 0.9593 0.9725 0.9849 0.798 3.35

ση 0.1990 0.0130 0.1751 0.1984 0.2265 0.699 35.18

ρ -0.4115 0.0496 -0.5057 -0.4128 -0.3102 0.359 8.99

µ -0.1689 0.2140 -0.5891 -0.1725 0.2679 0.220 3.10

ν 127.2060 74.9582 35.4274 109.9902 310.5359 0.598 233.67

ξ -0.2537 0.0432 -0.3427 -0.2523 -0.1728 0.050 32.59

ψ 0.8475 0.0480 0.7519 0.8476 0.9424 0.502 33.77

σu 0.3640 0.0103 0.3449 0.3637 0.3850 0.944 5.76

RSVCskt ϕ 0.9723 0.0067 0.9589 0.9724 0.9851 0.403 4.89

ση 0.2010 0.0127 0.1775 0.2005 0.2273 0.330 59.16

ρ -0.4096 0.0522 -0.5082 -0.4109 -0.3038 0.044 29.17

µ -0.1687 0.2174 -0.5952 -0.1708 0.2697 0.685 3.38

β 0.0940 0.8431 -1.5395 0.0854 1.8665 0.423 38.76

ν 153.6488 92.9665 40.0863 132.3362 399.1619 0.171 310.08

ξ -0.2572 0.0442 -0.3458 -0.2561 -0.1732 0.678 35.12

ψ 0.8416 0.0465 0.7472 0.8416 0.9316 0.759 33.33

σu 0.3634 0.0103 0.3441 0.3631 0.3845 0.006 6.13
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Table 3: Marginal likelihood and its components, likelihood, prior, and posterior (in loga-

rithm). The likelihood is estimated using the auxiliary particle filter of Pitt and Shephard

(1999) with 10000 particles. The likelihood estimate and its standard error are computed as

the sample mean and standard deviation of the likelihoods from 10 iterations. The posterior

probability density and its numerical standard error are evaluated by the method of Chib

and Greenberg (1995) and Chib and Jeliazkov (2001). The numbers in the parentheses

show the standard errors.

Model Likelihood Prior Posterior Marginal

RSVn -2179.16 (0.25) 0.29 18.20 (0.01) -2197.07 (0.25)

RSVCn -2176.05 (0.25) -1.32 20.77 (0.02) -2198.15 (0.25)

Prior: ν ∼ Gamma(5, 0.5)I(ν > 4)

RSVt -2183.77 (0.25) -5.83 13.94 (0.03) -2203.54 (0.26)

RSVskt -2183.29 (0.26) -6.99 13.10 (0.04) -2203.37 (0.26)

RSVCt -2181.04 (0.23) -7.07 16.57 (0.03) -2204.68 (0.23)

RSVCskt -2180.52 (0.31) -8.67 15.56 (0.04) -2204.75 (0.31)

Prior: ν ∼ Gamma(1, 0.1)I(ν > 4)

RSVt -2181.44 (0.21) -6.15 12.90 (0.05) -2200.49 (0.21)

RSVskt -2180.83 (0.23) -7.49 11.59 (0.05) -2199.91 (0.23)

RSVCt -2179.11 (0.29) -7.64 15.46 (0.05) -2202.21 (0.29)

RSVCskt -2178.53 (0.26) -9.03 14.18 (0.05) -2201.75 (0.26)

Prior: ν ∼ Gamma(0.1, 0.01)I(ν > 4)

RSVt -2179.60 (0.28) -7.30 10.66 (0.10) -2197.56 (0.29)

RSVskt -2179.50 (0.11) -8.30 9.29 (0.09) -2197.10 (0.14)

RSVCt -2176.94 (0.16) -8.25 13.79 (0.08) -2198.98 (0.18)

RSVCskt -2177.02 (0.19) -9.66 11.90 (0.09) -2198.58 (0.21)
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Table 4: Mean squared error (MSE) and quasi-likelihood (QLIKE) of volatility forecasts

from July 21, 2005 to August 29, 2008. Realized kernel with the adjustment of Hansen and

Lunde (2005) are used as a proxy of latent volatility.

Model MSE QLIKE

RSVn 0.2150 0.1473

RSVt 0.2209 0.1515

RSVskt 0.2981 0.1672

RSVCn 0.3337 0.1594

RSVCt 0.3863 0.1746

RSVCskt 0.5316 0.1836
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Table 5: Backtesting measure of Embrechts, Kaufmann, and Patie (2005) for the expected

shortfall forecasts from July 21, 2005 to August 29, 2008. |V1| is an absolute value of

the sample average of δt(α) = rt − ESt(α) given a violation of the VaR occurs, that is,

rt < V aR(α), whereas |V2| is an absolute value of the sample average of δt(α) below its

empirical α-quantile. V is an average of those two measures, V = (|V1|+ |V2|)/2.

Model |V1| |V2| V |V1| |V2| V

0.5% 1%

RSVn 0.2366 0.8422 0.5394 0.2139 0.6614 0.4377

RSVt 0.1630 0.7106 0.4368 0.2223 0.5137 0.3680

RSVskt 0.1229 0.7561 0.4395 0.2163 0.5087 0.3625

RSVCn 0.1512 0.7881 0.4697 0.1435 0.5940 0.3687

RSVCt 0.0484 0.6520 0.3502 0.1221 0.4894 0.3058

RSVCskt 0.0062 0.6310 0.3186 0.1449 0.4572 0.3011

5% 10%

RSVn 0.1835 0.3878 0.2857 0.2177 0.2800 0.2489

RSVt 0.1192 0.3166 0.2179 0.1689 0.2466 0.2078

RSVskt 0.0523 0.2958 0.1741 0.0850 0.2262 0.1556

RSVCn 0.1617 0.3589 0.2603 0.1795 0.2611 0.2203

RSVCt 0.1044 0.3096 0.2070 0.1278 0.2417 0.1848

RSVCskt 0.0798 0.3198 0.1998 0.1434 0.2399 0.1917
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Table 6: Empirical failure rates for the VaR forecasts from July 21, 2005 to August 29, 2008.

π1 is an empirical probability of VaR violations. π01 is the empirical probability of VaR

violations conditional on no VaR violation on previous day while π11 is the one conditional

on VaR violation on previous day.

Model π1 π01 π11 π1 π01 π11

0.5% 1%

RSVn 0.0191 0.0195 0.0000 0.0268 0.0275 0.0000

RSVt 0.0153 0.0155 0.0000 0.0204 0.0208 0.0000

RSVskt 0.0153 0.0155 0.0000 0.0204 0.0208 0.0000

RSVCn 0.0204 0.0208 0.0000 0.0306 0.0316 0.0000

RSVCt 0.0191 0.0195 0.0000 0.0242 0.0248 0.0000

RSVCskt 0.0179 0.0182 0.0000 0.0230 0.0235 0.0000

5% 10%

RSVn 0.0765 0.0773 0.0667 0.1071 0.1100 0.0833

RSVt 0.0740 0.0744 0.0690 0.1097 0.1117 0.0814

RSVskt 0.0753 0.0759 0.0678 0.1135 0.1165 0.0787

RSVCn 0.0740 0.0744 0.0690 0.1122 0.1149 0.0795

RSVCt 0.0753 0.0759 0.0678 0.1186 0.1230 0.0753

RSVCskt 0.0753 0.0759 0.0678 0.1148 0.1182 0.0778
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Table 7: Finite sample p-values of the Markov, Weibull, and EACD tests for the VaR

forecasts from July 21, 2005 to August 29, 2008. We compute the finite sample p-values

based on the Monte Carlo testing technique of Dufour (2006).

Model Markov Weibull EACD Markov Weibull EACD

0.5% 1%

RSVn 0.0192 0.2072 0.0001 0.0010 0.7013 0.0001

RSVt 0.0242 0.0255 0.0159 0.0241 0.0427 0.0039

RSVskt 0.0219 0.0250 0.0146 0.0240 0.2652 0.0043

RSVCn 0.0192 0.8418 0.0001 0.0005 0.5488 0.0012

RSVCt 0.0194 0.1449 0.0019 0.0024 0.9567 0.0075

RSVCskt 0.0205 0.9452 0.0021 0.0047 0.7245 0.0018

5% 10%

RSVn 0.0127 0.0355 0.0090 0.6398 0.2283 0.0048

RSVt 0.0289 0.0540 0.0106 0.1014 0.1098 0.0084

RSVskt 0.0236 0.0454 0.0066 0.0592 0.1006 0.0068

RSVCn 0.0309 0.0268 0.0093 0.0712 0.2014 0.0336

RSVCt 0.0215 0.0462 0.0051 0.0227 0.1230 0.0806

RSVCskt 0.0220 0.0180 0.0077 0.0502 0.1130 0.0239
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Figure 1: The posterior mean and the 95% credible interval of the parameter β for the

RSVskt and RSVCskt models obtained from the rolling estimation using 1121 samples each

time. The first posterior mean and 95% interval are obtained from the MCMC estimation

using 1121 samples from February 1, 2001 through July 20, 2005. The second ones corre-

spond to the one using one day ahead 1121 samples from February 2, 2001 through July

21, 2005. We continue the rolling estimation until the 1121 samples from March 18, 2004

through August 28, 2008. The horizontal axis corresponds to the last day of samples for

each MCMC estimation.
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Figure 2: Daily returns and the VaR forecasts (5%) of the RSV models from July 21, 2005

to August 29, 2008.
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